
THE DZONE GUIDE TO

VOLUME I I

MODERN
JAVA

BROUGHT TO YOU IN PARTNERSHIP WITH

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

2

3 EXECUTIVE SUMMARY

4 KEY RESEARCH FINDINGS

10 THE JAVA 8 API DESIGN PRINCIPLES
BY PER MINBORG

13 PROJECT JIGSAW IS COMING
BY NICOLAI PARLOG

18 REACTIVE MICROSERVICES: DRIVING APPLICATION
MODERNIZATION EFFORTS
BY MARKUS EISELE

21 CHECKLIST: 7 HABITS OF SUPER PRODUCTIVE JAVA DEVELOPERS

22 THE ELEMENTS OF MODERN JAVA STYLE
BY MICHAEL TOFINETTI

28 12 FACTORS AND BEYOND IN JAVA
BY PIETER HUMPHREY AND MARK HECKLER

31 DIVING DEEPER INTO JAVA DEVELOPMENT

34 INFOGRAPHIC: JAVA'S IMPACT ON THE MODERN WORLD

36 A JAVA DEVELOPER’S GUIDE TO MIGRATION
BY BEN WILSON

40 HASH TABLES, MUTABILITY, AND IDENTITY:
HOW TO IMPLEMENT A BI-DIRECTIONAL HASH TABLE IN JAVA
BY WAYNE CITRIN

42 EXECUTIVE INSIGHTS INTO JAVA DEVELOPMENT
BY TOM SMITH

46 JAVA SOLUTIONS DIRECTORY

55 GLOSSARY

Dear Reader,
Why isn’t Java dead after more than two decades? A few
guesses: Java is (still) uniquely portable, readable to
fresh eyes, constantly improving its automatic memory
management, provides good full-stack support for high-
load web services, and enjoys a diverse and enthusiastic
community, mature toolchain, and vigorous dependency
ecosystem.

Java is growing with us, and we’re growing with Java. Java
8 just expanded our programming paradigm horizons (add
Church and Curry to Kay and Gosling) and we’re still learning
how to mix functional and object-oriented code. Early next
year Java 9 will add a wealth of bigger-picture upgrades.

But Java remains vibrant for many more reasons than the
robustness of the language and the comprehensiveness of
the platform. JVM languages keep multiplying (Kotlin went
GA this year!), Android keeps increasing market share, and
demand for Java developers (measuring by both new job
posting frequency and average salary) remains high. The key
to the modernization of Java is not a laundry-list of JSRs, but
rather the energy of the Java developer community at large.

In fact, the enthusiasm of practicing developers has been
Java’s strength since the beginning. The Java platform has
always been backed, but never limited, by a single entity.
Sun first made Java for their own enterprise hardware
and software ecosystem, but WORA made everyone else
want to use it, too. Microsoft failed to fork Java onto a
Windows-flavored JVM because the developer community
– spearheaded by Javalobby, DZone in its earliest form –
understood the vital importance of a platform-neutral,
industrial-strength, object-oriented language. Google is plenty
gung-ho to create its own languages (Go, Dart) but chose Java
for Android – fatefully, since now Java powers far more feature
and smart phones than any other language. A few months
ago Red Hat, IBM, Tomitribe, Payara, and other groups banded
together to sketch out the beginnings of a specification for
microservice support in Java – just the most recent of many
platform-driving endeavors of the Java community beyond the
formal JCP.

One of the more convenient effects of Java’s strong
commitment to backwards compatibility is that we don’t
have to change when the language and/or platform do. But
those changes aren’t determined by corporate or academic
experiment. A broad-based community means that the Java
ecosystem evolves in response to developers’ changing real-
world needs. We’re steering this ship; let’s ride it as fast and
as far as it can take us.

So here at DZone we’re thrilled to publish our 2016 Guide to
Modern Java. No other language has benefited the world as
much as Java, and we’re proud to be a part of that ecosystem.
We know you are too, and we hope you’ll be able to do even
more with Java after reading this Guide.

BY JOHN ESPOSITO
SENIOR RESEARCH ANALYST, DZONE
RESEARCH@DZONE.COM

EDITORIAL
CAITLIN CANDELMO
DIRECTOR OF CONTENT + COMMUNITY

MATT WERNER
CONTENT + COMMUNITY MANAGER

MICHAEL THARRINGTON
CONTENT + COMMUNITY MANAGER

NICOLE WOLFE
CONTENT COORDINATOR

MIKE GATES
CONTENT COORDINATOR

SARAH DAVIS
CONTENT COORDINATOR

INDUSTRY + VENDOR
RELATIONS

JOHN ESPOSITO
SENIOR RESEARCH ANALYST

TOM SMITH
RESEARCH ANALYST

BUSINESS
RICK ROSS
CEO

MATT SCHMIDT
PRESIDENT & CTO

JESSE DAVIS
EVP & COO

KELLET ATKINSON
DIRECTOR OF MARKETING

MATT O’BRIAN
SALES@DZONE.COM
DIRECTOR OF BUSINESS DEVELOPMENT

ALEX CRAFTS
DIRECTOR OF MAJOR ACCOUNTS

JIM HOWARD
SR ACCOUNT EXECUTIVE

CHRIS BRUMFIELD
ACCOUNT MANAGER

PRODUCTION

CHRIS SMITH
DIRECTOR OF PRODUCTION

ANDRE POWELL
SENIOR PRODUCTION COORDINATOR

G. RYAN SPAIN
PRODUCTION PUBLICATIONS EDITOR

ART
ASHLEY SLATE
DESIGN DIRECTOR

SPECIAL THANKS to our

topic experts, Zone Leaders,

trusted DZone Most Valuable

Bloggers, and dedicated users

for all their help and feedback in

making this report a great success.

TABLE OF CONTENTS

WANT YOUR SOLUTION TO BE FEATURED IN COMING GUIDES?
Please contact research@dzone.com for submission information.

LIKE TO CONTRIBUTE CONTENT TO COMING GUIDES?
Please contact research@dzone.com for consideration.

INTERESTED IN BECOMING A DZONE RESEARCH PARTNER?
Please contact sales@dzone.com for information.

http://DZone.com/guides
http://dzone.com/guides
mailto:research%40dzone.com?subject=
http://www.dzone.com/pages/zoneleader
http://www.dzone.com/pages/mvb
http://www.dzone.com/pages/mvb
mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

3

The most successful programming language in history
owes much of its continuing vitality to the most
effective development community in history. More than
any other widely used programming language, Java
learns from and responds to millions of developers’
needs; and the most important perspective on how
Java is working well, and what Java needs to do better,
comes from experienced software engineers spending
hours every day in their Java weeds. Is Java doing its
job? We surveyed 2977 developers to find out. And we
went deeper, seeking to discover exactly how developers
are using Java to solve today’s business problems, on
modern deployment topologies, using modern release
practices, in shortening release cycles, with increasingly
modularized application architectures, meeting
increasingly stringent performance requirements.
Here’s what we learned.

JAVA 8 IS NOW DOMINANT
DATA 84% of developers are now using Java 8, showing steady
growth from October 2014 (27%) through May 2015 (38%), August
2015 (58%), and March 2016 (64%).

IMPLICATIONS Java 8 is the new normal. You are increasingly
(and now extremely) likely to encounter Java 8 code in others’
applications (especially applications created in the past year),
and you will be increasingly expected to be able to write code in
idioms influenced by Java 8.

RECOMMENDATIONS Take advantage of features new to Java 8
and assume that you will encounter Java 8 in other developers’
code. For more on modern Java API design, check out Per
Minborg’s article on page 10.

DEVELOPERS ARE USING NEW-TO-JAVA-8 FEATURES
EXTENSIVELY, ESPECIALLY LAMBDAS AND STREAMS
DATA 73% of developers are using lambdas. 70% are using the
Stream API. 51% are returning Optionals.

IMPLICATIONS Two of the three most important features new
to Java 8 are now used by a large majority of developers. Both
(lambdas and streams) facilitate function composition and (for
certain kinds of function pipelines) more readable code. Multi-
paradigm programming in Java is a reality. Separately: as Optional
usage increases, NullPointerExceptions become less likely.

RECOMMENDATIONS To exercise your modern Java muscles,
practice refactoring code using lambdas, streams, and Optionals.
To understand functional programming from a theoretical point

of view, dive deeper into the lambda calculus. Celebrate your
shrinking chances of cursing the existence of Null.

MICROSERVICES ADOPTION IS GROWING STEADILY
DATA In August 2015, 10% of developers were using
microservices; in January 2016, 24% were using microservices
somewhere in their organization; in a report just published
by Lightbend, 30% are using microservices in production;
and, in our latest survey, 39% of developers are currently
using microservices, and another 19% are planning to adopt
microservices in the next 12 months.

IMPLICATIONS No matter how old the concept, and no matter
how much you appreciate the headaches of locating complexity
in the entire component graph rather than individual nodes,
developers are already architecting their applications as
microservices at significant rates and will doing so even more in
the near future.

RECOMMENDATIONS Consider how you might refactor your
"monolithic" applications into microservices, even if you decide
to retain your "monolith" in production. Become more familiar
with distributed computing principles. Practice domain-driven
design. Read Markus Eisele’s article on page 16 below.

NON-JAVA JVM LANGUAGES ARE PROLIFERATING
AND ENJOYING MORE USE, ESPECIALLY SCALA
DATA 45% of developers are using Groovy, up from 39% in 2015.
41% are using Scala in development (18%), in production (10%),
and/or just for fun (26%), up from 31% in 2015. Clojure use has
doubled over the past year, and Kotlin is now used in significant
numbers, although still mostly just for fun.

IMPLICATIONS The JVM continues to gain momentum even
among non-Java developers. JVM developers are increasingly
playing with programming models beyond object-orientation.
For all the valuable readability introduced by Java’s verbosity, the
syntactic sugar offered by Kotlin and Groovy, for example, is not
to be dismissed lightly.

RECOMMENDATIONS Play with other JVM languages: Groovy
for high-productivity scripting, Scala for type-safe and multi-
paradigm programming, Clojure for Lisp-like macros and
code-as-data functional purity, Kotlin for the pleasure of rapid
development and beyond-Groovy performance on Android.

THE FUTURE OF JAVA LOOKS BRIGHT
DATA 80% of developers are optimistic about the future of Java
(42% "very optimistic," 40% "fairly optimistic").

IMPLICATIONS Java is neither dead nor dying. Java developers have
both the highest stakes in the future of Java and also the deepest,
most information-rich engagement with the Java community; so
developers’ aggregate opinions on the future of Java should be an
excellent indicator of the health of the ecosystem.

RECOMMENDATIONS Keep writing Java. Contribute to open-
source Java projects. Participate actively in the community-
driven improvement of the Java platform, whether via the JCP
or through any of the growing set of ancillary organizations and
communities (MicroProfile.io, Java EE Guardians, local JUGs, etc.).

Executive
Summary

http://DZone.com/guides

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

4

2977 software professionals responded to DZone’s 2016
Java survey. Respondent demographics are as follows:

• 60% identify as developers or developer team leads

• 24% identify as architects (no overlap with
developers and developer team leads)

• 43% have more than 15 years of experience as IT
professionals

• 42% work at companies whose headquarters are
located in Europe; 31% in the USA

• 20% work at companies with more than 10,000
employees; 27% with 500-9,999 employees; 20% at
companies with 100-499 employees

1. JAVA 8 NOW DOMINATES NEW APPLICATIONS
It is not surprising that Java 8 adoption is increasing. But

the numbers are becoming impressive: 84% of our survey

respondents are now using Java 8 for old or existing applications.

This number represents a steadily growing adoption curve

over the past two years. In October 2014, a Typesafe survey

showed a Java 8 adoption rate of 27%; in May 2015, a Baeldung

survey showed 38%; in August 2015, our annual Java survey

showed 58%; in March 2016, another Baeldung survey showed

64%. (Not all of these surveys included explicit demographics,

so comparison of results is not rigorous; but given the sources

it seems likely that all of these surveys were conducted on a

roughly similar enterprise Java developer population.

Java 8 is far more likely to be adopted for new applications

than to be introduced into existing applications. While 81% of

respondents report using Java 8 for new applications, only 34%

report using Java 8 for existing applications. (The overlap is huge,

of course: only 59 respondents (3% of total) that use Java 8 in

existing applications do not also use Java 8 in new applications.)

But Java 8 adoption in legacy code is also up considerably from

August 2015, when only 20% of respondents reported using Java 8

for existing apps.

2. HOW IS JAVA 8 CHANGING HOW
DEVELOPERS WRITE CODE?
Developer usage of particular OpenJDK versions speaks to

developers' attitudes toward Java 8; but usage of language

features new to Java 8 says more about how actual Java code

is changing over time. To understand how Java 8 has changed

how Java developers write code, we asked four questions about

usage and attitudes.

QUESTION 1: Overall do you write more ‘functional’ Java code now vs.
before Java 8?
1. Of course any Turing-complete language can compute anything

computable; and of course lambdas and streams simply make

convenient certain computations that were possible in previous

versions of Java. But as a programming model becomes more

convenient, it is likely to be used more; and as developers use

it more, their minds are likely to grow more accustomed to

the newly habitual model. It seems surprising, therefore, that

developers do not report writing more "functional" code because

of Java 8. Only 63 responses out of 1977 separated "yes, I write

more functional code because of Java 8" from "no, my code is

no more or less functional now vs. before Java 8" — a negligible

difference (51.6% vs. 48.4%) and well within the survey’s margin

of error.

2. Two interpretations seem possible. First, suppose that

these respondents’ reports are accurate; then Java 8 did not

significantly re-habituate Java developers’ minds toward

a more functional programming model, in spite of newly

simplified constructs. This may indicate that the language

Key
Research
Findings

DO YOU MIX "OLD STYLE" (PRE-JAVA 8) AND "NEW STYLE"
(LAMBDAS, STREAMS, OPTIONALS)?

HOW FUNCTIONAL IS YOUR CODE NOW VS. BEFORE JAVA 8?

NO MORE OR LESS FUNCTIONAL

OVERALL SCALA USERS ONLY

48% 52% 37% 62%

YES, I WRITE MORE FUNCTIONAL CODE WITH JAVA 8 0

10%

30%

40%

50%

60%

20%

REPOSITORY

APPLICATION

SOURCE FILE

NEVER MIX

http://DZone.com/guides
http://dzone.com/guides
https://www.lightbend.com/company/news/survey-of-more-than-3000-developers-reveals-java-8-adoption-ahead-of-previous-forecasts
http://www.baeldung.com/java-8-spring-4-and-spring-boot-adoption
http://www.baeldung.com/java-8-spring-4-and-spring-boot-adoption
https://dzone.com/guides/the-java-ecosystem-2015-edition
http://www.baeldung.com/java-8-adoption-march-2016

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

5

conveniences were well behind its users’ actual coding work —

that Java lambdas and streams were well overdue. But, on the

other hand, "more functional" is vague enough that the half/

half split seems more likely than random to be significantly

affected by the wide range of possible interpretations of the

question. We do have more specific data on usage of new Java

8 constructs (discussed below); but to understand developers’

habits, rather than just usage at a given moment in time,

future surveys providing time-series data on usage of these

constructs will be essential.

3. Interestingly, respondents who also use Scala (in development,

in production, or just for fun) were significantly more likely to

write more functional code because of Java 8 (62%). Because

use of Scala probably indicates a more multi-paradigm

(including functional) mental programming model, this

number may suggest that Java 8 is successfully addressing the

needs/preferences of developers who were using other JVM

languages for less-object-oriented code.

QUESTION 2: What "new style" Java 8 features are you using?

1. Java 8 offered many new features, but three stood out as most

important because of their possible ubiquity and significant

effects on program readability, efficiency, and correctness:

lambdas (anonymous functions), the Stream API (function

pipelines w/automatic parallelization via ForkJoinPool

threads), and the Optional (return) type. Of these three, we

hypothesized that lambdas were most likely to be used most,

because they are less likely to require deeper rethinking of

application code.

2. Our results were consistent with this hypothesis, but just

barely. Usage of lambdas and streams is nearly equal both

overall and in either new or refactored code (3-5% difference,

within the survey’s margin of error). Moreover, the numbers

were high enough (67-71% in new code; 31-33% in refactored

code) to cause us to re-interpret developers’ responses to

the general question of "functional" programming adoption

via Java 8. That is, if usage of lambdas and streams (which

facilitate chaining and pipelining, which allows for more

declarative and functional programming) is so high, then

it would seem likely that overall increase in "functional"

programming would be significant as well (but responses to

that explicit question indicate virtually no change). To explain

this, we would have to know both (a) how frequently developers

use lambdas and streams (as opposed to whether they use

them at all) and at what stage in code creation they use them

and (b) how their use of lambdas and streams changes their

mental models of their applications.

3. We also accepted write-in Java 8 feature usage, in addition to

the top features described above. The most popular write-in by

far was the new java.time API, which appeared (under various

descriptions) in 24% of write-in responses (45 out of 186). No

other new Java 8 feature was written in more than 10 times.

QUESTION 3: Where do you mix "old style" (pre-Java 8) and "new style"
(Java 8 e.g. lambdas, streams, Optionals) code?
1. The previous questions address how Java 8 features are

affecting developers’ entire coding outputs. That is, if a

developer is writing multiple new applications but uses Java

8 in only one of them, then that developer will be counted as

using Java 8 in new applications. It also seems important to

understand the effect of Java 8 orthogonally, from the point

of view of the code. So we asked where developers were using

lambdas, streams, and Optionals, in three types of grouping:

in the same repository, the same application, or the same

source file. The results were encouraging for the integration

of functional and object-orientation: 55% of respondents mix

new- and old-style Java in the same application.

2. Two further details merit comment, however. First, only 39%

report mixing "old" and "new" Java in the same repository. The

difference between the 55% and 39% may indicate expansive

and/or inconsistent understanding of the term "application,"

which apparently might or might not be split into multiple

repositories; further, this seems consistent with the rise of

cloud-oriented and microservices-based architectures, which

blur the line between "single application" and "distributed

system" such that the term "application" is increasingly likely to

include code from multiple (separately managed) repositories.

3. Second, significantly fewer respondents mix "old" and "new"

Java in the same source file (36%) than in the same application

(55%). The division of source files is of course very variably

coupled with the domain model, and is sometimes imposed by

frameworks rather than chosen freely by the programmer; so it

is unclear how much of the difference between "old" and "new"

Java style mixing in individual application vs. individual source

WHAT OTHER JVM LANGUAGES ARE DEVELOPERS USING?HAVE THE NEW JAVA 8 FEATURES MADE IT MORE FUN TO
PROGRAM WITH JAVA?

64% yes
8%

28%
neutral

no
5

10

15

20

25

SCALA GROOVY CLOJURE KOTLIN

30

35

40

45

2015

2016

http://DZone.com/guides

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

6

file is a function of developers’ perception of the semantics of

source-file divisions, on the one hand, and factors exogenous to

the developers’ deliberate decisions, on the other.

QUESTION 4: Have the "new style" Java 8 features made it more fun to
program in Java?
1. How developers feel influences what developers do, but many

unpleasant things are worth doing for good technical reasons.

Adoption of Java 8 features is therefore a function of both

developer experience and also technical utility. To distinguish

developers’ feelings about Java 8 features from use of these

features, we explicitly asked whether the "new style" Java 8

features have made it more fun to program in Java.

2. Overall they have: 64% said yes. Developers who also use

Scala, however, skewed these results significantly: 73% of Scala

users report that the "new style" Java 8 users make it more

fun to program in Java, while only 57% of respondents who

do not use Scala report the same. From this we might draw a

twofold conclusion: that Java 8 had a relatively small effect on

non-Scala Java developers’ "fun" levels, and has particularly

satisfied developers who were already exploring other

programming paradigms on the JVM.

3. WHAT OTHER JVM LANGUAGES ARE
DEVELOPERS USING?
As Java 8 usage increases, non-Java JVM language usage

increases as well. In 2016 Groovy remains the most popular

non-Java JVM language (45% of respondents use it in

development, in production, or just for fun), but Scala is now

very nearly as popular (41%). Year over year usage increases

are significant for four JVM languages: Scala (up from 31% in

2015), Groovy (39% in 2015—note the slower growth vs. Scala),

Clojure (13% in 2016 vs. 6% in 2015), and Kotlin (barely used (2%)

in 2015, now 12%, since the language went GA this February).

Increases in both Scala and Clojure usage presumably reflect

JVM developers’ generally increasing interest in functional and

multi-paradigm programming, as discussed above.

The role of each of these languages varies considerably,

however. Groovy’s lead in production remains strong: 80%

more developers use Groovy in production than use Scala in

production, while just over half again as many developers

use Scala "just for fun" as use Groovy "just for fun." Kotlin

usage is almost entirely "just for fun" (as might be expected

from a language barely half a year beyond GA). For Clojure,

the difference between "in development" and "just for fun" is

negligible, while it is significant (9-10%) for both Groovy and

Scala—albeit in reverse order (Groovy is more likely to be used

in development than just for fun, while Scala is more likely to

be used just for fun than in development).

4. ENTERPRISE JAVA PLATFORMS: JAVA EE VS.
SPRING (ROUND N)
It is currently difficult to predict how Java EE will evolve in the

future. This year the extremely slow progress on most Java EE

JSRs, among other things, prompted a number of Java developers

to found the Java EE Guardians, an independent group dedicated

to advancing Java EE with as much community involvement as

possible. Until two days ago (as of this writing on 9/20/2016),

Oracle had not publicly discussed any substantive roadmap for

Java EE 8; and in spite of an enthusiastic presentation at JavaOne

2016, which alleviated some concerns, it seems that Java EE 8 is

now significantly delayed (now not scheduled to ship until late

2017). However, Java EE 9 is scheduled to release a year later—a

schedule that suggests serious commitment to the platform in

general, but with priorities currently unknown.

Nevertheless, usage of Java EE remains high and continues to

modernize. Overall usage of Java EE remains virtually unchanged

since 2015; but users have shifted from Java EE 5 to Java EE 7,

which 41% of respondents are now using.

Spring usage, on the other hand, has increased significantly year

over year, especially Spring 4.x (49% in 2016 vs. 38% in 2015).

Major caveat: these numbers reflect answers to slightly but

meaningfully different questions, which make year-over-year

comparison of Spring with Java EE particularly difficult. Last

year’s question asked "which platforms do you use;" this year’s

asked "which platforms do you or your organization use." Because

Spring is more modular than Java EE, it is harder in the case of

Spring than in the case of Java EE for an average developer to tell

whether the "platform" is used by the entire organization, given

that the developer is themselves already using Spring, depending

on how modularly the developer understands "Spring." That is,

any developer who uses any Java EE API will be able to answer

that their organization uses Java EE; but a developer who uses

RANK HOW MUCH YOU TRUST THE FOLLOWING DRIVERS/
STEWARDS OF THE JAVA LANGUAGE AND PLATFORM

ARE YOU CURRENTLY USING MICROSERVICES?

39%30% yes

no, and I
don’t plan to

31%not now,
but I plan to

SCORE:
7,035

5,451

 5,395

JCP Development
Community as a whole

(JCP linked or not)

Oracle

Current (2012+)
Java Champions

The existing JCP

Red Hat

5,233

4,508

LOWEST RANK HIGHEST RANK

http://DZone.com/guides
http://dzone.com/guides
https://javaee-guardians.io/

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

7

Spring Boot to spin up a web app, for example, may or may not

consider "my organization uses Spring" to be true in the context

of a question that also includes "Java EE" versions as answer

options. The current research project aims to discover further

breakdown of enterprise Java platform usage by module and API;

a breakdown with adequate detail proved too cumbersome to

include in this survey, but is planned for a follow-up survey.

5. THE FUTURE OF JAVA
Java is obviously not dead; but is it moribund? Most evidence

that bears on this question can be spun both optimistically and

pessimistically. For example, perhaps the high rate of Java 8

"new-style" / functional feature adoption indicates that Java is

responding well to developers’ needs—or perhaps it indicates

pent-up demand from a developer community dissatisfied

with the glacial pace of the JCP and JEP. Again, maybe the

increasing adoption of non-Java JVM languages indicates a

thriving ecosystem built on a common bytecode; but whether

this means that "Java" is getting stronger because the JVM is

spawning more higher-level languages, or that "Java" is getting

weaker because its secret WORA sauce is being leveraged by

other languages, depends on the level at which you locate your

concept of "Java."

Because this sort of evidence is highly polyvalent, and because

so much of a language’s vitality is felt while actually writing code

(rather than answering survey questions), it seemed important

to ask developers separately for their feelings about the future

of the Java ecosystem. Moreover, individual experiences of

a language ecosystem’s "vitality"— visible in virtually any

comment thread comparing Java and Scala, for example—vary

so tremendously that aggregation of these sentiments seems

particularly necessary. So we asked four explicit questions

aimed at developers’ thoughts about the future of Java.

QUESTION 1: How do you feel about the future of Java?
4. Overall respondents are optimistic: less than 6% are

"pessimistic" (either "very" or "slightly") about the future of

Java, and slightly more are "very optimistic" (43%) than "fairly

optimistic" (40%). These results are virtually identical to last

year’s (as the differences for each answer response fall within

both surveys’ independent margins of error). This suggests

that developers have detected no major new signals about

the future of Java—despite the fact that Java 9 was delayed

twice this year. Either the release date of Java 9 (at least within

its current window) does not impact developers’ overall

optimism about the future of Java, or the reasons given for the

delays (primarily around Jigsaw) in public discussions seem

acceptable to most developers.

Note: the first delay of Java 9 was announced in December

2015, after our 2015 survey closed; the second delay was

announced briefly before our 2016 survey closed, but in

time to affect about a fifth of responses received if those

respondents were very up-to-date on the OpenJDK mailing

list. So it seems probable that the majority of the effect

of these delays on our data does not take into account

the second delay announcement; but the exact amount is

unknowable.

QUESTION 2: What is the most important new feature of Java 9?
Jigsaw, the higher-level modularity system coming in Java 9 (and

cause of much of the delay), remains the most important new

feature of Java 9 in developers’ eyes, as in last year’s survey.

HTTP/2 support remains the second-most-important as well.

Exact numbers are not comparable (this year we added a "no

opinion" option), but the constant order offers quantitative

confirmation of the generally accepted opinion that modularity

will make the biggest difference to Java developers at large (and

not just the developers of OpenJDK itself).

QUESTION 3: Are you currently using microservices?
Java applications are perhaps more likely than most to be

affected by the "decentralizing" and "distributed" modern

trends in application architecture—precisely because the Java

language’s strong object-orientation, high performance, and

multi-platform capabilities are suited to large-scale systems, and

because the Java platform provides so much rich functionality

at so many levels and in so many problem domains. The

importance of microservices to the Java community is reflected

by, for example, the MicroProfile initiative, spearheaded by

companies other than Oracle; the rise of Java frameworks

suitable for easy spin-up of RESTful services, such as Spring

Boot, Lagom, and WildFly Swarm; the growing popularity of

shared-little architectures (e.g. ‘12-factor’) and programming

models (both functional and actor-oriented); and (as of two days

ago) increased support for microservices in Java EE 8.

Developers’ interest in microservices has been growing over the

past year. In August 2015, 10% of our respondents were using

microservices; in January 2016, 24% were using microservices

somewhere in their organization; in a report just published

by Lightbend, 30% are using microservices in production;

and, in our latest survey, 39% of developers are currently

using microservices, and another 19% are planning to adopt

microservices in the next 12 months.

6. RANK HOW MUCH YOU TRUST THE
FOLLOWING DRIVERS/STEWARDS OF THE JAVA
LANGUAGE/PLATFORM.
Java more than any other language or platform has tested

the relation between a programming language and its users.

No other language has formalized a community-driven

improvement process as thoroughly as the JCP (whatever its

faults); no other platform has exposed APIs whose legal status

has been addressed by multi-billion dollar lawsuits. Developers’

trust in the stewards and drivers of Java is therefore essential to

the health of the community and the technology ecosystem.

In light of recent concerns about Oracle’s commitment to Java

(some spurred by an ever more sluggish JCP, others by simple

radio silence), it is encouraging to see that, after the Java

development community as a whole (which is of course the

most trusted steward by far), Oracle comes in (a distant) second

place, significantly ahead of the JCP, although negligibly ahead of

current (2012+) Java Champions. (Answer options are ranked by

sum of weighted scores: because the question included 9 answer

options, a first-place ranking of option o adds 9 points to o’s total,

second-place ranking adds 8 points to o’s total, etc.)

http://DZone.com/guides
http://microprofile.io/
https://dzone.com/guides/the-java-ecosystem-2015-edition
https://dzone.com/guides/continuous-delivery-3
https://www.lightbend.com/company/news/lightbend-survey-showcases-trends-in-enterprise-application-management

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

8

SPONSORED OP IN ION

See Your Users as People—
Not Numbers
Manage and Maximize their experience with CA Application
Performance Management

Behind the pretty face of today’s applications can be a complex array of
microservices, containers, APIs and back-end services. You need more
than just data to deliver exceptional user experience. CA Application
Performance Management provides the analytics and insights you
need to truly understand and manage user experience – and make your
customers happy.

Start your personalized
demo today at:
ca.com/java

Make it simple, fast – See only what
you need to see with role-based views
that streamline complex app maps.

Locate the real problems – Avoid
false alerts and see the real issues
with built-in analytics.

Understand the impact of change
– When problems arise, understand
what, when and where your app
changed

http://DZone.com/guides
http://dzone.com/guides
http://www.ca.com/java

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE’S 2016 GUIDE TO MODERN JAVA

9

When implementing an application performance monitoring
strategy it can be tempting to just grab some tools and start
using them. This can ultimately lead to choosing one or more
disparate tools that are not integrated or holistic in their
approach. Too many tools and too much data can actually lead
to not enough insight into what is really going on with your
apps or your users’ experience. Here are five tips for success.

First, understand all of your customers. Monitor apps across
mobile, web and wearables and include synthetic monitoring to
find and fix problems even at times where you have no users.
Leverage passive monitoring when security or other concerns
prohibit direct end-user monitoring.

Second, make sure you can follow transactions from front-end
to back-end. Transactions can cover a lot of ground from your

app to APIs, security layers, middleware all the way to the back-
end. Make sure your monitoring covers the same ground.

Third, get continuous feedback across DevOps by integrating
monitoring across all parts of the SDLC. This is as much
cultural as it is technical. Collaboration across Dev and Ops is
critical to delivering great user experiences.

Fourth, understand how changes impact performance. Being
able to roll back time to see what changed before an issue helps
you find “patient zero” and resolve problems faster.

Finally, simplify the complex! Modern apps can have a lot going
on under the covers. Views and perspectives that remove layers
of complexity help you see what is important more clearly,
without a distracting data deluge.

Consider these tips and you’ll be more successful in managing
the performance of your applications - and help keep your
customers happy.

Too many tools and too much data can
actually lead to not enough insight into
what is really going on with your apps.

Find and fix problems early in the development lifecycle with patent-pending
innovations that speed and simplify triage.

BLOG bit.ly/catechblog WEBSITE ca.com/apmTWITTER @cainc

CA Application Performance Management By CA Technologies

CASE STUDY
Orange has been offering communication services for

more than 20 years. Today it provides mobile and landline

telecommunications and broadband services to 244 million retail

and business customers around the globe. An excellent customer

experience is a strategic priority for Orange. But the performance

of some applications on Orange.com was not up to par. CA APM

plays a critical role in ensuring the overall quality of Orange’s

applications. It helps Orange assess the risk associated with

an application prior to its release into a given environment.

Orange can deliver the excellent online experience expected by

today’s increasingly connected customers with better reliability,

availability and faster response times.

• Lexmark

• Vodafone

• Itau Unibanco

• U.S. Cellular

• Innovapost

• Produban

• Blue Cross Blue
Shield of Tennessee

• National Australia
Bank

STRENGTHS
Modern application monitoring with broad support for
application environments and programming language,
based on an E.P.I.C. APM Strategy that is:

• Easy—Simplify the triage process through role based
views and integrated timeline

• Proactive—Analytics that recognize problems as they
develop and focus on the most critical issues

• Intelligent—Detect and monitor application processes
and transactions automatically

• Collaborative—Enable better communication between
Dev and Ops to resolve problems faster

CATEGORY
APM

NEW RELEASES
Quarterly

OPEN SOURCE
No

NOTABLE CUSTOMERS

Five Tips to Effectively
Monitor Application
Performance and User
Experience

WRITTEN BY DAVID HARDMAN
DIRECTOR, PRODUCT MARKETING, CA TECHNOLOGIES

PARTNER SPOTLIGHT

SPONSORED OP IN ION

http://bit.ly/catechblog
http://bit.ly/catechblog
http://bit.ly/catechblog
http://www.ca.com/apm
http://www.twitter.com/cainc
http://www.twitter.com/cainc
http://Orange.com
mailto:http://www.ca.com/apm?subject=

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

10

Anyone that writes Java code is an API
designer! It does not matter if the coders

share their code with others or not, the code

is still used; either by others, by themselves or

both. Thus, it becomes important for all Java

developer to know the fundamentals of good

API design.

A good API design requires careful thinking and a lot
of experience. Luckily, we can learn from other clever
people like Ference Mihaly, whose blog post inspired me
to write this Java 8 API addendum. We relied heavily on
his checklist when we designed the Speedment API. (I
encourage you all to read his guide.)

Getting it right from the start is important because once
an API is published, a firm commitment is made to the
people who are supposed to use it. As Joshua Block once
said: “Public APIs, like diamonds, are forever. You have
one chance to get it right, so give it your best.” A well
designed API combines the best of two worlds, a firm
and precise commitment combined with a high degree of
implementation flexibility, eventually benefiting both the
API designers and the API users.

Why use a checklist? Getting the API right (i.e. defining
the visible parts of a collection of Java classes) can be
much harder than writing the implementation classes that
makes up the actual work behind the API. It is really an art
that few people master. Using a checklist allows the reader
to avoid the most obvious mistakes, become a better
programmer and save a lot of time.

API designers are strongly encouraged to put themselves
in the client code perspective and to optimize that view
in terms of simplicity, ease-of-use, and consistency—
rather than thinking about the actual API implementation.
At the same time, they should try to hide as many
implementation details as possible.

DO NOT RETURN null TO INDICATE THE ABSENCE
OF A VALUE
Arguably, inconsistent null handling (resulting in the
ubiquitous NullPointerException) is the single largest
source of Java applications’ errors historically. Some
developers regard the introduction of the null concept
as one of the worst mistakes ever made in the computer
science domain. Luckily, the first step of alleviating Java’s
null handling problem was introduced in Java 8 with the
advent of the Optional class. Make sure a method that
can return a no-value returns an Optional instead of null.
This clearly signals to the API users that the method may
or may not return a value. Do not fall for the temptation to
use null over Optional for performance reasons. Java 8’s
escape analysis will optimize away most Optional objects
anyway. Avoid using Optionals in parameters and fields.

DO THIS:

public Optional<String> getComment() {
 return Optional.ofNullable(comment);
 }

DON’T DO THIS:

public String getComment() {
 return comment; // comment is nullable
 }

Learn to be a better Java
programmer by mastering Java 8
API design and:

• Expose a well designed API
and hide the implementation
details

• Make sure that client code can
use lamdas

• Ensure that the API can evolve
in a controlled way

• Get rid of all those nasty
NullPointerExceptions

Q U I C K V I E WThe Java 8
API Design
Principles
BY PER MINBORG
CTO AT SPEEDMENT, INC.

http://DZone.com/guides
http://dzone.com/guides
http://bit.ly/2daHu4D

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

11

DO NOT USE ARRAYS TO PASS VALUES TO AND
FROM THE API
A significant API mistake was made when the Enum concept
was introduced in Java 5. We all know that an Enum class
has a method called values() that returns an array of
all the Enum’s distinct values. Now, because the Java
framework must ensure that the client code cannot change
the Enum’s values (for example, by directly writing to
the array), a copy of the internal array must be produced
for each call to the value() method. This results in poor
performance and also poor client code usability. If the Enum
would have returned an unmodifiable List, that List could
be reused for each call and the client code would have had
access to a better and more useful model of the Enum’s
values. In the general case, consider exposing a Stream, if
the API is to return a collection of elements. This clearly
states that the result is read-only (as opposed to a List
which has a set() method). It also allows the client code to
easily collect the elements in another data structure or act
on them on-the-fly. Furthermore, the API can lazily produce
the elements as they become available (e.g. are pulled in
from a file, a socket, or from a database). Again, Java 8’s
improved escape analysis will make sure that a minimum
of objects are actually created on the Java heap. Do not
use arrays as input parameters for methods either, since
this—unless a defensive copy of the array is made—makes
it possible for another thread to modify the content of the
array during method execution.

DO THIS:

public Stream<String> comments() {
 return Stream.of(comments);
 }

DON’T DO THIS:

public String[] comments() {
 return comments; // Exposes the backing array!
 }

CONSIDER ADDING STATIC INTERFACE METHODS
TO PROVIDE A SINGLE ENTRY POINT FOR OBJECT
CREATION
Avoid allowing the client code to directly select an
implementation class of an interface. Allowing client code to
create implementation classes directly creates a much more
direct coupling of the API and the client code. It also makes
the API commitment much larger, since now we have to
maintain all the implementation classes exactly as they can
be observed from outside instead of just committing to the
interface as such. Consider adding static interface methods,
to allow the client code to create (potentially specialized)
objects that implement the interface. For example, if we
have an interface Point with two methods int x() and
int y(), then we can expose a static method Point.of(int
x, int y) that produces a (hidden) implementation of the
interface. So, if x and y are both zero, we can return a special
implementation class PointOrigoImpl (with no x or y
fields), or else we return another class PointImpl that holds
the given x and y values. Ensure that the implementation
classes are in another package that are clearly not a part

of the API (e.g. put the Point interface in com.company.
product.shape and the implementations in com.company.
product.internal.shape).

DO THIS:

Point point = Point.of(1,2);

DON’T DO THIS:

Point point = new PointImpl(1,2);

FAVOR COMPOSITION WITH FUNCTIONAL
INTERFACES AND LAMBDAS OVER INHERITANCE
For good reasons, there can only be one super class for
any given Java class. Furthermore, exposing abstract
or base classes in your API that are supposed to be
inherited by client code is a very big and problematic
API commitment. Avoid API inheritance altogether, and
instead consider providing static interface methods that
take one or several lambda parameters and apply those
given lambdas to a default internal API implementation
class. This also creates a much clearer separation of
concerns. For example, instead of inheriting from a public
API class AbstractReader and overriding abstract void
handleError(IOException ioe), it is better to expose
a static method or a builder in the Reader interface that
takes a Consumer<IOException> and applies it to an
internal generic ReaderImpl.

DO THIS:

Reader reader = Reader.builder()
 .withErrorHandler(IOException::printStackTrace)
 .build();

DON’T DO THIS:

Reader reader = new AbstractReader() {
 @Override
 public void handleError(IOException ioe) {
 ioe. printStackTrace();
 }
 };

ENSURE THAT YOU ADD THE @FunctionalInterface
ANNOTATION TO FUNCTIONAL INTERFACES
Tagging an interface with the @FunctionalInterface
annotation signals that API users may use lambdas to
implement the interface, and it also makes sure the
interface remains usable for lambdas over time by
preventing abstract methods from accidently being added
to the API later on.

DO THIS:

@FunctionalInterface
public interface CircleSegmentConstructor {

 CircleSegment apply(Point cntr, Point p, double ang);

 // abstract methods cannot be added
 }

CONTINUED

http://DZone.com/guides

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

12

DON’T DO THIS:

public interface CircleSegmentConstructor {

 CircleSegment apply(Point cntr, Point p, double ang);

 // abstract methods may be accidently added later

}

AVOID OVERLOADING METHODS WITH
FUNCTIONAL INTERFACES AS PARAMETERS
If there are two or more functions with the same

name that take functional interfaces as parameters,

then this would likely create a lambda ambiguity on

the client side. For example, if there are two Point

methods add(Function<Point, String> renderer) and

add(Predicate<Point> logCondition) and we try to

call point.add(p -> p + “ lambda”) from the client

code, the compiler is unable to determine which method

to use and will produce an error. Instead, consider naming

methods according to their specific use.

DO THIS:

 public interface Point {

 addRenderer(Function<Point, String> renderer);

 addLogCondition(Predicate<Point> logCondition);

 }

DON’T DO THIS:

 public interface Point {

 add(Function<Point, String> renderer);

 add(Predicate<Point> logCondition);

 }

AVOID OVERUSING DEFAULT METHODS
IN INTERFACES
Default methods can easily be added to interfaces and

sometimes it makes sense to do that. For example,

a method that is expected to be the same for any

implementing class and that is short and “fundamental”

in its functionality, is a viable candidate for a default

implementation. Also, when an API is expanded, it

sometimes makes sense to provide a default interface

method for backward compatibility reasons. As we all

know, functional interfaces contain exactly one abstract

method, so default methods provide an escape hatch

when additional methods must be added. However, avoid

having the API interface evolve to an implementation

class by polluting it with unnecessary implementation

concerns. If in doubt, consider moving the method

logic to a separate utility class and/or place it in the

implementing classes.

DO THIS:

 public interface Line {
 Point start();
 Point end();
 int length();
 }

DON’T DO THIS:

 public interface Line {
 Point start();
 Point end();
 default int length() {
 int deltaX = start().x() - end().x();
 int deltaY = start().y() - end().y();
 return (int) Math.sqrt(
 deltaX * deltaX + deltaY * deltaY
);
 }
 }

ENSURE THAT THE API METHODS CHECK THE
PARAMETER INVARIANTS BEFORE THEY ARE
ACTED UPON
Historically, people have been sloppy in making sure to
validate method input parameters. So, when a resulting
error occurs later on, the real reason becomes obscured
and hidden deep down the stack trace. Ensure that
parameters are checked for nulls and any valid range
constrains or preconditions before the parameters are
ever used in the implementing classes. Do not fall for the
temptation to skip parameter checks for performance
reasons. The JVM will be able to optimize away redundant
checking and produce efficient code. Make use of the
Objects.requireNonNull() method. Parameter checking
is also an important way to enforce the API’s contract. If
the API was not supposed to accept nulls but did anyhow,
users will become confused.

DO THIS:

public void addToSegment(Segment segment, Point point) {

 Objects.requireNonNull(segment);

 Objects.requireNonNull(point);

 segment.add(point);

}

DON’T DO THIS:

public void addToSegment(Segment segment, Point point) {
 segment.add(point);
}

PER MINBORG has been a Java Developer since Java 1.0 and runs
a popular Java blog and the open-source project Speedment, which
is a tool for accelerating development and execution performance
of Java database applications. Per is a DZone MVB and has also
held numerous presentations on various Java topics, for example at
JavaOne in San Francisco and at other larger Java events.

http://DZone.com/guides
http://dzone.com/guides
http://minborgsjavapot.blogspot.com
http://www.speedment.org

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

13

Java 9 is coming! It’s just nine more months to

its release, so this is a good time to familiarize

ourselves with it. There are a couple of

interesting new features, like Java’s REPL

(a.k.a. JShell), the additions to the Stream

and Optional APIs, support for HTTP 2.0, and

more. But they are all overshadowed by Java 9’s

flagship feature: Project Jigsaw, which will bring

artifact-level modularity to the language.

Let’s have a look at it!

(All unattributed quotes come from the excellent State of the
Module System.)

CREATING MODULES
In Java 9 we will have the possibility to create modules. But
what exactly is a module? It’s much like a regular artifact (most
commonly a JAR) but it has three additional properties, which it
explicitly expresses:

 • a name

 • dependencies

 • a well-defined API

This information is encoded in a module descriptor (in the
form of module-info.class), which is compiled from a module
declaration (module-info.java). The module descriptor defines
the three properties stated above and we’ll see in a minute
how it does that.

After creating the module-info.java we (and in the future, our
tools) have to compile it to module-info.class and then package
it together with the rest of our source files. The result is a modular

JAR. At runtime, the JVM will read the classes and resources along
with module-info.class and turn it all into a module.

But how does the module declaration work, and how do the
compiler and JVM interpret it?

(By the way, I assume reading “compiler and JVM” is as tiring as
writing it, so I will forego some precision and use “Java” instead.)

MODULE DECLARATION
As stated above, a module declaration defines a module’s name,
dependencies, and API. It is usually defined in module-info.java
and looks like this:

module MODULE_NAME {
 requires OTHER_MODULE_NAME;
 requires YET_ANOTHER_MODULE_NAME;
 exports PACKAGE_NAME;
 exports OTHER_PACKAGE_NAME;
 exports YET_ANOTHER_PACKAGE_NAME;
}

Let’s examine the three properties one by one.

NAME
A module’s name can be arbitrary, but to ensure uniqueness, it
is recommended to stick with the inverse-URL naming schema
for packages. Guava, for example, will likely be com.google.
guava, and Apache Commons IO could be either org.apache.
commons.commons_io or org.apache.commons.io.

While this is not necessary, it will often lead to the module
name being a prefix of the packages it contains.

DEPENDENCIES
A module lists the other modules it depends on to compile
and run by naming them in requires clauses. This is true for
application and library modules, but also for modules in the JDK
itself, which was split up into about 80 of them (have a look at
them with java -listmods).

Java 9 brings modularity
to the language.

Modules are like JARs but
come with a descriptor
that defines a name,
dependencies, and an API.

Two basic rules, readability
and accessibility, build
on that and allow reliable
configuration, strong
encapsulation, improved
performance, security,
maintenance, and more.

Migration will not be
without challenges and
should be well prepared.

01

02

03

04

 Project
Jigsaw Is
Coming
BY NICOLAI PARLOG
FREELANCER AT CODEFX

Q U I C K V I E W

http://DZone.com/guides
https://www.sitepoint.com/ultimate-guide-to-java-9/
http://openjdk.java.net/jeps/222
http://blog.codefx.org/java/dev/java-9-stream/
http://blog.codefx.org/java/dev/java-9-optional/
http://blog.oio.de/2016/08/24/http2-client-java-9/
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/spec/sotms/
http://openjdk.java.net/projects/jigsaw/spec/sotms/
https://github.com/google/guava
https://commons.apache.org/proper/commons-io/

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

14

API
By default, all types are internal to the module and not visible
outside of it. But surely some types should be visible to the outside,
right? Yes, and this is done by exporting the packages that contain
these types with the exports clause. Other code, and even
reflection, can only access public types in exported packages.

JAR HELL AND OTHER NICETIES
That is all nice and dandy but… why do we need it? Well,
there are some deep-seated problems with how Java
handles artifacts.

Before Project Jigsaw, Java sees JARs as simple containers for
compiled classes without any meaningful representation at
compile or run time. It simply rips all of the classes it has to
access out of their JARs and rolls them into one big ball of
mud. The JARs themselves, left behind on the class path, are
meaningless, and it does not matter at all how many there are
and how they are structured. For all Java cares, there might just
as well only be a single JAR.

This has a couple of negative consequences, and some of them
are notable contributors to JAR Hell:

 • Dependencies between artifacts can not be expressed,
which means that many problems lead to runtime errors
and crashing applications (NoClassDefFoundError anyone?).

 • Loading classes requires linear scans of the class path.

 • If there are several classes with the same fully qualified
name, the first one found during the scan will be loaded
and will shadow the others.

 • There is no way to reliably run an application that depends
on two versions of the same library (usually as transitive
dependencies via other libraries it needs).

 • There is no way to have code that is only visible inside a JAR.

 • Security-relevant code cannot be made accessible to some
JARs but hidden from others.

These problems can cause all kinds of trouble, like bad
performance, lacking security, maintenance nightmares, and
anything from too-subtle-to-notice misbehavior to havoc-
wreaking errors. Hence, lots of tools and mechanisms were
devised to tackle some problem or other from our list: build
tools, web servers, component systems, Java’s very own security
manager, fiddling with class loaders, and so on. These generally
work, but not without adding their own complexity and potential
for errors. Sometimes considerable amounts of it!

It would be so much better if Java itself would have an
understanding of artifacts…

MODULARITY WITH PROJECT JIGSAW
Enter Project Jigsaw! It was specifically designed to provide a
solution to these problems. At the core of that solution are the
modules that we already looked at and three other concepts:

 • module graph

 • readability

 • accessibility

Together they want to achieve the project’s goals, most notably
among them:

 • reliable configuration

 • strong encapsulation

 • improved security, maintainability, and performance

MODULE GRAPH
The information contained in module descriptors gives Java the
ability to actually understand what’s going on between modules.
So, instead of the big ball of mud it created before, it can now
map how they relate to each other.

More precisely, it builds a graph where the modules are nodes
and where the dependencies (expressed by the requires
clauses) are edges. Fittingly, this is called the Module Graph.

READABILITY
Directly based on this graph is the concept of Readability:

When one module depends directly upon another in the module
graph, then code in the first module will be able to refer to types
in the second module. We therefore say that the first module
reads the second or, equivalently, that the second module is
readable by the first.

RELIABLE CONFIGURATION
Readability is the basis of reliable configuration:

The readability relationships defined in a module
graph are the basis of reliable configuration: The
module system ensures that every dependence
is fulfilled by precisely one other module, that the
module graph is acyclic, that every module reads
at most one module defining a given package, and
that modules defining identically-named packages
do not interfere with each other.

So expressing and understanding dependencies means that a
lot of the problems that used to crash an application can now be
found at launch or even compile time!

IMPROVED PERFORMANCE
Readability also helps to improve performance. The module
system now knows for any given class which module is
supposed to contain it and can thus forego the repeated linear
scans. And with clearer bounds of where code is used, existing
byte-code optimization techniques can be used more effectively.

As JSR 376 puts it:

Many ahead-of-time, whole-program optimization
techniques can be more effective when it is known
that a class can refer only to classes in a few other
specific components rather than to any class
loaded at run time.

It might also be possible to index annotated classes so that they
can be found without a full class path scan.

ACCESSIBILITY
Together with readability, the exports clauses are the basis for
Accessibility:

CONTINUED

http://DZone.com/guides
http://dzone.com/guides
https://maven.apache.org/plugins/maven-shade-plugin/
http://blog.codefx.org/java/jar-hell/
https://docs.oracle.com/javase/tutorial/essential/environment/security.html
https://docs.oracle.com/javase/tutorial/essential/environment/security.html
http://blog.codefx.org/java/dev/motivation-goals-project-jigsaw/
https://www.jcp.org/en/jsr/detail?id=376

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

15

The Java compiler and virtual machine consider the public
types in a package in one module to be accessible by code in
some other module only when the first module is readable by
the second module, in the sense defined above, and the first
module exports that package.

STRONG ENCAPSULATION
What happens if code tries to access a type that does not fulfill
these requirements?

A type referenced across module boundaries that
is not accessible in this way is unusable in the same
way that a private method or field is unusable: Any
attempt to use it will cause an error to be reported
by the compiler, or an IllegalAccessError to
be thrown by the Java virtual machine, or an
IllegalAccessException to be thrown by the
reflective run-time APIs. Thus, even when a type
is declared public, if its package is not exported
in the declaration of its module then it will only be
accessible to code in that module.

This means that public is no longer public! It also means that
modules will be able to hide their internals and clearly define
the parts of their functionality that make up their public API.

Mark Reinhold, spec lead on Project Jigsaw, once wrote about this:

A class that is private to a module should be
private in exactly the same way that a private field
is private to a class.

It might take some time to get used to “public” no longer
meaning “public for everyone” but “public for everyone in this
module.” I am convinced that this is worth it, though, as it
finally allows us to create a safe zone within a module.

IMPROVED SECURITY AND MAINTAINABILITY
The strong encapsulation of module-internal APIs greatly
improves security and maintainability. It helps with security
because critical code is now effectively hidden from code which
does not require to use it. It makes maintenance easier as a
module’s public API can more easily be kept small.

BIRTH PAINS
But not all is well…

MIGRATION CHALLENGES
Besides the core features we just discussed, Jigsaw entails a
lot of changes under the hood. While almost all of them are
backwards compatible in the strict meaning of the word, some
interact badly with existing code bases. In the end, whether you
modularize your application or not, running on Java 9 may break
your code.

A couple of things that could cause trouble:

 • Your (or, more likely, your dependencies) could depend
on the JDK-internal API, which will soon be inaccessible
thanks to strong encapsulation. See JEP 260 for details
about which APIs will disappear. Also, have a look at
jdeps and run jdeps -jdkinternals <jars> on your and
your dependencies’ artifacts.

 • The JVM will refuse to launch when two modules contain
packages with the same name (known as split package). If
a module and a regular JAR split a package, the content of
the JAR’s package would not be visible at all.

 • The JRE/JDK layout changed:

 ° rt.jar and tools.jar no longer exist

 ° JDK modules are packed as JMODs, a new and
deliberately unspecified format

 ° there is no longer a folder jre in the JDK

 ° the URLs for runtime content look different

 • Class loaders are no longer always URLClassLoader-s, so
casts to that type will fail.

 • The Endorsed Standards Override Mechanism, Extension
Mechanism, and Boot Class Path Override are gone.

More possible problems are listed under Risks and Assumptions in
JEP 261.

WHAT ABOUT VERSION CONFLICTS?
Unfortunately, the module system has no understanding of
versions. It will see two different versions of the same module
as a duplication and refuse to compile or launch. The fact that
the module system does nothing to ameliorate version conflicts
is, frankly, somewhat disappointing, and I believe we might
soon be talking about module hell.

CONTESTED TOPICS
These are some of the questions currently being discussed on
the Jigsaw mailing list:

 • Should strong encapsulation be stronger than reflection?

 • Do we need optional dependencies?

 • Should modules be able to “stand in” for other modules
(by aliasing)?

 • Is it helpful that a module can make its dependencies
available to other modules?

If these open questions or other details of Jigsaw interest you,
make sure to check the mailing list archives or even participate
in the discussion.

SUMMARY
The most important takeaway is that Jigsaw introduces
modules: JARs with a module descriptor that gives them names,
explicit dependencies, and a well-defined API. The module
graph, readability, and accessibility build on these descriptors to
tackle JAR hell and other existing problems as well as to provide
reliable configuration, strong encapsulation, and improved
security, maintainability, and performance. But Jigsaw will make
some migrations to Java 9 daunting and is also being criticized
for a number of shortcomings—perceived or real.

To see for yourself, download JDK 9, play around with it—maybe
by following my hands-on guide—and try to judge or even spike
your code’s migration.

NICOLAI PARLOG is the editor of SitePoint’s Java channel,
writes a book about Project Jigsaw, blogs about software
development on codefx.org, and is a long-tail contributor to several
open source projects. You can hire him for all kinds of things.

http://DZone.com/guides
http://mreinhold.org/blog/jigsaw-focus
http://blog.codefx.org/java/dev/how-java-9-and-project-jigsaw-may-break-your-code/
http://blog.codefx.org/java/dev/how-java-9-and-project-jigsaw-may-break-your-code/
http://openjdk.java.net/jeps/260
https://wiki.openjdk.java.net/display/JDK8/Java+Dependency+Analysis+Tool
http://openjdk.java.net/jeps/261
http://blog.codefx.org/java/dev/will-there-be-module-hell/
http://mail.openjdk.java.net/pipermail/jigsaw-dev/
http://blog.codefx.org/java/dev/implied-readability/
http://blog.codefx.org/java/dev/implied-readability/
https://jdk9.java.net/
http://blog.codefx.org/java/dev/jigsaw-hands-on-guide/
http://sitepoint.com/java
http://blog.codefx.org/java-module-system-in-action/
http://codefx.org
http://blog.codefx.org/hire-nicolai-parlog/

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

16

Modernize your
approach with
microservices

Extend Java apps to mobile
Deliver mobile tools and apps
fast that meet the continuous
demand for new features
and services.

Design intelligent systems
for the cognitive era
Create innovative, smart
Java-based apps that use
language, vision, speech
and data insight APIs.

With a microservices architecture built on IBM® Bluemix®,
you can quickly and easily build, test and maintain complex
applications that are agile, reliable, scalable, and secure.

Program faster, better, easier.
Learn more about the advantages of moving from a monolithic to
microservices architecture.
ibm.com/java

© Copyright IBM Corporation 2016. IBM, the IBM logo, Bluemix and ibm.com are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

SPONSORED OP IN ION

http://DZone.com/guides
http://dzone.com/guides
http://www.ibm.com/developerworks/learn/java/index.html?cm_mmc=Earned-_-IBM+Cloud_Developer-_-NA_NA-_-dWJavaLearnPage&cm_mmca1=000005PY&cm_mmca2=10000900&
https://developer.ibm.com/open/2016/02/01/watson-developer-cloud-java-sdk-2-7-now-available?cm_mmc=Earned-_-IBM+Cloud_Developer-_-NA_NA-_-WatsonDevSDKJavaBlog&cm_mmca1=000005PY&cm_mmca2=10000900&
https://www.ibm.com/developerworks/library/mo-extending-java-apps-mobile-cloud-trs/index.html?cm_mmc=Earned-_-IBM+Cloud_Developer-_-NA_NA-_-MobileDevBlogMSadowski&cm_mmca1=000005PY&cm_mmca2=10000900&
http://www.ibm.com/legal/us/en/copytrade.shtml
https://developer.ibm.com/wasdev/docs/microservices/?cm_mmc=Earned-_-IBM+Cloud_Developer-_-NA_NA-_-WASBlogMicroservices&cm_mmca1=000005PY&cm_mmca2=10000900&

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE’S 2016 GUIDE TO MODERN JAVA

17

Separating the bits of an application
into pieces can be very freeing.Application architecture patterns are changing, a result of

the convergence of factors that has led to the concept of
“cloud native” applications. General availability of cloud
computing platforms, advancements in virtualization, and
the emergence of agile and DevOps practices have helped to
streamline and shorten release cycles. Two-week roll outs for
new functionality is simply too long for today’s on-demand
business world. This is the challenge that microservices, the
cloud native application architecture, is trying to address.

Microservices empower developers to program faster, better,
and more easily. Separating the bits of an application into
pieces can be very freeing. The ability to isolate each piece can

drastically reduce the overhead involved in making changes
as well as the risk involved with trying something new.

But before you embark on a new project using a microservices
architecture, there are factors you need to consider. For
example, how you will manage your data, ensure your apps
are secure, leverage logging and metrics to maintain a
healthy infrastructure, and more. Together with WAS Liberty,
IBM® has created a library of resources with information on
how to get started, best practices, and methodologies.

Seeing is believing. That’s why IBM and WAS Liberty
developed an app to give developers a fuller picture of
what a microservices application should look like. Game
On! is a throwback text-based adventure built to help you
explore microservices architectures and related concepts. It
demonstrates the key aspects of microservice architectures,
and it is infinitely extensible in a creative and fun way.

IBM Bluemix is a cloud platform, built on open source, and offering
flexible support for developers

BLOG developer.ibm.com/wasdev/blog WEBSITE ibm.com/bluemixTWITTER @IBMBluemix

IBM Bluemix By IBM

CASE STUDY
The KLM Open, one of the oldest golf tournaments in the

European Tour, attracts an average of 45,000 visitors and

wanted to provide fans with a new and more interactive mobile

application but lacked the infrastructure and expertise needed

to develop and deploy such a solution. Turning to IBM’s Bluemix

platform, which combines the power of IBM SoftLayer, IBM

MobileFirst Platform, and IBM WebSphere Application Server

Liberty, they were able to deliver a new mobile application

that helped improve the live experience for fans with mobile

access to real-time tournament information, resulting in 7,500

downloads in three days and a 25% increase in mobile usage rate

by fans during the tournament.

• PayPal

• GameStop

• Tumblr

• WhatsApp

• Apple

• Tata

• GitHub

• Acccenture

STRENGTHS
• Built on Cloud Foundry, supports OpenStack,

Node, Docker & more

• Over 150 services across Watson, data, mobile,

IoT, and DevOps

• Spans bare metal to serverless programming

• Delivered as public, dedicated, and on-premises

deployment model

CATEGORY
Cloud, PaaS, IaaS

NEW RELEASES
Continuous

OPEN SOURCE
Yes

NOTABLE CUSTOMERS

Understand the
What, Why and
How of Using
Microservices

WRITTEN BY ERIN SCHNABEL
SENIOR SOFTWARE ENGINEER, IBM

PARTNER SPOTLIGHT

SPONSORED OP IN ION

https://developer.ibm.com/wasdev/docs/microservices/
https://gameontext.gitbooks.io/gameon-gitbook/content/
https://gameontext.gitbooks.io/gameon-gitbook/content/
https://developer.ibm.com/wasdev/blog/
https://developer.ibm.com/wasdev/blog/
http://developer.ibm.com/wasdev/blog
http://www.ibm.com/bluemix
http://www.ibm.com/bluemix
http://ibm.com/bluemix
http://www.twitter.com/IBMBluemix
http://www.twitter.com/IBMBluemix

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

18

REACTIVE MICROSERVICES:

Driving Application
Modernization Efforts

BY MARKUS EISELE
DEVELOPER ADVOCATE AT LIGHTBEND, INC .

Even today, after almost two solid years,
microservices are still one of the emerging topics
in enterprises. With the challenges coming with
a rising number of consumers and changing use
cases for customers, microservices provide a
more stable and less cost intensive way to build
applications. Though this isn’t the first time
evolving technologies have shocked the well-oiled
machine of software to its core, microservices
adoption truly forces traditional enterprises to
re-think what they’ve been doing for almost two
decades. We’ve seen design paradigms change
over time and project management methodologies
evolve. But this time it looks like the influence is far
bigger than anything we’ve seen before. And the
interesting part is that microservices aren’t new
from the core.

A core skill of software architects is understanding
modularization and components in software and designing
appropriate dependencies between them. We've already
learned how to couple services and build them around
organizational capabilities, and it’s in looking beyond those
binary dependencies, that exciting part of microservices-
based architectures comes into play — how independent
microservices are distributed and connected back together.

Building an individual service is easy with all technologies.
Building a system out of many is the real challenge because
it introduces us to the problem space of distributed systems.

This is a major difference from classical, centralized
infrastructures. As a result, there are very few concepts from
the old world which still fit into a modern architecture.

MICROSERVICES IN A REACTIVE WORLD
Up to now, the usual way to describe distributed systems
has been to use a mix of technical and business buzzwords:
asynchronous, non-blocking, real-time, highly-available,
loosely coupled, scalable, fault-tolerant, concurrent,
message-driven, push instead of pull, distributed, low
latency, high throughput, etc. The Reactive Manifesto
brought all these characteristics together, and it defines
them through four high-level traits: Responsive, Resilient,
Elastic, and Message driven.

Even if it looks like this describes an entirely new
architectural pattern, the core principles have long been
known in industries that require real-time IT systems,
such as financial trading. If you think about a systems
composed out of individual services, you will quickly
realize how closely the Reactive world is related to
microservices. Let's explore the four main characteristics
of a Reactive microservices system closer.

RESPONSIVE
A responsive application satisfies the consumers
expectations in terms of availability and real-time
responses. Responsiveness is measured in latency, which
is the time between request and response. Especially with
many small requests by mobile or internet-connected
devices, a microservices-based architecture can achieve
this using the right design.

Traditional enterprises are
forced to rethink how they build
applications because of rapidly
changing use-cases and new
requirements.

Isolation, Single Responsibility,
Autonomy, Exclusive State,
Asynchronous Message-Passing,
and Mobility are required to
build out a reactive microservice
architecture.

Reactive Principles provide
the coherent approach
to Microservices systems
architecture.

01

02

03

Q U I C K V I E W

http://DZone.com/guides
http://dzone.com/guides
http://www.reactivemanifesto.org

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

19

RESILIENT
A very high-quality service performs its function without
any downtime at all. But failures do happen, and handling
and recovering from the failure of an individual service
in a gentle way without affecting the complete system
is what the term resiliency describes. While monolithic
applications need to be recovered completely and handling
failures mostly comes down to proprietary infrastructure
components, individual microservices can easily provide
these features, for example by supervision.

ELASTIC
A successful service will need to be scalable both up
and down in response to changes in the rate at which
the service is used. While monoliths usually are scaled
on a per server basis, the flexibility and elasticity that
comes with microservices has a much greater potential to
respond to changing workloads.

 MESSAGE DRIVEN
And basically the only way to fulfill all the above
requirements is to have loosely coupled services with
explicit protocols communicating over messages.
Components can remain inactive until a message arrives,
freeing up resources while doing nothing. In order to
realize this, non-blocking and asynchronous APIs must be
provided that explicitly expose the system’s underlying
message structure. While traditional frameworks (e.g.
Spring and Java EE) have very little to offer here, modern
approaches like Akka or Lagom are better equipped to help
implement these requirements.

ARCHITECTURAL CONCEPTS OF REACTIVE
MICROSERVICE ARCHITECTURES
Becoming a good architect of microservice systems
requires time and experience. However, there are attempts
to guide your decision-making and experiences with
frameworks providing opinionated APIs, features, and
defaults. The following examples are built with the Lagom
framework. It provides tools and APIs that guide developers
to build systems out of microservices. The key to success
is good architecture, rooted in a solid understanding of
microservices concepts and best practices, and Lagom
encapsulates these for you to use in the form of APIs.

ISOLATION
It is not enough to build individual services. These
services also need to isolate their failures. Containing
and managing them without cascading throughout all the
services participating in a complete workflow is a pattern
referred to as bulkheading. This includes the ability to heal
from failure, which is called resilience. And this highly
depends on compartmentalization and containment of
failure. Isolation also makes it easier to scale services on

demand and also allows for monitoring, debugging, and
testing them independently.

AUTONOMY
Acting autonomously as a microservice also means
that those services can only promise their behavior by
publishing their protocols and APIs. And this gives a
great amount of flexibility around service orchestration,
workflow management, and collaborative behavior.
Through communication over well defined protocols,
autonomous services also add to resilience and elasticity.
Lagom services are described by an interface, known as a
service descriptor. This interface not only defines how the
service is invoked and implemented, it also defines the
metadata that describes how the interface is mapped down
onto an underlying transport protocol.

public interface HelloService extends Service {
 ServiceCall<String, String> sayHello();

 default Descriptor descriptor() {
 return named("hello").withCalls(
 call(this::sayHello)
);
 }
}

Services are implemented by providing an implementation
of the service descriptor interface, implementing each call
specified by that descriptor.

public class HelloServiceImpl implements HelloService {

 public ServiceCall<String, String> sayHello() {
 return name -> completedFuture("Hello " + name);
 }
}

SINGLE RESPONSIBILITY PRINCIPLE
One of the most pressing questions for microservices has
always been about size. What can be considered “micro”?
How big in terms of lines of code or jar-file size is the
optimal microservice? But these questions really aren’t at
the heart of the problem. Instead, “micro” should refer to
scope of responsibility. One of the best guiding principles
here is the Unix philosophy: let it do one thing, and do it
well. When you look at refactoring existing systems, it
will help to find a verb or noun as an initial description of
a microservice. If a service only has one single reason to
exist, providing a single composable piece of functionality,
then business domains and responsibilities are not
tangled. Each service can be made more generally useful,
and the system as a whole is easier to scale, make resilient,
understand, extend, and maintain.

EXCLUSIVE STATE
Microservices are often called stateful entities: they
encapsulate state and behavior, in a similar fashion to
an Object, and isolation most certainly applies to state
and requires that you treat state and behavior as a single

http://DZone.com/guides
https://www.lightbend.com/reactive-microservices-architecture

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

20

unit. Just pushing the state down to a shared database
and calling it a stateless architecture isn’t the solution.
Each microservice needs to take sole responsibility for
its own state and the persistence thereof. This opens
up possibilities for the most adequate persistence
technology, ranging from RDBMS to Event-Log driven
systems like Kafka. Abstracted techniques such as
Event Sourcing and Command Query Responsibility
Segregation (CQRS) serve as the persistence technology
for reactive microservices.

In Lagom, a PersistentEntity has a stable entity
identifier, with which it can be accessed from the service
implementation or other places. The state of an entity
is persistent using Event Sourcing. All state changes are
represented as events and those immutable facts are
appended to an event log. To recreate the current state of
an entity when it is started, all those events get replayed.
You interact with a PersistentEntity by sending
command messages to it. An entity stub can look like this:

public class Post
 extends PersistentEntity<BlogCommand, BlogEvent,
BlogState> {

 @Override
 public Behavior initialBehavior(Optional<BlogState>
snapshotState) {
 BehaviorBuilder b = newBehaviorBuilder(
 snapshotState.orElse(BlogState.EMPTY));
 // Command and event handler go here
 return b.build();
 }
}

The three type parameters of the extended
PersistentEntity class define: the Command, the super
class/interface of the commands; the Event, the super
class/interface of the events; and the State, the class of
the state.

ASYNCHRONOUS MESSAGE-PASSING
Communication between microservices needs to be
based on asynchronous message-passing.

Besides being the only effective help in isolating the

individual services, the non-blocking execution and

Input/Output (IO) is most often more effective on

resources. Unfortunately, one of the most common

implementations of the REST architecture, REST over

HTTP, is widely considered the default microservices

communication protocol. If you’re looking into this,

you need to be aware that the implementations most

often are synchronous and as such not a suitable fit for

microservices as the default protocol. All Lagom APIs

use the asynchronous IO capabilities of Akka Stream for

asynchronous streaming and the JDK8 CompletionStage

API for asynchronous computation. Furthermore, Lagom

makes asynchronous communication the default:

when communicating between services, streaming

is provided as a first-class concept. Developers are

encouraged and enabled to use asynchronous messaging

via streaming, rather than synchronous request-

response communication. Asynchronous messaging is

fundamental to a system's resilience and scalability. A

streamed message is a message of type Source. Source

is an Akka streams API that allows asynchronous

streaming and handling of messages. Here’s an example

streamed service call:

ServiceCall<String, Source<String, ?>> tick(int
interval);

default Descriptor descriptor() {
 return named("clock").withCalls(
 pathCall("/tick/:interval", this::tick)
);
}

MOBILITY
Another requirement for microservices is the ability
to run independent of the physical location. And
asynchronous message-passing provides the needed
decoupling, which is also called location transparency:
this gives the ability to, at runtime, dynamically scale
the microservice—either on multiple cores or on multiple
nodes—without changing the code. This kind of service
distribution is needed to take full advantage of cloud
computing infrastructures with microservices.

A successful microservices services architecture needs to
be designed with the core traits of Reactive Microservices
in mind. Isolation, Single Responsibility, Autonomy,
Exclusive State, Asynchronous Message-Passing, and
Mobility are required to build out a reactive microservice
architecture. The most interesting, rewarding, and
challenging parts take place when microservices
collaborate and build a complete system. This is the chance
to learn from past failures and successes in distributed
systems and microservices-based architectures.

You can learn even more about reactive microservice
architectures by reading Jonas Bonér’s free O’Reilly book,
and you can get a deep-dive into Lagom with my own
mini-book about implementing reactive microservices.

MARKUS EISELE (@myfear) is a Java Champion, former Java
EE 7 Expert Group member, deputy lead for the Java community
at German DOAG, founder of JavaLand, reputed speaker at Java
conferences around the world, and a very well known figure in the
Enterprise Java world. He is a developer advocate at Lightbend.

7 HABITS OF

Super Productive Java Developers

http://DZone.com/guides
http://dzone.com/guides
https://www.lightbend.com/reactive-microservices-architecture
https://info.lightbend.com/COLL-20XX-Developing-Reactive-Microservices_Landing-Page.html?lst=DZ
http://www.twitter.com/myfear

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

21

7 HABITS OF

Super Productive Java Developers
The core engineering team at Stormpath has a combined 153 years of professional experience in Java,

so we surveyed them for their top advice, tips, and tricks. Here’s what they had to say:

1. KNOW YOUR TOOLS (AND HAVE THE RIGHT ONES)
Thoroughly research the existing frameworks or libraries that could
make your implementation easier before you begin. Also, have the
right IDE and customize it for your project. Beyond the Java-specific
toolkit, our developers deploy a veritable battalion of apps and
services to increase their productivity:

CROSS-PLATFORM, OR PLATFORM-AGNOSTIC

• Private Internet Access: Easy VPN service (great for hotels and
public networks)

• Franz: One chat app to rule them all! Franz supports Slack, Hipchat,
Facebook Messenger, GChat, Whatsapp, and Telegram (and many
others)

• RecordIt: Multimedia recorder that turns quick screencasts into
animated gifs

• JWT Inspector: Decode, inspect, and debug JWTs from cookies,
local storage, and requests, straight from your browser with this
Chrome extension, by Stormpath

FOR MAC

• Bartender: Tame the Mac menu bar

• Karabiner: Keyboard customizer

• Be Focused Pro: Pomodoro technique timer for the menu bar

• Alfred: Enhanced Spotlight functionality (and a lot more)

• Jumpcut: Indispensable clipboard buffering app

• Riverflow: Workflow manager that assigns unique two-finger
gestures to actions

2. WRITE TESTS FIRST
It sounds counterintuitive, but by thinking ahead to your testing you’ll
end up writing testable code.

3. LOVE THAT HTTPIE
Forget curl; httpie is where it’s at, so learn to love the command
line. This Swiss Army knife for developers is quite possibly the most
powerful tool in your arsenal, and the most frequently overlooked.

4. BE PROACTIVE ABOUT PRODUCTIVITY
Productivity hacks abound, and we recommend you to devote some time
to trying a few out to find the one that best suits your workflow.

GET UP AND MOVE

Take breaks. For real. Get up and walk away from your computer, think
about something other than work. Apps like Pause can help force your
brain to disengage from work and slow down.

5. AUTOMATE WHERE POSSIBLE
Scripts are your friend. Take the time to automate your repetitive tasks, even
the simple ones. Those saved seconds add up, and can eliminate errors.

6. DON’T STAY STUCK
Start by not being afraid to spike and delete: Try out different approaches
and explore not just their impact on your project and interaction with
existing code, but also where you get stuck. Then, delete that and write
some tests.

USE YOUR TEAM

Don’t be afraid to ask questions on Stack Overflow or pair up with a friend
or colleague. Getting a second set of eyes on your problem can get you
unstuck in a fraction of the time.

OPEN A BOOK!

There are some amazing general and Java-specific reference texts
on the Stormpath bookshelves that can, and have, gotten our team
unstuck a time or two. These include Effective Java, Simple Java, Clean
Code, and Design Patterns.

7. PAY IT FORWARD
Stormpath co-founder Les Hazlewood is also the founder and primary
contributor to the open-source Java security framework Apache Shiro.
He offers this advice: “Participate (actually code) in some great open
source projects. A *lot*. As much as you can. There is simply nothing in
the world that I know of that will expose you to the quantity and quality
of great code written by senior developers than participating in multiple
solid open source projects. You will learn more by looking at clean code
and good design patterns than anything you could do on your own or
what you would see by working on a few closed-source projects.”

https://stormpath.com/
https://www.privateinternetaccess.com/
http://meetfranz.com/
http://recordit.co/
https://www.jwtinspector.io/
https://www.macbartender.com/
https://pqrs.org/osx/karabiner/
https://itunes.apple.com/us/app/be-focused-pro-focus-timer/id961632517?mt=12
https://www.alfredapp.com/
http://jumpcut.sourceforge.net/
http://questbe.at/riverflow/
https://github.com/jkbrzt/httpie
https://techcrunch.com/2015/10/08/pause-ustwo/
http://www.oracle.com/technetwork/articles/java/bloch-effective-08-qa-140880.html
http://www.programcreek.com/wp-content/uploads/2013/01/Simple-Java.pdf
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://shiro.apache.org/

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

22

CODE STYLE AND HOW TO USE IT
Compilers and interpreters require the syntax

of code to conform to a given programming

language’s grammar. Humans, however, require

additional guides to translate the cold instructions

of machine code into something that can be

followed and understood. Code style can provide

these cues, and can include things like basic text

formatting, indentation, and small methods.

Style can also apply to the use of design patterns,

such as best practices for things like constructor

chaining, exception handling, and synchronization.

Well-styled code is easy to read, like well-written prose. And
easier-to-read code means it is easier to understand, and this
means more robust, error-free software that developers are
happy to work with.

Coding style also works best when it is consistent throughout
the whole codebase. Sometimes, however, many years of
development may exist where no style or minimal style is
applied. In these cases, it is best not to rush in and change
everything just for the sake of applying style. Apply changes
slowly as code changes, starting first with all new files. Then
update existing files only in those places that are changing,
such as a method due to a bug fix. And once a particular file
passes a threshold (such as 75%), the remaining non-styled
sections can be updated.

It is also important to note that modern IDEs allow for the
configuration of formatting rules; take advantage of this
assistance where available.

PRINCIPLES OF MODERN JAVA STYLE
The most important aspect of style is simplicity, since the
simpler the style the easier it is to remember and apply. No
developer wants to memorize hundreds of rules and dozens
of exception in order to write software.

There is an overall guiding principle that is commonly
known as "The Boy Scout Rule for Software Development".
This simply states that a developer should leave the code in
a better state than when they found it, much like Boy Scouts
and their creed to maintain camp sites.

HIGHLIGHTS OF CODING AND FORMATTING
CONVENTIONS

CODE FORMATTING
Formatting consists of all the typological conventions that
give code its basic appearance and includes indentation, the
use of comments, and where braces appear.

Some best practices:

Nest code and use 4 spaces for indentation. This gives a good
trade-off between emphasizing the text indentation at each
level and does not push text too far into the line if multiple
indentations levels are required.

Use spaces for indentation, never tab characters. Tabs
are visually indistinguishable from spaces and can cause
issues if both are mixed, since tab lengths can vary across
environments. Using only spaces ensure that indentation is
always consistent.

Break long lines and margins of 80, 120, or 132 characters.
80 is better for doing side-by-side comparison or multi-way
merges, but will lead to more wrapped lines.

Code style is an important
aspect of software
development.

When done consistently and
correctly, code style can
help improve the quality
of software by increasing
readability and the ability to
discover potential defects
earlier in development.

Conventions include basic
code formatting, how to
name objects and variables,
as well as following
consistent design patterns.

01

02

03

Q U I C K V I E WThe Elements
Of Modern
Java Style
BY MICHAEL TOFINETTI
DEVELOPMENT TEAM LEAD AT ROGUE WAVE SOFTWARE

http://DZone.com/guides
http://dzone.com/guides

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

23

Use white space, blank lines and comments to improve
readability.

BRACES
Braces have long since become a point of contention in any
discussion of coding style. There are two main schools of
thought on braces: Cozied and Aligned. Each has its own pros
and cons, which are explained below.

Cozied Braces put the open brace right at the end of the
originating statement and the closing brace on its own line.
Associated keywords (like “else” to an “if”) cozy up to the end
brace on the same line.

if (condition) {
 statement;
} else {
 statement;
}

This style allows for reducing
the amount of vertical space
used by the code, showing
more code on the screen at a

time. However, compacting information in this way can
reduce readability.

Aligned braces, alternatively, place the braces directly on top
of each other.

if (condition)
{
 statement;
}
else
{
 statement;
}

This style sets off statements
from the keywords
surrounding it by introducing
blank lines since each brace is
on its own line, instantly
improving readability. It also
introduces consistency in the

location of braces because they are always in the same place,
directly below the first character of the statement that
introduced them.

Aligned Braces are better for making the code consistent and
symmetrical, and this especially becomes obvious when the
statement before the first open brace is longer than a single line.

if (long condition with
 keyword and keyword and
 keyword and keyword)
{
 keyword;
}

The cozied brace version of
the above requires an
additional indentation to
differentiate the continuation
of the condition with the start
of the execution block.

When using Aligned Braces, the formatting automatically
aligns the text blocks, keeps the condition items together,
and does not require additional formatting rules or
indentation spaces.

It is for these reasons that Aligned Braces are preferred.

NAMING CONVENTIONS
Naming is an important part of code writing — picking an
appropriate name that conveys meaning and is appropriate
for the scope and lifespan of the construct.

In general, it is better to be too descriptive than too terse, but
always consider the scope that the variable will exist in. Short
names are preferable in smaller scopes, while longer names
are more appropriate for longer-lived objects.

A short, single character is appropriate for a self-contained loop:

for (int i = 0; i < listSize; i++)
{
 if (condition)
 {
 sum += list.getItemAt(i);
 }
}

Larger-scoped variables require longer and more descriptive names:

private CommandProcessor sequentialCommandProcessor =
 new CommandProcessor();

This variable may be used throughout the class in various
places, where each of the separate invocations are not
simultaneously visible on the editor screen at the same time.

sequentialCommandProcessor.init();

...

sequentialCommandProcessor.addCommand(...);

...

sequentialCommandProcessor.execute();

...

sequentialCommandProcessor.cleanUp();

...

Having a descriptive name reduces the time spent attempting
to figure out the intention of the variable.

As in the example above, longer variable names use Camel
Caps to join words, and never exclude vowels for brevity.
Acronyms should only have their first letter capitalized, such
as parseXml().

To maintain consistency across the code base, use the
following naming conventions:

• Capitalize the first letter of Classes and Interfaces.

• Start with a lower case letter for methodNames and
variableNames.

• Constants are in all UPPERCASE_WITH_UNDERSCORES.

• Use single words in all lowercase for package names.

HIGHLIGHTS OF PROGRAMMING AND DESIGN
CONVENTIONS
Programming conventions cover aspects of implementation,
including items like Type Safety, Statements and Expressions,
Chaining Constructors, Exception Handling, Assertions,
Concurrency, Synchronization, and Efficiency.

Some general conventions:

• Always use braces for block statements, even if they are
empty or a single line; this improves readability and prevents
issues if those code blocks are changed in the future.

• Use parenthesis to clarify the order of operations.

• Use polymorphism to reduce the need for switch
statements or the instanceof operator. instanceof is an

CONTINUED

http://DZone.com/guides

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

24

expensive operation and can lead to performance issues if

done repeatedly in a loop structure.

• If using switch statements, always use a default: case

and put break; statements at the end of each block,

including the default.

CHAINING CONSTRUCTORS
Object construction occurs frequently, and often times with

various parameters to help simplify creation. The best practice

in this case is to not write duplicate code and instead make

each constructor do only the minimum work necessary,

passing the remaining processing to the other constructors.

public ChainedConstructor()
{
 // Common setup
 ...
}

public ChainedConstructor(ObjectTypeA a)
{
 ChaintedConstrucor();
 this.a = a;
}

public ChainedConstructor(ObjectTypeA a, ObjectTypeB b)
{
 ChainedConstructor(a);
 this.b = b;
}

EXCEPTION HANDLING
One of the most important things a developer can do is

ensure that the software never crashes, even in the event of

unexpected circumstances. At run-time, many things can

go wrong, from invalid user input to network interruptions.

It is for this reason that all potential exception cases must

be handled.

At the very least, run-time exceptions should always be

logged. It is very rare that there is an exception that will truly

never occur and can be ignored.

try
{
 ...
}
catch (IOException e)
{
 // Should never reach here
 logger.debug(“Unexpected I/O exception:”);
 logger.logStackTrace(e);
}

Catch exceptions in as small an exception scope as

possible. Do not wrap a try block around a section of

code and then only catch java.lang.Throwable. Some

exception cases are easier to recover from than others; it

is best not to lump non-recoverable errors (such as java.

lang.OutOfMemoryError) with more reasonable expected

exceptions (such as java.lang.NumberFormatException
when converting a String into an Integer).

SYNCHRONIZATION
Synchronization is the enforcement that only a single thread

shall have access to a particular portion of code or an object

at one moment. The most important rule of maintaining data

integrity in a threaded environment is to always allocate

and synchronize on an object that is used exclusively for

synchronization purposes. Java does provide a mechanism

to apply synchronization to classes or methods, but this

implicitly or explicitly uses the instance of the class object

itself as the synchronization object. That means that all

synchronized methods in the class will be blocked if a thread

is locked in one of them.

As such, to prevent unintended consequences, always

use an Object other than the current object (this) as the

synchronization lock token.

private String fileLock = “token”;

public void writeDataFile(String data)
{
 synchronized(fileLock)
 {
 dataFile.write(data);
 }
}

public String readDataFile(int lineNumber)
{
 String result;
 synchronized(fileLock)
 {
 result = dataFile.read(lineNumber);
 }
 return result;
}

Synchronization is an expensive operation that will

slow down the execution of a code block, so only apply

synchronization where necessary to avoid thread collisions

or potential data corruption.

CONCLUSION
Code style is an important aspect of software development.

Judiciously and consistently applying a well-defined style will

produce code that is simpler to read, understand, and debug,

and with fewer defects.

MICHAEL TOFINETTI received an Honours Bachelor of
Computer Science from Lakehead University and has worked in
software design and development for nearly twenty years, primarily
in the telecommunications industry. He has co-authored eight patents
(six issued, two pending), and is currently a Development Team
Lead for Rogue Wave Software working on the Klocwork static code
analysis tool in Ottawa, Canada.

SPONSORED OP IN ION

http://DZone.com/guides
http://dzone.com/guides

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE’S 2016 GUIDE TO MODERN JAVA

25

Connect anything Java together with anything .NET.
Reuse your existing C#, VB or Java code, and run your applications anywhere.

BLOG jnbridge.com/blog WEBSITE jnbridge.comTWITTER @jnbridge

JNBridgePro By JNBridge

CASE STUDY
A major financial institution that has spent years building up

their Java-based trading infrastructure needed to integrate a risk

engine API written in C#. They faced three choices: creating and

using a very complex workaround process to assess the risk in

each financial transaction (which would have cost significant

processing time), completely rewriting and debugging the entire

C# library in Java, or finding a way to make both sides work

together seamlessly. After exploring open-source applications

that didn’t work, they chose JNBridgePro as the solution. Now, the

risk-evaluation process takes a fraction of the time it otherwise

would have, and the developers can instead focus on other

business-critical items on their to-do list.

Over 600 global enterprises and software development

houses rely on JNBridge products in all kinds of

applications, integrating Java with .NET across every

layer from the UI to the enterprise server backend. See

jnbridge.com/about/customers for details.

STRENGTHS
• Access Java classes from .NET as if Java were a .NET

language (C#, VB, etc.)

• Access .NET classes (written in C#, VB, F#...) from Java as
if they were Java classes

• Gain full access to any API on the other side, whether it’s
service-enabled or not

• Expose any Java or .NET binary, no source code required

• Deploy anywhere: same process, separate processes,
separate devices, across a network

CATEGORY
Java & .NET Interoperability

NEW RELEASES
Semi-Annual

OPEN SOURCE
No

NOTABLE CUSTOMERS

With the proliferation of new platforms and languages,
developers are faced with the challenge of being technology-
agnostic, whereby they must mix and match whatever
technologies are necessary to build the best possible system
or to satisfy the end user. Rather than insisting on the purity
of using a single platform or technology, the technology-
agnostic developer selects parts of a solution from a wide
array of platforms and other technologies with the aim of
developing a superior or most suitable solution.

Consider the following scenario. A firm has spent years
implementing a trading platform in Java. At some point they
realize they must incorporate a best-of-breed quant package
that’s been written in C#. Does the development team resolve
the problem by throwing away the C# library and rewriting it
in Java?

Enter an interoperability solution. In this case, the firm easily
and efficiently integrated the .NET-based quant API into their
Java-based trading platform, maintaining the solidity and
integrity of both code bases.

In another scenario, customers of a Java-based software
provider demanded a .NET-based API. Rather than adding the
time and expense to rewrite and maintain another set of code,
the software team used an interoperability tool to quickly
deliver a solution and make the sale.

Being technology-agnostic during the development process
allows you to choose the best overall solution regardless of the
underlying platform. Being technology-agnostic also allows
you to switch, rather than fight, when faced with adapting
a solution long after the original technology decisions were
made. Using interoperability tools helps you support your
evolving technology needs.

Java or .NET?
Be Technology-
Agnostic with Cross-
Platform Tools

The technology-agnostic developer selects
from a wide array of technologies in order
to build superior applications and systems.

WRITTEN BY WAYNE CITRIN
CTO AT JNBRIDGE

PARTNER SPOTLIGHT

SPONSORED OP IN ION

http://jnbridge.com/blog/?utm_campaign=dz16&utm_source=jg16&utm_medium=link
http://www.sauceio.com
http://jnbridge.com/blog/?utm_campaign=dz16&utm_source=jg16&utm_medium=link>
http://jnbridge.com/?utm_campaign=dz16&utm_source=jg16&utm_medium=link
http://jnbridge.com/?utm_campaign=dz16&utm_source=jg16&utm_medium=link
http://www.twitter.com/jnbridge
http://jnbridge.com/about/customers/?utm_campaign=dz16&utm_source=jg16&utm_medium=link
http://jnbridge.com/blog/?utm_campaign=dz16&utm_source=jg16&utm_medium=link
http://www.twitter.com/jnbridge
http://jnbridge.com/?utm_campaign=dz16&utm_source=jg16&utm_medium=link

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

26

SPONSORED OP IN ION

http://DZone.com/guides
http://dzone.com/guides
http://www.vaadin.com/framework

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE’S 2016 GUIDE TO MODERN JAVA

27

Many companies are facing the problem of aging

applications that either don’t support customers’

platforms or don’t have a fast enough time to market.

Web as a platform has already won the platform wars

as a platform everybody supports. Even mobile apps are

consolidating towards the web, with emerging browser

features and the ease of findability compared to installable

apps. Your technology stack however defines your time

to market – developers can either solve business issues or

use their time on technical issues.

Java as the basis for your technology stack ensures that

your team can stay productive. The less technologies

your team has to juggle the easier it is to get new people

into your project or switch between different teams.
Managing competencies gets easier the less technologies
you have to master. If you already from before have a
Java-stack it makes sense to re-use as much as possible
of the UI and back-end logic. When deciding upon your
migration path, consider the amount of technologies
and languages you need to know. For instance Java over
JavaScript has many advantages in this respect. It also
makes for an easier migration when as much as possible
can be reused.

As important as the language, and thus the tools it
provides, is also the longevity of the framework you
migrate to. Even though history doesn’t always give
promises about the future, having a solid back is worth a
lot when building for years to come. You want to ensure
your framework supports the platforms your future
customers will be using.

Check out the framework comparison matrix @
vaadin.com/comparison.

Use a familiar component based approach to build awesome single page web apps faster than with any
other UI framework. Forget complex web technologies and just use Java or any other JVM language. No

plugins or installations required and it works from desktop to mobile.

BLOG vaadin.com/blog WEBSITE vaadin.comTWITTER @vaadin

Vaadin

CASE STUDY

Simplifying the Development Model at CAS Software

CAS Software GmbH in Germany switched to Vaadin Framework for their

main product in order to shave off development costs and get faster time

to market.

Selecting the right tool for the company was imperative back in 2014 so

they made a thorough comparison. During the evaluation phase several

technologies were evaluated, including Eclipse RAP, Vaadin, GWT and

Sencha/Ext JS. Vaadin was found to be the most solid technology and has

proven to be the right choice.

"Vaadin enabled a highly economic assignment of tasks: the most of the application

including the UI can be implemented by Java developers and only a few specialists

were needed to implement complex widgets."

- Dr. Markus Bauer, Head of Development Center SmartDesign, CAS Software AG

• TNT

• Puma

• Nasa

• Accenture

• CGI

STRENGTHS
• One language for the whole application

• Extensible with Java and HTML5

• UI logic is right next to your data

• Strong abstraction of web technologies

• Half the lines of code, twice the productivity

• Open source and backed up by a strong company

• Spring and Java EE compatible

• Supported for 15 years, 5 year support guarantee

CATEGORY
Web UI Framework

NEW RELEASES
Every 2 Weeks

OPEN SOURCE
Yes

NOTABLE CUSTOMERS

Modernizing
Applications

WRITTEN BY FREDRIK RÖNNLUND
VP OF MARKETING, VAADIN

PARTNER SPOTLIGHT

SPONSORED OP IN ION

http://vaadin.com/comparison
http://vaadin.com/blog
http://vaadin.com/blog
http://vaadin.com/blog
http://vaadin.com/
http://vaadin.com/
http://vaadin.com
http://www.twitter.com/vaadin
http://www.twitter.com/vaadin

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

28

12 Factors and
Beyond in Java
BY PIETER HUMPHREY PRINCIPAL PRODUCT MARKETING MANAGER AT PIVOTAL

AND MARK HECKLER PRINCIPAL TECHNOLOGIST/DEVELOPER ADVOCATE AT PIVOTAL

For many people, “cloud native” and “12 factor

applications” are synonymous. A goal of this

article is to illustrate that there’s a lot more to

cloud native than just adhering to the original 12

factors. As with most things, Java is up to the task.

In this article we’ll examine concepts and code

samples, taking a look beyond the standard 12

factors in the process, as Kevin Hoffmann does in

his recent O’Reilly book Beyond the 12 Factor App.

1. ONE CODEBASE
While less of a Java-specific concept, this factor generally
refers to getting to a single code base managed in source
control or a set of repositories from a common root.
Getting to a single codebase makes it cleaner to build and
push any number of immutable releases across various
environments. The best example of violating this is when
your app is composed of a dozen or more code repositories.
While using one code repository to produce multiple
applications can be workable, the goal is a 1:1 relationship
between apps and repos. Operating from one codebase can
be done but is not without its own challenges. Sometimes
one application per repository is the simplest thing that
works for a team or organization.

2. DEPENDENCY MANAGEMENT
Most Java (and Groovy) developers can take advantage
of facilities like Maven (and Gradle), which provide the
means to declare the dependencies your app requires for
proper build and execution. The idea is to allow developers

to declare dependencies and let the tool ensure those
dependencies are satisfied and packaged into a single
binary deployment artifact. Plugins like Maven Shade or
Spring Boot enable you to bundle your application and its
dependencies into a single “uberjar” or “fat jar” and thus

provide the means to isolate those dependencies.

Figure 1 is a portion of an example Spring Boot application

Maven build file, pom.xml. This shows the dependency

declarations as specified by the developer.

FIGURE 1: A PORTION OF POM.XML SHOWING APPLICATION DEPENDENCIES

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.7.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository
-->
</parent>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</
artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</
artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zipkin</
artifactId>
 </dependency>

The twelve-factor approach is a
method for creating web-based
apps that can improve usability,
performance, and scalability.

These factors include best
practices such as using a single
codebase for your application,
externalizing configuration,
and keeping your app stateless
where possible.

While the twelve factors
provide a solid foundation for
modern web apps, there are
additional factors that should
be considered to improve your
application architecture.

01

02

03

Q U I C K V I E W

http://DZone.com/guides
http://dzone.com/guides
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://pivotal.io/beyond-the-twelve-factor-app
http://1.One
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://2.Dependency
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

29

Figure 2 is a portion of listed dependencies within the same

application, showing JARs bundled into the application’s

uberjar, which isolates those dependencies from variations

in the underlying environment. The application will rely

upon these dependencies rather than potentially conflicting

libraries present in the deployment target.

FIGURE 2: A PORTION OF MVN DEPENDENCY:TREE FOR A SAMPLE APPLICATION

[INFO] Scanning for projects...
[INFO]
[INFO] --

[INFO] Building quote-service 0.0.1-SNAPSHOT
[INFO] --

[INFO]
[INFO] --- maven-dependency-plugin:2.10:tree (default-cli) @
quote-service ---
[INFO] com.example:quote-service:jar:0.0.1-SNAPSHOT
[INFO] +- org.springframework.cloud:spring-cloud-starter-
config:jar:1.1.3.RELEASE:compile
[INFO] | +- org.springframework.cloud:spring-cloud-starter:j
ar:1.1.1.RELEASE:compile
[INFO] | | +- org.springframework.cloud:spring-cloud-contex
t:jar:1.1.1.RELEASE:compile
[INFO] | | | \- org.springframework.security:spring-
security-crypto:jar:4.0.4.RELEASE:compile
[INFO] | | +- org.springframework.cloud:spring-cloud-common
s:jar:1.1.1.RELEASE:compile
[INFO] | | \- org.springframework.security:spring-security-
rsa:jar:1.0.1.RELEASE:compile
[INFO] | | \- org.bouncycastle:bcpkix-
jdk15on:jar:1.47:compile
[INFO] | | \- org.bouncycastle:bcprov-
jdk15on:jar:1.47:compile
[INFO] | +- org.springframework.cloud:spring-cloud-config-
client:jar:1.1.2.RELEASE:compile
[INFO] | | \- org.springframework.boot:spring-boot-autoconf
igure:jar:1.3.7.RELEASE:compile
[INFO] | \- com.fasterxml.jackson.core:jackson-
databind:jar:2.6.7:compile
[INFO] | \- com.fasterxml.jackson.core:jackson-
core:jar:2.6.7:compile
[INFO] +- org.springframework.cloud:spring-cloud-starter-
eureka:jar:1.1.5.RELEASE:compile
[INFO] | +- org.springframework.cloud:spring-cloud-netflix-
core:jar:1.1.5.RELEASE:compile
[INFO] | | \- org.springframework.boot:spring-
boot:jar:1.3.7.RELEASE:compile

3. BUILD, RELEASE, RUN
A single codebase is taken through a build process to
produce a single artifact; then merged with configuration
information external to the app. This is then delivered to
cloud environments and run. Never change code at runtime!

The notion of Build leads naturally to continuous
integration (CI), since those systems provide a single
location that assemble artifacts in a repeatable way.
Modern Java frameworks can produce uberjars, or the
more traditional WAR file, as a single CI-friendly artifact.
The Release phase merges externalized configuration (see

Configuration below) with your single app artifact and

dependencies like the JDK, OS, and Tomcat. The goal is

to produce a release that can be executed, versioned, and

rolled back. The cloud platform takes the release and

handles the Run phase in a strictly separated manner.

4. CONFIGURATION
This factor is about externalizing the type of configuration

that varies between deployment environments (dev,

staging, prod). Configuration can be everywhere: littered

among an app’s code, in property sources like YAML, Java

properties, environment variables (env vars), CLI args,

system properties, JNDI, etc. There are various solutions—

refactor your code to look for environment variables.

For simpler systems, a straightforward solution is to

leverage Java’s System.getenv() to retrieve one or more

settings from the environment, or a Map of all keys and

values present. Figure 3 is an example of this type of code.

FIGURE 3: A PORTION OF POM.XML SHOWING APPLICATION DEPENDENCIE

private String userName = System.getenv(“BACKINGSERVICE_UID”);

private String password = System.getenv(“BACKINGSERVICE_PASSWORD”);

For more complex systems, Spring Cloud and Spring Boot

are popular choices and provide powerful capabilities for

source control and externalization of configuration data.

5. LOGS
Logs should be treated as event streams: a time-ordered

sequence of events emitted from an application. Since

you can’t log to a file in a cloud, you log to stdout/stderr

and let the cloud provider or related tools handle it. For

example, Cloud Foundry’s loggregator will turn logs into

streams so they can be aggregated and managed centrally.

stdout/stderr logging is simple in Java:

Logger log = Logger.getLogger(MyClass.class.getName());
log.setLevel(Level.ALL);

ConsoleHandler handler = new ConsoleHandler();
handler.setFormatter(new SimpleFormatter());

log.addHandler(handler);

handler.setLevel(Level.ALL);
log.fine(“This is fine.”);

6. DISPOSABILITY
If you have processes that takes a while to start up or shut

down, they should be separated into a backing service and

optimized to accelerate performance. A cloud process is

disposable — it can be destroyed and created at any time.

Designing for this helps to ensure good uptime and allows

you to get the benefit of features like auto scaling.

7. BACKING SERVICES
A backing service is something external your app depends

on, like a database or messaging service. The app should

http://DZone.com/guides
https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-profiles.html
https://docs.cloudfoundry.org/loggregator/architecture.html

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

30

declare that it needs a backing service via an external

config, like YAML or even a source-controlled config

server. A cloud platform handles binding your app to

the service, ideally attaching and reattaching without

restarting your app. This loose coupling has many

advantages, like allowing you to use the circuit breaker

pattern to gracefully handle an outage scenario.

8. ENVIRONMENTAL PARITY
Shared development and QA sandboxes have different

scale and reliability profiles from production, but you

can’t make snowflake environments! Cloud platforms

keep multiple app environments consistent and eliminate

the pain of debugging environment discrepancies.

9. ADMINISTRATIVE PROCESSES
These are things like timer jobs, one-off scripts, and

other things you might have done using a programming

shell. Backing Services and other capabilities from cloud

platforms can help run these, and while Java doesn’t

(currently) ship with a shell like Python or Ruby, the

ecosystem has lots of options to make it easy to run one

off tasks or make a shell interface.

10. PORT BINDING
In the non-cloud world, it’s typical to see several apps

running in the same container, separating each app by

port number and then using DNS to provide a friendly

name to access. In the cloud you avoid this micro-

management—the cloud provider will manage port

assignment along with routing, scaling, etc.

While it is possible to rely upon external mechanisms

to provide traffic to your app, these mechanisms vary

among containers, machines, and platforms. Port binding

provides you full control over how your application

receives and responds to requests made of it, regardless

of where it is deployed.

11. PROCESS
The original 12-factor definition here says that apps must

be stateless. But some state needs to be somewhere, of

course. Along these lines, this factor advocates moving

any long-running state into an external, logical backing

service implemented by a cache or data store.

12.CONCURRENCY
Cloud platforms are built to scale horizontally. There

are design considerations here—your app should be

disposable, stateless, and use share-nothing processes.

Working with the platform’s process management model

is important for leveraging features like auto-scale, blue-

green deployment, and more.

13. BEYOND 12 FACTOR: TELEMETRY, SECURITY,
API-FIRST DESIGN
The 12 Factors were authored circa 2012. Let’s look at

just a few of the many baseline capabilities from modern

clouds that make your app more sustainable to run:

• Health alerts, cloud system metrics, logs

• Domain-specific telemetry

• Application performance monitoring (APM)

On Cloud Foundry, Java app logs can simply be directed

to stdout / stderr, where they are streamed and

aggregated for operators. Spring Boot makes JMX a snap,

and commercial cloud platforms can provide advanced

capabilities like APM.

Security external to your application, applied to

application endpoints (URLs) with RBAC, is important on

cloud platforms for SSO & OAUTH2 provider integration.

Otherwise, security for multiple Java apps becomes

unmanageable.

Beyond the 12 Factor App describes the API-first

approach as ”an extension of the contract-first

development pattern, where developers concentrate on

building the edges or seams of their application first.

With the integration points tested continuously via CI

servers, teams can work on their own services and still

maintain reasonable assurance that everything will work

together properly.”

REPLATFORMING
In conclusion, it’s important to realize that you don’t need

all 15 factors just to replatform an existing app to run on

the cloud. This cloud native maturity model (expressed

by a large financial services organization) illustrates

the type of progression used to approach large, complex

monolithic apps and “12 factorize” them incrementally.

PIETER HUMPHREY is a Consulting Product Marketing
Manager responsible for Java Developer Marketing at Pivotal
Software, Inc. Pieter comes from BEA/Oracle with long history of
developer tools, Java EE, SOA, EAI, application server and other Java
middleware as both a marketing guy and sales engineer since 1998.
You can find him on twitter discussing Java, Spring and the Cloud.

MARK HECKLER is a Pivotal Principal Technologist &
Developer Advocate, conference speaker, published author, & Java
Champion focusing upon developing innovative production-ready
software at velocity for the Cloud and IoT applications. Mark is an
open source contributor and author/curator of a developer-focused
blog and an occasionally interesting Twitter account.

http://DZone.com/guides
http://dzone.com/guides
https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html
https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html
http://martinfowler.com/bliki/CircuitBreaker.html
https://docs.cloudfoundry.org/concepts/diego/diego-auction.html#processes
http://projects.spring.io/spring-batch/
https://projects.spring.io/spring-shell/
https://docs.cloudfoundry.org/adminguide/hm-notifications.html
https://docs.cloudfoundry.org/loggregator/all_metrics.html
https://docs.cloudfoundry.org/loggregator/architecture.html
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#production-ready-application-info
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/
https://en.wikipedia.org/wiki/Role-based_access_control
https://pivotal.io/beyond-the-twelve-factor-app
https://twitter.com/wattersjames/status/664044293250641920
https://twitter.com/pieterhumphrey
http://www.thehecklers.org
https://twitter.com/MkHeck

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

31

Diving Deeper
INTO JAVA

TOP #JAVA TWITTER FEEDS TO FOLLOW RIGHT AWAY

JAVA ZONES LEARN MORE & ENGAGE YOUR PEERS IN OUR JAVA-RELATED TOPIC PORTALS

TOP JAVA REFCARDZ TOP JAVA WEBSITES TOP JAVA BOOKS

@reza_rahman

@myfear

@starbuxman

@mariofusco

@trisha_gee

@dblevins

@lukaseder

@omniprof

@arungupta

@javinpaul

DevOps
dzone.com/devops

DevOps is a cultural movement, supported by
exciting new tools, that is aimed at encouraging
close cooperation within cross-disciplinary teams
of developers and IT operations/system admins.
The DevOps Zone is your hot spot for news and
resources about Continuous Delivery, Puppet, Chef,
Jenkins, and much more.

Web Dev
dzone.com/webdev

Web professionals make up one of the largest sections
of IT audiences; we are collecting content that helps web
professionals navigate in a world of quickly changing
language protocols, trending frameworks, and new
standards for user experience. The Web Dev Zone is
devoted to all things web development—and that includes
everything from front-end user experience to back-end
optimization, JavaScript frameworks, and web design.
Popular web technology news and releases will
be covered alongside mainstay web languages.

Java
dzone.com/java

The largest, most active Java developer
community on the web. With news and
tutorials on Java tools, performance tricks,
and new standards and strategies that keep
your skills razor-sharp.

Learn Microservices in Java
dzone.com/refcardz/learn-microservices-in-java
A practical guide complete with examples for
designing Java microservices to support building
systems that are tolerant of failure.

Java Containerization
dzone.com/refcardz/java-containerization
Includes suggested configurations and extensive
code snippets to get your Java application up and
running inside a Docker-deployed Linux container.

Core Java
dzone.com/refcardz/core-java

Gives you an overview of key aspects of the Java
language and references on the core library,

commonly used tools, and new Java 8 features.

JavaEE-Guardians.io
An independent group of people concerned about
Oracle’s current lack of commitment to Java EE
who are doing all they can to preserve the interests
of the Java EE community.

ProgramCreek.com
A site dedicated to posting high quality
community-submitted Java tutorials and articles.

Java-Source.net
A well-organized directory of open source software
focused on Java

Java 8 Lambdas:
Functional Programming for the Masses
If you’re a developer with core Java SE skills, this
hands-on book takes you through the language
changes in Java 8 triggered by the addition of
lambda expressions.

Java Concurrency in Practice
"This book is a must-read for anyone who uses
threads and cares about performance."

Java SE 8 for the Really
Impatient
This short book gives an introduction to the many
new features of Java 8 (and a few features of
Java 7 that haven’t received much attention) for
programmers who are already familiar with Java.

https://twitter.com/reza_rahman
http://www.twitter.com/myfear
https://twitter.com/starbuxman
https://twitter.com/mariofusco
https://twitter.com/trisha_gee
https://twitter.com/dblevins
https://twitter.com/lukaseder
https://twitter.com/omniprof
https://twitter.com/arungupta
https://twitter.com/javinpaul
https://dzone.com/devops-tutorials-tools-news
https://dzone.com/web-development-programming-tutorials-tools-news
https://dzone.com/java-jdk-development-tutorials-tools-news
https://dzone.com/refcardz/learn-microservices-in-java
https://dzone.com/refcardz/learn-microservices-in-java
https://dzone.com/refcardz/java-containerization
http://dzone.com/refcardz/java
https://dzone.com/refcardz/core-java
https://dzone.com/refcardz/core-java
http://JavaEE-Guardians.io
http://www.programcreek.com/
http://Java-Source.net
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://jcip.net/
http://www.horstmann.com/java8/index.html
http://www.horstmann.com/java8/index.html
http://mobilewebweekly.co
http://bit.ly/2cWJyMb

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

32

Engineered for apps built
with Spring Boot

A distributed platform engineered
for distributed Spring Cloud Apps

Cloud Native stream and batch
processing with Spring Cloud Data Flow

Cloud Native Java
At Your Service
Install, Deploy, Secure & Manage Spring
Cloud’s Service Discovery, Circuit Breaker
Dashboard, and Config Server capabilities
automatically as Pivotal Cloud Foundry —
managed services today.

http://DZone.com/guides
http://dzone.com/guides
https://pivotal.io/platform/pcf-tutorials/getting-started-with-pivotal-cloud-foundry

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE’S 2016 GUIDE TO MODERN JAVA

33

Engineered for apps built
with Spring Boot

A distributed platform engineered
for distributed Spring Cloud Apps

Cloud Native stream and batch
processing with Spring Cloud Data Flow

Cloud Native Java
At Your Service
Install, Deploy, Secure & Manage Spring
Cloud’s Service Discovery, Circuit Breaker
Dashboard, and Config Server capabilities
automatically as Pivotal Cloud Foundry —
managed services today.

Spring Cloud provides tools for Spring Boot developers
to quickly apply some of the common patterns found in
distributed systems (e.g. configuration management, service
discovery, circuit breakers, intelligent routing, micro-proxy,
control bus, and much much more). When moving into
production, Cloud Native applications can leverage a unique
technology for automation of foundational microservice
infrastructure. Spring Cloud Services for Pivotal Cloud
Foundry packages the certain server-side components of
Spring Cloud, making them available as native managed
services inside Pivotal Cloud Foundry (PCF). For DevOps
teams, this creates powerful autoscaling & automation
possibilities for your services via:

• PCF-managed NetflixOSS Eureka

• PCF-managed NetflixOSS Hystrix Dashboard

• PCF-managed Git based Config Server from Pivotal

When authoring client-side application code to use
these services, developers can use native extensions to
Spring Boot to wield microservice technology like Eureka,
Hystrix, Zuul, Atlas, Consul, Zookeeper, Zikpin, as well as
abstractions for common AWS services like RDS, SQS, SNS,
Elasticache, S3, and Cloud Formation namespaces. The most
recent major addition is Spring Cloud Data Flow, a cloud
native programming and operating model for (streaming or
batch) data microservices on structured platforms. Taking
advantage of these battle-tested microservice patterns,
and of the libraries that implement them, can now be as
simple as including a starter POM in your application’s
dependencies and applying the appropriate annotation.

Spring Cloud provides tools for
Spring developers to quickly apply

some of the common patterns
found in distributed systems

Spring Cloud Services for Pivotal Cloud Foundry packages server-side components of certain
Spring Cloud projects and makes them available as managed services in Pivotal Cloud Foundry.

BLOG spring.io/blog WEBSITE cloud.spring.ioTWITTER @SpringCloudOSS

Spring Cloud Services By Pivotal

CASE STUDY
Spring Cloud Netflix provides NetflixOSS integrations for Spring

Boot apps through autoconfiguration and binding to the Spring

Environment and other Spring programming model idioms. With

a few simple annotations you can quickly enable and configure

the common patterns inside your application and build large

distributed systems with battle-tested Netflix components. The

patterns provided include Service Discovery (Eureka), Circuit

Breaker (Hystrix), Intelligent Routing (Zuul), and Client Side

Load Balancing (Ribbon). Eureka instances can be registered and

clients can discover the instances using Spring-managed beans,

and an embedded Eureka server can be created with declarative

Java configuration.

• Chris Sterling

• Ben Klein

• Scott Frederick

• Chris Schaefer

• Craig Walls

• Roy Clarkson

• Will Tran

• Mike Heath

• Chris Frost

• Glyn Normington

STRENGTHS
• Automated production operation on Cloud Foundry

• Microservice Security: OAUTH2, HTTPS, PCF UAA
integration, RBAC across apps

• Scriptable, automated install & configuration

• Zero Downtime updates and upgrades

• Service-level HA for Config Server & Service
Registry (in addition to Pivotal Cloud Foundry HA)

• Automatic provisioning and configuration of MySQL
and RabbitMQ dependencies

CATEGORY
Java Solution for
Distributed Computing

NEW RELEASES
As Needed

OPEN SOURCE
No

PROMINENT TEAM MEMBERS

Microservices and
Cloud Native Java

WRITTEN BY PIETER HUMPHREY
PRINCIPAL MARKETING MANAGER, PIVOTAL

PARTNER SPOTLIGHT

SPONSORED OP IN ION

http://www.spring.io/blog
http://www.spring.io/blog
http://spring.io/blog
http://cloud.spring.io
http://cloud.spring.io
http://www.twitter.com/SpringCloudOSS
http://www.twitter.com/SpringCloudOSS
https://blog.pivotal.io/pivotal-cloud-foundry/products/the-four-levels-of-ha-in-pivotal-cf

All the management of hospital
functions and reporting run on Java.

It is the basis of multi-institutional
medical information retrieval

systems.

972 hospital jobs for Java developers.

Java is used in military mobile apps
transitioning away from Ada for more
secure applications.

Any military-controlled devices, such
as drones and anti-aircraft defense
systems, are using Java.

402 military jobs for Java developers.

Java is used by Hitachi to monitor and control water and
sewage systems in cities across desktop and mobile devices.

Java is used to track energy usage in embedded devices,
from single appliances to a city grid, to make developers

aware of how much power they're using.

317 Java city infrastructure jobs.

CONSUMER
ELECTRONICS & IoT

HOSPITALS

MILITARY

CITY INFRASTRUCTURE

NASA uses Java to simulate physics in space.

Java is cross-platform, and it is easy to integrate
NASA's existing legacy systems into new projects.

 739 space-related jobs for Java developers

SPACE

Android devices are all driven by Java libraries.

Java is the o�cial language for developing Android apps.

1,627 jobs for Java/Android developers.

MOBILE TECHNOLOGIES

AUTOMOTIVE
Use Tomcat - an open source version of Java web service
technologies – for their APIs and web apps.

Java is a good alternative to COBOL as it is a modern language
and can be documented more easily.

12,160 jobs for Java developers in financial services.

BANKS

Responsible for operating the accelerometer, thermal sensors for tires and breaks, in-car heart rate monitors, and touchscreen controls.

Java and JavaFX are responsible for collecting and visualizing data such as GPS, engine load, fuel pressure, air intake temp.

173 jobs for automotive Java developers.

GAMING
Java has moved beyond what XCode can do in creating virtual and
augmented reality games.

Minecraft was written in Java, which has over 24 million in sales and
was acquired by Microsoft for 2.5 billion dollars.

641 Java game developer jobs.

100% of Blu-Ray players ship with Java.

Java Smart Cards (the same chips on your credit card)
are used to deploy Java apps to rugged devices.

3,499 embedded device Java developer jobs and
980 IoT jobs.

Java's impact on the world is very far-reaching. It may not be new to the programming language game, but it is still very

much present in the modern world. According to GitHub stats, Java has been the most popular programming language

since 2005. Since it has been the predominant language for so long, almost every major industry has a major investment

in Java. Here, we've illustrated where Java is all around us, how many Java developer jobs are listed in that industry

based on a LinkedIn Jobs search, and what it's used for in a wide array of industries.

C O P Y R I G H T D Z O N E . C O M 2 0 1 6

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

36

A Java
Developer’s Guide
to Migration
BY BEN WILSON
SENIOR CONSULTANT AT VAADIN

Companies with desktop applications written
in Java are under increased pressure to provide
their users the freedom of a responsive web
experience. Ideally you could just run a desktop-
style application inside a browser, and for a long
time applets have made it possible to do just that.
However, applets work using a protocol called
NPAPI, which has been deprecated in most recent
browsers. Today, the only real option to run a web
application is to get pure HTML5 into the browser
— not easy for most desktop developers given
the new set of styling, scripting, and markup
languages they have to learn.

There are many benefits of moving applications to the web, but
some of the most challenging software projects have always
been application migrations. What do successful migration
projects look like? How do you eliminate a desktop system
that has reliably run a part of the business for years, stay in
budget with a migration, and delight users with a new browser
application all at once?

AVOID THESE COMMON PITFALLS
#1: OVERESTIMATING TECHNICAL SKILLS
Overestimating technical skills can lead to both delays in producing
code and increased defects, since developers do a poorer job of
predicting side-effects and remembering new conventions.

Skills are one of the trickiest things to estimate correctly. The
DevOps teams maintaining the current applications will be

proficient in the current set of technologies, but often forget the
years of effort that went into acquiring this proficiency. Coding
conventions, naming conventions, namespace organization,
software architecture, and testing approaches are just some
of the choices that require more than casual experience to
establish. However, most will be needed from the very start of
any serious developments of the new software.

The problem is illustrated in the four stages of competence
model: unless the migration can happen in a way that leverages
developer skills, transition for most will be from unconscious
competence in the old to unconscious incompetence in the new.
This black hole of unconsciousness is a terrible starting point
for rational planning and realistic effort estimation of a complex
technical exercise.

#2: OVERRELIANCE ON USERS FOR REQUIREMENTS
Relying on users for specifications can result in surprises, especially
towards the end of the project when acceptance starts, since many
features are invisible to them.

Users typically have many years of experience using the
application but may not have comprehensive specifications on
all features that exist, those that exist and work, those that
work and are still used, and those that are used and used only
in specific conditions.

Application migration initiatives often start with lacking or
outdated documentation artifacts. For large applications it is
also likely that there is no one single person in the organization
who knows every feature of the application, but that many
people have a small piece of the puzzle. In these cases,
requirements can only be elicited through meetings and the
occasional groupthink.

Be conservative when estimating
developer skills and user
knowledge

Establish a common
understanding between IT and
users on the modernization drivers
and their priorities.

Keep business engaged and
preserve momentum with
incremental improvements.

Look for opportunities to reuse
the tested, working code in
production.

Invest adequately in
understanding the existing
codebase

01

02

03

04

05

Q U I C K V I E W

http://DZone.com/guides
http://dzone.com/guides
https://en.wikipedia.org/wiki/Four_stages_of_competence

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

37

#3: RUNNING OUT OF STEAM
Frequent feedback and reinforcement from both users and developers
breathe life into long-running projects.

Modernization efforts are prone to being cancelled midway.
While the first version of the current information system might
have gone into production in one go, business applications
undergo all manner of corrective and adaptive maintenance
as user needs evolve. Repeated in many theories of software
evolution, enterprise applications change — but importantly
also grow — over time. Compounded over multiple years,
legacy applications can grow to include a large number of
features that can make managing testing and acceptance
activities a project in itself.

As long as the new system does not fulfill all of the feature
requirements, users will see they have little choice but to
continue using the system in production. Prolonged periods of
not being able to deliver value to business are lethal to software
projects, and many modernizations die this way.

TIPS ON MAKING THE MIGRATION A SUCCESS
#1: DO APM FIRST
APM helps organizations focus their modernization efforts where
they are needed most.

Application Portfolio Management (APM) is a tool to help
organizations identify which applications they are running
and where the source code is, so it is a useful starting point
for planning a migration anyway. But APM also goes further to
help us analyze the value of the applications in our portfolios
and allows us to plan modernization efforts strategically.
With it we recognize that even if we select a framework as a
strategic technical platform for the future, not all applications
in our organization need to be rewritten to use this framework
with equal urgency, if at all.

APM comes in various flavors, and one of the most widely
known is Gartner’s TIME APM framework. APM frameworks
typically categorize applications according to technical and
business criteria, where an application can score either high
or low on either. Applications that score high on business
criteria (for instance, the application is an enabler of a key
differentiator for the company) and low on technical criteria
(for instance, high risk or cost of ownership) benefit the most
from migration and should be prioritized.

 #2: FIND A WAY TO REUSE AT LEAST SOME PARTS OF THE
EXISTING DESKTOP JAVA
In migration, the shortest and most agile path is reuse.

An easy way to convince a business that a new application is
ready to be accepted is if the old and new applications, with
identical data, can execute identical business processes to yield
identical results. This is much easier when data structures and
services of the production and modernized systems correspond
or can at least be matched using a simple conversion.

Another reason why artifact reuse is worthwhile is that
migration projects of large applications can easily take over

a year to complete. In that time users will still expect new
features to be implemented in the existing systems, and
other updates may be required for regulatory compliance or
to fix critical defects. In this dynamic setup, we want to make
sure that things we change in the production system can be
demonstrated to also work as intended in the new system.
The more that production business logic, services, interfaces,
and data structures can be leveraged in the new modernized
version, the easier this synchronization becomes.

 #3: FIND AN INCREMENTAL APPROACH THAT WORKS FOR
YOUR ORGANIZATION
Lower risk and the perception of risk by limiting scope.

It’s likely that the business has a long list of wishes, and that
developers have a far-reaching plan to deploy a future-proof IT
architecture. When considering larger business applications, it is
unlikely that an attempt to migrate big-bang style all code, while
fulfilling all business wishes and all IT wishes, will succeed.

Migration projects don’t happen for their own sake. For IT and
the business to agree on an incremental modernization approach
that will succeed, it is useful to understand which factors are
actually relevant for driving the modernization and where the
emphasis lies. Commonly there will be a combination of internal
drivers (newer, better supported technology) and external ones
(business agility and user freedom).

Following this exercise, there are different incremental
approaches that could be considered:

• Modernize first the back-end, then the front-end;

• Fully modernize and replace one module or view at a time;

• Perform first a technical migration and then a
modernization;

• Embed mini browser components inside the desktop
application to make a gradual shift to web technology
possible;

• Create an abstraction layer for the UI framework. This is
often more expensive than doing a complete UI layer re-
write, but allows running and developing the legacy version
during the migration phase.

CONCLUSION
Migration projects are daunting, especially when applications
are large. Companies used to typical software maintenance
scenarios are not used to scoping and executing these kinds of
projects and many fail. APM, the appropriate reuse of existing
code, and incremental approaches, improve the chances of
success significantly. Getting help from software companies with
experience in migrations is always a good idea if migrations are
unprecedented for the organizations taking the step.

BEN WILSON is a senior software professional with over
ten years’ specialized experience automating the modernization
of large mission-critical enterprise applications, with a focus
on UI modernization. Ben has worked on numerous projects in
the banking, telecoms, government, automotive, and aerospace
sectors, and currently works at Vaadin as a senior consultant.

http://DZone.com/guides
http://www.cs.toronto.edu/~sme/CSC340F/slides/20-evolving.pdf
http://www.cs.toronto.edu/~sme/CSC340F/slides/20-evolving.pdf
https://www.gartner.com/doc/1115314/application-portfolio-triage-time-apm

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

38

SPONSORED OP IN ION

http://DZone.com/guides
http://dzone.com/guides
http://www.lagomframework.com

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE’S 2016 GUIDE TO MODERN JAVA

39

Individual microservices are comparatively easy to design
and implement; however, learning from Carl Hewitt, just one
microservice is no microservice at all—they come in systems.

Like humans, microservices-based systems act autonomously
and therefore need to communicate and collaborate with
others to solve problems—and as with humans, it is in
collaboration that both the most interesting opportunities
and challenging problems arise.

The challenge of building and deploying a microservices-
based architecture boils down to all the surrounding
requirements needed to make a production deployment
successful. For example:

• Service discovery
• Coordination
• Security
• Replication

Lagom Framework is a comprehensive and prescriptive
microservices platform that does the heavy lifting for
distributed systems, and offers essential services and
patterns built on a solid foundation of the Reactive principles.

Built using technologies proven in production by some of the
most admired brands in the world, Lagom is the culmination
of years of enterprise usage and community contributions to
Akka and Play Framework. Going far beyond the developer
workstation, Lagom combines a familiar, highly iterative code
environment using your existing IDE, DI and build tools, with
additional features like service orchestration, monitoring,
and advanced self-healing to support resilient, scalable
production deployments.

With Lagom, the Java community may have

a powerful new tool in its arsenal for creating,

managing, and scaling microservices to meet

the rigorous demands of today’s applications.

-KIRAN “CK” OLIVER, NEWSTACK.IO

“Java finally gets microservices tools.” -Infoworld.com

BLOG lagomframework.com/blog WEBSITE lagomframework.com TWITTER @lagom

Lagom Framework By Lightbend

CASE STUDY
Hootsuite is the world's most widely used social media platform

with more than 10 million users, and 744 of the Fortune

1000. Amidst incredible growth, Hootsuite was challenged by

diminishing returns of engineering pouring time into scaling

their legacy PHP and MySQL stack, which was suffering from

performance and scalability issues. Hootsuite decomposed their

legacy monolith into microservices with Lightbend technologies,

creating a faster and leaner platform with asynchronous,

message-driven communication among clusters. Hootsuite’s new

system handles orders of magnitude more requests per second

than the previous stack, and is so resource efficient that they were

able to reduce Amazon Web Services infrastructure costs by 80%.

• Walmart

• Samsung

• Hootsuite

• UniCredit Group

• Zalando

• iHeart

STRENGTHS

• Powered by proven tools: Play Framework, Akka
Streams, Akka Cluster, and Akka Persistence.

• Instantly visible code updates, with support for
Maven and existing dev tools.

• Message-driven and asynchronous, with
supervision and streaming capabilities.

• Persistence made simple, with native event-
sourcing/CQRS for data management.

• Deploy to prod with a single command, including
service discovery and self-healing.

CATEGORY
Microservices
Framework

NEW RELEASES
Multiple times
per year

OPEN SOURCE
Yes

NOTABLE CUSTOMERS

One Microservice
Is No Microservice.
They Come in Systems.

WRITTEN BY MARKUS EISELE
DEVELOPER ADVOCATE, LIGHTBEND, INC.

PARTNER SPOTLIGHT

SPONSORED OP IN ION

• Data consistency
• Deployment orchestration
• Resilience (i.e. failover)
• Integration with other systems

http://NewStack.io
http://-Infoworld.com
http://lagomframework.com/blog
http://lagomframework.com/blog
http://www.lagomframework.com
http://www.twitter.com/lagom
http://www.twitter.com/lagom

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

40

Data structures like hash tables and hash
maps are essential for storing arbitrary objects
and efficiently retrieving them. The object,
or value, is stored in the table and associated
with a key. Using the key, one can later retrieve
the associated object. However, there are
situations where, in addition to mapping keys
to objects, one might also want to retrieve the
key associated with a given object. This problem
has been encountered time and again, and the
solution is much trickier.

For example, we must efficiently keep track of the underlying
remote objects corresponding to proxies when developing our
JNBridge product. We do that by maintaining a table mapping
unique keys to objects. This is straightforward to implement, using
hash tables and maps available in many libraries. We also must be
able to obtain an object’s unique key given the object — provided
it has one. (Yes, some libraries now offer bimaps, which purport to
implement this functionality, but these didn’t exist when we first
needed this, so we had to implement it on our own. In addition,
these bimaps don’t provide everything we need. We’ll discuss
these issues later.)

Following are some helpful hints in implementing these forward/
reverse map pairs.

HASHING ALGORITHM REQUIREMENTS
Let’s first review the requirements that must be fulfilled by
whatever hashing algorithm is used, and how it relates to
equality. While a hashing method can be implemented by the
developer, it is expected to obey a contract. The contract in
general cannot be verified by the underlying platform, but if it is
not obeyed, data structures that rely on the hashing method may
not behave properly.

In Java, for example, the contract of the hashCode() method is:

 • For any given object, the hashCode() method must return the
same value throughout execution of the application (assuming
that information used by the object’s equality test also
remains unchanged).

 • If two objects are equal according to the objects’ equality test,
then they must both have the same hash code.

Connected with the hashCode() method is an equality test, which
should implement an equivalence relation; that is, it must be
reflexive, symmetric, and transitive. It should also be consistent:
It should yield the same result throughout execution of the
application (again, assuming the information used by the equality
test doesn’t change).

In addition to these contracts, Java provides guidelines for the use
and implementation of hash codes, although these are not binding
and may just be advisory. While guidelines for some non-Java
frameworks suggest that hash codes for mutable objects should only
be based on aspects of the objects that are immutable — so that
the hash codes never change — in Java culture, the guidelines for
implementing hashCode() are less strict, and it is quite likely that an
object’s hash code can change. For example, the hash code of a hash
table object can change as items are added and removed. However,
one informal guideline suggests that one should be careful using
an object as a key in a hash-based collection when its hash code
can change. As you’ll see, the potential mutability of hash codes is a
crucial consideration when implementing reverse maps.

If an object’s hash code changes while it’s stored inside a data
structure that depends on the hash code (for example, if it’s used as a
key in a hash table), then the object may never be retrieved, as it will
be placed in one hash bucket as it’s added to the hash table, but looked
for later in another hash bucket when the hash code has changed.

IMPLEMENTATION ASSUMPTIONS
So, what does this mean when forward/reverse map pairs must be
implemented? Let’s start with some assumptions:

Mutability can affect the
behavior of hash tables.

Misunderstanding
mutability can cause
objects stored in a
hash table to become
irretrievable and
essentially disappear.

It is possible to implement
hash tables where any
object — no matter how
complex or mutable — can
be used as a key.

01

02

03

Q U I C K V I E WHASH TABLES, MUTABILITY, AND IDENTITY:

How to Implement
a Bi-Directional
Hash Table in Java
BY WAYNE CITRIN
CTO AT JNBRIDGE

http://DZone.com/guides
http://dzone.com/guides
http://jnbridge.com/?utm_campaign=dz16&utm_source=jg16&utm_medium=link

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

41

 • The forward map maps from keys to values. The keys are a
particular type that one chooses in advance, and values
can be any object. The value objects can be implemented
by anyone, and their hash codes and equality tests may not
conform to implementation guidelines — they may not even
obey the required contract.

 • The reverse map maps from the user-provided values back
to keys.

 • For simplicity, the user-defined object cannot be null.
(Although, if necessary, this can be accommodated, too,
through some additional tests.)

 • Keys and user-defined objects should be unique; that is, they
should not be used in the tables more than once.

Since the key is under our control, a developer can use objects of
any immutable class (for example, Integer or Long), and avoid the
possibility that the key’s hash code changes. For the forward map,
a simple hash table or hash map can be used.

The reverse map is more of a problem. As discussed above,
one cannot rely on the hash code method associated with the
user-provided objects that are used as keys. While some classes,
particularly Java base classes, may have well-behaved hash
code functions, other Java classes might not. Therefore, it’s
unsafe to trust that user-defined classes will obey these rules,
or that the programmers that defined them were even aware of
these guidelines.

FIND AN IMMUTABLE ATTRIBUTE
Therefore, one must come up with an attribute that every object
has, that is guaranteed to never change, even when the contents
of the object do change. The attribute’s value should also be well-
distributed, and therefore suitable for use in hashing. One such
immutable attribute is the object’s identity. When a hash table, for
example, has items added to it, it’s still the same hash table, even
though the computed hash code might change. Fortunately, Java
provides a hashing method based on object identity:
java.lang.System.identityHashCode(), which is guaranteed
to return the same value on a given object, even if its state
has changed, since it is guaranteed to use java.lang.Object’s
hashCode() method, which is identity-based, even if the target
class overrides that method.

Java actually provides a class java.util.IdentityHashMap,
which uses identity hashing. The developer could have used
IdentityHashMap for his reverse hash table, except that, unlike
the Java Hashtable, IdentityHashMap is not synchronized, and
hash tables must be thread-safe.

CREATING IDENTITY-BASED HASHING
In order to write one’s own identity-based hash tables, the
developer must first ensure that, no matter what object is used as
the key, identity-based hashing is always used. Unfortunately, the
hash methods for these classes can’t be overridden, since they’re
out of the developer’s control. Instead, the key objects must be
wrapped in classes that are in the developer’s control, and where
he can control the way the hash values are computed. In these
wrappers, the hash method simply returns the identity-based
hash code of the wrapped object. In addition, since identity-
based hashing is being used, one must also use reference-based
equality, so that two objects are equal if — and only if — they’re
the same object, rather than simply equivalent objects. In Java, a
developer must use the "==" operator, which is guaranteed to be
reference equality, rather than equals(), which can be, and often
is, redefined by the developer.

In Java, our identity-based wrappers look like this:

final class IdentityWrapper
{
 private Object theObject;

 public IdentityWrapper(Object wrappedObject)
 {
 theObject = wrappedObject;
 }

 public boolean equals(Object obj2)
 {
 if (obj2 == null) return false;
 if (!(obj2 instanceof IdentityWrapper)) return false;
 return (theObject == ((IdentityWrapper)obj2).theObject);
 }

 public int hashCode()
 {
 return System.identityHashCode(theObject);
 }
}

Once these wrappers have been defined, the developer has
everything he needs for a reverse hash table that works correctly:

Hashtable ht = new Hashtable();
…
ht.put(new IdentityWrapper(mutableUserDefinedObject), value);
…
mutableUserDefinedObject.modify();
…
Value v = (Value) ht.get(new
IdentityWrapper(mutableUserDefinedObject));
// retrieved v is the same as the value that was initially added.

If the IdentityWrapper classes are not used, the ht.get()
operation is not guaranteed to retrieve the proper value.

At this point, the developer has all that’s needed to implement bi-
directional hash tables.

THE TROUBLE WITH OTHER LIBRARIES
What about other existing libraries? In particular, what about
Google’s Guava library, which implements a HashBiMap class, as
well as other classes implementing a BiMap interface? Why not
use that, and avoid reinventing the wheel? Unfortunately, while
HashBiMap implements a forward/reverse hashmap pair and
makes sure that the two are always in sync, it does not use identity
hashing, and will not work properly if one of the keys or values is
a mutable object. This can be seen by examining the HashBiMap
source code. So, while HashBiMap solves part of the problem of
implementing forward/reverse hashmap pairs, it does not address
another, arguably more difficult part: the problem of storing
mutable objects. The approach described here solves that issue.

IN CONCLUSION
This piece discusses an important, but unfortunately somewhat
obscure, issue in the implementation of hash tables: the way in
which mutability can affect the behavior of hash tables, and the
way in which misunderstanding the issue can cause objects stored
in a hash table to become irretrievable and essentially disappear.
When these issues are understood, it becomes possible to
implement hash tables where any object, no matter how complex
or mutable, can be used as a key, and where bi-directional hash
tables can be easily created.

WAYNE CITRIN is the CTO of JNBridge, the leading provider
of interoperability tools that connect Java and .NET that he
cofounded 15 years ago. Previously, Wayne was a leading researcher
in programming languages and compilers and was on the Computer
Engineering faculty at the University of Colorado, Boulder. He has a
PhD from the University of California, Berkeley in Computer Science.

http://DZone.com/guides
http://ht.put
http://jnbridge.com/?utm_campaign=dz16&utm_source=jg16&utm_medium=link

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

42

Executive Insights
on the State of the
Java Ecosystem

BY TOM SMITH
RESEARCH ANALYST AT DZONE

To gather insights on the state of the Java ecosystem today,

we spoke with 14 executives who are familiar with the Java

ecosystem. Here’s who we talked to:

JOEL DEPERNET, E.V.P. Global Research and Development, Axway

SACHA LABOUREY, CEO and Founder, CloudBees

RICK REICH, CEO, Development Heroes

ASAD ALI, Principal Software Developer, Dynatrace

LISA HAMAKER, Marketing Manager, Dynatrace

DAVID PARK, V.P. of Products, HackerRank

CHARLES KENDRICK, Founder and CTO, Isomorphic Software

WAYNE CITRIN, CTO, JNBridge

RAYMOND AUGÉ, Senior Software Architect, Liferay

LAURA KASSOVIC, Founder, MbientLab

CAMERON WILBY, Co-Founder, Origin Code Academy

JAMES FAULKNER, Technology Evangelist, Red Hat

PAUL TROWE, CEO, Replay Games

CALVIN FRENCH-OWEN, CTO and Co-Founder, Segment

KEY FINDINGS
 01 The most important components of the Java ecosystem

are the JVM, its versatility, its breadth and depth as a

result of its age, and the Open Source movement driving

the availability of free online content for all developers.

The JVM platform runs on all machines and the cloud. The

single most important part of the Java ecosystem is the

vast amount of free online content (answered questions,

tutorials, etc.) and free libraries. It is rare to encounter a

development task in Java where you cannot find at least a

partial solution, or hints at a solution, within a few minutes

of searching.

 02 The single biggest event in the past year was Oracle’s

lawsuit against Google. The entire industry was waiting to

see whether the Java platform, and software development

in general, was going to change radically to accommodate

the fact that licenses would be required just to create a

compatible implementation of an API. The Java platform

will be forever diminished by Oracle’s stewardship, since

they have shown themselves to be fundamentally hostile

to Open Source by filing the lawsuit in the first place, while

vendors like Red Hat and the Open Source community have

been pushing Java more than Oracle.

 03 The impact of Java 8 so far is that Lambda expressions

make it easier for developers to build applications. It’s

easier to write cleaner code. It’s more maintainable with

less repetition. Oracle has finally updated the language

features to match those of other modern languages. The

uptake of Java 8 depends on enterprises’ desire and need

to do so. Adoption can take years, which can be very

frustrating. While there’s been a lot of attention on security

fixes, enterprises are slow to adopt due to lack of support.

There’s not a lot of buy-in to get to 8, even though it has

better security and garbage collection.

Java continues to be an
important element of
enterprise IT given the
breadth, depth, longevity, and
diversity of the ecosystem.

The Open Source community
is driving more innovation
and development of the Java
ecosystem than Oracle.

Java will continue to be
prominent in enterprise
development in the near
term; however, it will likely
be replaced by more specific
languages in the long term.

01

02

03

Q U I C K V I E W

http://DZone.com/guides
http://dzone.com/guides
https://www.axway.com/en
http://www.cloudbees.com/
http://www.developmentheroes.com/
https://www.dynatrace.com/
https://www.dynatrace.com/
https://www.hackerrank.com/
http://www.smartclient.com/
http://jnbridge.com/
https://www.liferay.com/
https://mbientlab.com/
http://origincodeacademy.com/
https://www.redhat.com/en
https://www.replaygamesinc.com/
http://www.segment.com/

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

43

 04 There’s little to no anticipation for Java 9 at this point,

considering the slow adoption of Java 8. Vendors won’t

use Java 9 until they see some uptake by their enterprise

clients. While Java 9 offers modularity, some people

expressed fear and confusion over how the modularity

is being handled. Is there misrepresentation of what will

be possible? It’s not playing out as Oracle would like due

to lack of uptake. A lot of software is already offering

modularity. Doing this in a closed environment makes it

difficult to close the gap.

 05 Perspectives on the Java Community Process (JCP), and

its future, are depressed. JCP changes have been difficult

given the situation with Oracle and their desire to milk Java

like an annuity without letting others have too much freedom

with the product. There’s a perception that Java 8 and 9 will

lead to a more closed ecosystem. This perception is driven

by the fear of vendor lock-in by what’s currently going on

with cloud platforms. Some people see the JCP stagnating

and becoming non-existent. The future of the JCP lies with

stewards like the Apache Software Foundation, the Eclipse

Foundation, and the OSGi Alliance. The Java community is

strong and will keep the language viable for a while; however,

Oracle needs to open it up and let others contribute if Java is

going to have a robust future.

 06 The greatest value seen in Java is its diversity: it’s

scalable, it’s portable, it works on many machines, and it

works on many different operating systems. It’s not a one

trick pony and can’t be compared to other languages. It

makes the lives of companies much better. Java is one of the

top three languages in the world for quality, reliability, ability

to deliver on demand, toolchains, and developer ecosystem.

It’s the only language that can make this claim. It’s still the

most powerful and comprehensive language. Lastly, unlike

other languages, there are plenty of developers.

 07 The most common issue affecting the Java ecosystem

is Oracle. If Oracle would go to an Open Source model, Java

would grow faster if everyone took the code and improved it,

rather than waiting for Oracle. Oracle is a dubious steward and

Java is inappropriate for a number of tasks that it’s being used

for, and it will ultimately be replaced for specific needs. There’s

a lack of visibility of the leadership of Java within Oracle.

Oracle owns Java but isn’t stepping up to push Java forward.

There’s a lack of innovation within Oracle and therefore a slow

uptake of the newer versions of Java by enterprises.

 08 The future of Java continues to be strong in the near

term but diminishing over the long term (10+ years). Even

with all of the new languages being developed, Java’s not

going anywhere for the next five to 10 years since it’s the

preferred language of enterprises because it scales, as

well as saving them time and money. It will remain the

predominant language in coding for quite a while since a

lot of enterprises have a lot of equity invested in Java. There

will be a slow loss of relevance over time until ultimately

it’s seen as a specialized skill needed only by a few, similar

to the way mainframe languages are currently seen. There

will be fewer developers using Java in the areas where Java

has core strengths and Java will ultimately be phased out

in favor of more appropriate languages and tools.

 09 When we asked executives what developers need to

keep in mind when working with Java, we received a variety

of opinions. One set revolved around the philosophy that

companies are generally looking for the best programmers

and engineers with less concern for a particular language.

As such, developers should focus on developing their coding

skills and knowing the fundamentals of computer science,

as well as its real-world applications. Another group feels

that having full knowledge of Java is a good basic skill to

have, and developers should get to know the common Java

libraries and tools. Learn to appreciate the tools that are

available and leverage them to the max. Always be learning

while having a primary skill to ensure you have stable

employment. Look for a secondary skill that will provide you

with “developer insurance.”

 10 When asked about additional considerations with

regard to the Java ecosystem, executives raised several

questions and made some important observations:

• What could Java be doing better?

• There will be more opportunities with mobile. Will Java
keep up the pace?

• As more and more infrastructure moves to the cloud, or
cloud-like provisioning, will these services run on Java
or JVMs at all?

• Java is notorious for all the zero-day exploits and is only
second to Adobe Flash in the number of vulnerabilities
and security patches.

• Is Oracle going to make Java programming more
flexible?

• Why aren’t more companies making contributions to
the Java community?

TOM SMITH is a Research Analyst at DZone who excels
at gathering insights from analytics—both quantitative and
qualitative—to drive business results. His passion is sharing
information of value to help people succeed. In his spare time, you
can find him either eating at Chipotle or working out at the gym.

http://DZone.com/guides

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

44

When your business runs on Java, count on AppDynamics to give you the complete visibility you need to be
sure they are delivering the performance and business results you need — no matter how complex,
distributed or asynchronous your environment, live ‘in production’ or during development.

See every line of code. Get a complete view of your environment with deep code diagnostics and
auto-discovery. Understand performance trends with dynamic baselining. And drastically reduce time
to root cause and remediation.

See why the world’s largest Java deployments rely on the AppDynamics Application Intelligence
Platform. Sign up for a FREE trial today at www.appdynamics.com/java.

There’s nothing about Java
that AppDynamics doesn’t see.
AppDynamics gives you the visibility to take command
of your Java application’s performance, no matter
how complicated or distributed your environment is.

Device

Events

Health Rule Violations Started 2
 Overall Application Performance 1
AppDynamics Internal Diagnostics 1

Business Transaction Health

 1 critical, 0 warning, 36 normal

Server Health

 0 critical, 5 warning, 1 normal

Transaction Scorecard

Normal 83.1% 963

Slow 0.3% 4

Very Slow 1.3% 15

Stall 0.2% 2

Errors 15.1% 175

IIS Internet
Information
Services

Shipments DB

Java

Java

Java

Java

Java

Start your Free Trial

https://www.appdynamics.com/java/
https://www.appdynamics.com/java/

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE’S 2016 GUIDE TO MODERN JAVA

45

When your business runs on Java, count on AppDynamics to give you the complete visibility you need to be
sure they are delivering the performance and business results you need — no matter how complex,
distributed or asynchronous your environment, live ‘in production’ or during development.

See every line of code. Get a complete view of your environment with deep code diagnostics and
auto-discovery. Understand performance trends with dynamic baselining. And drastically reduce time
to root cause and remediation.

See why the world’s largest Java deployments rely on the AppDynamics Application Intelligence
Platform. Sign up for a FREE trial today at www.appdynamics.com/java.

There’s nothing about Java
that AppDynamics doesn’t see.
AppDynamics gives you the visibility to take command
of your Java application’s performance, no matter
how complicated or distributed your environment is.

Device

Events

Health Rule Violations Started 2
 Overall Application Performance 1
AppDynamics Internal Diagnostics 1

Business Transaction Health

 1 critical, 0 warning, 36 normal

Server Health

 0 critical, 5 warning, 1 normal

Transaction Scorecard

Normal 83.1% 963

Slow 0.3% 4

Very Slow 1.3% 15

Stall 0.2% 2

Errors 15.1% 175

IIS Internet
Information
Services

Shipments DB

Java

Java

Java

Java

Java

Start your Free Trial

If your business runs on apps, Application Intelligence is for you. Real-time insights
into application performance, user experience, and business outcomes.

BLOG blog.appdynamics.com WEBSITE appdynamics.comTWITTER @AppDynamics

Application Intelligence Platform By AppDynamics

CASE STUDY

"AppDynamics has enabled us to move towards data-

driven troubleshooting rather than ‘gut-feels.’ The

solution gives us the application intelligence to know

when things aren’t functioning optimally."

- Nitin Thakur, technical operations manager, Cisco

STRENGTHS

Application Performance Management is a

technology solution that provides end-to-end

business transaction-centric management of the

most complex and distributed applications. Auto-

discovered transactions, dynamic baselining,

code-level diagnostics, and Virtual War Room

collaboration ensure rapid issue identification and

resolution to maintain an ideal user experience.

CATEGORY
Application Performance
Management

NEW RELEASES
Bi-Yearly

OPEN SOURCE
No

NOTABLE CUSTOMERS

• NASDAQ

• Cisco

• eHarmony

• Citrix

• DIRECTV

• Hallmark

In today’s modern computing age, constant

enhancements in software innovations are

driving us closer to an era of software revolution.

Perhaps in the distant future, that may be how

the 21st century is remembered best. Among the

popular software languages out there, however,

Java continues to have the largest industry

footprint, running applications around the globe

producing combined annual revenue in trillions.

That’s why keeping up on the JDK is a high

priority. Despite having a massive API to improve

programming productivity, Java has also grown

due to its high performance yet scalable JVM

runtime, building among the fastest computing

modern applications. As Java’s footprint expands,

JDK innovations continue to impact billions

of lines of code. As AppDynamics continues

to grow, our focus towards supporting Java is

only furthered by our customer use & industry

adoption of the JVM.

What’s Exciting About Java 9 and
Application Performance Monitoring

PARTNER SPOTLIGHT

SPONSORED OP IN ION

WRITTEN BY AAKRIT PRASAD
HEADING CORE & APM PRODUCTS, PRODUCT MANAGEMENT, APPDYNAMICS

http://blog.appdynamics.com
http://blog.appdynamics.com
http://appdynamics.com
http://bit.ly/1SOdjeZ
http://www.tiobe.com/tiobe_index?page=index
http://www.tiobe.com/tiobe_index?page=index
http://blog.appdynamics.com
http://www.twitter.com/appdynamics
http://www.appdynamics.com

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

46

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

Akka Lightbend Java implementation of Actor Model Open Source akka.io

AngularFaces - AngularJS + JSF Open Source angularfaces.com

Ansible Red Hat Deployment automation + configuration management Open Source ansible.com

ANTLR - Parser generator (for creating compilers and related tools) Open Source antlr3.org

AnyPoint Platform MuleSoft Hybrid integration platform Free Trial
mulesoft.com/platform/
enterprise-integration

Apache Ant
Apache Software
Foundation

Build automation (process-agnostic: specify targets + tasks) Open Source ant.apache.org

Apache Camel
Apache Software
Foundation

Java implementation of enteprrise integration patterns Open Source camel.apache.org

Apache Commons
Apache Software
Foundation

Massive Java package collection Open Source
commons.apache.org/
components.html

Apache Commons
DBCP

Apache Software
Foundation

Database connection pooling Open Source
commons.apache.org/proper/
commons-dbcp

Apache Commons
IO

Apache Software
Foundation

Utilities for Java I/O (part of Apache Commons) Open Source
commons.apache.org/proper/
commons-io

Apache CXF
Apache Software
Foundation

Java services framework with JAX-WS and JAX-RS support Open Source cxf.apache.org

Apache DeltaSpike
Apache Software
Foundation

Portable CDI extensions (bean validation, JSF enhancements,
invocation controls, transactions contexts, more)

Open Source deltaspike.apache.org

Apache Ignite
Apache Software
Foundation

In-memory Data Grid Open Source ignite.apache.org

Apache Ivy
Apache Software
Foundation

Dependency management with strong Ant integration) Open Source ant.apache.org/ivy

Apache Kafka
Apache Software
Foundation

Distributed pub-sub message broker Open Source kafka.apache.org

Apache Log4j
Apache Software
Foundation

Logging for Java Open Source logging.apache.org/log4j/2.x

Apache Lucene
Apache Software
Foundation

Search engine in Java Open Source lucene.apache.org/core

Apache Maven
Apache Software
Foundation

Build automation (opinionated, plugin-happy, higher-level build
phases, dependency management/resolution)

Open Source maven.apache.org

Apache Mesos
Apache Software
Foundation

Distributed systems kernel Open Source mesos.apache.org

Java gets even greater when you have the right tools to back you up. This directory contains libraries,

frameworks, IDEs, and more to help you with everything from database connection to release automation,

from code review to application monitoring, from microservice architectures to memory management. Amp

up your Java development with these solutions to make your life easier and your application more powerful.

Solutions Directory

http://DZone.com/guides
http://dzone.com/guides
http://akka.io
http://angularfaces.com
http://ansible.com
http://antlr3.org
https://www.mulesoft.com/platform/enterprise-integration
https://www.mulesoft.com/platform/enterprise-integration
http://ant.apache.org
http://camel.apache.org
http://commons.apache.org/components.html
http://commons.apache.org/components.html
http://commons.apache.org/proper/commons-dbcp/
http://commons.apache.org/proper/commons-dbcp/
http://commons.apache.org/proper/commons-io/
http://commons.apache.org/proper/commons-io/
http://cxf.apache.org
http://deltaspike.apache.org
http://ignite.apache.org
http://ant.apache.org/ivy
http://kafka.apache.org
http://logging.apache.org/log4j/2.x/
http://lucene.apache.org/core
http://maven.apache.org
http://mesos.apache.org

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

47

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

Apache MyFaces
Apache Software
Foundation

JSF + additional UI widgets, extensions, integrations Open Source myfaces.apache.org

Apache OpenNLP
Apache Software
Foundation

Natural language processing machine learning toolkit Open Source opennlp.apache.org

Apache POI
Apache Software
Foundation

Microsoft document processing for Java Open Source poi.apache.org

Apache Shiro
Apache Software
Foundation

Java security framework (authen/author, crypto, session
management)

Open Source shiro.apache.org

Apache Struts
Apache Software
Foundation

Web framework (Servlet + MVC) Open Source struts.apache.org

Apache Tapestry
Apache Software
Foundation

Web framework (pages&components=POJOs, live class
reloading, opinionated, light HttpSessions)

Open Source tapestry.apache.org

Apache Tomcat
Apache Software
Foundation

Servlet container + web server (JSP, EL, Websocket) Open Source tomcat.apache.org

Apache TomEE
Apache Software
Foundation (esp.
Tomitribe)

Apache Tomcat + Java EE features (CDI, EJB, JPA, JSF, JSP, more) Open Source tomee.apache.org

Apache Wicket
Apache Software
Foundation

Simple web app framework (pure Java + HTML with Ajax output) Open Source wicket.apache.org

Apache Xerces2
Apache Software
Foundation

XML parser for Java Open Source xerces.apache.org/xerces2-j

AppDynamics AppDynamics * APM with Java agent Free Tier Available appdynamics.com

Artifactory JFrog Binary/artifact repository manager Open Source jfrog.com/artifactory

ASM OW2 Consortium Java bytecode manipulation and analysis framework Open Source asm.ow2.org

AssertJ - Java assertion framework (for verification and debugging) Open Source joel-costigliola.github.io/assertj

AutoPilot Nastel APM Freemium nastel.com

AWS ECS
Amazon Web
Services

Elastic container service (with Docker support) Free Tier Available aws.amazon.com/ecs

BigMemory Max Terracotta In-memory data grid with Ehcache (JCache implementation) 90 Days
terracotta.org/products/
bigmemory

Bintray JFrog Package hosting and distribution infrastructure Open Source bintray.com

Black Duck Platform
Black Duck
Software

Security and open-source scanning and management (with
container support)

Free Security Scan blackducksoftware.com

BlueMix IBM PaaS with extensive Java support Free Tier Available ibm.com/bluemix

BouncyCastle - Java and C# cryptography libraries Open Source bouncycastle.org

CA Application
Monitoring CA Technologies * APM with Java agent 30 Days ca.com

Cask Cask Data and application integration platform Open Source cask.co/

Catchpoint Catchpoint APM with Java agent Free Trial catchpoint.com

Censum jClarity GC log analysis 7 Days jclarity.com

CGLIB
Raphael
Winterhalter

Byte code generation library Open Source github.com/cglib/cglib

CheckStyle - Automated check against Java coding standards Open Source checkstyle.sourceforge.net

http://DZone.com/guides
http://myfaces.apache.org
http://opennlp.apache.org
http://poi.apache.org
http://shiro.apache.org
http://struts.apache.org
http://tapestry.apache.org
http://tomcat.apache.org
http://tomee.apache.org
http://wicket.apache.org
 http://xerces.apache.org/xerces2-j/
http://appdynamics.com
http://jfrog.com/artifactory
http://asm.ow2.org
http://joel-costigliola.github.io/assertj
http://nastel.com
http://aws.amazon.com/ecs
http://terracotta.org/products/bigmemory
http://terracotta.org/products/bigmemory
http://bintray.com
http://blackducksoftware.com
http://ibm.com/bluemix
http://bouncycastle.org
http://ca.com
http://cask.co
http://catchpoint.com
http://jclarity.com
http://github.com/cglib/cglib
http://checkstyle.sourceforge.net
http://xerces.apache.org/xerces2-j

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

48

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

Chef Chef Software Infrastructure automation / configuration management Open Source chef.io/chef/

Cloudbees Jenkins
Platform Cloudbees

CI server + verified plugins, build server provisioning, pipeline
monitoring, build analytics

2 Weeks cloudbees.com

Clover Atlassian Code coverage analysis tool 30 days
atlassian.com/software/clover/
pricing

Codenvy IDE Codenvy SaaS IDE with dev workspace isolation Free Tier Available codenvy.com

Couchbase Couchbase Document-oriented DBMS Open Source couchbase.com

Coverity Synopsys Security and open-source scanning (static, runtime, fuzz)

C3P0 - JDBC connection and statement pooling Open Source mchange.com/projects/c3p0

CUBA Platform Haulmont Java rapid enterprise app development framework Free Tier Available cuba-platform.com

Cucumber Cucumber BDD framework with Java version - cucumber.io

Dagger Square Dependency injector for Android and Java Open Source square.github.io/dagger

DataDirect Progress Software JDBC connectors (many data sources) Free Trial progress.com/jdbc

Derby
Apache Software
Foundation

Java SQL database engine Open Source db.apache.org/derby

Docker Docker Containerization platform Open Source docker.com

Dolphin Platform Canoo Presentation model framework (multiple views for same MVC group) Open Source dolphin-platform.io

DripStat Chronon Systems Java+Scala APM with many framework integrations Free Tier Available dripstat.com

Drools Red Hat Business rules management system Open Source drools.org

Dropwizard - REST web services framework (opinionated, rapid spinup) Open Source dropwizard.io

Dynatrace
Application
Monitoring

Dynatrace APM 30 Days dynatrace.com

Dynatrace SaaS and
Managed

Dynatrace
(formerly Ruxit)

APM 30 Days
dynatrace.com/platform/
offerings/ruxit

EasyMock - Unit testing framework (mocks Java objects) Open Source easymock.org

Eclipse Eclipse Foundation IDE (plugin-happy) Open Source eclipse.org

Eclipse Che Eclipse Foundation IDE (workspace isolation, cloud hosting) Open Source eclipse.org/che

Eclipse Collections Eclipse Foundation Java Collections framework Open Source eclipse.org/collections

EclipseLink Eclipse Foundation JPA+MOXx(JAXB) implementation Open Source eclipse.org/eclipselink

EHCache Terracotta JCache implementation Open Source ehcache.org

ElasticSearch Elastic Distributed search and analytics engine Open Source elastic.co

ElectricFlow Electric Cloud Release automation
Free Version
Available

electric-cloud.com

Elide - JSON<-JPA web service library Open Source elide.io

http://DZone.com/guides
http://dzone.com/guides
http://chef.io/chef
http://cloudbees.com
http://atlassian.com/software/clover/pricing
http://atlassian.com/software/clover/pricing
http://codenvy.com
http://couchbase.com
http://mchange.com/projects/c3p0/
http://cuba-platform.com
http://cucumber.io
http://square.github.io/dagger
http://progress.com/jdbc
http://db.apache.org/derby
http://docker.com
http://dolphin-platform.io
http://dripstat.com
http://drools.org
http://dropwizard.io
http://dynatrace.com
http://dynatrace.com/platform/offerings/ruxit
http://dynatrace.com/platform/offerings/ruxit
http://easymock.org
http://eclipse.org
http://eclipse.org/che
http://eclipse.org/collections
http://eclipse.org/eclipselink
http://ehcache.org
http://elastic.co
http://electric-cloud.com
http://elide.io

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

49

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

Finagle Twitter RPC for high-concurrency JVM servers (Java+Scala APIs, uses Futures)

Finatra Twitter Scala HTTP services built on TwitterServer and Finagle Open Source twitter.github.io/finatra

FlexJSON - JSON serialization Open Source flexjson.sourceforge.net

FreeMarker
Apache Software
Foundation

Server-side Java web templating (static+dynamic) Open Source freemarker.org

FusionReactor Integral JVM APM with production debugging and crash protection Free Trial fusion-reactor.com

GemFire Pivotal Distributed in-memory data grid (using Apache Geode) Open Source
pivotal.io/big-data/pivotal-
gemfire

GlassFish Oracle Java application server Open Source glassfish.java.net

Go ThoughtWorks Continuous delivery server Open Source go.cd

Google Web Toolkit
(GWT) Google Java->Ajax Open Source gwtproject.org

Gradle Gradle Build automation (Groovy-based scripting of task DAGs) Open Source gradle.org

Grails - Groovy web framework (like Ruby on Rails) Open Source grails.org

GridGain GridGain Systems
In-memory data grid (Apache Ignite + enterprise management,
security, monitoring)

Free Tier Available gridgain.com

GSON Google JSON serialization Open Source github.com/google/gson

Guava Google
Java libraries from Google (collections, caching, concurrency,
annotations, I/O, more)

Open Source github.com/google/guava

Guice Google Dependency injection framework Open Source github.com/google/guice

H2 - Java SQL database engine Open Source h2database.com

Hazelcast Enterprise
Platform Hazelcast * Distibuted in-memory data grid (with JCache implementation) 30 Days hazelcast.com

Heroku Platform Salesforce * PaaS Free Tier Available heroku.com

Hibernate ORM - Java ORM with JPA and native APIs Open Source hibernate.org/orm

Hibernate Search -
Full-text search for objects (indexes domain model with
annotations, returns objects from free text queries)

Open Source hibernate.org/search

Hoplon - ClojureScript web framework Open Source hoplon.io

HyperForm
HyperGrid
(formerly DCHQ)

Container composition platform Free Tier Available dchq.io

Hystrix Netflix Latency and fault tolerance library Open Source github.com/Netflix/Hystrix

IceFaces IceSoft JSF framework Open Source icesoft.org

Illuminate jClarity Java-focused APM with machine learning & autosummarization 14 Days jclarity.com

Immunio Immunio Runtime application self-protection with Java support 30 days immun.io

Infinispan Red Hat Distributed in-memory key/value store (Java embeddable) Open Source infinispan.org

http://DZone.com/guides
http://twitter.github.io/finatra
http://flexjson.sourceforge.net
http://freemarker.org
http://fusion-reactor.com
https://pivotal.io/big-data/pivotal-gemfire
http://glassfish.java.net
http://go.cd
http://gwtproject.org
http://gradle.org
http://grails.org
http://gridgain.com
http://github.com/google/gson
http://github.com/google/guava
http://github.com/google/guice
http://h2database.com
http://hazelcast.com
http://heroku.com
http://hibernate.org/orm
http://hibernate.org/search
http://hoplon.io
http://dchq.io
http://github.com/Netflix/Hystrix
http://icesoft.org
http://jclarity.com
http://immun.io
http://infinispan.org

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

50

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

Informatica Informatica Data integration and management - informatica.com

IntelliJ IDEA JetBrains * IDE Free Tier Available jetbrains.com/idea

iText iText Group PDF manipulation from Java Open Source itextpdf.com

ItsNat Jose Maria Arranz
Web framework (Swing-inspired, Single Page Interface (multiple
states=appPages) concept)

Open Source itsnat.sourceforge.net

Jackson - JSON processing Open Source
wiki.fasterxml.com/
JacksonHome

Jahia Platform
Jahia Solutions
Group

Enterprise CMS/portal (Jackrabbit compliant)
open-source
version available

jahia.com/home.html

Janino - Lightweight Java compiler Open Source janino-compiler.github.io/janino

JavaFX Oracle Java GUI library Open Source
docs.oracle.com/javase/8/
javase-clienttechnologies.htm

JavaServer Faces Oracle Java Web Framework Open Source oracle.com

JAX-RS Oracle REST spec for Java Open Source jax-rs-spec.java.net

JBoss Data Grid Red Hat In-memory distributed NoSQL data store Free Tier Available redhat.com

JBoss EAP Red Hat Java EE 7 platform Open Source
developers.redhat.com/
products/eap/overviewith

JD - Java decompiler Open Source jd.benow.ca

jDBI - SQL library for Java Open Source jdbi.org

JDeveloper Oracle IDE Freeware oracle.com

JDOM - XMLÊin Java (with DOM and SAX integration) Open Source jdom.org

Jelastic Jelastic Multi-cloud PaaS (with Java support) Free Tiers Available jelastic.com

Jenkins Cloudbees CI server Open Source jenkins.io

Jersey Oracle RESTful web services in Java (JAX-RS with enhancements) Open Source jersey.java.net

Jetty Eclipse Foundation Servlet engine + http server (with non-http protocols) Open Source eclipse.org/jetty

JFreeChart
Object Refinery
Limited

Java charting library Open Source jfree.org/jfreechart

JGroups Red Hat Java multicast messaging library Open Source jgroups.org

jHiccup Azul Systems Show performance issues caused by JVM (as opposed to app code) Open Source azulsystems.com

JMS Adapters for
.NET or BizTalk by
JNBridge

JNBridge JMS Integration with .NET or BizTalk 30 Days
jnbridge.com/software/jms-
adapter-for-biztalk/overview

JNBridgePro JNBridge Java and .NET interoperability 30 Days
jnbridge.com/software/
jnbridgepro/overview

Joda - Date&time library for Java Open Source joda.org/joda-time

jOOQ Data Geekery Non-ORM SQL in Java Open Source jooq.org

jOOL Data Geekery
Extension of Java 8 lambda support (tuples, more parameters,
sequential and ordered streams)

Open Source github.com/jOOQ/jOOL

http://DZone.com/guides
http://dzone.com/guides
http://informatica.com
http://jetbrains.com/idea
http://itextpdf.com
http://itsnat.sourceforge.net
http://wiki.fasterxml.com/JacksonHome
http://wiki.fasterxml.com/JacksonHome
http://jahia.com/home.html
http://janino-compiler.github.io/janino
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://oracle.com
http://jax-rs-spec.java.net
http://redhat.com
http://developers.redhat.com/products/eap/overviewith
http://developers.redhat.com/products/eap/overviewith
http://jd.benow.ca
http://jdbi.org
http://oracle.com
http://jdom.org
http://jelastic.com
http://jenkins.io
http://jersey.java.net
http://eclipse.org/jetty
http://jfree.org/jfreechart
http://jgroups.org
http://azulsystems.com
http://jnbridge.com/software/jms-adapter-for-biztalk/overview
http://jnbridge.com/software/jms-adapter-for-biztalk/overview
http://jnbridge.com/software/jnbridgepro/overview
http://jnbridge.com/software/jnbridgepro/overview
http://joda.org/joda-time
http://jooq.org
http://github.com/jOOQ/jOOL

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

51

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

Joyent Joyent Container-native infrastructure with Java images - joyent.com

JProfiler EJ Technologies Java profiling
Free for Open
Source and
Nonprofit

ej-technologies.com/products/
jprofiler/overview.html

JRebel ZeroTurnaround * Class hot-loading (in running JVM) Free Trial zeroturnaround.com/software/jrebel

JReport Jinfonet Reporting, dashboard, analytics, BI for Java Free Trial jinfonet.com

JSF Oracle Java spec for server-side component-based UI Open Source javaserverfaces.java.net

JSP Oracle Server-side Java web templating (static+dynamic) Open Source jsp.java.net

JUnit - Unit testing framework (mocks Java objects) Open Source junit.org

Kubernetes - Container orchestration Open Source kubernetes.io

Lagom Lightbend Reactive microservices framework (Java, Scala) Open Source lightbend.com/lagom

LaunchDarkly Catamorphic Feature flag platform 30 days launchdarkly.com

Liferay Digital
Experience Platform Liferay Enterprise CMS/portal

Open Source
Version Available

liferay.com

Lift -
Scala web framework with ORM, strong view isolation,
emphasis on security

Open Source liftweb.net

Lightbend Reactive
Platform Lightbend

Dev+prod suite for reactive JVM applications
(Akka+Play+Lagom+Spark)

Open Source lightbend.com/platform

Logback QOS.ch Java logging framework (Log4j take two) Open Source logback.qos.ch

MarkLogic 8 MarkLogic Multi-model enterprise NoSQLÊdatabase
Free Developer
Version

marklogic.com

Mendix Platform Mendix Enterprise aPaaS Free Trial
mendix.com/application-
platform-as-a-service/

Mockito - Unit testing framework (mocks Java objects) Open Source mockito.org

MongoDB MongoDB Document-oriented DBMS Open Source mongodb.com

MyBatis - JDBC persistence framework Open Source mybatis.org/mybatis-3

MyEclipse Genuitec IDE (Java EE + web) 30 Days
genuitec.com/products/
myeclipse

NetBeans Oracle IDE Open Source netbeans.org

Netty -
Event-driven, non-blocking JVM framework for protocol clients
& servers

Open Source netty.io

New Relic New Relic APM with Java agent 14 Days newrelic.com

Nexus Repository Sonatype Binary/artifact Repository Open Source sonatype.org/nexus

NGINX NGINX Web server, load balancer, reverse proxy Open Source nginx.com

Ninja Framework - Full-stack web framework for Java ninjaframework.org

Nuxeo Platform Nuxeo Structured+richcContent management platform 30 days nuxeo.com

http://DZone.com/guides
http://joyent.com
http://ej-technologies.com/products/jprofiler/overview.html
http://ej-technologies.com/products/jprofiler/overview.html
http://zeroturnaround.com/software/jrebel
http://jinfonet.com
http://javaserverfaces.java.net
http://jsp.java.net
http://junit.org
http://kubernetes.io
http://lightbend.com/lagom
http://launchdarkly.com
http://liferay.com
http://liftweb.net
http://lightbend.com/platform
http://QOS.ch
http://logback.qos.ch
http://marklogic.com
http://mendix.com/application-platform-as-a-service
http://mockito.org
http://mongodb.com
http://www.mybatis.org/mybatis-3/
http://genuitec.com/products/myeclipse
http://genuitec.com/products/myeclipse
http://netbeans.org
http://netty.io
http://newrelic.com
http://sonatype.org/nexus
http://nginx.com
http://ninjaframework.org
http://nuxeo.com

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

52

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

OmniFaces - JSF utility library Open Source omnifaces.org

OpenCV - Computer vision libraries (with Java interfaces) Open Source opencv.org

Oracle Coherence Oracle In-memory ditributed data grid Open Source oracle.com

Oracle Database 12c Oracle Relational DBMS -
oracle.com/technetwork/
database/index.html

OSGi OSGi Alliance Dynamic component system spec for Java - osgi.org

OutSystems OutSystems Rapid application development platform Free Tier Available outsystems.com

OverOps
OverOps (formerly
Takipi)

JVM agent for production debugging Free Tier Available overops.com

Palamida Palamida Security and open-source scanning and management contact for demo palamida.com

Payara Server Payara Java EE application server (enchanced GlassFish) Open Source payara.fish/home

Pedestal - Clojure Web Framework Open Source github.com/pedestal/pedestal

Percona Server Percona High-performance drop-in MySQL or MongoDB replacement Open Source percona.com

Play Lightbend Java + Scala web framework (stateless, async, built on Akka) Open Source playframework.com

Plumbr Plumbr Memory Leak Detection, GC Analysis, Thread & Query Monitoring 14 days plumbr.eu

Predix GE Software Industrial IoT platform with Java SDK (on Cloud Foundry) - ge.com/digital/predix

PrimeFaces PrimeTek UI components for JSF Open Source primefaces.org

Project Reactor Pivotal Non-blocking, async JVM library (based on Reactive Streams spec) Open Source projectreactor.io

PubNub PubNub Real-timeÊmobile, web, and IoT APIs free tier available pubnub.com

Puppet Puppet Labs Infrastructure automation / configuration management Open Source puppet.com

Push Technology Push Technology Real-time messaging (web, mobile, IoT)
contact for more
info

pushtechnology.com

Qoppa PDF Studio Qoppa PDF manipulation from Java demos available qoppa.com

QueryDSL Mysema
DSL for multiple query targets (JPA, JDO, SQL, Lucene,
MongoDB, Java Collections)

Open Source querydsl.com

Race Catcher Thinking Software Dynamic race detection 7 days thinkingsoftware.com

Redis Redis Labs
In-memory key-value data structure store (use as database,
cache, message broker)

Open Source redis.io

Rhino Mozilla JavaScript implemention in Java (for embedded JS) Open Source
developer.mozilla.org/en-US/
docs/Mozilla/Projects/Rhino

Ribbon Netflix RPC library with load balancing Open Source github.com/Netflix/ribbon

RichFaces Red Hat UI components for JSF Open Source richfaces.jboss.org

Ring - Clojure Web Framework Open Source github.com/ring-clojure/ring

http://DZone.com/guides
http://dzone.com/guides
http://omnifaces.org
http://opencv.org
http://oracle.com
http://oracle.com/technetwork/database/index.html
http://oracle.com/technetwork/database/index.html
http://osgi.org
http://outsystems.com
http://overops.com
http://palamida.com
http://payara.fish/home
http://github.com/pedestal/pedestal
http://percona.com
http://playframework.com
http://plumbr.eu
http://ge.com/digital/predix
http://primefaces.org
http://projectreactor.io
http://pubnub.com
http://puppet.com
http://pushtechnology.com
http://qoppa.com
http://querydsl.com
http://thinkingsoftware.com
http://redis.io
http://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://github.com/Netflix/ribbon
http://richfaces.jboss.org
http://github.com/ring-clojure/ring

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

53

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

RxJava Netflix Reactive extension for JVM (extends observer pattern) Open Source github.com/ReactiveX/RxJava

Salesforce App
Cloud Salesforce PaaS with app marketplace

free developer
instance

developer.salesforce.com

Sauce Labs
Automated Testing
Platform

Sauce Labs
Browser and mobile test automation (Selenium, Appium) with
Java interface

Open Source saucelabs.com/open-source

SBT (Simple Build
Tool) Lightbend Build tool for Scala and Java (with build scripting in Scala DSL)

Scalatra - Scala web microframework Open Source scalatra.org

Selenide Codeborne UI tests in Java (Selenium WebDriver) Open Source selenide.org

Selenium - Browser automation with Junit and TestNG integration Open Source seleniumhq.org

Site24x7 Zoho Website, server, application performance monitoring 30 days site24x7.com

Sl4j QOS.ch Logging for Java Open Source slf4j.org

SmartGWT
Isomorphic
Software

Java->Ajax with rapid dev tools, UI components, multi-device 60 Days smartclient.com

SonarQube SonarSource
Software quality platform (unit testing, code metrics, architecture
and complexity analysis, coding rule checks, more)

Open Source sonarqube.org

Spark Framework - Lightweight Java 8 web app framework Open Source sparkjava.com

Split Split Software Feature flag platform Free Trial split.io

Spock - Test and specification framework for Java and Groovy Open Source spockframework.org

Spray Lightbend REST for Scala/Akka Open Source spray.io

Spring Boot Pivotal REST web services framework (opinionated, rapid spinup) Open Source projects.spring.io/spring-boot

Spring Cloud Pivotal Distributed systems framework (declarative, opinionated) Open Source cloud.spring.io

Spring Framework Pivotal

Enterpise Java platform (large family of (convention-over-
configuration) services, including dependency injection, MVC,
messaging, testing, AOP, data access, distributed computing
services, etc.)

projects.spring.io/spring-
framework

Spring MVC Pivotal Server-side web framework Open Source
docs.spring.io/spring/docs/
current/spring-framework-
reference/html/mvc.html

SteelCentral Riverbed APM 30-90 days riverbed.com

Stormpath Stormpath * Identity and user management
Free Version
Available

stormpath.com

SWT Eclipse Foundation Java UI widget toolkit Open Source eclipse.org/swt

Sysdig Draios Container monitoring Open Source sysdig.com

Tasktop Dev Tasktop In-IDE ALM tool (commercial version of Eclipse Mylyn) 30 Days tasktop.com/tasktop-dev

TayzGrid Alachisoft In-memory data grid (JCache compliant) Open Source tayzgrid.com

Teradata Teradata
Data warehousing, analytics, lake, SQL on Hadoop and Cassandra,
Big Data appliances, R integration, workload management

Free Developer
Version

teradata.com

http://DZone.com/guides
http://github.com/ReactiveX/RxJava
http://developer.salesforce.com
https://saucelabs.com/open-source
http://scalatra.org
http://selenide.org
http://seleniumhq.org
http://site24x7.com
http://QOS.ch
http://slf4j.org
http://smartclient.com
http://sonarqube.org
http://sparkjava.com
http://split.io
http://spockframework.org
http://spray.io
http://projects.spring.io/spring-boot/
http://cloud.spring.io
http://projects.spring.io/spring-framework/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://riverbed.com
http://stormpath.com
http://eclipse.org/swt
http://sysdig.com
http://tasktop.com/tasktop-dev
http://tayzgrid.com
http://teradata.com

DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

54

PRODUCT COMPANY TYPE FREE TRIAL WEBSITE

TestNG - Java unit testing framework (JUnit-inspired) Open Source testng.org

ThingWorx PTC IoT platform with Java SDK Free Trial developer.thingworx.com

Thymeleaf Thymeleaf Server-side Java web template engine Open Source thymeleaf.org

TrueSight Pulse BMC Infrastructure monitoring 14 Days bmc.com/truesightpulse

Twilio Twilio Messaging APIs (text, voice, VoIP) Free Key Available twilio.com

Upsource JetBrains * Code review Free 10-User Plan jetbrains.com/upsource

Vaadin Vaadin Server-side Java->HTML5 Open Source vaadin.com

Vert.x - Event-driven, non-blocking JVM framework Open Source vertx.io

Visual COBOL Microfocus * COBOL accessibility from Java (with COBO->Java bytecode compilation) 30 Days
microfocus.com/products/
visual-cobol

VisualVM Oracle JVM Monitoring Open Source visualvm.java.net

vmlens vmlens Java race condition catcher Free Trial vmlens.com

Waratek Waratek Java security (runtime application self-protection (RASP)) 30 days waratek.com

WebLogic Oracle Java application server -
oracle.com/middleware/
weblogic/index.html

WebSphere
Application Server IBM Java application server -

www-03.ibm.com/software/
products/en/appserv-was

WebSphere eXtreme
Scale IBM In-memory data grid Free Trial ibm.com

WildFly Red Hat Java application server Open Source wildfly.org

WildFly Swarm Red Hat Uber JAR builder (with trimmed WildFly app server) Open Source wildfly.org/swarm

Wiremock - HTTP mocking Open Source wiremock.org

WSO2 Application
Server WSO2 Web application server Open Source

wso2.com/products/application-
server/

WSO2 Microservices
Framework for Java WSO2 Microservices framework for Java Open Source

wso2.com/products/
microservices-framework-for-java

XebiaLabs XL XebiaLabs Deployment automation + release management Free Trial xebialabs.com

XRebel ZeroTurnaround * Java web app profiler 14 Days zeroturnaround.com

Xstream - XML serialization Open Source x-stream.github.io

YourKit Java Profiler YourKit Java CPU & memory profiler 15 Days yourkit.com

Zing Azul Systems JVM with unique pauseless GC Free Tier Available azul.com/products/zing

ZK Framework Zkoss Enterprise Java web framework Open Source zkoss.org

Zulu Azul Systems Enterprise-grade OpenJDK build Open Source azul.com/products/zulu

http://DZone.com/guides
http://dzone.com/guides
http://testng.org
http://developer.thingworx.com
http://thymeleaf.org
http://bmc.com/truesightpulse
http://twilio.com
http://jetbrains.com/upsource
http://vaadin.com
http://vertx.io
http://microfocus.com/products/visual
http://microfocus.com/products/visual
http://visualvm.java.net
http://vmlens.com
http://waratek.com
http://oracle.com/middleware/weblogic/index.html
http://oracle.com/middleware/weblogic/index.html
http://www-03.ibm.com/software/products/en/appserv-was
http://ibm.com
http://wildfly.org
http://wildfly.org/swarm
http://wiremock.org
http://wso2.com/products/application
http://wso2.com/products/microservices-framework-for-java
http://xebialabs.com
http://zeroturnaround.com
http://x-stream.github.io
http://yourkit.com
http://azul.com/products/zing
http://zkoss.org
https://www.azul.com/products/zulu/

DZONE’S GUIDE TO MODERN JAVA DZONE’S GUIDE TO MODERN JAVA

DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA

55

12-FACTOR APP A set of guidelines
for building hosted applications that
focus on scalability, automation, and
compatibility with cloud platforms.

APPLICATION PROGRAM
INTERFACE (API) A set of tools
for determining how software
components should act within an
application.

ARRAY An object that contains a
fixed number of variables, the number
of which are established when the
array is created.

ATTRIBUTE A particular characteristic
of an object, which is defined by that
object's class.

CLASS A blueprint used to create
objects by establishing what
attributes are shared between each
object in that class.

CLOUD PLATFORM A service offered
by a third party that deploys and
hosts applications on their hardware.

COMPILER A program that
transforms programming language
code to machine-readable bytecode
so that it can be read and executed by
a computer.

CONCURRENCY The ability to run
several applications, or several parts
of an application, at the same time.

CONSTRUCTOR A subroutine within
a class that is called in order to create
an object from that class.

CONSTRUCTOR CHAINING The act
of calling a constructor to create an
object by using another constructor
from the same class.

CONTINUOUS INTEGRATION The
process of combining and testing

changes to an application as often as
possible.

DEPENDENCY An instance in a JAR
where classes called from packages
outside the JAR must be explicitly
stated in the code rather than being
automatically included.

DESIGN PATTERN A reusable, high-
level solution to a common problem in
an application or architecture.

EXCEPTION An interruption that
occurs when a program is running
that alters the way the program is
normally run.

EXCEPTION HANDLING A
programming practice to ensure that
any exceptions do not cause the
program to stop running.

HASH FUNCTION A way to create a
simplified representation of a large
amount of data to make it easily and
quickly searchable, such as assigning
objects to integers.

IMMUTABLE OBJECT Any object that
cannot be modified once it has been
created.

JAVA An object-oriented
programming language that can be
deployed on a variety of platforms,
developed by Sun Microsystems and
now under the stewardship of Oracle.

JAVA ARCHIVE (JAR) A file used to
aggregate several Java classes and
resources into one file in order to
easily distribute those classes for use
on the Java platform.

JAVA DEVELOPMENT KIT (JDK) A
free set of tools, including a compiler,
provided by Oracle, the owners of Java.

JAVA VIRTUAL MACHINE (JVM)
Abstracted software that allows a
computer to run a Java program.

LAMBDA EXPRESSION A new
feature in Java 8 which allows

functions, called anonymous
functions, to be written without
belonging to a class.

LIBRARY A collection of commonly
used pieces of code that can be used
in any application that uses that
programming language.

LOG A file with information on
everything that has happened while
an application has been running.

METHOD A named piece of code
that can be called at any time by
using its name.

MICROSERVICES ARCHITECTURE
An architecture for an application
that is built with several modular
pieces, which are deployed
separately and communicate with
each other, rather than deploying
one single piece of software.

OBJECTS An instance of a class,
which has different attribute values
than other objects in its class.

POLYMORPHISM A condition
in which objects can take on
several forms in an application.
All objects in Java are considered
polymorphic since all objects are all
implementations of classes.

REPOSITORY A data structure
where directories, files, and metadata
can be stored and managed.

SPRING FRAMEWORK An open-
source collection of tools for building
web applications in Java.

STREAM A sequence of data that is
read from a source and then written
to a new destination.

SYNCHRONIZATION A condition
in which multiple threads that share
crucial resources run at the same
time.

TOMCAT An open-source web server
technology for Java applications.

GLOSSARY

http://DZone.com/guides

