
 

 

DZone, Inc.  |   www.dzone.com

By Alex Miller

About java concurrency

C
o

re
 J

av
a 

C
o

n
cu

rr
e

n
cy

  
  

  
  

  
w

w
w

.d
zo

n
e.

co
m

  
  

  
  

  
  

  
  

  
  

  
  

  
  

G
e

t 
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

 
#61

Core Java Concurrency

From its creation, Java has supported key concurrency 
concepts such as threads and locks. This guide helps 
Java developers working with multi-threaded programs 
to understand the core concurrency concepts and how 
to apply them. Topics covered in this guide include built-
in Java language features like Thread, synchronized, and 
volatile, as well as new constructs added in JavaSE 5 such as 
Locks, Atomics, concurrent collections, thread coordination 
abstraction, and Executors.  Using these building blocks, 
developers can build highly concurrent and thread-safe Java 
applications. 

Concepts

This section describes key Java Concurrency concepts that are 
used throughout this DZone Refcard.

Table 1: Java Concurrency Concepts

Concept Description

Java Memory 
Model

The Java Memory Model (JMM) was defined in Java SE 5 (JSR 133) and 
specifies the guarantees a JVM implementation must provide to a Java 
programmer when writing concurrent code.  The JMM is defined in terms 
of actions like reading and writing fields, and synchronizing on a monitor.  
These actions form an ordering (called the “happens-before” ordering) 
that can be used to reason about when a thread sees the result of another 
thread’s actions, what constitutes a properly synchronized program, how to 
make fields immutable, and more.

Monitor In Java, every object contains a “monitor” that can be used to provide 
mutual exlusion access to critical sections of code. The critical section is 
specified by marking a method or code block as synchronized. Only 
one thread at a time is allowed to execute any critical section of code for a 
particular monitor. When a thread reaches this section of code, it will wait 
indefinitely for the monitor to be released if another thread holds it. In 
addition to mutual exlusion, the monitor allows cooperation through the 
wait and notify operations.

Atomic field 
assignment

Assigning a value to a field is an atomic action for all types except doubles 
and longs.  Doubles and longs are allowed to be updated as two separate 
operations by a JVM implementation so another thread might theoretically 
see a partial update.  To protect updates of shared doubles and longs, 
mark the field as a volatile or modify it in a synchronized block.  

Race condition A race condition occurs when more than one thread is performing a series 
of actions on shared resources and several possible outcomes can exist 
based on the order of the  actions from each thread are performed.

Data race A data race specifically refers to accessing a shared non-final 
non-volatile field from more than one thread without proper 
synchronization.  The Java Memory Model makes no guarantees about 
the behavior of unsynchronized access to shared fields.  Data races are 
likely to cause unpredictable behavior that varies between architectures 
and machines.

Safe publication It is unsafe to publish a reference to an object before construction of the 
object is complete.  One way that the this reference can escape is by 
registering a listener with a callback during construction.  Another common 
scenario is starting a Thread from the constructor.  In both cases, the 
partially constructed object is visible to other threads. 

Final fields Final fields must be set to an explicit value by the end of object 
construction or the compiler will emit an error. Once set, final field values 
cannot be changed.  Marking an object reference field as final does 
not prevent objects referenced from that field from changing later.  For 
example, a final ArrayList field cannot be changed to a different 
ArrayList, but objects may be added or removed on the list instance.

Final fields, 
continued

At the end of construction, an object undergoes “final field freeze”, which 
guarantees that if the object is safely published, all threads will see the 
values set during construction even in the absence of synchronization.  
Final field freeze includes not just the final fields in the object but also all 
objects reachable from those final fields.

Immutable 
objects

Final field semantics can be leveraged to create thread-safe immutable 
objects that can be shared and read without synchronization. To make an 
immutable object you should guarantee that:
   • The object is safely published (the this reference does not escape 
      during construction)
   • All fields are declared final
   • Object reference fields must not allow modifications anywhere in the 
      object graph reachable from the fields after construction.  
   • The class should be declared final (to prevent a subclass from 
      subverting these rules)

Protecting shared data

Writing thread-safe Java programs requires a developer to 
use proper locking when modifying shared data.  Locking 
establishes the orderings needed to satisfy the Java Memory 
Model and guarantee the visibility of changes to other threads. 

Hot 
Tip

Data changed outside synchronization has NO 
specified semantics under the Java Memory Model! 
The JVM is free to reorder instructions and limit 
visibility in ways that are likely to be surprising to a 
developer.

Synchronized
Every object instance has a monitor that can be locked by 
one thread at a time.  The synchronized keyword can be 
specified on a method or in block form to lock the monitor. 
Modifying a field while synchronized on an object guarantees 
that subsequent reads from any other thread synchronized on 
the same object will see the updated value.  It is important to 
note that writes outside synchronization or synchronized on a 
different object than the read are not necessarily ever visible to 
other threads.

CONTENTS INCLUDE:
n	 About Java Concurrency
n	 Concepts
n	 Protecting Shared Data
n	 Concurrent Collections
n	 Threads
n	 Threads Coordination and more...

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com


DZone, Inc.  |   www.dzone.com

2
Java Concurrency

The synchronized keyword can be specified on a method or 
in block form on a particular object instance. If specified on a 
non-static method, the this reference is used as the instance. 
In a synchronized static method, the Class defining the method 
is used as the instance. 

Lock
The java.util.concurrent.locks package has a standard Lock 
interface.  The ReentrantLock implementation duplicates the 
functionality of the synchronized keyword but also provides 
additional functionality such as obtaining information about 
the state of the lock, non-blocking tryLock(), and interruptible 
locking.
Example of using an explicit ReentrantLock instance:

public class Counter {
  private final Lock lock = new ReentrantLock();
  private int value = 0;

  public int increment() {
    lock.lock();
    try {
      return ++value;
    } finally {
      lock.unlock();
    }
  }
}

ReadWriteLock
The java.util.concurrent.locks package also contains 
a ReadWriteLock interface (and ReentrantReadWriteLock 
implementation) which is defined by a pair of locks for 
reading and writing, typically allowing multiple concurrent 
readers but only one writer.  Example of using an explicit 
ReentrantReadWriteLock to allow multiple concurrent readers:

public class Statistic {
  private final ReadWriteLock lock = new ReentrantReadWriteLock();
  private int value;

  public void increment() {
    lock.writeLock().lock();
    try {
      value++;
    } finally {
      lock.writeLock().unlock();
    }
  }

  public int current() {
    lock.readLock().lock();
    try { 
      return value;
    } finally { 
      lock.readLock().unlock();
    }
  }
}

volatile 
The volatile modifier can be used to mark a field and indicate 
that changes to that field must be seen by all subsequent 
reads by other threads, regardless of synchronization. Thus, 
volatile provides visibility just like synchronization but scoped 
only to each read or write of the field.  Before Java SE 5, 
the implementation of volatile was inconsistent between 
JVM implementations and architectures and could not be 
relied upon.  The Java Memory Model now explicitly defines 
volatile’s behavior.

An example of using volatile as a signaling flag:

public class Processor implements Runnable {
  private volatile boolean stop;

  public void stopProcessing() {
    stop = true;

Hot 
Tip

Marking an array as volatile does not make entries 
in the array volatile! In this case volatile applies only 
to the array reference itself. Instead, use a class like 
AtomicIntegerArray to create an array with volatile-
like entries.

Atomic classes
One shortcoming of volatile is that while it provides visibility 
guarantees, you cannot both check and update a volatile 
field in a single atomic call.  The java.util.concurrent.atomic      
package contains a set of classes that support atomic 
compound actions on a single value in a lock-free manner 
similar to volatile. 

public class Counter {
  private AtomicInteger value = new AtomicInteger();
  public int next() {
    return value.incrementAndGet();
  }
}

The incrementAndGet method is just one example of a 
compound action available on the Atomic classes.

Atomic classes are provided for booleans, integers, longs, 
and object references as well as arrays of integers, longs, and 
object references. 

ThreadLocal
One way to contain data within a thread and make locking 
unnecessary is to use ThreadLocal storage.  Conceptually a 
ThreadLocal acts as if there is a variable with its own version 
in every Thread. ThreadLocals are commonly used for stashing 
per-Thread values like the “current transaction” or other 
resources.  Also, they are used to maintain per-thread counters,  
statistics, or ID generators.

public class TransactionManager { 
 private static final ThreadLocal<Transaction> currentTransaction = 
   new ThreadLocal<Transaction>() { 
     @Override 
     protected Transaction initialValue() { 
       return new NullTransaction(); 
     } 
   }; 
 public Transaction currentTransaction() { 
   Transaction current = currentTransaction.get(); 
   if(current.isNull()) { 
     current = new TransactionImpl(); 
     currentTransaction.put(current); 
   } 
   return current; 
 }
}

  }

  public void run() { 
    while(! stop) {
      // .. do processing
    }
  }
}

Concurrent Collections

A key technique for properly protecting shared data is to 
encapsulate the synchronization mechanism with the class 
holding the data.  This technique makes it impossible to 
improperly access the data as all usage must conform to the 
synchronization protocol.  The java.util.concurrent package 
holds many data structures designed for concurrent use.  
Generally, the use of these data structures yields far better 
performance than using a synchronized wrapper around an 
unsynchronized collection.

http://www.dzone.com
http://www.refcardz.com


DZone, Inc.  |   www.dzone.com

3
Java Concurrency

Method Description

putIfAbsent(K key, V value) : V If the key is not in the map then put the key/
value pair, otherwise do nothing.  Returns old 
value or null if not previously in the map.

remove(Object key, Object value) 
: boolean

If the map contains key and it is mapped to 
value then remove the entry, otherwise do 
nothing. 

replace(K key, V value) : V If the map contains key then replace with 
newValue, otherwise do nothing.

replace(K key, V oldValue, V 
newValue) : boolean

If the map contains key and it is mapped 
to oldValue then replace with newValue, 
otherwise do nothing.

Concurrent lists and sets
The java.util.concurrent package contains three concurrent List 
and Set implementations described in Table 2.

Table 2: Concurrent Lists and Sets

There are two ConcurrentMap implementations available as 
shown in Table 4.  
Table 4: ConcurrentMap implementations

Method Description

ConcurrentHashMap ConcurrentHashMap provides two levels of internal 
hashing.  The first level chooses an internal segment, and the 
second level hashes into buckets in the chosen segment.  The 
first level provides concurrency by allowing reads and writes 
to occur safely on each segment in parallel.  

ConcurrentSkipListMap ConcurrentSkipListMap (added in Java SE 6) provides 
concurrent access along with sorted map functionality similar 
to TreeMap.  Performance bounds are similar to TreeMap 
although multiple threads can generally read and write from 
the map without contention as long as they aren’t modifying 
the same portion of the map.  

Queues
Queues act as pipes between “producers” and “consumers”.  
Items are put in one end of the pipe and emerge from the 
other end of the pipe in the same “first-in first-out” (FIFO) 
order.

The Queue interface was added to java.util in Java SE 5 and 
while it can be used in single-threaded scenarios, it is primarily 
used with multiple producers or one or more consumers, all 
writing and reading from the same queue.

The BlockingQueue interface is in java.util.concurrent and 
extends Queue to provide additional choices of how to handle 
the scenario where a queue may be full (when a producer adds 
an item) or empty (when a consumer reads or removes an item).  

Method Strategy Insert Remove Examine

Queue Throw Exception add remove element

Return special value offer poll peek

Blocking Queue Block forever put take n/a

Block with timer offer poll n/a

Several Queue implementations are provided by the JDK and 
their relationships are discribed in Table 6.
Table 6: Queue Implementations

Method Description

PriorityQueue PriorityQueue is the only non-concurrent queue 
implementation and can be used by a single thread to collect 
items and process them in a sorted order.

ConcurrentLinkedQueue An unbounded linked list queue implementation and the only 
concurrent implementation not supporting BlockingQueue. 

ArrayBlockingQueue A bounded blocking queue backed by an array.  

LinkedBlockingQueue An optionally bounded blocking queue backed by a linked 
list.  This is probably the most commonly used Queue 
implementation.

PriorityBlockingQueue An unbounded blocking queue backed by a heap. Items 
are removed from the queue in an order based on the 
Comparator associated with the queue (instead of FIFO 
order).

DelayQueue An unbounded blocking queue of elements, each with a delay 
value.  Elements can only be removed when their delay has 
passed and are removed in the order of the oldest expired 
item.

SynchronousQueue A 0-length queue where the producer and consumer block 
until the other arrives.  When both threads arrive, the value is 
transferred directly from producer to consumer. Useful when 
transferring data between threads.

Deques
A double-ended queue or Deque (pronounced “deck”) was 
added in Java SE 6.  Deques support not just adding from one 
end and removing from the other but adding and removing 
items from both ends. Similarly to BlockingQueue, there is a 
BlockingDeque interface that provides methods for blocking 
and timeout in the case of special conditions.  Table 7 shows 
the Deque and BlockingDeque methods.  Because Deque extends 
Queue and BlockingDeque extends BlockingQueue, all of those 
methods are also available for use.

Table 7: Deque and BlockingDeque methods

Interface First or 
Last

Strategy Insert Remove Examine

Queue Head Throw exception addFirst removeFirst getFirst

Return special value offerFirst pollFirst peekFirst

Tail Throw exception addLast removeLast getLast

Return special value offerLast pollLast peekLast

Blocking 
Queue

Head Block forever putFirst takeFirst n/a

Block with timer offerFirst pollFirst n/a

Tail Block forever putLast takeLast n/a

Block with timer offerLast pollLast n/a

One special use case for a Deque is when add, remove, and 
examine operations all take place on only one end of the 
pipe.  This special case is just a stack (first-in-last-out retrieval 
order).  The Deque interface actually provides methods that use 
the terminology of a stack:  push(), pop(), and peek().  These 

Class Description

CopyOnWriteArraySet CopyOnWriteArraySet  provides copy-on-write semantics 
where each modification of the data structure results in a 
new internal copy of the data (writes are thus very expensive).  
Iterators on the data structure always see a snapshot of the 
data from when the iterator was created.

CopyOnWriteArrayList Similar to CopyOnWriteArraySet, 
CopyOnWriteArrayList uses copy-on-write semantics to 
implement the List interface.

ConcurrentSkipListSet ConcurrentSkipListSet (added in Java SE 6) provides 
concurrent access along with sorted set functionality similar 
to TreeSet.  Due to the skip list based implementation, 
multiple threads can generally read and write within the set 
without contention as long as they aren’t modifying the same 
portions of the set.  

Concurrent maps
The java.util.concurrent package contains an extension to 
the Map interface called ConcurrentMap, which provides some 
extra methods described in Table 3.  All of these methods 
perform a set of actions in the scope of a single atomic action.  
Performing this set of actions outside the map would introduce 
race conditions due to making multiple (non-atomic) calls on 
the map.
Table 3: ConcurrentMap methods

In these cases, BlockingQueue provides methods that either 
block forever or block for a specified time period, waiting for 
the condition to change due to the actions of another thread. 
Table 5 demonstrates the Queue and BlockingQueue methods in 
terms of key operations and the strategy for dealing with these 
special conditions. 

Table 5: Queue and BlockingQueue methods

http://www.dzone.com
http://www.refcardz.com


DZone, Inc.  |   www.dzone.com

4
Java Concurrency

Threads

In Java, the java.lang.Thread class is used to represent an 
application or JVM thread.  Code is always being executed in 
the context of some Thread class (use Thread.currentThread() 
to obtain your own Thread).

Thread Communication
The most obvious way to communicate between threads is for 
one thread to directly call a method on another Thread object. 
Table 9 shows methods on Thread that can be used for direct 
interaction across threads.

Table 9: Thread coordination methods

Thread Method Description

start Start a Thread instance and execute its run() method.

join Block until the other Thread exits

interrupt Interrupt the other thread.  If the thread is blocked in a method that 
responds to interrupts, an InterruptedException will be thrown in the 
other thread, otherwise the interrupt status is set.

stop, suspend, 
resume, destroy

These methods are all deprecated and should not be used.  They 
perform dangerous operations depending on the state of the thread in 
question.  Instead, use interrupt() or a volatile flag to indicate 
to a thread what it should do.

Uncaught exception handlers
Threads can specify an UncaughtExceptionHandler that will 
receive notification of any uncaught exception that cause a 
thread to abruptly terminate.

Thread t = new Thread(runnable); 
t.setUncaughtExceptionHandler(new Thread. 
 UncaughtExceptionHandler() { 
   void uncaughtException(Thread t, Throwable e) { 
     // get Logger and log uncaught exception 
   } 
 }); 
t.start(); 

Deadlock
A deadlock occurs when there is more than one thread, each 
waiting for a resource held by another, such that a cycle of 
resources and acquiring threads is formed.  The most obvious 
kind of resource is an object monitor but any resource that 
causes blocking (such as wait / notify) can qualify.

Many recent JVMs can detect monitor deadlocks and will print 
deadlock information in thread dumps produced from a signal, 
jstack, or other thread dump tool.

In addition to deadlock, some other threading situations are 
starvation and livelock.  Starvation occurs when threads hold a 
lock for long periods such that some threads “starve” without 

Thread Coordination

wait / notify
The wait / notify idiom is appropriate whenever one thread 
needs to signal to another that a condition has been met, es-
pecially as an alternative to sleeping in a loop and polling the 
condition.   For example, one thread might wait for a queue to 
contain an item to process.  Another thread can signal the wait-
ing threads when an item is added to the queue.

The canonical usage pattern for wait and notify is as follows:

public class Latch {
  private final Object lock = new Object();
  private volatile boolean flag = false;

  public void waitTillChange() {
    synchronized(lock) {
      while(! flag) {
        try {
          lock.wait();
        } catch(InterruptedException e) {
        }
      }
    }
  }

  public void change() {
    synchronized(lock) {
      flag = true;
      lock.notifyAll();
    }
  }
}

Some important things to note about this code:

     • Always call wait, notify, and notifyAll inside a synchronized 
        lock or an IllegalMonitorStateException will be thrown.
     • Always wait inside a loop that checks the condition being 
        waited on – this addresses the timing issue if another 
        thread satisfies the condition before the wait begins.  
        Also, it protects your code from spurious wake-ups that 
        can (and do) occur.
     • Always ensure that you satisfy the waiting condition 
        before calling notify or notifyAll.  Failing to do so will 
        cause a notification but no thread will ever be able to 
        escape its wait loop.

Condition
In Java SE 5, a new java.util.concurrent.locks.Condition 
class was added.  Condition implements the wait/notify 
semantics in an API but with several additional features such as 
the ability to create multiple Conditions per Lock, interruptible 
waiting, access to statistics, etc.  Conditions are obtained from 
a Lock instance as follows:

public class LatchCondition {
  private final Lock lock = new ReentrantLock();
  private final Condition condition = lock.newCondition();
  private volatile boolean flag = false;

  public void waitTillChange() {
    lock.lock();
    try {
      while(! flag) {
        condition.await();
      } 
    } finally {
      lock.unlock();
    }
  }

  public void change() {
    lock.lock(); 
    try {

methods map to addFirst(), removeFirst(), and peekFirst() 
methods in the Deque interface and allow you to use any Deque 
implementation as a stack. Table 8 describes the Deque and 
BlockingDeque implementations in the JDK. Note that Deque 
extends Queue and BlockingDeque extends BlockingQueue

Table 8: Deques

Class Description

LinkedList This long-standing data structure has been retrofitted in Java SE 
6 to support the Deque interface.  You can now use the standard 
Deque methods to add or remove from either end of the list 
(many of these methods already existed) and also use it as a non-
synchronized stack in place of the fully synchronized Stack class. 

ArrayDeque This implementation is not concurrent and supports unbounded 
queue length (it resizes dynamically as needed).  

LinkedBlockingDeque The only concurrent deque implementation, this is a blocking 
optionally-bounded deque backed by a linked list.

making progress.  Livelock occurs when threads spend all 
of their time negotiating access to a resource or detecting 
and avoiding deadlock such that no thread actually makes 
progress.

http://www.dzone.com
http://www.refcardz.com


DZone, Inc.  |   www.dzone.com

5
Java Concurrency

Task execution

Many concurrent Java programs need a pool of workers 
executing tasks from a queue.  The java.util.concurrent 
package provides a solid foundation for this style of work 
management.  

ExecutorService
The Executor and more expansive ExecutorService interfaces 
define the contract for a component that can execute 
tasks.  Users of these interfaces can get a wide variety of 
implementation behaviors behind a common interface.

The most generic Executor interface accepts jobs only in the 
form of Runnables:

     • void execute(Runnable command)

The ExecutorService extends Executor to add methods that 
take both Runnable and Callable task and collections of tasks:

     • Future<?> submit(Runnable task)
     • Future<T> submit(Callable<T> task)
     • Future<T> submit(Runnable task, T result)
     • List<Future<T> invokeAll(Collection<? extends 
        Callable<T>> tasks)
     • List<Future<T> invokeAll(Collection<? extends 
        Callable<T>> tasks, long timeout, TimeUnit unit)

     • T invokeAny(Collection<? extends Callable<T>> tasks)
     • T invokeAny(Collection<? extends Callable<T>> tasks, 
        long timeout, TimeUnit unit)

Callable and Future
A Callable is like the familiar Runnable but can return a result 
and throw an exception:

     • V call() throws Exception;

It is common in the executor framework to submit a Callable 
and receive a Future.  A Future is a marker representing a 
result that will be available at some point in the future. The 
Future has methods that allow you to either poll or block while 
waiting for the result to be ready.  You can also cancel the task 
before or while it’s executing through methods on Future.  

If you need the functionality of a Future where only Runnables 
are supported (as in Executor), you can use FutureTask as a 
bridge.  FutureTask implements both Future and Runnable so 
that you can submit the task as a Runnable and use the task 
itself as a Future in the caller.

ExecutorService implementations
The primary implementation of ExecutorService is 
ThreadPoolExecutor.  This implementation class provides a 
wide variety of configurable features:

     • Thread pool – specify “core” thread count (optionally pre-
        started), and max thread count

     • Thread factory – generate threads with custom 
        characteristics such as a custom name

     • Work queue – specify the queue implementation, which 
        must be blocking, but can be bounded or unbounded

     • Rejected tasks – specify the policy for tasks that cannot be 
        accepted due to a full input queue or unavailable worker 
     • Lifecycle hooks – overridden to extend to override key 
        points in the lifecycle like before or after task execution 

     • Shutdown – stop incoming tasks and wait for executing 
        tasks to complete

ScheduledThreadPoolExecutor is an extension of 
ThreadPoolExecutor that provides the ability to schedule 
tasks for completion rather than using FIFO semantics.  For 
cases where java.util.Timer is not sophisticated enough, 
the ScheduledThreadPoolExecutor often provides sufficient 
flexibility.

The Executors class contains many static methods (see 
Table 10) for creating prepackaged ExecutorService and 
ScheduledExecutorService instances that will cover a wide 
variety of common use cases. 

Table 10: Executors factory methods

Method Description

newSingleThreadExecutor Returns an ExecutorService with exactly 
one thread.  

newFixedThreadPool Returns an ExecutorService with a fixed 
number of threads.

newCachedThreadPool Returns an ExecutorService with a varying 
size thread pool.

newSingleThreadScheduledExecutor Returns a ScheduledExecutorService 
with a single thread.

newScheduledThreadPool Returns a ScheduledExecutorService 
with a core set of threads.

      flag = true;
      condition.signalAll();
    } finally { 
     lock.unlock();
    }
  }
}

Coordination classes
The java.util.concurrent package contains several classes 
pre-built for common forms of multi-thread communication. 
These coordination classes cover most common scenarios 
where wait/notify and Condition might be used and are strongly 
perferred for their safety and ease of use.

CyclicBarrier
The CyclicBarrier is initialized with a participant count.  
Participants call await() and block until the count is reached, 
at which point an optional barrier task is executed by the last 
arriving thread, and all threads are released.  The barrier can 
be reused indefinitely.  Used to coordinate the start and stop of 
groups of threads.

CountDownLatch
The CountDownLatch is initialized with a count. Threads may 
call await() to wait for the count to reach 0.  Other threads 
(or same) may call countDown() to reduce count.  Not reusable 
once the count has reached 0.  Used to trigger an unknown set 
of threads once some number of actions has occurred.
Semaphore
A Semaphore manages a set of “permits” that can be checked 
out with acquire() which will block until one is available.  
Threads call release() to return the permit.  A semaphore with 
one permit is equivalent to a mutual exclusion block.
Exchanger
An Exchanger waits for threads to meet at the exchange() 
method and swap values atomically.  This is similar to using a 
SynchronousQueue but data values pass in both directions.

http://www.dzone.com
http://www.refcardz.com


 

 

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc.  |    w
ww.dzone.com

D
es

ig
n 

Pa
tt

er
ns

  
  

  
  

  
  

  
  

  
  

  
 w

w
w

.d
zo

ne
.c

om
  

  
  

  
  

  
  

  
  

  
  

  
  

 G
et

 M
o

re
 R

ef
ca

rz
! 

V
is

it
 r

ef
ca

rd
z.

co
m

 

#8

Brought to you by...

Inspired 

by the 

GoF 

Bestseller

This Design Patterns refcard provides a quick reference to the 

original 23 Gang of Four (GoF) design patterns, as listed in  

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams, 

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can 

be changed at runtime.

Class S
cope: Deals with class relationships that can be 

changed at compile time.

C  Abstract Factory

S  Adapter

S  Bridge

C  Builder

B  Chain of 

 
Responsibility

B  Command

S  Composite

S  Decorator

S  Facade

C  Factory Method

S  Flyweight

B  Interpreter

B  Iterator

B  Mediator

B  Memento

C  Prototype

S  Proxy

B  Observer

C  Singleton

B  State

B  Strategy

B  Template Method

B  Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such 

that they can be decoupled from their im
plementing 

system.

Structural Patterns: U
sed to form large object 

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms, 

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY      
      

   O
bject Behavioral

COMMAND      
      

    
 

      
    O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest( )

ConcreteHandler 1

+handlerequest( )

ConcreteHandler 2

+handlerequest( )

Purpose
Gives more than one object an opportunity to handle a request by linking 

receiving objects together.

Use 

When

n
	Multiple objects may handle a request and the handler doesn’t have to 

   be a specific object.

n
	A set of objects should be able to handle a request with the handler

   determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an 

exception is thrown in a method the runtime checks to see if th
e method 

has a mechanism to handle the exception or if it
 should be passed up the 

call stack. When passed up the call stack the process repeats until code to 

handle the exception is encountered or until th
ere are no more parent 

objects to hand the request to.

Receiver

Invoker

Command

+execute( )

Client
ConcreteCommand

+execute( )

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows 

the request to be handled in traditionally object based relationships such 

as queuing and callbacks.

Use 

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing  

of algorithms. By utilizing the command pattern the functionality to be  

executed can be given to a job queue for processing without any need 

for the queue to have knowledge of the actual implementation it is
 

invoking. The command object that is enqueued implements its particular 

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need: 
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

   

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com 

Sponsorship Opportunities 
sales@dzone.com 

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, 
photocopying, or otherwise, without prior written permission of the publisher. Reference: 

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to 

more than 3.3 million software developers, architects and decision 

makers. DZone offers something for everyone, including news, 

tutorials, cheatsheets, blogs, feature articles, source code and more.  

“DZone is a developer’s dream,” says PC Magazine.

6
Java Concurrency

RECOMMENDED BookABOUT the Author

produced by one of the Executor factory methods; often this 
will be simpler and more flexible.

CompletionService
Beyond the common pattern of a pool of workers and an input 
queue, it is common for each task to produce a result that must 
be accumulated for further processing.  The CompletionService 
interface allows a user to submit Callable and Runnable tasks 
but also to take or poll for results from the results queue:

     • Future<V> take() – take if available
     • Future<V> poll() – block until available
     • Future<V> poll(long timeout, TimeUnit unit) – block 
        until timeout ends

The ExecutorCompletionService is the standard 
implementation of CompletionService.  It is constructed with 
an Executor that provides the input queue and worker thread 
pool.

Alex Miller is a Tech Lead with Terracotta Inc, the mak-
ers of the open-source Java clustering product Terracotta.  
Prior to Terracotta, Alex worked at BEA Systems and was 
Chief Architect at MetaMatrix.  His interests include Java, 
concurrency, distributed systems, query languages, and 
software design.  Alex enjoys tweeting as @puredanger 

and writing his blog at http://tech.puredanger.com and is a frequent 
speaker at user group meetings and conferences.  In St. Louis, Alex is 
the founder of the Lambda Lounge group for the study of functional and 
dynamic languages and the Strange Loop developer conference.

Developing, testing, and debugging multithreaded pro-
grams can still be very difficult; it is all too easy to create 
concurrent programs that appear to work, but fail when it 
matters most: in production, under heavy load. Java Con-
currency in Practice arms readers with both the theoretical 
underpinnings and concrete techniques for building reli-

able, scalable, maintainable concurrent applications. Rather than simply 
offering an inventory of concurrency APIs and mechanisms, it provides 
design rules, patterns, and mental models that make it easier to build 
concurrent programs that are both correct and performant.

Hot 
Tip

When sizing thread pools, it is often useful to base the size on the number of logical cores in the machine running the 
application.  In Java, you can get that value by calling Runtime.getRuntime().availableProcessors().  The number of available 
processors may change during the lifetime of a JVM.

BUY NOW
books.dzone.com/books/javaconcurrency

ISBN-13: 978-1-934238-62-2
ISBN-10: 1-934238-62-7

9 781934 238622

50795

The following example creates a fixed thread pool and submits 
a long-running task to it:

int processors = Runtime.getRuntime().availableProcessors();
ExecutorService executor = Executors.
   newFixedThreadPool(processors);
Future<Integer> futureResult = executor.submit(
  new Callable<Integer>() {
    public Integer call() { 
      // long running computation that returns an integer
    }
  });

Integer result = futureResult.get();  // block for result

In this example the call that submits the task to the executor 
will not block but return immediately.  The last line will block on 
the get() call until the result is available. 

ExecutorService covers almost all situations where you would 
previously create Thread objects or thread pools.  Any time 
your code is constructing a Thread directly, consider whether 
you could accomplish the same goal with an ExecutorService 

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/javaconcurrency

