
Simply bind your UIs
to an enterprise server

Dolphin Platf orm off ers you an open source implementati on of the presentati on model patt ern that lets you
bind any frontend - whether desktop, web or mobile - to your server in a modern way.

Dolphin Platform
The Dolphin Platf orm is an open source project
that was initi ated by Canoo Engineering AG. For
more informati on, examples and documentati on
please visit dolphin-platf orm.io.

New age client technology

New platf orms and technologies like
HTML5, mobile or webcomponents
oft en need a separate client that
is very hard to integrate. By using
Dolphin Platf orm, there is no barrier
in integrati ng a Polymer or JavaFX
based client in your applicati on
infrastructure.

Sync your Presentati on Models

The presentati on model is automati -
cally synchronized between the server
and any client. The platf orm provides
client libraries for UI technologies like
JavaFX, AngularJS or Polymer. It was
never easier to build collaborati ve
applicati ons.

Ready for enterprise

All controllers that are defi ned using
the Dolphin Platf orm can be inte-
grated and managed in the leading
Java-based enterprise frameworks
(Spring and JavaEE). The complete
communicati on between server and
client is based on the open source
remoti ng library Open Dolphin.

sync

http://www.dolphin-platform.io/

JavaFX 8
By Hendrik Ebbers & Michael Heinrichs

 » "Hello World" JavaFX Application

 » JavaFX Properties

 » Binding API

 » UI Components

 » Shapes

 » Controls, and more...

GENER A L
JavaFX is the new UI toolkit for Java-based client applications
running on desktop, embedded, and mobile devices. It is part of
the JDK 8 and is provided as a pure Java API. Among others, the
following features are supported:

• Accelerated 2D and 3D graphics

• UI controls, layouts, and charts

• Audio and video support

• Effects and animations

• HTML5 support

• Bindings, CSS, FXML, and more...

To provide maximum performance, JavaFX uses different native
rendering engines depending on the platform it is running on.
On Windows for example, Direct3D is used, while on most other
systems it uses OpenGL.

"HELLO WORLD" JAVAFX APPLICATION
This "Hello World" example will show a window with a button.
Clicking the button will print "Hello World" to the console.

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class HelloWorld extends Application {

 @Override
 public void start(Stage primaryStage) {
 Button button = new Button("Hello World");
 button.setOnAction (e -> System.out.
println("Hello World"));
 StackPane myPane = new StackPane();
 myPane.getChildren().add(button);

 Scene myScene = new Scene(myPane);

 primaryStage.setScene(myScene);
 primaryStage.setWidth(400);
 primaryStage.setHeight(300);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

The following diagram shows the structure of the program. The
main window corresponds to a Stage, which contains a Scene,
which contains a scene graph. The scene graph is a tree of
UI nodes.

A JavaFX application runs in the default JavaFX lifecycle that is
defined by the Application class. The init() method is called
before the JavaFX application thread is created, therefore no
UI-specific operations are allowed.

Each JavaFX application needs at least one stage with an internal
scene graph. At runtime, one can add new windows by creating
new stage instances.

JAVAFX PROPERTIES
JavaFX properties are based on regular JavaBeans properties. The
JavaFX runtime provides default implementations for all property
types, which can be used in one’s own class. The following code
example shows the definition of the "size" property.

private final IntegerProperty size =
 new SimpleIntegerProperty(this, "size", 42);

public int getSize() {
 return size.get();
} // continued ->

The future
starts today.

219

C
O

N
T

E
N

T
S

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 D
Zo

ne
.c

om
/r

ef
ca

rd
z

JA
V

A
F

X
 8

© DZONE, INC. | DZONE.COM

BROUGHT TO YOU BY:

http://www.dolphin-platform.io/
http://dzone.com/refcardz
http://dzone.com/refcardz
http://dzone.com
http://www.canoo.com/

public void setSize(int newValue) {
 size.set(newValue);
}
public IntegerProperty sizeProperty() {
 return size;
}

BINDING API
JavaFX offers the possibility to create bindings between properties.
Bindings synchronize the values of two properties automatically,
avoiding the error-prone boilerplate code that is otherwise needed.

Properties can be bound unidirectonally or bidirectionally,
implemented by the methods bind() and bindBidirectional()
respectively. If a property A is unidirectionally bound to a property
B, property A will always have the same value as B. Property A
becomes read-only in this case. If the properties A and B are
bound bidirectionally, changes are propagated in both directions.

In additon to binding two properties directly, it is also possible
to bind a property against an expression. If one of the operands
of the expression changes, the expression is re-evaluated
automatically and the result is assigned to the property.

HIGH-LEVEL BINDING API
There are two approaches to define complex bindings. The
high-level API allows bindings to be defined for many typical use
cases in an easy way.

OPERATIONS EXAMPLES TYPE

Arithmetic
Operations

num1.add(num2)
Bindings.divide(num1, num2)
num1.negate()

Number

Boolean
Operations

Bindings.or(bool1, bool2)
bool1.not()

Boolean

Comparisons obj1.isEqualTo(obj2)
Bindings.notEqual(obj1, obj2)

All

num1.greaterThan(num2)
num1.lessThanOrEqualTo(num2)

Number,
String

Bindings.equalIgnoreCase(s1, s2)
s1.isNotEqualToIgnoreCase(s2)

String

Conversions obj.asString() All

num.asString(format)
Bindings.format(format, val...)

Number,
Object

Null Check obj.isNull()
Bindings.isNotNull(obj)

Object,
String

String
Operations

Bindings.concat(s1, s2) String

Min / Max Bindings.min(num1, num2)
Bindings.max(num1, num2)

Number

Collections Bindings.valueAt(list, index)
Bindings.size(collection)

Collection

Select Binding Bindings.select(root,
properties...)

Ternary
Expression

Bindings.when(cond).then(val1).
otherwise(val2)

LOW-LEVEL BINDING API
With the low-level API, one can define bindings for arbitrary
expressions. The following code sample shows how a binding can
be defined that calculates the length of a vector (x, y) where x and
y are two DoubleProperties.

length = Bindings.createBinding(
 () -> Math.sqrt(x.get() * x.get() + y.get() * y.get()),
 x, y
);

UI COMPONENTS
All UI components in JavaFX extend the base class Node. There
are different types of nodes, as can be seen in the following class
hierarchy:

All geometric shapes, and text (which is just a very complex
shape), extend either the class Shape or Shape3D. These are leaf
nodes in the scene graph. The possibility to contain other nodes
as children is defined in the abstract class Parent. UI controls and
layout panes extend this class. Besides the properties that define
the specific behavior of a node, all of them provide support for
event handling and CSS styling.

SH A PES
Shapes define the most basic nodes that can be shown in a JavaFX
scene graph. The Shape class is the superclass of all geometric
primitives and defines these basic features:

2

© DZONE, INC. | DZONE.COM

JAVAFX 8

http://dzone.com/refcardz
http://dzone.com
http://www.canoo.com/

In addition, this class provides the boolean operations union,
intersect, and subtract to create new shapes.

Beyond just setting the stroke and the fill of a shape to a color, you

can use the Paint class’s four implementations:

The stroke can further be configured by modifiying the properties
strokeType, strokeLineJoin, and strokeLineCap. It is also possbile
to define a dashing pattern.

CONTROLS

Controls are the JavaFX UI nodes that a developer will use most of
the time. All controls—like buttons, textfields, or tables—extend
the Control class. By default, JavaFX controls will be rendered in a
consistent and system-independent theme.

3

© DZONE, INC. | DZONE.COM

JAVAFX 8

http://dzone.com/refcardz
http://dzone.com
http://www.canoo.com/

The specific style of a control is defined with CSS. The default
CSS theme in JavaFX, which is used to style all controls, is called
"Modena." Internally, all controls are made up of primitive UI
nodes like shapes and panes. In other words, each JavaFX control
is vector-based and can be scaled without losing any sharpness or
looking pixelated.

A tooltip can be specified for each control. A tooltip can contain
any UI node, so you can place a pane with any content in a tooltip
and create an awesome visual help dialog. For example, it is
possible to add a MediaView to a tooltip and play a video instead of
only showing text.

SIZE OF A CONTROL
The position and size of a control is defined by its parent node,
which is typically a layout pane. A developer can influence size by
setting the minimum, maximum, and preferred size of a control.
By default, these values are calculated by the control. For example,
the preferred width of a button depends on the text the button
contains. JavaFX calculates a width and height that ensures the
complete text fits into the button.

DIA LOGS A ND A LERTS
JavaFX provides several alert types.

In addition to standard notification alerts, JavaFX also contains
special dialogs that allow you to request a value.

L AYOUT PA NES
JavaFX provides several layouts out of the box, which can be seen
in the following diagram:

A layout is a parent node in the scene graph that modifies the
position of the child and—if the child is resizable—also the size.
For each layout—and for resizable components in general—three
sizes can be specified: the preferred, the minimum, and the
maximum size. Each layout algorithm tries to optimize the size of
the child nodes toward the preferred size and will shrink or expand
the child nodes according to the available space (adhering to the
minimum and maximum bounds). Each pane stores its children in
an ObservableList. In several pane types (e.g. HBox, FlowPane, and
StackPane) the index in this list defines the position of the child in
the pane. The basic Node class provides the methods toFront() and
toBack() to put a child to the first or last position.

A DDITION A L COM PONENTS
In addition to shapes, layout panes, and controls, JavaFX provides
several UI components for specific needs.

IMAGEVIEW
Two classes are required to show an image. The Image class
encapsulates the raw data of an image and its properties. The
ImageView class is a scene graph node, and it is responsible for
showing the image on screen. This split is needed because it allows
JavaFX to show an image several times on screen, while the data is
kept in memory only once.

Image image = new Image("path/to/image");
ImageView imageView = new ImageView(image);
myPane.getChildren().add(imageView);

MEDIAVIEW
The MediaView class can be used to show a video on screen or play
an audio file. JavaFX supports MP3, AIFF, WAV, and MPEG-4 as

4

© DZONE, INC. | DZONE.COM

JAVAFX 8

http://dzone.com/refcardz
http://dzone.com
http://www.canoo.com/

audio codecs and FLV (Flash Video) or MPEG-4 (H.264/AVC) as
video codecs. Two classes are required to play an audio stream:
similar to the Image class, the Media class encapsulates the raw
data, while MediaPlayer provides functionality to control the
playback and contains other useful media information. To play a
video, a third class is needed: MediaView. It is a regular scene graph
node, which means one can even apply effects and animate videos.

Media media = new Media("path/to/media");
MediaPlayer player = new MediaPlayer(media);
MediaView mediaView = new MediaView(player);

player.setVolume(0.5);
player.play();

CHARTS
JavaFX contains a full-fledged Charts API that allows it to define
and visualize charts. The following figure shows the type of charts
that are available in the standard JDK:

CANVAS
In some situations, it is more efficient to have full control over
rendering and draw to the screen directly. JavaFX provides the
Canvas class for these scenarios. It provides a GraphicsContext
with several methods to draw geometric figures or images directly.
The Canvas component is comparable to HTML Canvas or the
Java2D Graphics2D functionality.

WEBVIEW
The JavaFX WebView class can be used to embed any web content in
your application. WebView uses WebKit internally to render web
content and provide interaction with that content. Even rich
HTML5 applications can be wrapped in a JavaFX window or pane.
WebView provides a WebEngine object that allows the developer to
directly interact with the HTML content and, for example, inject
JavaScript or manipulate the DOM.

WebView webView = new WebView();
WebEngine engine = webView.getEngine();

//Load a web page
engine.load("http://www.guigarage.org");

//Add the web view to the JavaFX view
myPane.getChildren().add(webView);

// Inject JavaScript
engine.executeScript("history.back()");

CSS
JavaFX provides styling by CSS. CSS support is based on the W3C
CSS version 2.1, but there are some minor differences that can be
found in the JavaFX CSS documentation (http://docs.oracle.com/
javase/8/javafx/api/javafx/scene/doc-files/cssref.html).

In JavaFX, a stylesheet can be applied to the scene graph or to a
specific node. A stylesheet that is applied to the scene graph will
affect all nodes in the scene graph. If the stylesheet is applied to a
node, it will affect this node and all its children (recursively).
Several stylesheets can be applied to the scene graph or a node.
The following code snippet shows how you can set a stylesheet for
a scene graph or a node:

// load the stylesheet
String style = getClass().getResource("style.css").
toExternalForm();

// apply stylesheet to the scene graph
myScene.getStylesheets().addAll(style);

// apply stylesheet to a node
parentPanel.getStylesheets().addAll(style);

JavaFX also supports inline stylesheets for nodes. Here you can
define the CSS rules directly in your Java code as a string, which
can be helpful for debuging and testing. The Node class provides a
method that can be used to set an inline style for a Node instance:

button.setStyle("-fx-background-color: green;");

A CSS rule is applied to a node if its selector matches. In the selector,
one can use a combination of ID, element classes, style classes,
and pseudo classes. A JavaFX node can have exactly one ID:

mySaveButton.setId("my-save-button");

Here is an example of a CSS rule that styles exactly this button:

/* The # sign in the selector defines an id */
#my-save-button {
 -fx-background-color: blue;
}

In addition to the ID, a node can have several style classes:

button.getStyleClass().add("toolbar-button");

All nodes that have the "toolbar-button" style class can be styled
with a single rule in CSS:

/* The . sign in the selector defines a style class */
.toolbar-button {
 -fx-background-color: blue;
}

Pseudo classes can be defined for any node, too. Pseudo classes are
activated and deactivated by using the Java API:

// Define the pseudo class
PseudoClass myPseudoClass = PseudoClass.
getPseudoClass("active");

//activate the pseudo class
myNode.pseudoClassStateChanged(myPseudoClass, true);

//deactivate the pseudo class
myNode.pseudoClassStateChanged(myPseudoClass, false);

5

© DZONE, INC. | DZONE.COM

JAVAFX 8

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://dzone.com/refcardz
http://dzone.com
http://www.canoo.com/

In CSS you can use the pseudo class in a selector to define a
specific style:

/* A colon signals a pseudo class */
.control:active {
 -fx-background-color: blue;
}

FX M L
FXML is an XML-based language that defines the structure and
layout of JavaFX UIs. It is tool-agnostic and can be edited with any
editor, but it’s especially helpful to use SceneBuilder, a WYSIWYG
editor for FXML.

FXML allows you to create a clear separation between the view of
an app and the logic. JavaFX provides an API to define MVC packages
that are based on FXML and a Java controller. Here is a small FXML
definition for a view that contains only one button in a StackPane:

<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.scene.control.*?>
<?import java.lang.*?>
<?import javafx.scene.layout.*?>

<StackPane maxHeight="-Infinity" maxWidth="-
Infinity" minHeight="-Infinity" minWidth="-Infinity"
prefHeight="400.0" prefWidth="600.0" xmlns="http://javafx.
com/javafx/8" xmlns:fx="http://javafx.com/fxml/1">
 <children>
 <Button mnemonicParsing="false" text="ButtonTitle"
/>
 </children>
</StackPane>

Once the FXML view is created, it can be loaded with the
FXMLLoader class:

FXMLLoader loader = new FXMLLoader(getClass().
getResource("demo.fxml"));
StackPane view = loader.load();

A Java-based controller can be bound to the FXML file. The
@FXML annotation can be used to inject view nodes directly into
the controller class. An injectable node must be marked with a
unique fx:id in FXML:

<Button fx:id="myButton" mnemonicParsing="false"
text="ButtonTitle"/>

Once this is done, the Button instance can be injected in the
controller by using the fx:id as the field name:

public class ViewController {

 @FXML
 private Button myButton;
}

When loading the FXML stream, the controller can be passed to
the loader. In this case, the FXMLLoader will automatically inject all
fields that are annotated with @FXML:

ViewController controller = new ViewController();
FXMLLoader loader = new FXMLLoader(getClass().
getResource("demo.fxml"));
loader.setController(controller);
StackPane view = loader.load();

In addition, the FXML specification supports several other
features, like resource bundles, event handler linking, or nesting
FXML files.

JAVA FX A ND SWING
It is possible to use JavaFX components within a Swing application—
and to use Swing components in a JavaFX application.

JAVAFX IN A SWING APPLICATION
JFXPanel extends Swing's JComponent and can therefore be
integrated into any Swing application. The scene property of
JFXPanel allows you to set a JavaFX Scene, which will be visualized
within the JFXPanel.

SWING IN A JAVAFX APPLICATION
A SwingNode can be used to add Swing components to a JavaFX
application. SwingNode is a regular node and can be added
anywhere in the scene graph. It has a content property that can
take any JComponent.

THREADING
Unfortunately, both Swing and JavaFX require their own main
application thread, and changes have to be made on the right
thread. This can be achieved with the helper methods Platform.
runLater() and SwingUtilities.invokeLater(), respectively.

6

© DZONE, INC. | DZONE.COM

JAVAFX 8

http://dzone.com/refcardz
http://dzone.com
http://cloudbees.com
http://www.canoo.com/

Hendrik Ebbers is Software Engineer at Canoo Engineering
AG and lives in Dortmund, Germany. His main focus besides
research and development is primarily in the areas of UI
technologies, Middleware and DevOps. Additionally, Hendrik
Ebbers is founder and leader of the Java User Group Dortmund
and gives talks and presentations in User Groups and

Conferences. He's blogging about UI related topics at www.guigarage.com (or
on Twitter @hendrikEbbers) and contributes to some open-source Projects:
DataFX, AquaFX and Dolphin Platform. Hendrik's JavaFX book "Mastering
JavaFX 8 Controls" was released 2014 by Oracle press. Hendrik is a JavaOne
Rockstar and JSR expert group member.

© DZONE, INC. | DZONE.COM

Michael Heinrichs is a user interface creator by passion. He
is convinced: no matter which technology and which device, if
it has a screen, one can build a truly amazing experience. And
pure magic.

Michael works at the Canoo Engineering AG as a software
engineer on-next generation user interfaces. Before that,

he was responsible for performance optimizations in JavaFX Mobile at
Sun Microsystems and later became the technical lead of the JavaFX core
components at Oracle.

Michael loves to spend time with his family and cooking. You can find him on
Twitter @net0pyr and occasionally he blogs at http://blog.netopyr.com.

© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM

ABOUT THE AUTHORS

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

7

CREDITS:
Editor: G. Ryan Spain | Designer: Yassee Mohebbi | Production: Chris Smith | Sponsor Relations: Chris Brumfield | Marketing: Chelsea Bosworth

TOOL DESCRIPTION

Scene Builder Scene Builder is an open-source WYSIWYG
editor for JavaFX that creates FXML-based
views. It also has very good CSS support
and contains a CSS analyzer.

Scenic View Scenic View is a tool that helps you debug
your application. The tool finds running
JavaFX applications and allows you to
navigate through scene graphs and inspect
the properties of specific nodes.

JavaFX Ensemble This application provides demos and
examples for most JavaFX features,
including their sources. Most of the demos
are interactive and let you directly test how
a feature behaves at runtime.

e(fx)clipse A plugin for Eclipse that adds a lot of useful
JavaFX support to the IDE.

PACK AGING AND DEPLOYMENT
Java 8 offers support to deploy your JavaFX application as a native
app. In this case, the JRE will be bundled with your application.
A native executable will be created (e.g., an EXE on Windows or
a DMG on Mac), and a user can execute it without the need for
Java on the client system. Additional information, like metadata
or application icons, can be defined for the native app, too. The
bin folder of the JDK contains the javafxpackager executable
that must be used to create such a bundled application. There are
plugins for Ant, Maven, and Gradle available to support this feature
automatically in your build.

TOOLS
Since JavaFX is completely Java based, you can use any Java IDE—
or just a text editor and the JDK—to create JavaFX applications.
Beyond that, there are also some nice tools, which are part of the
JavaFX ecosystem, that can help you create JavaFX applications.
The following table gives a short overview of some of these tools:

JAVAFX 8

http://www.guigarage.com
http://twitter.com/hendrikEbbers
http://twitter.com/net0pyr
http://blog.netopyr.com
mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://dzone.com
http://dzone.com
http://dzone.com/refcardz

