
© DZONE, INC. | DZONE.COM

Getting Started With Git
BY MATTHEW MCCULLOUGH, UPDATED AND REVISED BY KURT COLLINS

» Why Get Git?

» Getting Started

» Cloning Existing Projects

» The Typical Local Workflow

» The Remote Workflow...and much more!C
O

N
T

E
N

T
S

JA
V

A
 E

N
T

E
R

P
R

IS
E

 E
D

IT
IO

N
 7

WHY GET GIT ?
Git is a postmodern version control system that offers the
familiar capabilities of CVS or Subversion, but doesn’t stop at
just matching existing tools. Git stretches the very notion of
version control systems (VCS) by its ability to offer almost all of
its features for use offline and without a central server. It is the
brainchild of Linus Torvalds, with the first prototype written in a
vitriolic two-week response to the “BitKeeper debacle” of 2005.

Today, developers everywhere are migrating in droves to this
exciting platform. Users reference its blistering performance,
usage flexibility, offline capabilities, and collaboration features
as their motivation for switching. Let’s get started with Git.
You’ll be using it like a master in no time at all.

DISTRIBUTED VERSION CONTROL
If you are familiar with one or more traditional or centralized
version control systems like Subversion, there will be several
mental adjustments to make in your migration to Git. The
first is that there is no central server. The second is that there
is no central server. The full history of the repository lives
on every user’s machine that has cloned (checked out) a copy
of the repository. This is the essence of a Distributed Version
Control System (DVCS).

Once over those hurdles, it is quite liberating to be able to work
entirely independently, versioning any new project that you
start, even if in the incubation phase. The ease of setting up
a new Git repository (or ‘repo’ in common parlance) leads to
setting up repos everywhere. It feels frictionless.

From there you’ll progress to the second epiphany of being able
to share a repository and a changeset directly with a colleague
without any complicated setup, without a commit/check-in to a
central server, direct network connectivity, or having to worry
about firewalls getting in the way. Git has done technologically
for version control what BitTorrent did for file sharing. It
permanently replaced the spoke and hub structure with a
peer-to-peer model, and there’s no turning back. It supports
transmitting binary sets of changes via USB stick, email, or in
the traditional style, over a network, but amazingly, via HTTP/S,
FTP/S, SCP, Samba, SSH, RSYNC or WebDAV. While some of these
have been deprecated (specifically FTP and RSYNC) due to their
inefficiencies, the number of synchronization options available
natively for Git repos are still astounding.

GET TING STA RTED

INSTALLING GIT
Git has a very light footprint for its command line installation.
For most platforms, you can simple copy the binaries to a
folder that is on the executable search $PATH. Git is primarily
written in C, which means there is a unique distribution for each
supported platform.

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
094

G
ET

TI
N

G
 S

TA
R

TE
D

 W
IT

H
 G

IT

The canonical reference for Git installers can be found on a
subpage of the official Git site at: git-scm.com/download.
There are a number of installers available there for those
that don’t want to go through the hassle of doing the
install manually. In addition, also available at the official Git
download site are links to older distributions of the Git binary.

ESTABLISHING USER CREDENTIALS
Once you have selected a suitable distribution of Git for your
platform, you’ll need to identify yourself with a username and
email address to Git.

In a separation of concerns most satisfying to the purist,
Git does not directly support repository authentication or
authorization. It delegates this in a very functional way to the
protocol (commonly SSH) or operating system (file system
permissions) that is hosting or serving up the repository. Thus,
the user information provided during your first Git setup on a
given machine is purely for “credit” of your code contributions.

With the binaries in your $PATH, issue the following three
commands just once per new machine on which you’ll be
using Git. Replace the username and email address with your
preferred credentials.

git config --global user.name “yogi.bear”
git config --global user.email “yogi@jellystonepark.org”
git config --global color.ui “auto”

These commands store your preferences in a file named
.gitconfig inside your home directory (~ on UNIX and Mac, and
%USERPROFILE% on Windows).

If you are intrigued by all the potential nuances of a Git setup,
GitHub, a web-based code hosting site, offers several in-depth
tutorials on setting up Git for Linux, Windows, and Mac. Here
are several in-depth Git installation guides:

help.github.com/articles/set-up-git/#platform-windows

help.github.com/articles/set-up-git/#platform-mac

help.github.com/articles/set-up-git/#platform-linux

CREATING A REPOSITORY
Now that Git is installed and the user information established, you
can begin creating new repositories. From a command prompt,
change directories to either a blank folder or an existing project
that you want to put under version control. Then initialize the
directory as a Git repository by typing the following command:

git init
touch README.md
git add .
git commit –m ’The first commit‘

The first command in the sequence, init, builds a .git directory
that contains all the metadata and repository history. Unlike
many other version control systems, Git uniquely stores
everything in just a single directory at the top of the project. No
pollution in every directory.

http://www.dzone.com?refcardz
http://www.refcardz.com
https://DZone.com/Refcardz
http://git-scm.com/download

© DZONE, INC. | DZONE.COM

2 GETTING STARTED WITH GIT

Following the directory initialization, the next command creates
an empty file in the directory named README.md. You can skip
this part if you decided to create a repository from a directory with
files in it.

Next, the add command with the dot wildcard tells Git to start
tracking changes for the current directory, its files, and for all folders
beneath, if any exist.

Lastly, the commit function takes all previous additions and makes
them permanent in the repository’s history in a transactional action.
Rather than letting Git prompt the user via the default text editor,
the -m option preemptively supplies the commit message to be
saved alongside the committed files.

It is amazing and exciting to be able to truthfully say that you can use
the basics of Git for locally versioning files with just these commands.

CLONING E X ISTING PROJECTS

An equally common use case for Git is starting from someone else’s
repository history. This is similar to the checkout concept in
Subversion or other centralized version control systems. The
difference in a DVCS is that the entire history, not just the latest
version, is retrieved and saved to the local user’s disk.

The syntax to pull down a local copy of an existing repo is:

git clone git://github.com/matthewmccullough/hellogitworld.git
git clone http://github.com/matthewmccullough/hellogitworld.git
git clone git@github.com:matthewmccullough/hellogitworld.git

The protocol difference often signifies whether you have read-
only or writeable access to the origin repository. The final syntax,
which accesses an SSH exposed repository, is the most common
write-enabled protocol.

The clone command performs several subtasks under the hood. It
sets up a remote (a Git repository address bookmark) named origin
that points to the location git://github.com/matthewmccullough/
hellogitworld.git. Next, clone asks this location for the contents of
its entire repository. Git copies those objects in a zlib-compressed
manner over the network to the requestor’s local disk. Lastly,
clone switches to a branch named master, which is equivalent to
Subversion’s trunk, as the current working copy. The local copy of
this repo is now ready to have edits made, branches created, and
commits issued – all while online or offline.

TREEISH & H A SHES

Rather than a sequential revision ID, Git marks each commit with a
SHA-1 hash that is unique to the person committing the changes, the
folders, and the files comprising the changeset. This allows commits
to be made independent of any central coordinating server.

A full SHA-1 hash is 40 hex characters:

64de179becc3ed324daab72f7238df1404723672

To efficiently navigate the history of hashes, several symbolic
shorthand notations can be used as listed in the table below.
Additionally, any unique sub-portion of the hash can be used. Git will
let you know when the characters supplied are not enough to be
unique. In most cases, 4-5 characters are sufficient.

TREEISH DEFINITION

HEAD The current committed version

HEAD^ One commit ago

HEAD^^ Two commits ago

HEAD~1 One commit ago

HEAD~3 Three commits ago

:/”Reformatting all” Nearest commit whose comment begins
with “Reformatting all”

RELEASE-1.0 User-defined tag applied to the code when it
was certified for release.

The complete set of revision specifications can be viewed
by typing: git help rev-parse.

Treeish can be used in combination with all Git commands that
accept a specific commit or range of commits. Examples include:

git log HEAD~3..HEAD
git checkout HEAD^^
git merge RELEASE-1.0

THE TYPIC A L LOC A L WORKFLOW

EDITING
Once you’ve cloned or initialized a new Git project, just start
changing files as needed for your current assignment. There is no
pessimistic locking of files by teammates. In fact, there’s no file
locking at all. Git operates in a very optimistic manner, confident
that its merge capabilities are a match for any conflicted changes
that you and your colleagues can craft.

If you need to move a file, Git can often detect your manual relocation
of the file and will show it as a pending “move.” However, it is often
more prudent to just directly tell Git to relocate a file and track its
new destination.

git mv originalfile.txt newsubdir/newfilename.txt

If you wish to expunge a file from the current state of the branch,
simply tell Git to remove it. It will be put in a pending deletion state
and can be confirmed and completed by the next commit.

git rm fileyouwishtodelete.txt

VIEWING
Daily work calls for strong support of viewing current and historical
facts about your repository, often from different, perhaps even
orthogonal points of view. Git satisfies those demands in spades.

STATUS
To check the current status of a project’s local directories and files
(modified, new, deleted, or untracked) invoke the status command:

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

3 GETTING STARTED WITH GIT

git status

FIGURE 1: GIT STATUS

DIFF
A patch-style view of the difference between the currently edited
and committed files, or any two points in the past can easily be
summoned. The .. operator signifies a range is being provided. An
omitted second element in the range implies a destination of the
current committed state, also known as HEAD:

git diff
git diff 32d4..
git diff --summary 32d4..

Git allows for diffing between the local files, the stage files, and the
committed files with a great deal of precision.

COMMAND DEFINITION

git diff everything unstaged diffed to the last commit

git diff --cached everything staged diffed to the last commit

git diff HEAD everything unstaged and staged diffed to the
last commit

FIGURE 2: GIT DIFF

LOG
The full list of changes since the beginning of time, or optionally,
since a certain date is right at your fingertips, even when
disconnected from all networks:

git log
git log --since=yesterday
git log --since=2weeks

FIGURE 3: GIT LOG

BLAME
If trying to discover why and when a certain line was added, cut to
the chase and have Git annotate each line of a source file with the
name and date it came into existence:

git blame <filename>

FIGURE 4: GIT BLAME

STASHING
Git offers a useful feature for those times when your changes are in

an incomplete state, you aren’t ready to commit them, and you need

to temporarily return to the last committed (e.g. a fresh checkout).

This feature is named “stash” and pushes all your uncommitted

changes onto a stack.

git stash

You can also save your stash with a name. This is particularly useful

when you want to save more than one stash to the stack.

git stash save “picnic_basket”

To write the most recently stashed changes back into the working

copies of the files, simply pop them back off the stack. Keep in mind,

the following command also removes the changes from the stack.

git stash pop

However, if you have multiple stashes on the stack, you can also list

all of the stashes by using:

git stash list

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

4 GETTING STARTED WITH GIT

Once you’ve found the stash you want to load, you can do it one of
two ways: either use the apply command or the pop command as in
the following example.

git stash pop stash{n}
git stash apply stash{n}

Take note of the “n” in between the brackets. The “n” corresponds to
the number of the stash you want to use. You can get the number by
use the git stash list command explained above. Again, if you use the
git stash pop version of the command, it will remove the code you
want to use from the stack. However, if you use the git stash apply
version of the command, it will use the code you want and leave it on
the stack to be used again at another time.

ABORTING
If you want to abort your current uncommitted changes and
restore the working copy to the last committed state, there are two
commands that will help you accomplish this.

git reset --hard

Resetting with the hard option recursively discards all of your
currently uncommitted (unstaged or staged) changes.

To target just one blob, use the checkout command to restore the file
to its previous committed state.

git checkout -- Person.java

ADDING (STAGING)
When the developer is ready to put files into the next commit, they
must first be staged with the add command. Users can navigate to
any directory, adding files item by item, or by wildcard.

git add <file name, folder name, or wildcard>
git add submodule1/PrimaryClass.java
git add .
git add *.java

The -i option activates interactive add mode, in which Git prompts
for the files to be added or excluded from the next commit.

git add -i

The -p option is a shortcut for activation of the patch sub-mode of
the interactive prompt, allowing for precise pieces within a file to be
selected for staging.

git add -p

COMMITTING
Once all desired blobs are staged, a commit command transactionally

saves the pending additions to the local repository. The default text

$EDITOR will be opened for entry of the commit message.

git commit

To supply the commit message directly at the command prompt:

git commit –m ”<your commit message>”

To view the statistics and facts about the last commit:

git show

If a mistake was made in the last commit’s message, edit the text
while leaving the changed files as-is with:

git amend

BRANCHING
Branching superficially appears much the same as it does in other
version control systems, but the difference lies in the fact that Git
branches can be targeted to exist only locally, or be shared with (pushed
to) the rest of the team. The concept of inexpensive local branches
increases the frequency in which developers use branching, opening
it up to use for quick private experiments that may be discarded if
unsuccessful, or merged onto a well-known branch if successful.

git branch <new branch name> <from branch>
git branch <new branch name>

CHOOSING A BRANCH
Checking out (switching to) a branch is as simple as providing its name:

git checkout <branch name>

Local and remote git branches are checked out using the same
command, but in somewhat of a radical change of operation for users
coming from other systems like Subversion, remote branches are
read-only until “tracked” and copied to a local branch. Local
branches are where new work is performed and code is committed.

git branch <new branch name> <from branch>
git checkout <new branch name>

Or alternatively, in a combined command:

git checkout -b <new branch name> <from branch>

There is another way, as well. The following commands:

git checkout <from branch>
git checkout -b <new branch name>

This method is often used if you’re already working within a branch
and you want to quickly start a new branch based off of the current
branch you’re working with.

Starting with Git 1.6.6, a shorthand notation can be used to track a
remote branch with a local branch of exactly the same name when
no local branch of that name already exists and only one remote
location is configured.

<remote and local branch name> git checkout performanceexperiment

LISTING BRANCHES
To list the complete set of current local and remote branches known to Git:

git branch -a

Specifying a folder name as the target of a git add
recursively stages files in any subdirectories.

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

5 GETTING STARTED WITH GIT

The local branches typically have simple names like master and
experiment. Local branches are shown in white by Git’s default
syntax highlighting. Remote branches are prefixed by “remotes”
and are shown in red.

MERGING
Like other popular VCSes, Git allows you to merge one or more
branches into the current branch.

git merge <branch one>
git merge <branch one> <branch two>

If any conflicts are encountered, which happens less with Git that with
many other VCSes, a notification message is displayed and the files are
internally marked with >>>>>>>>> and <<<<<<<< surrounding the
conflicting portion of the file contents. Once manually resolved,
git-add the resolved file, then commit in the usual manner.

REBASE
Rebasing is the rewinding of existing commits on a branch with the
intent of moving the “branch start point” forward, then replaying the
rewound commits. This allows developers to test their branch changes
safely in isolation on their private branch just as if they were made on
top of the mainline code, including any recent mainline bug fixes.

git rebase <source branch name>
git rebase <source branch name> <destination branch name>

TAGGING
In Git, tagging operates in a simple manner that approximates other
VCSes, but unlike Subversion, tags are immutable from a commit
standpoint. To mark a point in your code timeline with a tag:

git tag <tag name>
git tag <tag name> <treeish>

THE REMOTE WORKFLOW

Working with remote repositories is one of the primary features of
Git. You can push or pull, depending on your desired workflow with
colleagues and based on the repository operating system file and
protocol permissions. Git repositories are most typically shared via
SSH, though a lightweight daemon is also provided.

REMOTES
While full paths to other repositories can be specified as a source or
destination with the majority of Git commands, this quickly becomes
unwieldy and a shorthand solution is called for. In Git-speak, these
bookmarks of other repository locations are called remotes.

A remote called origin is automatically created if you cloned a remote

repository. The full address of that remote can be viewed with:

git remote v

To add a new remote name:

git remote add <remote name> <remote address>
git remote add <remote name> git@github.com:matthewmccullough/
ts.git

PUSH
Pushing with Git is the same thing as sending local changes
to a colleague or community repository with sufficiently open
permissions as to allow you to write to it. If the colleague has the
pushed-to branch currently checked out, they will have to re-
checkout the branch to allow the merge engine to potentially weave
your pushed changes into their pending changes.

FETCH
To retrieve remote changes without merging them into your local
branches, simply fetch the blobs. This invisibly stores all retrieved
objects locally in your .git directory at the top of your project
structure, but waits for further explicit instructions for a source and
destination of the merge.

git fetch <remote name> git merge <remote name/remote branch>

PULL
Pulling is the combination of a fetch and a merge as per the previous
section all in one seamless action.

git pull
git pull <remote name>
git pull <remote name> <branch name>

BUNDLE
Bundle prepares binary diffs for transport on a USB stick or via
email. These binary diffs can be used to “catch up” a repository that
is behind otherwise too stringent of firewalls to successfully be
reached directly over the network by push or pull.

git bundle create catchupsusan.bundle HEAD~8..HEAD
git bundle create catchupsusan.bundle --since=10.days master

These diffs can be treated just like any other remote, even though
they are a local file on disk. The contents of the bundle can be
inspected with Is-remote and the contents pulled into the local
repository with fetch. Many Git users add a file extension of .bundle
as a matter of convention.

git ls-remote catchupsusan.bundle
git fetch catchupsusan.bundle

GUIS
Many graphical user interfaces have gained Git support in the last
two years. The most popular Ruby, Perl, and Java/JVM IDEs have
between a good and great level of Git integration today.

GITK & GIT-GUI
Standard Git distributions provide two user interfaces written in Tcl/
Tk. The first, Git-Gui offers a panel by which to select files to add
and commit, as well as type a commit message. The latter offers a
diagram visualization of the project’s code history and branching.
They both assume the current working directory as the repository
you wish to inspect.

git gui gitk

Git repository sharing via the simple daemon is
introduced at: www.kernel.org/pub/software/scm/git/
docs/git-daemon.html. Sharing over SSH and Gitosis
is documented in the Git Community Book at: book.git-
scm.com/4_setting_up_a_private_repository.html.

http://www.dzone.com?refcardz
http://www.kernel.org/pub/software/scm/git/docs/git-daemon.html
http://www.kernel.org/pub/software/scm/git/docs/git-daemon.html
http://book.git-scm.com/4_setting_up_a_private_repository.html
http://book.git-scm.com/4_setting_up_a_private_repository.html

© DZONE, INC. | DZONE.COM

6 GETTING STARTED WITH GIT

TOWER, SOURCETREE & OTHERS
There are a number of GUIs out there for Git that aren’t officially
released along with Git. Some of them include significant advanced
functionality and are available on multiple platforms. Some of the
more widely used ones include Tower, SourceTree, GitEye, and GitHub
Desktop. Unfortunately, GitHub Desktop currently only works with
GitHub & GitHub Enterprise repositories. However, given the wide
use of GitHub as an online repository, it’s likely that you’ll run into
the GitHub Desktop client at one point.

IDES
Java IDEs including IntelliJ, Eclipse (eGit), and NetBeans (NBGit) all
offer native or simple plugin support for Git through their traditional
source code control integration points. However, there are a number
of other applications that also offer direct Git integration, as well.
This includes applications such as Sublime Text and Atom.

Numerous other platform-native GUIs offer graphically rich history
browsing, branch visualization, merging, staging and commit features.

CVS, SUBVERSION
On the interoperability front, the most amazing thing about Git is its
ability to read and write to a remote Subversion or CVS repository
while aiming to provide the majority of the benefits of Git on the
local copy of a repository.

CLONING
To convert a Subversion repository that uses the traditional trunk,
tags, branches structure into a Git repository, use a syntax very
similar to that used with a traditional Git repository.

git svn clone --stdlayout <svn repo url>

Please be patient, and note the progress messages. Clones of large
Subversion repositories can take hours to complete.

PUSHING GIT COMMITS TO SUBVERSION
Git commits can be pushed, transactionally, one for one to the cloned
Subversion repository. When the Git commits are at a good point for
sharing with the Subversion colleagues, type:

git svn dcommit

RETRIEVING SUBVERSION CHANGES
When changes are inevitably made in Subversion and you want to
freshen the Git repo with those changes, rebase to the latest state of
the Subversion repo.

git svn rebase

A DVA NCED COM M A NDS

Git offers commands for both the new user and the expert alike.
Some of the Git features requiring in-depth explanations can be
discovered through the resources links below. These advanced
features include the embedded (manpage-like) help and ASCII art
visualization of branch merge statuses with show-branch. Git is also
able to undo the last commit with the revert command, binary search
for (bisect) the commit over a range of history that caused the unit
tests to begin failing, check the integrity of the repository with fsck,
prune any orphaned blobs from the tree with gc, and search through
history with grep. And that is literally just the beginning.

This quick overview demonstrates what a rich and deep DVCS Git
truly is, while still being approachable for the newcomer to this bold
new collaborative approach to source code and version control.

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

KURT COLLINS (@timesync) is Director of Technology
Evangelism and Partnerships at Built.io. Kurt began his engineering
career at Silicon Graphics (SGI) where he worked on debugging
its UNIX-flavored operating system. Kurt co-founded The Hidden
Genius Project along with eight other individuals in response to the
urgent need to increase the number of black men in the technology
industry. Mentoring young people interested in the technology
industry is a personal passion of his. Today, he continues this work
with tech startups and non-profits alike.

ABOUT THE AUTHOR
OFFICIAL RELEASE NOTES AND
‘MAN’ PAGES
git-scm.com

kernel.org/pub/software/scm/git/docs

MANUALS, TUTORIALS
cworth.org/hgbook-git/tour
www-cs-students.stanford.edu/~blynn/
gitmagic

peepcode.com/products/git

BOOKS
Pro Git by Scott Chacon (free HTML)

Version Control with Git by Jon Loeliger

Pragmatic Version Control Using Git by
Travis Swicegood

BOOKMARKS
delicious.com/matthew.mccullough/git

RESOURCES

http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://twitter.com/timesync
http://Built.io
http://git-scm.com
www.kernel.org/pub/software/scm/git/docs
http://cworth.org/hgbook-git/tour
http://www-cs-students.stanford.edu/~blynn/gitmagic
http://www-cs-students.stanford.edu/~blynn/gitmagic
http://peepcode.com/products/git
http://progit.org/book/
http://oreilly.com/catalog/9780596520137
http://pragprog.com/titles/tsgit/pragmatic-version-control-using-git
http://delicious.com/matthew.mccullough/git

