
Data encoding
Lauri Võsandi

Binary data

∙ Binary can represent
∙ Letters of alphabet, plain-text files
∙ Integers, floating-point numbers (of finite precision)
∙ Pixels, images, video
∙ Audio samples

∙ Could be stored in processor registers, RAM,
harddisk, transmitted over network etc

∙ Quantization, quantization error

Binary encoding

Binary to decimal

∙ Bit indexing starts from 0
∙ Least significant bit is

usually on the right
∙ Each bit has weight of 2n

∙ Multiply each bit with
it’s weight

∙ Add the multiplications

Decimal to binary

∙ If weight can be subtracted,
bit corresponds to one

∙ If the number is smaller
than next weight, bit
corresponds to zero

Bit order

also known as most significant bit (MSB) least significant bit
(LSB)

Hexadecimal representation
binary hexadecimal decimal
0000 => 0 => 0
0001 => 1 => 1
0010 => 2 => 2
0011 => 3 => 3
0100 => 4 => 4
0101 => 5 => 5
0110 => 6 => 6
0111 => 7 => 7

1000 => 8 => 8
1001 => 9 => 9
1010 => A => 10
1011 => B => 11
1100 => C => 12
1101 => D => 13
1110 => E => 14
1111 => F => 15

∙ Each hexadecimal
digit corresponds to
nibble (4-bits)

∙ Hexadecimal retains
alignment to binary
data opposed to
decimal

Endianess

Motorola 68k (Macintosh) Intel x86 (PC-s)

Integer representation

∙ Number 42 (decimal) could be represented as
∙ 0b101010 (binary)
∙ 0x2a (hexadecimal)
∙ 052 (octal)
∙ 0o52 (also octal)

∙ Check out http://baseconvert.com

http://baseconvert.com

Fixed-point numbers

IEEE754 floating point numbers

Text encoding
ASCII, Unicode

ISO8859-13 (Baltic)

∙ Portion
of extended
ASCII
replaced
with letters
from Baltic
languages

Problems

∙ Impossible to mix documents of different
character sets

∙ 8-bits not enough to describe alphabets of
different languages

Unicode

∙ More than million characters are described
∙ Unicode code point refers to a index of symbol:

0x00000 to 0x10FFFF
∙ How it gets mapped to bits is different story:

∙ UTF-8 - Variable length coding (1 to 4 bytes)
∙ UTF-16 - Also variable-length coding (2 or 4 bytes)
∙ UTF-32 - Only fixed-width coding (4 bytes)

Unicode

∙ ASCII was used for
source code,
text files etc.

∙ Has been replaced by
UTF-8

∙ In-memory data
structures different

Python 2.x str is ASCII

>>> type("γεια σας")
<type 'str'>
>>> len("γεια σας")
15

>>> type(u"γεια σας")
<type 'unicode'>
>>> len(u"γεια σας")
8

Python 3.x str is Unicode
>>> type("γεια σας")
<class 'str'>

>>> len("γεια σας")
8

>>> type(b"γεια σας")
 File "<stdin>", line 1

SyntaxError: bytes can only contain ASCII literal characters.

>>> "γεια σας".encode("utf-8")
b'\xce\xb3\xce\xb5\xce\xb9\xce\xb1 \xcf\x83\xce\xb1\xcf\x82'

>>> type(b"hello world")

<class 'bytes'>

Data types in Java

Data types in C (x86)

sizeof(bool) == 1 # 8-bit boolean

sizeof(char) == 1 # 8-bit ASCII char or byte

sizeof(short) == 2 # 16-bit integer

sizeof(int) == 4 # 32-bit integer

sizeof(long) == 4 # 32-bit integer

sizeof(long long) == 8 # 64-bit integer

sizeof(float) == 4 # 32-bit floating point number

sizeof(double) == 8 # 64-bit floating point number

sizeof(void*) == 4 # 32-bit pointer

Data types in C (armhf)

sizeof(bool) == 1

sizeof(char) == 1

sizeof(short) == 2

sizeof(int) == 4

sizeof(long) == 4

sizeof(long long) == 8

sizeof(float) == 4

sizeof(double) == 8

sizeof(void*) == 4

Data types in C (x86-64)

sizeof(bool) == 1 # 8-bit boolean

sizeof(char) == 1 # 8-bit ASCII char or byte

sizeof(short) == 2 # 16-bit integer

sizeof(int) == 4 # 32-bit integer

sizeof(long) == 8 # 64-bit integer (!)

sizeof(long long) == 8 # 64-bit integer

sizeof(float) == 4 # 32-bit floating point number

sizeof(double) == 8 # 64-bit floating point number

sizeof(void*) == 8 # 64-bit pointer

Audio encoding
Resolution, sampling rate

Pulse-coded modulation (PCM)

∙ Common bit depths
are 8, 16 and 24 bits

∙ Example on the right
uses 4 bits per
channel

Audio resolution

∙ How accurately audio
signal can be
represented

∙ Speaker cone
displacement
measuring precision

∙ Audio CD: 16-bits/ch

Audio sampling rate

∙ How accurately audio
signal can be
represented

∙ Frequently of speaker
cone displacement
measurement

∙ Audio CD: 44.1kHz

Digital-to-analog conversion

∙ Each output bit is
connected to bit
weight resistor

∙ Resistances are
aggregated

∙ Op-amp amplifies the
final voltage

Image encoding
Pixels, color depth, resolution

Color models

Images

∙ Picture element usually known as pixel
∙ Red, green, blue channels represent intensity
∙ Alpha channel represents transparency
∙ Different modes: RGB, BGR, ARGB, RGBA, ABGR, ...

∙ How many pixels
∙ Horizontally
∙ Vertically

∙ DPI (dots per inch)
∙ The more pixels,

the better it looks

Resolution

Indexed colors

∙ Video card contains
the look up table

∙ Each pixel is the index
in the lookup table

∙ RGB values computed
on the fly at video
output

True color

∙ Each pixel contains
actual RGB data

∙ RGB 8:8:8
corresponds to
224 = 16777216 colors

∙ RGB 5:6:5
corresponds to
216 = 65536 colors

256 colors

16 bits per pixel (RGB 5:6:5)

24 bits per pixel (RGB 8:8:8)

Video DAC

∙ The simplest/
cheapest use resistor
ladder similar to audio
DAC

Compression
Fourier transform, RLE, Huffman encoding

Audio compression

∙ Frames (group of audio samples) are converted
from time domain to frequency domain

∙ Frequencies with low energy are discarded
∙ Peaking frequencies are rounded
∙ Adjacent peaks are merged
∙ Phase offset information is lost

Fourier transform

Time domain
representation

(samples)

Frequency domain
representation
(frequencies and their
amplitudes)

Frequencies that
combined result in the
original signal

Image compression

∙ Photographs
∙ High correlation between RGB channels
∙ No independent pixels
∙ A lot of gradients

∙ Computer graphics eg. screenshots
∙ Adjacent pixels of same color
∙ Some pixels occur more frequently than others

Other colorspaces

∙ YUV or YCbCr used in image/video
∙ Luma and chroma information instead of RGB
∙ Less resolution and bit depth for chroma
∙ No perceived image quality degradation

RGB vs YUV

∙ RGB (8:8:8)
representation would
result in 12 bytes per
4 pixels

∙ The representation on
right would result in 6
bytes per 4 pixels

Discrete cosine transform

∙ Used in JPEG, MPEG
∙ A simplified case of Fourier transform

(8x8 pixels)

Discrete cosine transform

Running length encoding

Substitute group of
identical numbers:
∙ How many?
∙ What number?

Photo compression with JPEG

∙ Colorspace transformation from RGB to YCbCr
∙ Downsampling by discarding chroma bits
∙ Block splitting usually to 8x8 pixel blocks
∙ DCT to convert pixels to waves
∙ Quantization, round off insignificant coefficients
∙ Running length encoding
∙ Huffman encoding, use less bits to represent

frequently occurring bit sequences

Potential exam questions

∙ What is 0xFF, 0xFFFF, 0xFFFFFF in decimal?
∙ What is 0755 in binary?
∙ How many bits are required do describe integer

range -63 to 64?
∙ What integer range / how may colors can be

described using 24 bits?
∙ What color is 0x88FF8800 (ARGB)?

Potential exam questions

∙ Describe simplest 8-bit stereo DAC
∙ Describe RGB (4:4:4) DAC
∙ What is the minimum audio CD capacity assuming

stereo sound at 44.1kHz sampling rate and 16-bits
per channel for 80 minute album?

∙ What is the bitrate for 7.1 sound system sampled
at 96kHz and 24-bits per channel?

Potential exam questions

∙ What is the significance of Fourier transform?
∙ What is time domain representation?
∙ What is frequency domain representation?
∙ What is running length encoding?
∙ What is Huffman encoding?

Where are we know

∙ We know how to install and run OS
∙ We know how to use command-line
∙ We know how to invoke a program
∙ We know how to represent in binary

∙ Plain text, integers, floating point numbers
∙ Audio and images
∙ How to store them efficiently

What next?

∙ How is an actual CPU processing the data?

