Introduction to Boole algebra

Binary algebra

Boole algebra

- George Boole’s book released in 1847
- We have only two digits: true and false
- We have NOT, AND, OR, XOR etc operations
- We have axioms and theorems
- In computers represented by bits 1 and 0
- In circuits LOW and HIGH voltages
- Operations implemented in hardware as gates or more precisely as certain configuration of transistors

Boole operations

AND, OR, XOR etc

Conjunction (AND)

- True if both operands are true
- Scientific: A \wedge B
- Alternatively: A . B
- C/Java: A \&\& B
- Python: A and B
- Bitwise: A \& B

A	B	Output
0	0	0
0	1	0
1	0	0
1	1	1

Disjunction (OR)

2-input OR gate

- True if at least one of the operands is true
- Scientific: A v B

- Alternatively: A + B
- C/Java: A || B
- Python: A or B
- Bitwise: A|B

A	B	Output
0	0	0
0	1	1
1	0	1
1	1	1

Negation (NOT)

- True if and only if A is false
- Scientific: $\neg A$
- C/Java: !A
- Python: not A
- Bitwise: ~A

INVERTER

Input	Output
1	0
0	1

Exclusive OR (XOR)

Exclusive-OR gate

- True if and only if A and B are unequal
- Scientific: $A \approx B$
- Alternatively: $A \oplus B$
- Bitwise XOR in

Python/C/Java: A ^ B

A	B	Output
0	0	0
0	1	1
1	0	1
1	1	0

Negated AND (NAND)

- Output of AND gate is negated - Commonly written as:

$$
\overline{A \cdot B} \text { or } A \uparrow B
$$

A	B	Output
0	0	1
0	1	1
1	0	1
1	1	0

Equivalent gate circuit

Negated OR (NOR)

- Output of OR gate is negated - Commonly written as:

$$
\overline{A+B} \text { or } A-B
$$

2-input NOR gate

A	B	Output
0	0	1
0	1	0
1	0	0
1	1	0

Equivalent gate circuit

Axioms and theorems

- Identity:
- X OR $0=X$
- X AND $1=\mathrm{X}$
- Null:
- $\mathrm{XOR} 1=1$
- X AND $0=0$
- Idempotency:
- X AND $\mathrm{X}=\mathrm{X}$
- $X O R X=X$

Axioms and theorems

- Involution: NOT NOT X = X
- Complementarity:
- X OR NOT X = 1
- X AND NOT X = 0
- Commutativity:
- X ORY $=Y O R X$
- X AND $Y=Y$ AND X

Axioms and theorems

- Distributivity:
- X AND (Y OR Z) = X AND Y OR X AND Z
- X OR (Y AND Z) = X AND Y OR X AND Z
- Uniting:
- X AND Y OR X AND NOT Y = X
- (X OR Y) AND (X OR NOT Y) = X
- And so forth

Disjunctive normal form (DNF)

- Disjunction of clauses, where a clause is a conjunction of literals
- Simply put it's an OR of AND-s: (NOT A AND B) OR (A AND B) OR (...) OR (...)
- Karnaugh's map output is DNF
- Further optimizations/substitutions can be performed on DNF

Gates in hardware

FIGURE 8. 18 CMOS gates: (a) CMOS NOR gate, (b) CMOS NAND gate.

NAND with CMOS

Latency of approximately 4ps

Adding in hardware

Half adder, full adder, carry ripple adder

Binary addition

- Essentially same as in decimal
- Bit is carried with 1+1
- How can we

BINARY

0101
$+0011$

1000

DECIMAL

 implement this in Boole algebra?
Half adder

Inputs		Outputs	
A	B	S	C
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Truth table
Sum = A XOR B
Carry = A AND B

Realization

Read: odd number of 1 -s on inputs
Read: both inputs are 1

Full adder

Input			Output	
A	B	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum = A XOR B XOR Cin
Carry = (A XOR B) AND Cin OR (A AND B)

Read: odd number of 1-s on inputs Read: two or more 1-s on inputs

Full adder

Full adder with NAND gates

Carry ripple adder

Hitting the ceiling

- Consider clock frequency of 2 GHz (500ps)
- Within one clock period we could chain up to 500ps / 4ps $\simeq 125$ NAND gates in series
- Full adder carry in-carry out path contains 2 NAND gates 500ps / 8ps $\simeq 62$ full adders chained
- So 64 bit carry-ripple adder at 2 GHz is problematic if not even impossible

Solutions

- Overclocking: Increase voltage to reduce gate delay, problem is increased thermal dissipation
- Better circuit design with less gates in critical path
- Span the operation over several processor cycles
- Law of diminishing returns can be observed

Carry select adder

- Critical path is shorter in terms of gates
- 30 FA-s instead of 16 FA-s -> more resources used
- Mux logic

Spanning operations

Multiplexer

Selecting signals

2:1 multiplexer

- Selects between inputs

s	I_{0}	I_{1}	O_{0}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

2:1 mux with NAND gates

4:1 mux

- Use 2 selector inputs to select between 4 data inputs

Multiplexer uses

- Selecting input value from registers
- Selecting result within ALU for output value
- Converting parallel data to serial
- Implementing programmable logic
- Use input pins as programming bits
- Use selector bits as logic inputs
- That's basically how FPGA-s work

Bitwise operations

Bitwise operations

- Perform AND, OR, XOR, etc logic operation on registers

AND | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- In C/Java/Python:
- AND: a \& b

- OR: alb
- XOR: $a^{\wedge} b$

Bitwise operation uses

- Overlaying sprites
- These are images or animations integrated into larger scene

First step:

Second step:

OR

Bit shifting

- Perform quick integer
a)
mult/div with 2 and
it's powers
- In C/Java/Python
- $x \ll y$
- $x \gg y$
- Applied in 3D graphics

c)

Circular shift (bit rotate)

- Applied in cryptography to permutate bit sequences
- Not exposed in most programming languages, can be invoked via inlined assembly

Rotate Right

Rotate Left

ALU

Arithmetic logic unit

Arithmetic-logic unit

Arithmetic logic unit inside

- Perform different operations
- Calculate all possible outputs
- Use multiplexer to select correct one

ARM7 data processing opcodes

Opcode	Mnemonic	Operation	Action
0000	AND	Logical AND	Rd :=Rn AND shifter_operand
0001	EOR	Logical Exclusive OR	Rd :=Rn EOR shifter_operand
0010	SUB	Subtract	Rd :=Rn - shifter_operand
0011	RSB	Reverse Subtract	Rd := shifter_operand - Rn
0100	ADD	Add	Rd :=Rn + shifter_operand
0101	ADC	Add with Carry	Rd :=Rn + shifter_operand + Carry Flag
0110	SBC	Subtract with Carry	Rd :=Rn - shifter_operand - NOT(Carry Flag)
0111	RSC	Reverse Subtract with Carry	Rd := shifter_operand - Rn - NOT(Carry Flag)
1000	TST	Test	Update flags after Rn AND shifter_operand
1001	TEQ	TestEquivalence	Update flags after Rn EOR shifter_operand
1010	CMP	Compare	Update flags after Rn - shifter_operand
1011	CMN	Compare Negated	Update flags after Rn + shifter_operand
1100	ORR	Logical (inclusive) OR	Rd :=Rn OR shifter_operand
1101	MOV	Move	Rd := shifter_operand (no first operand)
1110	BIC	Bit Clear	Rd :=Rn AND NOT(shifter_operand)
1111	MVN	Move Not	Rd := NOT shifter_operand (no first operand)

These 3 bits look like directly mappable ALU opcodes

Arithmetic-logic unt
ALU in ARM7

Subtraction

Two's complement

Negative numbers in binary

$\begin{aligned} & \text { UNSI } \\ & \text { INTI } \end{aligned}$	$\begin{aligned} & \text { GNED } \\ & \text { GER } \end{aligned}$
Decimal	Bit Pattem
15	1111
14	1110
13	1101
12	1100
11	1011
10	1010
9	1001
8	1000
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000

16 bit range:
0 to 65.535

OFFSET
BINARY

Decimal |Bit Patitem

8	1111
7	1110
6	1101
5	1100
4	1011
3	1010
2	1001
1	1000
0	0111
-1	0110
-2	0101
-3	0100
-4	0011
-5	0010
-6	0001
-7	0000

16 bit range
$-32,767$ to 32,768

SIGN AND
MAGNITUDE

Decimal| Bit Pattern

7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111

16 bit range $-32,767$ to 32,767

TWO'S
COMPLEMENT

Decimal	Bit Pattem
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

16 bit range
$-32,768$ to 32,767

Binary subtraction

- Addition of negative Decimal number
- Minuend is added to $\underline{10}$ Twos
Complement inverted bits of subtrahend and 1 (due to offset)

Minuend
Subtrahend 1 + Plus 1
(1)11100010 Carry
$1 \underline{00000111}$ Answer

Discarded
subtraction flag from the

Subtraction in hardware

 second operand and sets carry in to 1

Binary multiplication

- Implemented with
- AND operation
- Binary addition
- Booth's multiplier
- Group bits
- Precalculate addends

BINARY MULTIPLICATION

Binary multiplication is even easier than decimal, because we have either multiplication by 1 or by 0 in the intermediate sums.

Beyond multiplication

- There aren't many interesting operations that can be performed on integers
- Most mathematical functions (div, sqrt, exp, sin, cos, tan) are approximations
- Possible implementations
- Lookup table
- Polynomial approximation
- CORDIC

Old school hacks to get stuff faster

- Precalculate results of certain slow operations when the program is started
- Place the results in a lookup table (array)
- When looking up value find nearest two results
- Interpolate the result from two nearest results
- For sine, cosine use single lookup table for first 90 degrees only

COordinate Rotation DIgital Computer (CORDIC)

1
 Fast
 in Quake 3

```
float Q_rsqrt( float number ) {
    long i;
    float x2, y;
    const float threehalfs = 1.5F;
    x2 = number * 0.5F;
    y = number;
    i = * ( long * ) &y; // evil floating point bit level hacking
    i = 0x5f3759df - ( i >> 1 ); // what the fuck?
    y = * ( float * ) &i;
    y = y * ( threehalfs - ( x2 * y * y ) );
    return y;
}
```


Assignment

Adder/ALU

Assignment

- Use 7400 chips to implement carry ripple adder
- Get up to 4 points depending on how many FA-s you can wire

- 2 extra points for adding toggleable subtracting

Some tips

- One breadboard (5 chips) should be enough to implement 2-bit adder
- Another board (+4 chips) is required to implement 4-bit adder
- Add another board (+4 chips) to implement subtractor logic
- Use Arduino to run a testbench against the circuit

Karnaugh map for full adder

- Determine inputs
- Determine outputs
- Derive truth table for each output bit
- Use Karnaugh map to
 derive Boole formula
- Sum = (!A AND !B AND C) OR (!A AND B AND !C) ...
- Cout = (B AND Cin) OR (A AND Cin) OR (A AND B)

