
Introduction to
Boole algebra

Binary algebra

Boole algebra

∙ George Boole’s book released in 1847
∙ We have only two digits: true and false
∙ We have NOT, AND, OR, XOR etc operations
∙ We have axioms and theorems
∙ In computers represented by bits 1 and 0
∙ In circuits LOW and HIGH voltages
∙ Operations implemented in hardware as gates or

more precisely as certain configuration of transistors

Boole operations
AND, OR, XOR etc

Conjunction (AND)

∙ True if both operands
are true

∙ Scientific: A ∧ B
∙ Alternatively: A . B
∙ C/Java: A && B
∙ Python: A and B
∙ Bitwise: A & B

ANSI
symbol

Disjunction (OR)

∙ True if at least one of
the operands is true

∙ Scientific: A v B
∙ Alternatively: A + B
∙ C/Java: A || B
∙ Python: A or B
∙ Bitwise: A | B

Negation (NOT)

∙ True if and only if A is
false

∙ Scientific: ¬A
∙ C/Java: !A
∙ Python: not A
∙ Bitwise: ~A

Exclusive OR (XOR)

∙ True if and only if A and
B are unequal

∙ Scientific: A ⊻ B
∙ Alternatively: A ⊕ B
∙ Bitwise XOR in

Python/C/Java: A ^ B

Negated AND (NAND)

∙ Output of AND gate is negated
∙ Commonly written as:

Negated OR (NOR)

∙ Output of OR gate is negated
∙ Commonly written as:

Axioms and theorems

∙ Identity:
∙ X OR 0 = X
∙ X AND 1 = X

∙ Null:
∙ X OR 1 = 1
∙ X AND 0 = 0

∙ Idempotency:
∙ X AND X = X
∙ X OR X = X

Axioms and theorems

∙ Involution: NOT NOT X = X
∙ Complementarity:

∙ X OR NOT X = 1
∙ X AND NOT X = 0

∙ Commutativity:
∙ X OR Y = Y OR X
∙ X AND Y = Y AND X

Axioms and theorems

∙ Distributivity:
∙ X AND (Y OR Z) = X AND Y OR X AND Z
∙ X OR (Y AND Z) = X AND Y OR X AND Z

∙ Uniting:
∙ X AND Y OR X AND NOT Y = X
∙ (X OR Y) AND (X OR NOT Y) = X

∙ And so forth

Disjunctive normal form (DNF)

∙ Disjunction of clauses, where a clause is a
conjunction of literals

∙ Simply put it’s an OR of AND-s:
(NOT A AND B) OR (A AND B) OR (...) OR (...)

∙ Karnaugh’s map output is DNF
∙ Further optimizations/substitutions can be

performed on DNF

Gates in hardware

NAND with CMOS

Latency of approximately 4ps

Adding in hardware
Half adder, full adder, carry ripple adder

Binary addition

∙ Essentially same as
in decimal

∙ Bit is carried
with 1+1

∙ How can we
implement this
in Boole algebra?

Half adder

Sum = A XOR B Read: odd number of 1-s on inputs
Carry = A AND B Read: both inputs are 1

Full adder

Sum = A XOR B XOR Cin Read: odd number of 1-s on inputs
Carry = (A XOR B) AND Cin OR (A AND B) Read: two or more 1-s on inputs

Full adder

Full adder with NAND gates

Carry ripple adder

Carry in

Sum bits

Operand A and B bits

Carry out

Hitting the ceiling

∙ Consider clock frequency of 2GHz (500ps)
∙ Within one clock period we could chain up to

500ps / 4ps ≃ 125 NAND gates in series
∙ Full adder carry in-carry out path contains 2 NAND

gates 500ps / 8ps ≃ 62 full adders chained
∙ So 64 bit carry-ripple adder at 2GHz is problematic

if not even impossible

Solutions

∙ Overclocking: Increase voltage to reduce gate
delay, problem is increased thermal dissipation

∙ Better circuit design with less gates in critical path
∙ Span the operation over several processor cycles
∙ Law of diminishing returns can be observed

Carry select adder

∙ Critical path is shorter in terms of gates
∙ 30 FA-s instead of 16 FA-s -> more resources used
∙ Mux logic

Spanning operations

Multiplexer
 Selecting signals

2:1 multiplexer

∙ Selects between inputs

2:1 mux with NAND gates

4:1 mux

∙ Use 2 selector inputs to select between 4 data
inputs

Multiplexer uses

∙ Selecting input value from registers
∙ Selecting result within ALU for output value
∙ Converting parallel data to serial
∙ Implementing programmable logic

∙ Use input pins as programming bits
∙ Use selector bits as logic inputs
∙ That’s basically how FPGA-s work

Bitwise operations

Bitwise operations

∙ Perform AND, OR,
XOR, etc logic
operation on registers

∙ In C/Java/Python:
∙ AND: a & b
∙ OR: a | b
∙ XOR: a ^ b

Bitwise operation uses

∙ Overlaying sprites
∙ These are images or

animations integrated
into larger scene

Bit shifting

∙ Perform quick integer
mult/div with 2 and
it’s powers

∙ In C/Java/Python
∙ x << y
∙ x >> y

∙ Applied in 3D
graphics

Circular shift (bit rotate)

∙ Applied in cryptography
to permutate bit
sequences

∙ Not exposed in most
programming
languages, can be
invoked via inlined
assembly

ALU
Arithmetic logic unit

Arithmetic-logic unit
32-bits in a register 32-bits in a register

3-bits
(subset of the instruction)

(eg. carry in)
few bits

32-bits in a register

few bits
(eg. carry out)

Arithmetic logic unit inside

∙ Perform different operations
∙ Calculate all possible

outputs
∙ Use multiplexer

to select correct one

ARM7 data processing opcodes

These 3 bits look like
directly mappable ALU
opcodes

ALU in ARM7
Arithmetic-logic unt

Instruction register

Subtraction
Two’s complement

Negative numbers in binary

Binary subtraction

∙ Addition of negative
number

∙ Minuend is added to
inverted bits of
subtrahend and 1
(due to offset)

Subtraction in hardware
subtraction flag from the

opcode inverts bits of
second operand and sets

carry in to 1

Binary multiplication

∙ Implemented with
∙ AND operation
∙ Binary addition

∙ Booth’s multiplier
∙ Group bits
∙ Precalculate addends

Beyond multiplication

∙ There aren’t many interesting operations that can
be performed on integers

∙ Most mathematical functions (div, sqrt, exp, sin,
cos, tan) are approximations

∙ Possible implementations
∙ Lookup table
∙ Polynomial approximation
∙ CORDIC

Old school hacks to get stuff faster

∙ Precalculate results of certain slow operations
when the program is started

∙ Place the results in a lookup table (array)
∙ When looking up value find nearest two results
∙ Interpolate the result from two nearest results
∙ For sine, cosine use single lookup table for first 90

degrees only

COordinate Rotation DIgital
Computer (CORDIC)

Fast in Quake 3
float Q_rsqrt(float number) {

long i;

float x2, y;

const float threehalfs = 1.5F;

x2 = number * 0.5F;

y = number;

i = * (long *) &y; // evil floating point bit level hacking

i = 0x5f3759df - (i >> 1); // what the fuck?

y = * (float *) &i;

y = y * (threehalfs - (x2 * y * y));

return y;

}

1

Assignment
Adder/ALU

Assignment

∙ Use 7400 chips to
implement carry ripple
adder

∙ Get up to 4 points
depending on how many
FA-s you can wire

∙ 2 extra points for adding toggleable subtracting

Full adder

Half adder Half adder

Some tips

∙ One breadboard (5 chips) should be enough to
implement 2-bit adder

∙ Another board (+4 chips) is required to implement
4-bit adder

∙ Add another board (+4 chips) to implement
subtractor logic

∙ Use Arduino to run a testbench against the circuit

Karnaugh map for full adder

∙ Determine inputs
∙ Determine outputs
∙ Derive truth table for

each output bit
∙ Use Karnaugh map to

derive Boole formula
∙ Sum = (!A AND !B AND C) OR (!A AND B AND !C) ...
∙ Cout = (B AND Cin) OR (A AND Cin) OR (A AND B)

