Where the Theorems are Coming From? Lecture 1: The Case Study

Mati Tombak

Technical University of Tallinn

October 25, 2011.

Mati Tombak (TUT) The Case Study October 25, 2011. 1/31

Introduction and Schedule

Proposition

Mathematics is not about calculations. It is about definitions, theorems and proofs. Calculations are side-effect of mathematics.

Everybody, who is seriously interested in mathematics, has had a question: where the theorems are coming from?. Sometimes it is easier to prove a theorem, than formulate it. In these lectures I consider three methods for formulating mathematical hypotheses.

- Lecture 1. Case study.
- Lecture 2. Calculating the theorem,
- Lecture 3. Counting mathematical structures.

The Consumer Survey

L.Ron Hubbard. Mission Earth, vol.3 p.87

...Oh, a survey. I haven't done a consumer survey.

He leaned forward and yelled through the mainly closed partition, "Bang-Bang! If you were a consumer, what would you really want to consume the most of?" Bang-Bang skidded with screeching tires around a street-under-repair obstruction as he yelled back. "I'll let you in on something if you promise not to spread it around." He mounted a curb and got around a produce truck. "Everybody thinks I'm called Bang-Bang because of explosives. That ain't so." He careened past a fire truck. Cherubino can tell you. I been called Bang-Bang since I was fourteen." He leaped the cab lightly over an open manhole cover. "The reason I'm called Bang-Bang is because of girls. If Babe knew I was going in and out of the Gracious Palms, she'd have a fit!" "So the answer to the question of what you'd consume the most of is girls." "And girls and girls!" Bang-Bang yelled back, narrowly missing one on a crosswalk to prove his point.

Heller sat back. "Girls. Hm." He made a note on the inside back leaf of the marketing book, "*Survey done. Item: girls.*"

A group of scientists was walking on country-side and saw a herd of goats.

• Statistician: There is a herd of white goats.

Mati Tombak (TUT) The Case Study October 25, 2011. 4/31

A group of scientists was walking on country-side and saw a herd of goats.

- Statistician: There is a herd of white goats.
- Physicist: There are eighteen white goats and one black.

Mati Tombak (TUT) The Case Study October 25, 2011. 4/31

A group of scientists was walking on country-side and saw a herd of goats.

- Statistician: There is a herd of white goats.
- Physicist: There are eighteen white goats and one black.
- Mathematician: There is at least one goat with at least one black side.

Mati Tombak (TUT) The Case Study October 25, 2011. 4/31

A group of scientists was walking on country-side and saw a herd of goats.

- Statistician: There is a herd of white goats.
- Physicist: There are eighteen white goats and one black.
- Mathematician: There is at least one goat with at least one black side.
- Case study lady: There are nineteen goats with one black and one white side.

Boolean (Propositional) Formulae

Boolean variables are variables with a domain $\{0,1\}$ (0=**false**, 1=**true**). We designate Boolean variables by x,y,z; with indexes, if convenient for our purposes.

Definition

 1° Every Boolean variable and constants 0 või 1 are Boolean formulae.

 2° IF A and B are Boolean formulae, then on $(\neg A)$, (A & B) and $(A \lor B)$ are Boolean formulae.

As usual, we fix the priorities of Boolean operations:

$$\neg$$
(highest priority), &, \lor

and allow to omit the parenthesis if they do not change the order of operations.

◄□▶◀∰▶◀불▶◀불▶ 불 ∽Q♡

October 25, 2011.

Disjunctive Normal Form (DNF)

Definition

Boolean formula *F* is in a *disjunctive normal form*, if it is a disjunction of conjunctions, i.e.:

$$F(x_1,...,x_n)=\bigvee_{i=1}^p C_i,$$

where C_i is a *term*, which has the form:

$$C_i = \mathop{\&}\limits_{j=1}^{m_i} I_{ij},$$

where l_{ii} is a *literal*. Literal is a variable or a negation of a variable.

October 25, 2011.

Conjunctive Normal Form (CNF)

Definition

Boolean formula *F* is in a *conjunctive normal form*, if it is a conjunction of disjunctions, i.e.:

$$F(x_1,...,x_n) = \sum_{i=1}^{p} D_i$$

where D_i is a disjunct.

$$D_i = \bigvee_{j=1}^{m_i} I_{ij}$$

where l_{ij} is a *literal*.

8/31

Mati Tombak (TUT) The Case Study October 25, 2011.

Graph

Definition

Graph is a tuple G = (V, E), where V is a finite set of vertices and $E \subseteq V \times V$ is a set of edges.

We will consider only *simple* graphs i.e. graphs without loops and multiple edges. A *complete graph* is a graph whose every two vertices are connected with an edge.

Figure: Complete graphs with 0,1,2,3,4 and 5 vertices.

We can suppose w.l.o.g. that $V = \{1, 2, ..., n\}$, where n = |v|.

9/31

Mati Tombak (TUT) The Case Study October 25, 2011.

Definition

Let G = (V, E) be a graph and $V' \subseteq V$. A subgraph of G, induced by the subset of vertices V' is a graph

$$G' = (V', \{\{u,v\} : u \in V', v \in V', \{u,v\} \in E\}).$$

Graph $G = (\{1,2,3,4,5,6\}, E)$.

Definition

Let G = (V, E) be a graph and $V' \subseteq V$. A subgraph of G, induced by the subset of vertices V' is a graph

$$G' = (V', \{\{u,v\} : u \in V', v \in V', \{u,v\} \in E\}).$$

Graph $G = (\{1,2,3,4,5,6\}, E)$. Let $V' = \{2,3,4,5\}$.

Definition

Let G = (V, E) be a graph and $V' \subseteq V$. A subgraph of G, induced by the subset of vertices V' is a graph

$$G' = (V', \{\{u,v\} : u \in V', v \in V', \{u,v\} \in E\}).$$

Graph $G = (\{1,2,3,4,5,6\}, E)$. Let $V' = \{2,3,4,5\}$.

Definition

Let G = (V, E) be a graph and $V' \subseteq V$. A subgraph of G, induced by the subset of vertices V' is a graph

$$G' = (V', \{\{u,v\} : u \in V', v \in V', \{u,v\} \in E\}).$$

Graph $G = (\{1,2,3,4,5,6\}, E)$. Let $V' = \{2,3,4,5\}$.

Mati Tombak (TUT) The Case Study October 25, 2011. 13 / 31

Clique

Definition

A *clique* of a graph G = (V, E) is a subset of V, which induces a complete subgraph.

Example

Let G₁ be a graph:

All cliques of G_1 are $\{\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{1,3\}$, $\{2,3\}$, $\{2,4\}$, $\{3,4\}$, $\{2,3,4\}$. Maximal cliques are $\{2,3,4\}$ and $\{1,3\}$.

The Feynman Problem-Solving Algorithm

Algorithm

- Write down the problem.
- Think very hard.
- Write down the answer.

Write down the problem!

Problem

Find DNF and CNF which describe the structure of all cliques of a graph.

Every clique is a subset of $V = \{1, ..., n\}$ and can be characterized by its characteristic vector.

Definition

Let $V = \{1, ..., n\}$ and $V' \subseteq V$. A *characteristic vector* of V' is a binary vector $\chi_{V'} = \chi_1, ..., \chi_n$ such that

$$\chi_i = \begin{cases} 1, & \text{if } i \in V', \\ 0, & \text{if } i \notin V'. \end{cases}$$

We are looking for a DNF (CNF) $F_G(x_1,...,x_n)$ such that $F_G(\chi_1,...,\chi_n) = 1$ if and only if $\chi_1,...,\chi_n$ is a characteristic vector of some clique of G. Let us start with a concrete case – graph G_1 .

Mati Tombak (TUT) The Case Study October 25, 2011, 16 / 31

A truth-table for a function F_{G_1} , characterizing a clique structure of G_1 .

Figure: Graph G₁.

<i>X</i> ₁	X 2	X 3	X 4	f_{G_1}	clique
0	0	0	0	1	0
0	0	0	1	1	{4 }
0	0	1	0	1	{3}
0	0	1	1	1	{3,4}
0 0 0 0 0	1	0	0	1	{4} {3} {3,4} {2}
0	1	0	1	1	{2,4} {2,3} {2,3,4}
0	1	1	0 1	1	{2,3}
	1	1	1	1	{2,3,4}
1	0	0	0	1	{1}
1	0	0	1	0	_
1	0	1	0		{1,3}
1	0	1	1	0	_
1	1	0	0	0	_
1	1	0	1	1 0 0 0 0	_
1	1	1	0	0	_
1	1	1	1	0	_

A truth-table for a function F_{G_1} , characterizing a clique structure of G_1 .

Figure: Graph G₁.

If we have a truth-table for a Boolean function F, we can easily write down a perfect DNF and perfect CNF for F.

<i>X</i> ₁	x ₂	X 3	X 4	f_{G_1}	clique
0	0	0	0 1		0
0	0	0	1	1	{4 }
0	0	1	0 1	1	{3}
0	0	1	1	1	{3,4}
0 0 0 0 0 0 0	1	0	0	1	{2 }
0	1	0	1	1	{2,4}
0	1	1	0	1	{2,3}
0	1	1	0 1	1	{2,3,4}
	0	0	0	1	{4} {3} {3,4} {2} {2,4} {2,3} {2,3,4} {1}
1	0	0	1	0	_
1	0	1		1	{1,3}
1	0	1	0 1	0	_
1	1	0	0 1	0	_
1	1	0	1	0 1 0 0 0 0	_
1	1	1	0	0	_
1	1	1	1	0	_

Set of terms for a perfect DNF of F_{G_1} .

<i>x</i> ₁	X 2	X 3	x_4	f_{G_1}	term
0	0	0	0	1	$(\overline{x}_1 \& \overline{x}_2 \& \overline{x}_3 \& \overline{x}_4)$
0	0	0	1	1	$(\overline{x}_1 \& \overline{x}_2 \& \overline{x}_3 \& x_4)$
0	0	1	0	1	$(\overline{x}_1 \& \overline{x}_2 \& x_3 \& \overline{x}_4)$
0	0	1	1	1	$(\overline{x}_1 \& \overline{x}_2 \& x_3 \& x_4)$
0	1	0	0	1	$(\overline{x}_1 \& x_2 \& \overline{x}_3 \& \overline{x}_4)$
0	1	0	1	1	$(\overline{x}_1 \& x_2 \& \overline{x}_3 \& x_4)$
0	1	1	0	1	$(\overline{x}_1 \& x_2 \& x_3 \& \overline{x}_4)$
0	1	1	1	1	$(\overline{x}_1 \& x_2 \& x_3 \& x_4)$
1	0	0	0	1	$(x_1 \& \overline{x}_2 \& \overline{x}_3 \& \overline{x}_4)$
1	0	0	1	0	_
1	0	1	0	1	$(x_1 \& \overline{x}_2 \& x_3 \& \overline{x}_4)$
1	0	1	1	0	_
1	1	0	0	0	_
1	1	0	1	0	_
1	1	1	0	0	_
1	1	1	1	0	_

Perfect DNF for F_{G_1} .

$$\begin{array}{l} (\overline{x}_{1} \& \overline{x}_{2} \& \overline{x}_{3} \& \overline{x}_{4}) \lor \\ (\overline{x}_{1} \& \overline{x}_{2} \& \overline{x}_{3} \& x_{4}) \lor \\ (\overline{x}_{1} \& \overline{x}_{2} \& x_{3} \& \overline{x}_{4}) \lor \\ (\overline{x}_{1} \& \overline{x}_{2} \& x_{3} \& \overline{x}_{4}) \lor \\ (\overline{x}_{1} \& x_{2} \& \overline{x}_{3} \& \overline{x}_{4}) \lor \\ (\overline{x}_{1} \& x_{2} \& \overline{x}_{3} \& \overline{x}_{4}) \lor \\ (\overline{x}_{1} \& x_{2} \& \overline{x}_{3} \& \overline{x}_{4}) \lor \\ (\overline{x}_{1} \& x_{2} \& x_{3} \& \overline{x}_{4}) \lor \\ (\overline{x}_{1} \& x_{2} \& x_{3} \& \overline{x}_{4}) \lor \\ (x_{1} \& \overline{x}_{2} \& \overline{x}_{3} \& \overline{x}_{4}) \lor \\ (x_{1} \& \overline{x}_{2} \& x_{3} \& \overline{x}_{4}) \end{array}$$

After minimizing we get

$$DF_{G_1} = (\overline{x}_2 \& \overline{x}_4) \lor (\overline{x}_1).$$

Think very hard!

$$\textit{DF}_{G_1} = \left(\overline{x}_2 \, \& \, \overline{x}_4 \right) \vee \left(\overline{x}_1 \right).$$

Mati Tombak (TUT) The Case Study October 25, 2011. 21/31

Think very hard!

$$DF_{G_1} = (\overline{x}_2 \& \overline{x}_4) \lor (\overline{x}_1).$$

• We can see, that the set of variables in the first term of the DNF is the complement of the maximal clique $\{x_1, x_3\}$ and the set of variables in the second term is the complement of the maximal clique $\{x_2, x_3, x_4\}$. (remember, that there are exactly two maximal cliques in G_1).

Think very hard!

$$DF_{G_1} = (\overline{x}_2 \& \overline{x}_4) \lor (\overline{x}_1).$$

- We can see, that the set of variables in the first term of the DNF is the complement of the maximal clique $\{x_1, x_3\}$ and the set of variables in the second term is the complement of the maximal clique $\{x_2, x_3, x_4\}$. (remember, that there are exactly two maximal cliques in G_1).
- Let us make a courageous hypothesis, that it is not accidental. In general case every maximal clique $V' \subseteq V$ of G determines a term $T_{V'} = \mathcal{E}_{i \in V \setminus V'} \overline{x}_i$. Formula DF_G is a disjunction of all such terms:

$$DF_G = \bigvee_{V'=\mathsf{max}\mathit{clique}} T_{V'}$$

The Case Study

Write down the answer!

Hypothesis

Let G = (V, E) be a graph with vertex set $V = \{1, ..., n\}$. Binary vector $\chi \in \{0, 1\}^n$ is the characteristic vector of the clique of G if and only if

$$DF_G(\chi) = \left[\bigvee_{V'=maxclique} \left(\underset{i \in V \setminus V'}{\textcircled{\&}} \overline{x}_i \right) \right] (\chi) = 1.$$

For a hypothesis to became a theorem, it has to be proved.

4□ > 4□ > 4 = > 4 = > = 9<0

22 / 31

Mati Tombak (TUT) The Case Study October 25, 2011.

The Theorem

Theorem

Let G = (V, E) be a graph with vertex set $V = \{1, ..., n\}$. A binary vector $\chi \in \{0, 1\}^n$ is a characteristic vector of the clique of G if and only if

$$DF_G(\chi) = \left[\bigvee_{V'=maxclique} \left(\underset{i \in V \setminus V'}{\&} \overline{x}_i \right) \right] (\chi) = 1.$$

Proof. 1. \Longrightarrow . Let $V' \subseteq V$ be a clique of a graph G and $\chi = (\chi_1, \dots, \chi_n)$ his characteristic vector. There exists a maximal clique V'' such that $V' \subseteq V''$. Formula DF_G contains a term

$$T_{V''} = \underset{i \in V \setminus V''}{\&} \overline{x}_i.$$

Term $T_{V''}$ is obviously true for the characteristic vector β of V'', because $\beta_i = 0$ for every $i \in V \setminus V''$. V' is a subset of V'', therefore if $\beta_i = 0$, then $\chi_i = 0$. Consequently $T_{V''}(\chi) = 1$ and $DF_G(\chi) = 1$.

Second part of the proof.

2. \longleftarrow . Let $\chi \in \{0,1\}^n$ be an assignment such that $DF_G(\chi) = 1$. Let $V_\chi \subseteq V$ be a subset of V whose characteristic vector is χ . We have to show, that V_χ is a clique of G. If $DF_G(\chi) = 1$, then there must be a term $T_{V''}(x)$ for some maximal clique of V'' of G, which is true for an assignment χ . It is possible only if $\chi_i = 0$ for every $i \in V \setminus V''$. It means, that $V_\chi \subseteq V''$ and, concequently, V_γ is a clique of G.

Let us do the same for calculating a CNF.

The set of disjuncts for a perfect CNF of F_{G_1} .

<i>X</i> ₁	X 2	X 3	<i>X</i> ₄	f_{G_1}	disjunct
0	0	0	0	1	_
0	0	0	1	1	_
0	0	1	0	1	_
0	0	1	1	1	_
0	1	0	0	1	_
0	1	0	1	1	_
0	1	1	0	1	_
0	1	1	1	1	_
1	0	0	0	1	_
1	0	0	1	0	$(\overline{x}_1 \lor x_2 \lor x_3 \lor \overline{x}_4)$
1	0	1	0	1	_
1	0	1	1	0	$(\overline{x}_1 \lor x_2 \lor \overline{x}_3 \lor \overline{x}_4)$
1	1	0	0	0	$(\overline{x}_1 \vee \overline{x}_2 \vee x_3 \vee x_4)$
1	1	0	1	0	$(\overline{x}_1 \vee \overline{x}_2 \vee x_3 \vee \overline{x}_4)$
1	1	1	0	0	$(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4)$
1	1	1	1	0	$(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_4)$

A perfect CNF for F_{G_1}

$$(\overline{x}_1 \lor x_2 \lor x_3 \lor \overline{x}_4) \&$$

$$(\overline{x}_1 \lor x_2 \lor \overline{x}_3 \lor \overline{x}_4) \&$$

$$(\overline{x}_1 \lor \overline{x}_2 \lor x_3 \lor x_4) \&$$

$$(\overline{x}_1 \lor \overline{x}_2 \lor x_3 \lor \overline{x}_4) \&$$

$$(\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor x_4) \&$$

$$(\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor \overline{x}_4)$$

After minimizing we get the formula:

$$(\overline{x}_1 \vee \overline{x}_2) \& (\overline{x}_1 \vee \overline{x}_4).$$

Mati Tombak (TUT)

Think once more!

$$(\overline{x}_1 \vee \overline{x}_2) \& (\overline{x}_1 \vee \overline{x}_4)$$

Mati Tombak (TUT) The Case Study October 25, 2011. 27 / 31

Think once more!

$$(\overline{x}_1 \vee \overline{x}_2) \& (\overline{x}_1 \vee \overline{x}_4)$$

• We can see, that every disjunct corresponds to a missing edge of G_1 .

ロト(御)(注)(注) 注 りので

Think once more!

$$(\overline{x}_1 \vee \overline{x}_2) \& (\overline{x}_1 \vee \overline{x}_4)$$

- We can see, that every disjunct corresponds to a missing edge of G_1 .
- We can formulate a hypothesis a general formula is:

$$CF_G =$$
 $\{i,j\} \notin E$ $(\overline{x}_i \vee \overline{x}_j).$

Mati Tombak (TUT)

The Theorem.

Theorem

Let G = (V, E) be a graph with vertex set $V = \{1, ..., n\}$. A binary vector $\chi \in \{0, 1\}^n$ is a characteristic vector of some clique of G if and only if

$$\left[\underbrace{\&}_{\{i,j\}\notin E} (\overline{x}_i \vee \overline{x}_j) \right] (\chi) = 1.$$

Proof. 1. \Longrightarrow . Let $V'\subseteq V$ be a clique of a graph G and $\chi=(\chi_1,\ldots,\chi_n)$ his characteristic vector. We have to show, that $CF_G(\chi)=1$. Suppose to the contrary, that $CF_G(\chi)=0$. Then at least one disjunct, let it be $\overline{\chi_i}\vee\overline{\chi_j}$, must have value 0 for an assignment χ . Then $\chi_i=1$ and $\chi_j=1$. If $\overline{\chi_i}\vee\overline{\chi_j}$ is a disjunct of CF_G , then $\{i,j\}\not\in E$ and V' is not a clique of G. Contradiction. 2. \longleftarrow . Suppose $CF_G(\chi)=1$ for a characteristic vector $\chi=(\chi_1,\ldots,\chi_n)$ of some $V'\subseteq V$. Suppose to the contrary, that V' is not a clique of G. Then there must exist vertices $i,j\in V'$ i.e. $\chi_i=1,\chi_j=1$ such that $\{i,j\}\not\in E$. Then $\overline{\chi_i}\vee\overline{\chi_j}$ is a disjunct of CF_G which takes truth-value 0 for χ and $CF_G(\chi)=0$. Contradiction.

Theorem

Let G = (V, E) be a graph with vertex set $V = \{1, ..., n\}$. Binary vector $\chi \in \{0, 1\}^n$ is the characteristic vector of the clique of G if and only if

$$DF_G(\chi) = \left[\bigvee_{V'=maxclique} \left(\underbrace{\&}_{i \in V \setminus V'} \overline{x}_i\right)\right](\chi) = 1.$$

Theorem

Let G = (V, E) be a graph with vertex set $V = \{1, \dots, n\}$. Binary vector $\chi \in \{0, 1\}^n$ is a characteristic vector of some clique of G if and only if

$$\left[\underbrace{\&}_{\{i,j\}\notin E} (\overline{x}_i \vee \overline{x}_j) \right] (\chi) = 1.$$

• The description of a problem using a DNF is similar to a law system of an autocratic country – everything which is not allowed is forbidden.

- The description of a problem using a DNF is similar to a law system of an autocratic country – everything which is not allowed is forbidden.
- The description of a problem using a CNF is similar to a law system of a democratic country – everything which is not forbidden is allowed.

- The description of a problem using a DNF is similar to a law system of an autocratic country – everything which is not allowed is forbidden.
- The description of a problem using a CNF is similar to a law system of a democratic country – everything which is not forbidden is allowed.
- The case study is a common method for finding properties of discrete mathematical structures. Usually you have to consider much more than one case to formulate a hypothesis. For finding a bijection between certain classes of permutations and directed graphs I had to investigate 90 examples.

- The description of a problem using a DNF is similar to a law system of an autocratic country – everything which is not allowed is forbidden.
- The description of a problem using a CNF is similar to a law system of a democratic country – everything which is not forbidden is allowed.
- The case study is a common method for finding properties of discrete mathematical structures. Usually you have to consider much more than one case to formulate a hypothesis. For finding a bijection between certain classes of permutations and directed graphs I had to investigate 90 examples.
- Does these theorems have an application? A mathematician should not worry about applications. They give us nothing useful for a classical CLIQUE problem. The second theorem is just a polynomial reduction of NP-complete problem (CLIQUE) to another NP-complete problem (WEIGHTED-SAT).

• Nevertheless, about 20 years ago, when I formulated these theorems, using the case study method described above, I had some reasons. I had constructed a couple of algorithms for counting satisfying assignments of CNF. All the algorithms were implicitly generating a special (orthogonal) DNF for a given CNF. To prove, that my algorithms have an exponential worst case complexity I needed an example of CNF for which a minimal equivalent DNF has exponential size.

- Nevertheless, about 20 years ago, when I formulated these theorems, using the case study method described above, I had some reasons. I had constructed a couple of algorithms for counting satisfying assignments of CNF. All the algorithms were implicitly generating a special (orthogonal) DNF for a given CNF. To prove, that my algorithms have an exponential worst case complexity I needed an example of CNF for which a minimal equivalent DNF has exponential size.
- Moon-Moser graph G_{I,k} is a complement of a graph, which consists of I isolated k-vertex complete graphs K_k. It is easy to see, that G_{I,k} has k^I maximal cliques, each consists of I vertexes.

- Nevertheless, about 20 years ago, when I formulated these theorems, using the case study method described above, I had some reasons. I had constructed a couple of algorithms for counting satisfying assignments of CNF. All the algorithms were implicitly generating a special (orthogonal) DNF for a given CNF. To prove, that my algorithms have an exponential worst case complexity I needed an example of CNF for which a minimal equivalent DNF has exponential size.
- Moon-Moser graph G_{I,k} is a complement of a graph, which consists of I isolated k-vertex complete graphs K_k. It is easy to see, that G_{I,k} has k^I maximal cliques, each consists of I vertexes.
- A CNF, constructed by Theorem 2 consists of *l* · *k* disjuncts and a DNF, constructed by Theorem 1 consists of *k*^l terms. Both formulae have only negated variables and by construction no term (disjunct) subsumes other. Therefore both CNF and DNF are minimal.

Mati Tombak. Keerukusteooria (Complexity theory). Tartu, 2007 (in Estonian).