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Introduction and Schedule

Proposition

Mathematics is not about calculations. It is about definitions, theorems and
proofs. Calculations are side-effect of mathematics.

Everybody, who is seriously interested in mathematics, has had a question:
where the theorems are coming from?. Sometimes it is easier to prove a
theorem, than formulate it. In these lectures I consider three methods for
formulating mathematical hypotheses.

1 Lecture 1. Case study.

2 Lecture 2. Calculating the theorem,

3 Lecture 3. Counting mathematical structures.
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The Consumer Survey
L.Ron Hubbard. Mission Earth, vol.3 p.87
...Oh, a survey. I haven‘t done a consumer survey.
He leaned forward and yelled through the mainly closed partition, "Bang-Bang!
If you were a consumer, what would you really want to consume the most of?"
Bang-Bang skidded with screeching tires around a street-under-repair
obstruction as he yelled back. "I‘ll let you in on something if you promise not to
spread it around." He mounted a curb and got around a produce truck.
"Everybody thinks I‘m called Bang-Bang because of explosives. That ain‘t so."
He careened past a fire truck. Cherubino can tell you. I been called
Bang-Bang since I was fourteen." He leaped the cab lightly over an open
manhole cover. "The reason I‘m called Bang-Bang is because of girls. If Babe
knew I was going in and out of the Gracious Palms, she‘d have a fit!"
"So the answer to the question of what you‘d consume the most of is girls."
"And girls and girls!" Bang-Bang yelled back, narrowly missing one on a
crosswalk to prove his point.
Heller sat back. "Girls. Hm." He made a note on the inside back leaf of the
marketing book, "Survey done. Item: girls."
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Watching Goats.

A group of scientists was walking on country-side and saw a herd of goats.

Statistician: There is a herd of white goats.
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Watching Goats.

A group of scientists was walking on country-side and saw a herd of goats.

Statistician: There is a herd of white goats.

Physicist: There are eighteen white goats and one black.

Mathematician: There is at least one goat with at least one black side.

Case study lady: There are nineteen goats with one black and one white
side.
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Boolean (Propositional) Formulae

Boolean variables are variables with a domain {0,1} (0=false, 1=true). We
designate Boolean variables by x ,y ,z; with indexes, if convenient for our
purposes.

Definition
1◦ Every Boolean variable and constants 0 või 1 are Boolean formulae.
2◦ IF A and B are Boolean formulae, then on (¬A), (A & B) and (A∨B) are
Boolean formulae.

As usual, we fix the priorities of Boolean operations:

¬(highest priority), &, ∨

and allow to omit the parenthesis if they do not change the order of operations.
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Disjunctive Normal Form (DNF)

Definition
Boolean formula F is in a disjunctive normal form, if it is a disjunction of
conjunctions, i.e.:

F(x1, ...,xn) =
p

∨

i=1

Ci ,

where Ci is a term, which has the form:

Ci =
mi

&
j=1

lij ,

where lij is a literal. Literal is a variable or a negation of a variable.
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Conjunctive Normal Form (CNF)

Definition
Boolean formula F is in a conjunctive normal form, if it is a conjunction of
disjunctions, i.e.:

F(x1, ...,xn) =
p

&
i=1

Di

where Di is a disjunct:

Di =
mi
∨

j=1

lij

where lij is a literal.
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Graph

Definition

Graph is a tuple G = (V ,E), where V is a finite set of vertices and E ⊆ V ×V
is a set of edges.

We will consider only simple graphs i.e. graphs without loops and multiple
edges. A complete graph is a graph whose every two vertices are connected
with an edge.

K K K K K1 2 3 4 5
K

0

Figure: Complete graphs with 0,1,2,3,4 and 5 vertices.

We can suppose w.l.o.g. that V = {1,2, . . . ,n}, where n = |v |.
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Induced subgraph

Definition

Let G = (V ,E) be a graph and V ′ ⊆ V . A subgraph of G, induced by the
subset of vertices V ′ is a graph
G′ = (V ′

,{{u,v} : u ∈ V ′
,v ∈ V ′

,{u,v} ∈ E}).

12

3 4

5

6

.

Graph G = ({1,2,3,4,5,6},E).
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Induced subgraph

Definition

Let G = (V ,E) be a graph and V ′ ⊆ V . A subgraph of G, induced by the
subset of vertices V ′ is a graph
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Graph G = ({1,2,3,4,5,6},E). Let V ′ = {2,3,4,5}.
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Clique

Definition

A clique of a graph G = (V ,E) is a subset of V , which induces a complete
subgraph.

Example

Let G1 be a graph:

12

3 4

All cliques of G1 are {}, {1}, {2}, {3}, {4}, {1,3}, {2,3}, {2,4}, {3,4},
{2,3,4}. Maximal cliques are {2,3,4} and {1,3}.
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The Feynman Problem-Solving Algorithm

Algorithm

Write down the problem.

Think very hard.

Write down the answer.
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Write down the problem!

Problem
Find DNF and CNF which describe the structure of all cliques of a graph.

Every clique is a subset of V = {1, . . . ,n} and can be characterized by its
characteristic vector.

Definition

Let V = {1, . . . ,n} and V ′ ⊆ V . A characteristic vector of V ′ is a binary vector
χV ′ = χ1, . . . ,χn such that

χi =

{

1, if i ∈ V ′
,

0, if i 6∈ V ′
.

We are looking for a DNF (CNF) FG(x1, . . . ,xn) such that FG(χ1, . . . ,χn) = 1 if
and only if χ1, . . . ,χn is a characteristic vector of some clique of G. Let us start
with a concrete case – graph G1.
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A truth-table for a function FG1 ,
characterizing a clique structure
of G1.

12

3 4

Figure: Graph G1.

x1 x2 x3 x4 fG1 clique
0 0 0 0 1 /0
0 0 0 1 1 {4}
0 0 1 0 1 {3}
0 0 1 1 1 {3,4}
0 1 0 0 1 {2}
0 1 0 1 1 {2,4}
0 1 1 0 1 {2,3}
0 1 1 1 1 {2,3,4}
1 0 0 0 1 {1}
1 0 0 1 0 –
1 0 1 0 1 {1,3}
1 0 1 1 0 –
1 1 0 0 0 –
1 1 0 1 0 –
1 1 1 0 0 –
1 1 1 1 0 –
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A truth-table for a function FG1 ,
characterizing a clique structure
of G1.

12

3 4

Figure: Graph G1.

If we have a truth-table for a
Boolean function F , we can
easily write down a perfect DNF
and perfect CNF for F .

x1 x2 x3 x4 fG1 clique
0 0 0 0 1 /0
0 0 0 1 1 {4}
0 0 1 0 1 {3}
0 0 1 1 1 {3,4}
0 1 0 0 1 {2}
0 1 0 1 1 {2,4}
0 1 1 0 1 {2,3}
0 1 1 1 1 {2,3,4}
1 0 0 0 1 {1}
1 0 0 1 0 –
1 0 1 0 1 {1,3}
1 0 1 1 0 –
1 1 0 0 0 –
1 1 0 1 0 –
1 1 1 0 0 –
1 1 1 1 0 –
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Set of terms for a
perfect DNF of FG1 .

x1 x2 x3 x4 fG1 term
0 0 0 0 1 (x1 & x2 & x3 & x4)
0 0 0 1 1 (x1 & x2 & x3 & x4)
0 0 1 0 1 (x1 & x2 & x3 & x4)
0 0 1 1 1 (x1 & x2 & x3 & x4)
0 1 0 0 1 (x1 & x2 & x3 & x4)
0 1 0 1 1 (x1 & x2 & x3 & x4)
0 1 1 0 1 (x1 & x2 & x3 & x4)
0 1 1 1 1 (x1 & x2 & x3 & x4)
1 0 0 0 1 (x1 & x2 & x3 & x4)
1 0 0 1 0 –
1 0 1 0 1 (x1 & x2 & x3 & x4)
1 0 1 1 0 –
1 1 0 0 0 –
1 1 0 1 0 –
1 1 1 0 0 –
1 1 1 1 0 –
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Perfect DNF for FG1.

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)∨

(x1 & x2 & x3 & x4)

After minimizing we get

DFG1 = (x2 & x4)∨ (x1).
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Think very hard!

12

3 4

DFG1 = (x2 & x4)∨ (x1).
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Think very hard!
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3 4

DFG1 = (x2 & x4)∨ (x1).

We can see, that the set of variables in the first term of the DNF is the
complement of the maximal clique {x1,x3} and the set of variables in the
second term is the complement of the maximal clique {x2,x3,x4}.
(remember, that there are exactly two maximal cliques in G1).
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Think very hard!

12

3 4

DFG1 = (x2 & x4)∨ (x1).

We can see, that the set of variables in the first term of the DNF is the
complement of the maximal clique {x1,x3} and the set of variables in the
second term is the complement of the maximal clique {x2,x3,x4}.
(remember, that there are exactly two maximal cliques in G1).
Let us make a courageous hypothesis, that it is not accidental. In general
case every maximal clique V ′ ⊆ V of G determines a term
TV ′ = &i∈V\V ′ x i . Formula DFG is a disjunction of all such terms:

DFG =
∨

V ′
=maxclique

TV ′ .
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Write down the answer!

Hypothesis

Let G = (V ,E) be a graph with vertex set V = {1, . . . ,n}. Binary vector
χ ∈ {0,1}n is the characteristic vector of the clique of G if and only if

DFG(χ) =

[

∨

V ′
=maxclique

(

&
i∈V\V ′

x i

)

]

(χ) = 1.

For a hypothesis to became a theorem, it has to be proved.
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The Theorem

Theorem

Let G = (V ,E) be a graph with vertex set V = {1, . . . ,n}. A binary vector
χ ∈ {0,1}n is a characteristic vector of the clique of G if and only if

DFG(χ) =

[

∨

V ′
=maxclique

(

&
i∈V\V ′

x i

)

]

(χ) = 1.

Proof. 1. =⇒ . Let V ′ ⊆ V be a clique of a graph G and χ = (χ1, . . . ,χn) his
characteristic vector. There exists a maximal cligue V ′′ such that V ′ ⊆ V ′′.
Formula DFG contains a term

TV ′′ = &
i∈V\V ′′

x i .

Term TV ′′ is obviously true for the characteristic vector β of V ′′, because βi = 0
for every i ∈ V\V ′′. V ′ is a subset of V ′′, therefore if βi = 0, then χi = 0.
Consequently TV ′′(χ) = 1 and DFG(χ) = 1.
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Second part of the proof.

2. ⇐= . Let χ ∈ {0,1}n be an assignment such that DFG(χ) = 1. Let Vχ ⊆ V
be a subset of V whose characteristic vector is χ. We have to show, that Vχ is
a clique of G. If DFG(χ) = 1, then there must be a term TV ′′(x) for some
maximal clique of V ′′ of G, which is true for an assignment χ. It is possible
only if χi = 0 for every i ∈ V\V ′′. It means, that Vχ ⊆ V ′′ and, concequently,
Vχ is a clique of G.

2
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Let us do the same
for calculating a
CNF.

The set of disjuncts
for a perfect CNF
of FG1 .

x1 x2 x3 x4 fG1 disjunct
0 0 0 0 1 –
0 0 0 1 1 –
0 0 1 0 1 –
0 0 1 1 1 –
0 1 0 0 1 –
0 1 0 1 1 –
0 1 1 0 1 –
0 1 1 1 1 –
1 0 0 0 1 –
1 0 0 1 0 (x1 ∨ x2 ∨ x3 ∨ x4)
1 0 1 0 1 –
1 0 1 1 0 (x1 ∨ x2 ∨ x3 ∨ x4)
1 1 0 0 0 (x1 ∨ x2 ∨ x3 ∨ x4)
1 1 0 1 0 (x1 ∨ x2 ∨ x3 ∨ x4)
1 1 1 0 0 (x1 ∨ x2 ∨ x3 ∨ x4)
1 1 1 1 0 (x1 ∨ x2 ∨ x3 ∨ x4)
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A perfect CNF for FG1

(x1 ∨ x2 ∨ x3 ∨ x4)&

(x1 ∨ x2 ∨ x3 ∨ x4)&

(x1 ∨ x2 ∨ x3 ∨ x4)&

(x1 ∨ x2 ∨ x3 ∨ x4)&

(x1 ∨ x2 ∨ x3 ∨ x4)&

(x1 ∨ x2 ∨ x3 ∨ x4)

After minimizing we get the formula:

(x1 ∨ x2)& (x1 ∨ x4).
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Think once more!

12

3 4

(x1 ∨ x2)& (x1 ∨ x4)
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Think once more!
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3 4

(x1 ∨ x2)& (x1 ∨ x4)

We can see, that every disjunct corresponds to a missing edge of G1.
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Think once more!

12

3 4

(x1 ∨ x2)& (x1 ∨ x4)

We can see, that every disjunct corresponds to a missing edge of G1.

We can formulate a hypothesis – a general formula is:

CFG = &
{i,j}6∈E

(x i ∨ x j).
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The Theorem.

Theorem

Let G = (V ,E) be a graph with vertex set V = {1, . . . ,n}. A binary vector
χ ∈ {0,1}n is a characteristic vector of some clique of G if and only if

[

&
{i,j}6∈E

(x i ∨ x j)

]

(χ) = 1.

Proof. 1. =⇒ . Let V ′ ⊆ V be a clique of a graph G and χ = (χ1, . . . ,χn) his
characteristic vector. We have to show, that CFG(χ) = 1. Suppose to the
contrary, that CFG(χ) = 0. Then at least one disjunct, let it be x i ∨ x j , must
have value 0 for an assignment χ. Then χi = 1 and χj = 1. If x i ∨ x j is a
disjunct of CFG, then {i, j} 6∈ E and V ′ is not a clique of G. Contradiction.
2. ⇐= . Suppose CFG(χ) = 1 for a characteristic vector χ = (χ1, . . . ,χn) of
some V ′ ⊆ V . Suppose to the contrary, that V ′ is not a clique of G. Then there
must exist vertices i, j ∈ V ′ i.e. χi = 1,χj = 1 such that {i, j} 6∈ E . Then x i ∨ x j

is a disjunct of CFG which takes truth-value 0 for χ and CFG(χ) = 0.
Contradiction. 2
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Some philosophical speculations.

Theorem

Let G = (V ,E) be a graph with vertex set V = {1, . . . ,n}. Binary vector
χ ∈ {0,1}n is the characteristic vector of the clique of G if and only if

DFG(χ) =

[

∨

V ′
=maxclique

(

&
i∈V\V ′

x i

)

]

(χ) = 1.

Theorem

Let G = (V ,E) be a graph with vertex set V = {1, . . . ,n}. Binary vector
χ ∈ {0,1}n is a characteristic vector of some clique of G if and only if

[

&
{i,j}6∈E

(x i ∨ x j)

]

(χ) = 1.
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Some philosophical speculations.
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Some philosophical speculations.

The description of a problem using a DNF is similar to a law system of an
autocratic country – everything which is not allowed is forbidden.
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The description of a problem using a DNF is similar to a law system of an
autocratic country – everything which is not allowed is forbidden.

The description of a problem using a CNF is similar to a law system of a
democratic country – everything which is not forbidden is allowed.

The case study is a common method for finding properties of discrete
mathematical structures. Usually you have to consider much more than
one case to formulate a hypothesis. For finding a bijection between
certain classes of permutations and directed graphs I had to investigate
90 examples.
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Some philosophical speculations.

The description of a problem using a DNF is similar to a law system of an
autocratic country – everything which is not allowed is forbidden.

The description of a problem using a CNF is similar to a law system of a
democratic country – everything which is not forbidden is allowed.

The case study is a common method for finding properties of discrete
mathematical structures. Usually you have to consider much more than
one case to formulate a hypothesis. For finding a bijection between
certain classes of permutations and directed graphs I had to investigate
90 examples.

Does these theorems have an application? A mathematician should not
worry about applications. They give us nothing useful for a classical
CLIQUE problem. The second theorem is just a polynomial reduction of
NP-complete problem (CLIQUE) to another NP-complete problem
(WEIGHTED-SAT).
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Nevertheless, about 20 years ago, when I formulated these theorems,
using the case study method described above, I had some reasons. I had
constructed a couple of algorithms for counting satisfying assignments of
CNF. All the algorithms were implicitly generating a special (orthogonal)
DNF for a given CNF. To prove, that my algorithms have an exponential
worst case complexity I needed an example of CNF for which a minimal
equivalent DNF has exponential size.
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CNF. All the algorithms were implicitly generating a special (orthogonal)
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Moon-Moser graph Gl,k is a complement of a graph, which consists of l
isolated k-vertex complete graphs Kk . It is easy to see, that Gl,k has k l

maximal cliques, each consists of l vertexes.
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Nevertheless, about 20 years ago, when I formulated these theorems,
using the case study method described above, I had some reasons. I had
constructed a couple of algorithms for counting satisfying assignments of
CNF. All the algorithms were implicitly generating a special (orthogonal)
DNF for a given CNF. To prove, that my algorithms have an exponential
worst case complexity I needed an example of CNF for which a minimal
equivalent DNF has exponential size.

Moon-Moser graph Gl,k is a complement of a graph, which consists of l
isolated k-vertex complete graphs Kk . It is easy to see, that Gl,k has k l

maximal cliques, each consists of l vertexes.

A CNF, constructed by Theorem 2 consists of l · k disjuncts and a DNF,
constructed by Theorem 1 consists of k l terms. Both formulae have only
negated variables and by construction no term (disjunct) subsumes other.
Therefore both CNF and DNF are minimal.

Mati Tombak. Keerukusteooria (Complexity theory). Tartu, 2007 (in Estonian).
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