
https://lauri.xn--vsandi-pxa.com/2017/03/yubikey-for-gpg.html

Yubikey as hardware token for GPG19. Mar '17

Introduction
GPG is most often used to encrypt and sign e-mails within software

developer communities and cyberpunk circles. You also find that

GPG is used to verify packages when you install software on your

Ubuntu or Fedora box. GPG keyring can also be used for

authenticating SSH connections.

Yubikey 4 Nano is one of the tiniest OpenPGP compatible hardware

tokens on the market. With hardware token the your RSA private

keys used by the GPG are not readable in the filesystem as it would

usually be under ~/.gnupg directory.

Yubikey 4 Nano can be left in the USB port without damaging the key or the port

https://lauri.xn--vsandi-pxa.com/2017/03/yubikey-for-gpg.html

Using GPG to send encrypted/signed e-mail can be done via variety

of applications each one coming with a different support level for

hardware tokens such as Yubikey:

• Encrypting on command line as shown below works perfectly

with Yubikey, but is cumbersome to use for newbies.

• Evolution has full GPG support built-in on Fedora, supports

hardware tokens such as Yubikey for signing and encrypting.

Retrieving correspondent's keys and setting trust level still has to

be performed on command-line as shown below.

• Enigmail is a GPG plugin for Mozilla Thunderbird, supports

hardware tokens, good user interface integration - untrusted

senders key can easily be signed.

• Mailvelope generates keys internally and currently can't make

use of hardware token

PIV and PGP modes can't be used simultaneously

scdaemon which is used by GPG as backend to access smartcards

exclusively locks the card even if configured to use PCSC-Lite as

backend. Firefox similarily wants to have exclusive access to the

token when there are valid certificates present in the PIV applet.

This means that currently PGP and PIV modes can't be used

simultaneously.

GPG has most often two versions installed: gpg and gpg2

Following guide focuses on gpg2 only. When gpg command

happens to be executed accidentally at wrong time gpg-agent

could be started with flags incompatible with gpg2, in that case kill

gpg-agent process.

Setting up Yubikey
Install GPG v2.x if it hasn't been installed yet:

apt install gnupg2

First check whether GPG detects your token:

gpg2 --card-status

If you have Estonian ID-card reader hooked up to the computer you

might have conflicts with web browsers, so it's a good idea to tell

GPG reader name:

cat << \EOF >> ~/.gnupg/scdaemon.conf
reader-port "Yubico Yubikey 4 CCID"
EOF

Set up Yubikey, this is roughly equivalent to gpg2 --full-gen-key:

gpg2 --card-edit
admin
generate

Add identities, eg. when you use multiple e-mail addresses or

aliases and set the trust level to ultimate for all of your identities:

gpg2 --edit-key first.last@example.com
adduid
trust

Export your public keys and upload it to a HTTP(S) accessible URL:

gpg2 --export --armor > lauri.asc

Adding trusted people
As the root of trust is your own key, everything that is to be

implicitly trusted has to be signed by yourself - hence to trust

someone you first need to retreive their public key:

wget https://www.koodur.com/lauri.asc

Import it to your keyring located in your home directory

(~/.gnupg/keyring.kbx):

gpg2 --import lauri.asc

Verify that the 40-character fingerprint of the imported key

matches via other means eg. by giving a call via phone, meeting

face to face or taking part of a keysigning party. Finally sign the

public key identified by e-mail address:

gpg2 --sign-key lauri.vosandi@gmail.com

Alternatively keys can be fetched and imported from publicly

operated keyservers, in that case 40-character key fingerprint and

keyserver hostname is required. For example in order to import key

used to sign CERT-EE (RIA) e-mails following commands should

suffice. In this case pgp.mit.edu is keyserver operated by

Massachusetts Institute of Technology:

gpg2 --keyserver pgp.mit.edu --recv
48319D213649047F197EA9CD86C6D4D43601B6D1
gpg2 --sign-key cert@cert.ee

Publishing your key
Use following to list your keys, your key fingerprint is the 40-

character string just above your identities and e-mail addresses:

gpg2 --list-keys

Most commonly used keyservers can be found at Wikipedia. To

prevent key collision attacks it might be good idea to upload your

key to all of the listed servers there as it is very common that users

specify only last 8 digits of the fingerprint to import keys.

gpg2 --keyserver pgp.mit.edu --send-key
E1BC859AFC900AA925F1BAF33E1E3B1EE82AD8C0

Encrypting and decrypting arbitrary files
To encrypt a file you need to have recipient's public key in your

keyring as shown above. To encrypt a file and output it in ASCII

armored format:

https://en.wikipedia.org/wiki/Key_server_(cryptographic)#Keyserver_examples

gpg2 -r lauri@koodur.com -a -o encrypted.asc -e plain.txt

To dump decrypted document on command line:

gpg2 -d encrypted.asc

To save it into a file:

gpg2 -d encrypted.asc -o decrypted.txt

Using GPG authentication keypair for SSH
Following starts up GPG agent and exports SSH agent environment

variables for currently running shell:

eval `gpg-agent --daemon --enable-ssh-support`

To export public keys from the GPG applet on Yubikey in SSH format

use following command, you should see Yubikey keys with

comment cardno: 000123456789 where the number is your

Yubikey serial number:

ssh-add -L

As usual copy the public key to your server's

~/.ssh/authorized_keys.

When attempting to log into the server you're supposed to be

prompted with a graphical PIN code dialog. Any subsequent login

attempts in the same shell should proceed without having to ask

for the PIN code.

Permanent configuration for GPG agent
It's very tricky to get this right. Following was tested on Fedora 25.

GPG agent wants to show PIN dialog on demand so it has to get

graphical session environment variables right ($DISPLAY,

$WAYLAND_DISPLAY etc).

Easiest way is to create autostart file:

cat << \EOF > ~/.config/autostart/gpg-agent.desktop
[Desktop Entry]
Type=Application
Name=gpg-agent
Comment=Autostart GPG agent
Exec=/usr/bin/gpg-connect-agent /bye
Terminal=false
EOF

Tell gpg-agent to export ssh-agent compatible socket:

cat << \EOF >> ~/.gnupg/gpg-agent.conf
enable-ssh-support
default-cache-ttl 90
ignore-cache-for-signing
EOF

Override environment variables when terminal is opened:

cat << \EOF >> ~/.bashrc
unset SSH_AGENT_PID
export SSH_AUTH_SOCK="${XDG_RUNTIME_DIR}/gnupg/S.gpg-agent.ssh"
EOF

Kill all the relevant processes, log out and log in again. When

attempting to ssh to a remote box PIN dialog should pop up.

Using same Yubikey on another computer
Import your public keyring, eg in my case:

gpg2 --keyserver pgp.mit.edu --recv-key
E1BC859AFC900AA925F1BAF33E1E3B1EE82AD8C0

On the first computer export secrets, in Yubikey case this should

export only stubs which tell GPG to look for the key on a hardware

token:

gpg2 --export-secret-keys -a -o secrets

Copy the file to new machine:

scp secrets new-machine:

On the new machine:

gpg2 --import secrets

	Yubikey as hardware token for GPG19. Mar '17
	Introduction
	Setting up Yubikey
	Adding trusted people
	Publishing your key
	Encrypting and decrypting arbitrary files
	Using GPG authentication keypair for SSH
	Permanent configuration for GPG agent
	Using same Yubikey on another computer

