
User environment and processes
Operating systems I800

Edmund Laugasson
edmund.laugasson@itcollege.ee

Current document copying, distributing and/or modifying has been set out by one of the following licences by user’s choice:
* GNU Free Documentation Licence version 1.2 or newer
* Creative Commonsi Attribution + ShareAlike licence 4.0 (CC BY-SA)

There has been used materials from Margus Ernits, Katrin Loodus when creating current slides.

2 / 23

User environment settings

● When user will enter into system there will be run scripts that initialize user environment (there
will be user session created)
– environment variables will be set
– shell aliases will be set, e.g. in ~/.bashrc file:

● alias ls='ls –color=auto'
● alias grep='grep --color=auto'
● alias fgrep='fgrep --color=auto'
● alias egrep='egrep –color=auto'
● alias ll='ls -alF'
● alias la='ls -A'
● alias l='ls -CF'

– functions

● there will be initialized the file /etc/profile meant for all users

● also user personal preferences in home folder will be initialized
– ~/.profile
– ~/.bash_profile
– ~/.bashrc

● user can change personal settings

in ~/.bashrc there is written:
if [-f ~/.bash_aliases]; then
 . ~/.bash_aliases
fi
... so the correct file for bash aliases would be the
mentioned ~/.bash_aliases – this could be copied
also to /etc/skel/ in order to make it available for
all new users

3 / 23

Bash shell configuration files
● .bash_profile user environment individual settings. There you can change default

settings and add new ones. Will be run when user log in.
● .bash_login will be run only when user log in. When .bash_profile do not exist, this

file will be read
● .bashrc will be run e.g. by opening a terminal window (interactive shell)

.bash_aliases – will be run e.g. by opening a terminal window, short commands file.
● .bash_history here are the history of entered commands up to a values defined in

~/.bashrc with parameters HISTSIZE=1000 and HISTFILESIZE=2000 (default values).
Check also the utility history (man history).

● .bash_logout contains a commands entered while logging out
● /etc/profile similar to the file .bash_profile, but applies globally
● /etc/profile.d files in that folder will be treated similarly with /etc/profile file. When

you need define your functions then /etc/profile.d/ would be the good place.
● Why there are often *.d folders used?

http://unix.stackexchange.com/questions/4029/what-does-the-d-stand-for-in-directory-names
● More information

– https://en.wikipedia.org/wiki/Bash_(Unix_shell)

– https://help.ubuntu.com/community/Beginners/BashScripting

– http://tldp.org/LDP/abs/html/ - Advanced Bash Scripting Guide

– in Estonian https://wiki.itcollege.ee/index.php/BASH_shell

https://ss64.com/bash/alias.html
http://unix.stackexchange.com/questions/4029/what-does-the-d-stand-for-in-directory-names
https://en.wikipedia.org/wiki/Bash_(Unix_shell
https://help.ubuntu.com/community/Beginners/BashScripting
http://tldp.org/LDP/abs/html/
https://wiki.itcollege.ee/index.php/BASH_shell

4 / 23

Running session scripts
● The ~/.bash_aliases and ~/.bashrc are treated as session scripts

and can be run by using command source or just dot with
space, e.g.
– source ~/.bash_aliases

– . ~/.bash_aliases

● ~/.bashrc will be read every time you open new terminal (shell)

● /etc/profile and .profile will be run every time the user will enter
into system

● when you change the content of .profile, then in order to apply
changes you need either relogin or run the session script:
source ~/.profile (. ~/.profile)

5 / 23

Alias – short command
● every user can define short commands, aliases

● permanent aliases are defined in ~/.bash_aliases file, because in ~/.bashrc
there is written:

if [-f ~/.bash_aliases]; then

 . ~/.bash_aliases

fi

● some aliases for ls command
– alias ls='ls --color=auto'
– alias ll='ls -l'
– alias la='ls -A'
– alias l='ls -CF'

● in English http://tldp.org/LDP/abs/html/aliases.html

● in Estonian https://wiki.itcollege.ee/index.php/Alias_bash_shellis

http://tldp.org/LDP/abs/html/aliases.html
https://wiki.itcollege.ee/index.php/Alias_bash_shellis

6 / 23

Environment variables
● USER – username

● PATH – folder names from which the system will search program files
that user can run without referring full directory path
– e.g. add new folder into current path for user student

● nano ~/.bashrc
● export PATH=$PATH:/home/student/bin
● source ~/.bashrc

● HOME – user home folder

● SHELL – user shell

● EDITOR – text editor used by user

● HOSTNAME – a computer name in network stack

● env is used to see environment variables

● declare will show extended list of environment variables

7 / 23

Environment variables 2
● export command can be used to set up environment

variable in Bash shell

– export variable=value

– export variable2=”longer value of this variable”

● in C shell

– setenv variable value

● in MS Windows

– set variable=value

8 / 23

Processes
● creation

● input/output and errors

● redirection

● communication between processes

● signals

● jobs

9 / 23

Processes
● The process is a started program that has separated

resources from processor and memory (RAM)

● The process has a PID (process ID)

● The process can start other processes

– The process that started another process is called
parent process

● Processes will establish a process tree that has in peak the
first process, in Linux-like systems init

10 / 23

Process table
● Operating system keeps track about processes and resources

● Data will be kept in process table

● The process tree can be displayed (Linux/Unix)

pstree

● The process table can be displayed (Linux/Unix)

ps -ef

● more information

– in English http://www.linfo.org/ps.html

– in Estonian https://wiki.itcollege.ee/index.php/Ps

– man ps

● more choices (needs to be installed): htop (more colorful), atop

http://www.linfo.org/ps.html
https://wiki.itcollege.ee/index.php/Ps

11 / 23

Processes
● Sharing resources between processes is done by operating

system kernel

● Process can be in following states

– created
– running
– waiting

● also swapped and waiting
– blocked

● also swapped and waiting
– terminated
– zombie – process without parent process

12 / 23

Communication between processes
● processes can exchange data beween each other

– using shared files

– using shared memory

– using shared sockets

– by sending signals

– using semafors (flags)

– using pipe

13 / 23

Processes
● Processes in Linux-like systems

– standard input STDIN
– standard output STDOUT

– error output STDERR

● Process output can be redirected into another process input
using pipe – vertical line |

– ps -ef | less
● the ps output will be redirected into less input

– ps -ef | grep bash | wc
● wc will show accordingly: number of lines, words, bytes

● when searching help then redirecting long outputs into
appropriate web service would be useful

– https://help.ubuntu.com/community/Pastebinit

https://help.ubuntu.com/community/Pastebinit

14 / 23

Redirecting a file
● Process input can be taken from file using redirection sign <

– cat < /dev/urandom
● the program cat input will be taken from random number

generator

● process output can be redirected into file using > or >>
– cat < /dev/urandom > random-numbers.dat

● the program cat output will be written into file random-
numbers.dat

● and random-numbers.dat will be overwritten
– cat < /dev/urandom >> random-numbers.dat

● >> will add data to the end of file

15 / 23

Redirecting error output
● when there is required that a program will not write into

standard output then we can redirect output e.g. into device
/dev/null

– cat </dev/zero > /dev/null

● error output will be not redirected and for that there can be
used 2>&1 in the end of the command(s)

● ./do-not-want-to-know > /dev/null 2>&1

– error output will be redirected to same place as standard
output

● more explanations at
https://linuxjourney.com/lesson/stderr-standard-error-redirect

https://en.wikipedia.org/wiki//dev/zero

https://en.wikipedia.org/wiki/Null_device

https://linuxjourney.com/lesson/stderr-standard-error-redirect
https://en.wikipedia.org/wiki//dev/zero
https://en.wikipedia.org/wiki/Null_device

16 / 23

Signals
● There can be sent signals to the processes

● The process will handle received signals

– different signals have different influences to the
processes

– process may ignore some signals

● Signals have numerical labels and the short names

● sending a signal can be done by using a kill command,
man kill; in Estonian https://wiki.itcollege.ee/index.php/Kill

https://wiki.itcollege.ee/index.php/Kill

17 / 23

Signals 2
● some signals

– SIGHUP 1 process freeze or dying, can be used to reload configuration, e.g. reopen
log files

– SIGABRT 6 Abort, generates a core file to process the data in the
memory

– SIGKILL 9 force to remove resources from processes, as a last
step

– SIGPIPE 13 Pipe down (there is no sense to write, because
nobody read)

– SIGTERM 15 Process polite foreclosure, default, and the safest
way to shut down the process

– SIGUSR1 30,10,16 The user (programmer) defined by the signal1
– SIGUSR2 31,12,17 User-defined signal2

● PID view by application name: pidof <application>
– ps -ef | grep <application>

18 / 23

Signals 3
● To send a command signal to the process takes place kill

– kill <pid1> <pid2> ….
– kill -9 3242

● termination signal -9 (kill) sending to the process 3242

– kill -TERM 9588
● termination signal -15 (term) sending to the process 9588

● The signals SIGKILL and SIGSTOP can not be ignored or treated by the program itself

● closing with force using precise process name
– killall firefox (by default SIGTERM 15)
– killall -15 firefox (nice closing)
– killall -9 firefox (closing with force)

– man killall
– in Estonian https://wiki.itcollege.ee/index.php/Killall

https://wiki.itcollege.ee/index.php/Killall

19 / 23

Jobs
● Sometimes we would like to put job into background

– ./program &

– when needed to create a file with & in name then use
apostrophes or escape sign \

● e.g. touch 'file&' or touch file\&

● overview of programs working in background

– jobs

● program working in terminal can be sent temporarily to
background by using CTRL+Z (SIGSTOP) and terminate
withCTRL+C (SIGINT)

● http://superuser.com/questions/262942/whats-different-between-ctrlz-and-ctrlc-in-unix-comma
nd-line

http://superuser.com/questions/262942/whats-different-between-ctrlz-and-ctrlc-in-unix-command-line
http://superuser.com/questions/262942/whats-different-between-ctrlz-and-ctrlc-in-unix-command-line

20 / 23

Jobs 2
● bring back to front

– fg <job no>

● to background
– bg <job no>

● close with force (kill)
– kill %<job no>
– kill %% (kill last job)

● see what processes are connected with process:
– pgrep ssh
– pgrep -u root ssh

21 / 23

for trying...
● install a program cowsay

● run the following lines and see results (and created files)

– sudo apt install cowsay

– cowsay mooo

– cowsay -f sheep maaa > sheep.txt

– cowsay What sheep >> sheep.txt

● man cowsay

● in Estonian https://wiki.itcollege.ee/index.php/Cowsay

https://wiki.itcollege.ee/index.php/Cowsay

22 / 23

Questions?

23 / 23

Thank you for your attention!

	Pealkiri
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18
	Slaid 19
	Slaid 20
	Slaid 21
	Slaid 22
	Slaid 23

