
Boot Configuration Data in
Windows Vista

Feb. 4, 2008

Abstract
Microsoft has completely reengineered the boot environment for Windows Vista to
address the increasing complexity and diversity of modern hardware and firmware.
One aspect of this reengineering is a new firmware-independent data store that
contains configuration data that influences the boot process. This paper provides an
overview of this configuration data—called boot configuration data (BCD)—and
describes how to use the related tools to manage boot options.

This information applies to the Windows Vista operating system.

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/system/platform/firmware/bcd.mspx

References and resources discussed here are listed at the end of this paper.

Contents
Introduction..3
BCD Overview..4
BCD Architecture...5

BCD Stores...5
BCD Objects..7

BCD Application Objects..8
BCD Inheritable Objects...9
BCD Device Objects...10

BCD Elements...11
Tools for Managing the BCD..11

The Shell...12
MSConfig..12
BCDEdit...12

How to Manage BCD Programmatically with WMI...14
The BCDStore Class...14
The BCDObject Class...15
BCDElement Classes..16

BCD Cookbook..16
Kernel Debugging...16

Enable Kernel Debugging..16
Specify Global Debug Settings...16
Specify Debug Settings for a specified Boot Entry...17

Specify the Default Operating System..17
Specify the Boot Manager's Timeout Value..18
Manage Boot Entries...18

Change a Boot Entry's Description...18
Control How Boot Entries Appear to the User..18
Create a New Windows Vista Boot Entry...19
Delete a Boot Entry..19

Enable PAE...20
Create a Boot Entry to Boot a WIM from a Hard Disk...21
Make a Non-system Store into the System Store...21

Resources..22

http://www.microsoft.com/whdc/system/platform/firmware/bcd.mspx

Boot Configuration Data in Windows Vista - 2

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the
software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the
issues discussed as of the date of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights
under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places and events depicted herein are fictitious, and no association with any
real company, organization, product, domain name, email address, logo, person, place or event is
intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Visual Basic, Windows, Windows Server, and Windows Vista are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Document History
Date Change

2/04/08 Removed reference to Longhorn

5/18/2007 Created

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 3

Introduction
When a computer is started or rebooted, it must load the operating system. The
details of this process vary depending on the system's hardware and firmware and
whether the system is booted from a disk drive, a network, or some other source.

For the common scenario of a PC/AT BIOS computer that is booting from its hard
drive, the BIOS reads the master boot record (MBR) and transfers control to the
MBR's code. MBR, in turn, transfers control to the code that loads the operating
system. Historically, the primary application that is responsible for loading
Windows® has been Ntldr.

The data that has determined how Ntldr loaded Windows has been contained in a
text file that is named boot.ini and resides on the root folder of the boot drive.
Boot.ini contains a separate boot entry for each version or configuration of Windows
that is available to the user. If multiple configurations or versions of the operating
system are available, Ntldr displays the list of boot entries to allow the user to
specify which one should be loaded. It then proceeds to load the selected version of
the operating system with a configuration that is based on the selected entry's boot
options.

The boot process for computers that use Extensible Firmware Interface (EFI)
firmware is completely different from that for PC/AT BIOS computers. EFI is the
next-generation firmware model that serves as the interface between hardware
platform and the operating system. It provides information about the platform that is
necessary for the operating system to boot and is expected to replace the legacy
BIOS in the coming decade.

The firmware on a computer that uses EFI contains a boot manager that loads an
operating system EFI application that is based on variables that are stored in non-
volatile RAM (NVRAM). The Windows EFI operating system loader does not use
boot.ini at all. For further information on EFI, see the white paper titled “EFI and
Windows Vista.”

Windows Vista® introduces boot configuration data (BCD). This new data store
serves essentially the same purpose as boot.ini. However, BCD abstracts the
underlying firmware and provides a common programming interface to manipulate
the boot environment for all Windows-supported computer platforms. BCD currently
supports PC/AT BIOS and EFI systems. However, its programming interface is
extensible and portable and has the ability to support other types of firmware in
addition to the two discussed here.

Windows Vista introduces several new boot applications, including:

 Bootmgr: A system-wide application that controls boot flow. With a
multiboot system, the boot manager displays an operating system selection
menu.

 Winload.exe: The Windows Vista operating system loader. Each version of
Windows Vista and Windows Server® 2008 that is installed on a computer
has its own instance of winload.exe. The operating system loader creates
the execution environment for the operating system and also loads the
Windows Vista kernel, hardware abstraction layer (HAL), and boot drivers
into memory.

 Winresume.exe: The Windows Vista resume loader. Each version of
Windows Vista and Windows Server 2008 that is installed on a computer
has its own instance of winresume.exe. The resume loader restores
Windows to its running state when a computer resumes from hibernation.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 4

NTLDR can still be used on PC/AT BIOS systems to dual boot a Windows version
earlier than Windows Vista.

This white paper includes:

 The architecture of BCD.

 How to manage the boot environment and BCD with system tools.

 How to manage the boot environment and BCD programmatically through
the BCD Windows Management Instrumentation (WMI) provider.

 A “cookbook” that shows how to do a number of common operations with
BCDEdit and the BCD WMI interface.

BCD Overview
BCD provides a firmware-independent mechanism for manipulating boot
environment data for any type of Windows system. Windows Vista and later
versions of Windows will use it to load the operating system or to run boot
applications such as memory diagnostics. Some key characteristics include:

 BCD abstracts the underlying firmware. BCD currently supports both PC/AT
BIOS and EFI systems. BCD interfaces perform all necessary interaction
with firmware. For example, on EFI systems, BCD creates and maintains
EFI NVRAM entries.

 BCD provides clean and intuitive structured storage for boot settings.

 BCD interfaces abstract the underlying data store.

 BCD is available at run time and during the boot process.

 BCD manipulation requires elevated permissions.

 BCD is designed to handle systems with multiple versions and
configurations of Windows, including versions earlier than Windows Vista. It
can also handle non-Windows operating systems.

 BCD is the only boot data store that is required for Windows Vista and later
versions of Windows. BCD can describe NTLDR and the boot process for
loading of earlier versions of Windows, but these operating systems are
ultimately loaded by Ntldr and must still store their boot options in a boot.ini
file.

Note: If a system includes earlier versions of Windows along with Windows Vista,
the earlier versions should be installed first.

There are two approaches to modifying the settings that are contained in BCD:

 Users can interact with BCD through several tools. The details of what can
be modified depend on the particular tool.

 Developers can programmatically manipulate a BCD store through the BCD
WMI provider. The WMI provider supports a unified programming interface
that can be used for both local and remote management of BCD stores.
The interface is independent of the underlying firmware, so developers can
write one application that works on any type of system.

Note: BCD’s data store is a registry hive, but that hive should not be accessed with
the registry API. Interaction with the underlying firmware occurs in the supported
BCD interfaces. For this reason, BCD stores should be accessed only through the
associated tools or WMI API.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 5

BCD Architecture
The BCD architecture is a hierarchy composed of three basic components: stores,
objects, and elements.

 A BCD store is the top-level component in the hierarchy. It serves as a
namespace container for the BCD objects and elements that make up the
contents of the store.

 A BCD object is a container of BCD elements. The most common type of
BCD object describes a boot environment application, such as an instance
of the Windows boot loader. However, BCD objects are also used for other
purposes.

 A BCD element is a singular item of data such as a debugger setting, a
boot application name, or an operating system device.

Figure 1 is a schematic illustration of the BCD hierarchy.

Figure 1. The BCD hierarchy

BCD Stores
A BCD store is a namespace container for BCD objects and elements that holds the
information that is required to load Windows or run other boot applications.
Physically, a BCD store is a binary file in the registry hive format. A computer has a
system BCD store that describes all installed Windows Vista operating systems and
installed Windows boot applications. A computer can optionally have many non-
system BCD stores. The characteristics of BCD stores include:

 The system store is a registry hive whose file is named BCD. On PC/AT
BIOS systems, the file resides in the active partition's \boot folder. On EFI
systems, the file is located on the EFI system partition (ESP) under
\EFI\Microsoft\Boot.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 6

 The system store is used by the Windows boot manager to control boot
flow. With a multiboot system, it presents a selection menu to the user.

 BCD has two interfaces: the BCD WMI provider and BCDedit.exe. Both
interfaces abstract the location of the system store. BCDedit.exe operates
on the system store unless a specific store is specified. With the BCD WMI
API, the system store is specified by an empty string ("").

 Administrators or support professionals can create additional BCD stores
with BCDEdit or programmatically with the BCD WMI API. Additional stores
can be useful for recovery, repair, and imaging.

 Administrators or support professionals can use BCDEdit or the WMI API to
import a non-system store as the system store.

Figure 2 shows an example of how the BCD hierarchy is implemented in a typical
BCD store.

Figure 2. A typical BCD store

A BCD store normally has at least two and optionally many BCD objects.

 A Windows boot manager object. This object contains BCD elements that
pertain to the Windows boot manager, such as the entries to display in an
operating system selection menu, boot tool selection menu, and timeout for
the selection menus. The Windows boot manager object and its associated
elements serve essentially the same purpose as the [boot loader] section of
a boot.ini file. A store can optionally have multiple instances of the Windows
boot manager. However, only one of them can be represented by the
Windows boot manager's well-known globally unique identifier (GUID). The
GUID's alias, {bootmgr} can be used to manipulate a store with BCDEdit.

 At least one and optionally several Windows boot loader objects. Stores
contain one instance of this object for each version or configuration of
Windows Vista or Windows Server 2008 that is installed on the system.
These objects contain BCD elements that are used when loading Windows
or during Windows initialization such as no-execute (NX) page protection
policy, physical-address extensions (PAEs) policy, kernel debugger
settings, and so on. Each object and its associated elements serve
essentially the same purpose as one of the lines in the [operating systems]
section of boot.ini. When a computer is booted into Windows Vista, the
associated boot loader object is represented by the alias {current}. When
manipulating a store with BCDEdit, the default boot loader object has the
alias {default}.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 7

 An optional Windows Ntldr object. The Ntldr object describes the location of
Ntldr, which can be executed to boot earlier versions of Windows. It is
required only if the system includes versions of Windows that are earlier
than Windows Vista. It is possible to have multiple instances of objects that
describe Ntldr. However, as with the Windows boot manager, only one
instance can be represented by Ntldr's well-known GUID. The GUID's alias,
{ntldr} can be used to manipulate a store with BCDEdit.

 Optional boot applications. Stores can optionally have BCD objects that
perform other boot-related operations. One example is the Windows
Memory Tester, which runs memory diagnostics.

For comparison, Figure 3 shows the contents of a typical boot.ini file and how the
boot.ini entries correspond to BCD objects and elements.

Figure 3. The relationship between boot.ini and BCD

Note: Figure 3 uses descriptive labels for BCD objects and elements. In practice,
they are represented by names that depend on the particular tool. Some commonly
used names are given later.

BCD Objects
There are three general categories of BCD objects: application objects, inheritable
objects, and device objects. The most common type of BCD object is an application
object, which describes a boot environment application such as the Windows boot
manager or Windows boot loader. Each object is represented by a 128-bit unique
GUID and contains a 32-bit description that describes the type of object.

The following table shows the object codes and associated object code values for
the three object categories.

Object Types
Description Value

Application 0x1

Inheritable 0x2

Device 0x3

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 8

Figure 4 shows the layout of the type. The details of how data is packed into bits 0
through 27 depends on the category.

Figure 4. Layout of the BCD object type.

BCD Application Objects
A BCD application object represents a boot environment executable such as the
Windows boot loader. Standard application objects include:

 The Windows boot manager object, which controls boot flow. In a dual-boot
system, the Windows boot manager displays a boot selection menu to the
user.

 The Windows boot loader object, which loads a particular version or
configuration of Windows Vista or later versions of Windows.

 The Windows Ntldr object, which loads versions of Windows earlier than
Windows Vista.

 The Windows resume loader object, which restores Windows to its running
state when a computer resumes from hibernation.

 The Windows Memory Tester object, which runs a set of memory
diagnostics.

BCD application objects have two defining characteristics: image type and
application type. Image type specifies how the executable is loaded. For example,
an executable can be loaded through the firmware or by the Windows boot
manager (as a boot application). The following table lists the valid image types,
along with the associated numerical value:

Image Types
Description Value

Firmware application 0x1

Boot application 0x2

Ntldr-based loader object 0x3

Real-mode application 0x4

Application type specifies what the application does. Each valid type has an
associated code. The following table lists the standard application types, along with
their numerical codes:

Application Types
Description Value Description

Firmware boot manager 0x1 Applies only to EFI systems.

Windows boot manager 0x2 Controls boot flow. In a dual-boot system, displays a
boot selection menu to the user.

Windows boot loader 0x3 Loads a particular version or configuration of Windows.

Windows resume
application

0x4 Restores Windows to its running state when a computer
resumes from hibernation.

Windows memory tester 0x5 A memory diagnostics application.

Ntldr 0x6 Applies only to PC/AT BIOS systems. Loads versions of
Windows earlier than Windows Vista.

Boot sector 0x8 A 16-bit real-mode application. Applies only to
PC/AT BIOS systems. Can be used to restart the
boot process and load a non-Windows operating

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 9

Description Value Description

system.

Figure 5 shows how the layout of an object type.

Figure 5. Layout of the BCD application object type

The following table gives the BCDEdit identifier and GUID for some commonly used
application objects:

Standard Application Objects
Description BCDEdit ID GUID

Windows Boot Manager {bootmgr} 9dea862c-5cdd-4e70-acc1-f32b344d4795

Firmware Boot Manager {fwbootmgr} a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba

Windows Memory Tester {memdiag} b2721d73-1db4-4c62-bf78-c548a880142d

Windows Resume Application No alias 147aa509-0358-4473-b83b-d950dda00615

Legacy Windows Loader {ntldr} 466f5a88-0af2-4f76-9038-095b170dc21c

Current boot entry {current} fa926493-6f1c-4193-a414-58f0b2456d1e

Default boot entry {default}

BCD Inheritable Objects
Some BCD elements can be applied to more than one BCD application object, and
a few are global to the entire BCD store. It is possible to associate these elements
separately with each instance of an object that uses them. A more efficient
approach is to create an inheritable object. This is a container for elements that are
shared across multiple BCD object instances. For example, there are inheritable
objects to specify whether the kernel debugger uses a COM, USB, or 1394
connection. A BCD object includes the inheritable object that contains the element
instead of having a separate instance of the element itself.

As described in the BCD element section, BCD element namespace is divided so
that elements that are used by two different application classes can share the same
type code. This means that an inheritable application class object can be
associated only with a particular class of BCD application objects. Alternatively, an
inheritable BCD object can contain only BCD elements that apply to all boot
environment applications. Such objects can be included by any BCD application
class. The two types of inheritable object are distinguished by their class. The
numerical class code is given in parentheses:

 Library class (0x1). Inheritable objects of this type can be inherited by any
BCD object and can contain only library class BCD elements.

 Application class (0x2). Inheritable objects of this type can be inherited only
by the specified BCD application class.

Inheritable objects that have a class code set to Application class must also include
the type of application objects that can include the inheritable object. Possible
values include any of the BCD application object types, such as Windows boot
loaders or Windows boot manager.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 10

The following table gives the BCDEdit identifier and GUID for some commonly used
inheritable objects:

Standard Inheritable Objects
BCDEdit ID GUID Description

{badmemory} 5189b25c-5558-4bf2-bca4-
289b11bd29e2

Global RAM defect list that can be
inherited by any boot application.

{bootloadersettings} 6efb52bf-1766-41db-a6b3-
0ee5eff72bd7

Global settings that should be
inherited by all Windows boot
loader applications.

{dbgsettings} 4636856e-540f-4170-a130-
a84776f4c654

Global debugger settings that can
be inherited by any boot
application.

{emssettings} 0ce4991b-e6b3-4b16-b23c-
5e0d9250e5d9

Global Emergency Management
Services settings that can be
inherited by any boot application.

{globalsettings} 7ea2e1ac-2e61-4728-aaa3-
896d9d0a9f0e

Global settings that should be
inherited by all boot applications.

{resumeloadersettings} 1afa9c49-16ab-4a5c-901b-
212802da9460

Global settings that should be
inherited by all resume
applications.

The inherited type has the following layout. The contents of the value field depend
on the class code:

 Library. Value is not used.

 Application. Value specifies the type of application that can inherit from the
object. It should be set to one of the application codes that were listed
earlier.

Figure 6. Layout of the BCD inherited object type

BCD Device Objects
Most devices, such as a partition on a hard disk, can be described by a single BCD
element. However, more complicated devices could exist that require more than
one element to describe. A BCD device object is a container for BCD elements for a
complex device.

For example, a BCD device object is used when booting from a RAM disk that was
created from a Windows image (WIM) file. The device object contains the location
of the WIM file and, when booted over the network, the network port information.
The BCDEdit identifier for this object is {ramdiskoptions}. The associated GUID is
{ae5534e0-a924-466c-b836-758539a3ee3a}). It is also possible to create custom
device objects.

The device type has the following layout.

Figure 7. Layout of the BCD device object type

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 11

BCD Elements
An element is an item of configuration data for a boot environment application or
part of the Windows boot process. With boot.ini, these properties and their values
were specified as boot options. With BCD, each item of input data is contained in a
separate BCD element.

BCD elements are contained within a BCD object. A boot environment application
has a BCD application object that contains BCD elements to specify the
configuration properties for the application. A BCD application object can also
include inheritable objects that contain additional configuration data.

Some elements can be associated only with certain objects, whereas others can be
applied to any type of boot environment application. To manage the different types
of elements, the element namespace is divided into three classes. The following
table shows the classes and their associated numerical code.

Element Classes
Description Value Description

Library 0001 Elements can be applied to all boot environment applications.

Application 0010 Elements can be applied to only a particular class of boot
environment applications, such as boot loaders.

Device 0011 Elements can be included only by device objects.

BCD elements are structured data. The following table shows the formats and their
associated numerical code.

Element Formats
Description Value Description

String 0010 For example, kernel debugger on or off.

Object 0011 For example, NX policy.

Integer 0101 For example, the boot menu default value.

Boolean 0110 For example, the path to the operating system loader.

The techniques for adding, deleting, or modifying BCD elements depend on the
particular tool.

BCDEdit and the BCD WMI API provide well-known names for the standard
elements. However, for custom element types, Figure 8 shows the layout.

Figure 8. Layout of the BCD element type

Tools for Managing the BCD
The BCD store is in a binary format and can be modified only by tools that are
designed for that purpose. The first two discussed here are designed for regular
users and provide limited access to BCD. The BCDEdit tool is designed for
developers and support professionals. It provides fairly complete access to BCD,
including the ability to create BCD stores. The most flexible and powerful approach
to managing BCD stores is programmatically, with the BCD WMI API. This API is
discussed later in this paper.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 12

The Shell
The System Control Panel application allows the user to specify values for two
global BCD elements:

 The default operating system and configuration

 The boot manager's timeout setting

MSConfig
MSConfig.exe is used primarily by product support service (PSS) when it assists
users with boot settings. It supports BCD and allows the user to enumerate the
loader-type objects in the display order along with selected elements. MSConfig can
also be used to modify selected elements, including the debug and safe-mode
settings.

BCDEdit
BCDedit is a command-line tool that support professionals and developers can use
to manage BCD stores. It can be used for a variety of purposes, including creating
new stores, modifying existing stores, adding boot menu options, and so on.
BCDEdit serves essentially the same purpose as Bootcfg.exe on earlier versions of
Windows, but with two major improvements:

 It exposes a wider range of boot options than Bootcfg.exe.

 It has improved scripting support.

Note: Administrative privileges are required to use BCDEdit to modify BCD.

BCDEdit is the only boot configuration editor that can be used to edit the boot
configuration for Windows Vista and later versions of Windows. It is included with
the Windows Vista distribution in the %WINDIR%\System32 folder. However,
BCDEdit can also be used on earlier versions of Windows. Bootcfg.exe is also
included with Windows Vista, but it can be used only to edit the boot configuration
for earlier versions of Windows that might also be installed on the computer.

BCDEdit is limited to the standard data types and is designed primarily to perform
single common changes to BCD. For more complex operations or nonstandard data
types, consider using the BCD WMI API to create more powerful and flexible
custom tools. The command syntax for BCDEdit is straightforward:
BCDEdit /Command [Argument1] [Argument2] ...

The following list gives the BCDEdit commands plus a brief description. Unless
otherwise specified, BCDEdit operates on the system store by default. For
examples of how to use BCDEdit for common tasks, see “BCD Cookbook,” later in
this paper. For complete details, see the online reference.

General Commands
 /?. Displays a list of BCDEdit commands. Running this command without an

argument displays a summary of the available commands. To display
detailed help for a particular command, run "bcdedit /? command", where
command is the name of the desired command without the leading forward
slash (/). For example, "bcdedit /? createstore" displays detailed help for the
createstore command.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 13

Commands that Operate on a Store
 /createstore. Creates a new empty boot configuration data store. The

created store is not a system store.

 /export. Exports the contents of the system store into a file. This file can be
used later to restore the state of the system store. This command is valid
only for the system store.

 /import. Restores the state of the system store by using a backup data file
previously generated by using the /export command. This command
deletes any existing entries in the system store before the import takes
place. This command is valid only for the system store.

 /store. This option can be used with most BCDedit commands to specify the
store to be used. If this option is not specified, then BCDEdit operates on
the system store. Running bcdedit /store by itself is equivalent to
running bcdedit /enum ACTIVE.

Commands that Operate on Entries in a Store
 /copy. Makes a copy of a specified boot entry in the same system store.

 /create. Creates a new entry in the boot configuration data store. If a well-
known identifier is specified, then the /application, /inherit, and /device
options cannot be specified. If an identifier is not specified or not well
known, a /application, /inherit, or /device option must be specified.

 /delete. Deletes an element from a specified entry.

Commands that Operate on Entry Options
 /deletevalue. Deletes a specified element from a boot entry.

 /set. Sets an entry option value.

Commands that Control Output
 /enum. Lists entries in a store. The /enum command is the default value for

BCDEdit, so running "bcdedit" without parameters is equivalent to running
bcdedit /enum ACTIVE.

 /v. Verbose mode. Usually, any well-known entry identifiers are represented
by their friendly shorthand form. Specifying /v as a command-line option
displays all identifiers in full. Running "bcdedit /v" by itself is equivalent to
running bcdedit /enum ACTIVE /v.

Commands that Control the Boot Manager
 /bootsequence. Specifies a one-time display order to be used for the next

boot. This command is similar to /displayorder, except that it is used only
the next time the system is booted. After that has occurred, the system
reverts to the original display order.

 /default. Specifies the default entry that the boot manager selects when the
timeout expires.

 /displayorder. Specifies the display order that the boot manager uses when
displaying boot options to a user.

 /timeout. Specifies the time to wait, in seconds, before the boot manager
selects the default entry.

 /toolsdisplayorder. Specifies the display order for the boot manager to use
when displaying the tools menu.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 14

Commands that Control EMS
 /bootems. Enables or disables Emergency Management Services for the

specified entry.

 /ems. Enables or disables Emergency Management Services for the
specified operating system boot entry.

 /emssettings. Sets the global Emergency Management Services settings for
the system. Emssettings does not enable or disable Emergency
Management Services for any particular boot entry.

Commands that Control Debugging
 /bootdebug. Enables or disables the boot debugger for a specified boot

entry. Although this command works for any boot entry, it is effective only
for boot applications.

 /dbgsettings. Specifies or displays the global debugger settings for the
system. This command does not enable or disable the kernel debugger;
use /debug for that purpose. To set an individual global debugger setting,
use bcdedit /set {dbgsettings} type value.

 /debug. Enables or disables the kernel debugger for a specified boot entry.

How to Manage BCD Programmatically with WMI
The BCD WMI API gives developers essentially complete control over the contents
of a store. It allows developers to create applications that use custom boot data or
make complex changes to a store that are difficult or impossible with BCDEdit.
Applications based on the WMI API can be run locally or remotely.

The BCD WMI provider consists of a scriptable set of classes that support
programmatic access to BCD stores. The classes are exposed as COM objects,
which allows applications to also be implemented in C++. Although the BCD WMI
provider was written primarily for Windows Vista and later versions of Windows, it
can also be used with Microsoft Windows XP, Windows Server 2003, and recovery
environments that support WMI.

This section provides a brief summary of the capabilities of the BCD WMI provider.
For detailed information, see the documentation in the MSDN Library. For some
examples of how to use the WMI API for specific tasks, see “BCD Cookbook,” later
in this paper.

The BCDStore Class
The BCDStore class represents a BCD store. It allows developers to do such tasks
as create stores, add or delete objects, and import the contents of a non-system
store into system store. The object has one property, StoreFilePath, which
contains the fully-qualified path of the object's BCD store. For convenience, the
system store is represented by an empty string (""). The following table lists the
object's methods.

BCDStore Methods
Method Description

CopyObject Copies the specified object from another store.

CopyObjects Copies the objects of the specified type from another store.

CreateObject Creates the specified object.

CreateStore Creates a new store.

DeleteObject Deletes the specified object.

DeleteSystemStore Deletes the system store.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 15

Method Description

EnumerateObjects Enumerates the objects of the specified type.

GetSystemDisk Gets the system disk.

GetSystemPartition Gets the system partition.

ExportStore Exports a store to a specified file.

ImportStore Marks the specified store as the system store.

OpenObject Opens the specified object.

OpenStore Opens a store.

The BCDObject Class
The BCDObject class represents a BCD object. It allows developers to do such
tasks as add or delete elements or modify the values of existing elements. Objects
are identified by a GUID and also contain a Type property that specifies the object's
purpose. The following table lists the object's properties:

BCDObject Properties
Property Description

StoreFilePath The fully-qualified path of the BCD store. The system store is
represented by an empty string ("").

Id The object's GUID, in string format.

Type The object's type.

The following table lists the object's methods.

BCDObject Methods
Method Description

DeleteElement Deletes the specified element.

EnumerateElementTypes Enumerates the types of elements in the object.

EnumerateElements Enumerates the elements in the object.

GetElement Gets the specified element.

SetBooleanElement Sets the specified Boolean element.

SetDeviceElement Sets the specified device element.

SetFileDeviceElement Sets the specified file device element.

SetIntegerElement Sets the specified integer element.

SetObjectElement Sets the specified object element.

SetObjectListElement Sets the specified object list element.

SetPartitionDeviceElemen
t

Sets the specified partition device element.

SetStringElement Sets the specified string element.

BCDElement Classes
A number of classes represent elements, one for each supported data type. The
base class is BCDElement, which has no methods. It supports the same three
properties that are supported by BCDObject. However, with BCDElement the ID
property is named ObjectID. The following table lists the classes that are derived
from BCDElement.

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 16

BCDElement Types and Subclasses
Method Description

BcdBooleanElement Contains a Boolean value.

BcdIntegerElement Contains an integer element.

BcdObjectElement Contains an object ID.

BcdObjectListElement Contains a list of object IDs.

BcdStringElement Contains a string.

BCD Cookbook
This section contains a number of brief examples of how to use BCDEdit for
common tasks. It also shows some examples of how to use the BCD WMI API to do
the same tasks programmatically.

Kernel Debugging
This section shows how to use BCDEdit to enable kernel debugging and specify
debug settings.

Enable Kernel Debugging
Use the following BCDEdit command to enable or disable kernel debugging for a
specified boot entry.
bcdedit /debug [ID] {on | off}

ID is the GUID that is associated with a boot entry. If it is omitted, BCDEdit modifies
the current boot entry by default. To specify a particular boot entry, set ID to the
string form of the associated GUID. The following example enables kernel
debugging for the specified entry.
bcdedit /debug {cbd971bf-b7b8-4885-951a-fa03044f5d71} on

Specify Global Debug Settings
To specify debug settings globally, use the following command.
bcdedit /dbgsettings type settings

The following examples show how to specify global debug settings for serial, 1394,
and USB connections.
bcdedit /dbgsettings serial debugport:1 baudrate:115200
bcdedit /dbgsettings 1394 channel:32
bcdedit /dbgsettings USB targetname:U1

Specify Debug Settings for a specified Boot Entry
To specify debug settings for a specific boot entry, use BCDEdit to set the
appropriate elements. The particular settings depend on the connection type.
bcdedit /set ID debugsetting1
bcdedit /set ID debugsetting2
...

The following example shows how to specify debug settings for a serial connection
for a specified entry.
bcdedit /set {cbd971bf-b7b8-4885-951a-fa03044f5d71} debugtype serial
bcdedit /set {cbd971bf-b7b8-4885-951a-fa03044f5d71} debugport 2
bcdedit /set {cbd971bf-b7b8-4885-951a-fa03044f5d71} baudrate 115200

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 17

Specify the Default Operating System
To specify the default operating system, use:
bcdedit /default ID

ID is the GUID for the Windows boot loader boot entry that is associated with the
desired operating system. For example:
bcdedit /default {cbd971bf-b7b8-4885-951a-fa03044f5d71}

To change the default boot entry to the legacy loader, set ID to {ntldr}, which is
BCDEdit 's well-known name for the GUID that is associated with Ntldr.
bcdedit /default {ntldr}

The following Microsoft® Visual Basic® Script sample shows how to use the BCD
WMI API to specify the default operating system. It takes a single argument, the
GUID that is associated with the boot entry for the new default operating system.
set Locator = CreateObject("WbemScripting.SWbemLocator")
set Services = Locator.ConnectServer(".", "root\wmi")
Services.Security_.ImpersonationLevel = 3

DefaultOsIdentifier = WScript.Arguments(0)

'These hardcoded values will be replaced with official constants
' whenavailable.

const BootMgrId = "{9dea862c-5cdd-4e70-acc1-f32b344d4795}"
const DefaultType = &h23000003
'
'Open up a connection to WMI BcdStore class, allowing for
'impersonation. We need to request that Backup and Restore
'privileges be granted as well.

set BcdStoreClass = GetObject("winmgmts:{impersonationlevel=impersonate,
(Backup,Restore)}!" & MachineName & "root/wmi:BcdStore")

if not BcdStoreClass.OpenStore("", BcdStore) then
 WScript.Echo "Couldn't open the system store!"
 WScript.Quit
end if
'
' Open the "boot manager" object.
'
if not BcdStore.OpenObject(BootMgrId, BootMgr) then
 WScript.Echo "Couldn't open the boot manager object!"
 WScript.Quit
end if
'
' Set the boot manager's default OS object to the specified OS.
' Note that objects must be passed as strings.
'
if not BootMgr.SetObjectElement(DefaultType, DefaultOSIdentifier) then
 WScript.Echo "Couldn't set the default OS value!"
 WScript.Quit
end if

WScript.Echo "Successfully set the boot manager's default OS value."

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 18

Specify the Boot Manager's Timeout Value
To specify the boot manager's timeout value, use:
bcdedit /timeout Timeout

Timeout specifies the value in seconds. For example, to specify a 15-second
timeout value:
bcdedit /timeout 15

Manage Boot Entries
This section shows how to manage the boot entries in BCD.

Change a Boot Entry's Description
The description is the text that appears in the list of boot entries that is displayed to
the user at boot time. Use the following command to change a boot entry's
description. ID is the GUID that is associated with the desired boot entry.
Bcdedit /set ID description "The new description"

For example:
bcdedit /set {802d5e32-0784-11da-bd33-000476eba25f} description "My
Favorite OS"

Control How Boot Entries Appear to the User
To specify the order in which boot entries appear to the user, run the following
command. ID1, ID2, and so on are the GUIDs that are associated with the boot
entries. Any boot entries that are not included in the list do not appear. If only one
entry is specified, the Windows boot manager simply selects that entry without
displaying a list.
bcdedit /displayorder ID1 [ID2] [ID3] [...]

The following command specifies three boot entries: two identified by their GUIDS
and Ntldr by its well-known name.
bcdedit /displayorder {802d5e32-0784-11da-bd33-000476eba25f}
 {cbd971bf-b7b8-4885-951a-fa03044f5d71} {ntldr}

The following command adds a boot entry to the beginning or end of the current list,
or removes an entry from the list.
bcdedit /displayorder ID [/addlast] [/addfirst] [/remove]

The following example adds an Ntldr entry to the end of the display order.
bcdedit /displayorder {ntldr} /addlast

It is also possible to specify a display order that applies only to the next reboot.
After that, BCD reverts to the original display order. Use the following command,
where the IDs are the GUIDs that are associated with the boot entries.
bcdedit /bootsequence ID1 [ID2] [ID3] ...

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 19

Create a New Windows Vista Boot Entry
The following procedure creates an additional Windows Vista boot entry. This
allows a user, for example, to have separate normal and debug configurations for
the same version of the operating system.

1. Make a copy of an existing Windows Vista boot entry, as shown in the following
example. ID is the GUID that is associated with the boot entry to be copied.
BCDEdit creates a GUID for the new boot entry.

Bcdedit /copy ID /d "New entry description"

2. The preceding command returns the GUID that is associated with the new boot
entry. Use that GUID to modify the partition information, as shown in the
following example. NewID is the GUID of the new boot entry, and this example
sets the partition to "d:".

Bcdedit /set NewID device partition=d:
Bcdedit /set NewID osdevice partition=d:

3. Add the new boot entry to the display order. The following example adds it to
the end of the list.

Bcdedit /displayorder NewID –addlast

4. Make any additional configuration changes that are required, such as enabling
the kernel debugger.

Delete a Boot Entry
The following command deletes a boot entry from BCD. ID is the GUID that is
associated with the boot entry.
bcdedit /delete ID

The following Visual Basic Script example shows how to use the BCD WMI API to
delete a boot entry. It takes a single argument, the GUID that is associated with the
boot entry to be deleted.
set Locator = CreateObject("WbemScripting.SWbemLocator")
set Services = Locator.ConnectServer(".", "root\wmi")
Services.Security_.ImpersonationLevel = 3

if WScript.Arguments.Count < 1 then
 WScript.Echo "Usage: " & WScript.FullName & " " & WScript.ScriptName & "
<GUID of OS to delete>"
 WScript.Quit
end if

TargetOS = WScript.Arguments(0)

'
' These hardcoded values will be replaced with official constants when
' available.
'
const BootMgrId = "{9dea862c-5cdd-4e70-acc1-f32b344d4795}"
const DefaultType = &h23000003
const DisplayOrderType = &h24000001

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 20

set BcdStoreClass = GetObject("winmgmts:{impersonationlevel=impersonate,
(Backup,Restore)}!" & "root/wmi:BcdStore")
if not BcdStoreClass.OpenStore("",BcdStore) then
 WScript.Echo "Couldn't open the system store!"
 WScript.Quit
end if
'
' Open the "boot manager" object.
'
if not BcdStore.OpenObject(BootMgrId, BootMgr) then
 WScript.Echo "Couldn't open the boot manager object!"
 WScript.Quit
end if
'
' Get the boot manager's display order list.
'
if not BootMgr.GetElement(DisplayOrderType, BootOrderList) then
 WScript.Echo "Couldn't get the display order list!"

else
 '
 ' remove the target os from the boot order list.
 '
 dim NewBootOrderList()
 i = 0
 for each OSIdentifier in BootOrderList.Ids
 if not TargetOS = OSIdentifier then
 redim preserve NewBootOrderList(i)
 NewBootOrderList(i) = OSIdentifier
 i =i + 1
 end if
 next

 if not BootMgr.SetObjectListElement(DisplayOrderType, NewBootOrderList)
then
 WScript.Echo "Couldn't set the new display order list!"
 WScript.Quit
 end if
end if
'
' Finally, delete the OS object
'
if not BcdStore.DeleteObject(TargetOS) then
 WScript.Echo "Couldn't delete target OS: " & TargetOS
 WScript.Quit
end if

WScript.Echo "Successfully deleted target OS: " & TargetOS

Enable PAE
The following command enables PAE for a specified boot entry. ID is the GUID that
is associated with the desired boot entry. If no ID is specified, BCDEdit modifies the
setting for the currently active operating system.
Bcdedit /set ID PAE ForceEnable

For example:
bcdedit /set {802d5e32-0784-11da-bd33-000476eba25f} PAE ForceEnable

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 21

Create a Boot Entry to Boot a WIM from a Hard Disk
This section shows how to create a boot entry to boot a WIM from a hard disk. It
assumes that the boot drive is "c:/". The WIM is contained in boot.wim, which is a
normal WIM with Winload.exe in the System32 folder.

1 Use the following set of commands to create a ramdiskoptions object in the
BCD store. The string "{ramdiskoptions}" is the well-known name for the
object's GUID.

bcdedit /create {ramdiskoptions} /d "Ramdisk options"
bcdedit /set {ramdiskoptions} ramdisksdidevice partition=c:
bcdedit /set {ramdiskoptions} ramdisksdipath \boot\boot.sdi

2. Create a new boot entry.

bcdedit -create /d "Display Text" /application OSLOADER

3. Step 2 returns the GUID that is associated with the newly created boot entry. It
is referred to as NewGUID in the remaining examples. Run the following set of
commands to configure the boot entry.

bcdedit /set {NewGUID} device ramdisk=[c:]\sources\boot.wim,{ramdiskoptions}
bcdedit /set {NewGUID} path \windows\system32\winload.exe
bcdedit /set {NewGUID} osdevice ramdisk=[c:]\sources\boot.wim,{ramdiskoptions}
bcdedit /set {NewGUID} systemroot \windows

Make a Non-system Store into the System Store
Systems can have any number of BCD stores. However, there can be only one
system store, and it controls the boot process. The /import command replaces the
contents of the system store with the contents of a specified non-system store. To
preserve the contents of the current system store, run the /export command to
create a backup copy of the system store. To restore the original system store,
import the backup copy.

The following commands save a backup copy of the system store and import a non-
system store into the system store. NewStoreName is the fully-qualified name of the
file that contains the non-system store, and BackupStoreName is the fully-qualified
name of the file that contains the backup store.
bcdedit /export BackupStoreName
bcdedit /import NewStoreName

The following Visual Basic Script example shows how to import a specified non-
system store into the system store. It takes one parameter—the fully-qualified path
for the BCD store that is to become the new system store.
set Locator = CreateObject("WbemScripting.SWbemLocator")
set Services = Locator.ConnectServer(".", "root\wmi")
Services.Security_.ImpersonationLevel = 3

FilePath = WScript.Arguments(0)
'
' Retrieve the BcdStore class object and call the static
' ImportStore method on it.
'
set BcdStoreClass = Services.Get("BcdStore")
if not BcdStoreClass.ImportStore(FilePath) then
 WScript.Echo "Couldn't import the system store!"
 WScript.Quit
end if

WScript.Echo "Successfully imported the system store from " &
FilePath & "."

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

Boot Configuration Data in Windows Vista - 22

Resources
The following links provide further information about BCD and the Windows boot
process.

MSDN:
BCD WMI Reference

http://msdn2.microsoft.com/en-us/library/aa362677.aspx

Boot Configuration Data (BCD)
http://msdn2.microsoft.com/en-us/library/aa362692.aspx

Introduction to Boot Options
http://msdn2.microsoft.com/en-us/library/ms791478.aspx

White Paper:
EFI and Windows Vista

http://www.microsoft.com/whdc/system/platform/firmware/efibrief.mspx

Feb. 4, 2008
© 2006 Microsoft Corporation. All rights reserved.

http://www.microsoft.com/whdc/system/platform/firmware/efibrief.mspx
http://msdn2.microsoft.com/en-us/library/ms791478.aspx
http://msdn2.microsoft.com/en-us/library/aa362692.aspx
http://msdn2.microsoft.com/en-us/library/aa362677.aspx

	Introduction
	BCD Overview
	BCD Architecture
	BCD Stores
	BCD Objects
	BCD Application Objects
	BCD Inheritable Objects
	BCD Device Objects

	BCD Elements

	Tools for Managing the BCD
	The Shell
	MSConfig
	BCDEdit

	How to Manage BCD Programmatically with WMI
	The BCDStore Class
	The BCDObject Class
	BCDElement Classes

	BCD Cookbook
	Kernel Debugging
	Enable Kernel Debugging
	Specify Global Debug Settings
	Specify Debug Settings for a specified Boot Entry

	Specify the Default Operating System
	Specify the Boot Manager's Timeout Value
	Manage Boot Entries
	Change a Boot Entry's Description
	Control How Boot Entries Appear to the User
	Create a New Windows Vista Boot Entry
	Delete a Boot Entry

	Enable PAE
	Create a Boot Entry to Boot a WIM from a Hard Disk
	Make a Non-system Store into the System Store

	Resources

