Analysis of Algorithms 3/16/14

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Analysis of Algorithms

> ¥

Input Algorithm Output

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 1

Running Time

o Most algorithms transform O best case
input objects into output W average case
| worst case

objects. 120

a The running time of an 100
algorithm typically grows
with the input size.

o Average case time is often
difficult to determine.

o We focus on the worst case 20
running time. oH

] 1000 2000 3000 4000
= Easier to analyze Input Size

= Crucial to applications such as
games, finance and robotics

80

60

40

Running Time

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 2

Analysis of Algorithms 3/16/14

Experimental s :

: 8000 - .

Studies |

< 7000 -

o Write a program = 6000 1 o
imple_menting the £ 5000 .
algorithm . E prv

a Run the program with £ -
inputs of varying size v
and composition, 2000 1 Haln
noting the time 1000 - i"
needed: P ‘

o Plot the results 0 50 100

Input Size
1 long startTime = System.currentTimeMillis(); // record the starting time
2 /% (run the algorithm) =/
3 long endTime = System.currentTimeMillis(); // record the ending time
4 long elapsed = endTime — startTime; // compute the elapsed time
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 3
Limitations of Experiments

o It is necessary to implement the
algorithm, which may be difficult

o Results may not be indicative of the
running time on other inputs not included
in the experiment.

o In order to compare two algorithms the
same hardware and software |
environments must be used

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 4

Analysis of Algorithms 3/16/14

Theoretical Analysis

o Uses a high-level description of the
algorithm instead of an implementation

o Characterizes running time as a function
of the input size, n

o Takes into account all possible inputs

o Allows us to evaluate the speed of an
algorithm independent of the hardware/
software environment

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 5

Pseudocode

o High-level description of an algorithm
o More structured than English prose
o Less detailed than a program

o Preferred notation for describing
algorithms

o Hides program design issues

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 6

Analysis of Algorithms 3/16/14

Pseudocode Details

o Control flow a Method call
= if ... then ... [else ..] method (arg [, arg...])
= while ... do ... o Return value
= repeat ... until ... return expression
= for ... do ... o Expressions:
= Indentation replaces braces < Assignment

o Method declaration

= Equality testing
Algorithm method (arg [, arg...])

Input ... n? Superscripts and other
Output ... mathematical
formatting allowed

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms

The Random Access Machine
(RAM) Model

A RAM consists of =
2 ACPU e |

o An potentially unbounded bank
of memory cells, each of which 2
can hold an arbitrary number or o0
character

o Memory cells are numbered and

accessing any cell in memory
takes unit time

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms

Analysis of Algorithms

o Seven functions that
often appear in algorithm 1E+30 1
o 1E+28 T — Cubic
analysis: 1E+26 1
s Constant = 1 1E+24 + — Quadratic
= Logarithmic ~ log {522 | —Linear
= Linear = n 1E+18
= N-Log-N =~ n log n = 1E+16
in < IE+14
. Qua.drat|c ~n (B3
= Cubic = n? 1E+10
= Exponential = 2" 1E+8
1E+6
1E+4
a Inalog-log chart, the
slope of the line 1E+0
corresponds to the 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
growth rate n
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 9

Functions Graphed
Using “Normal” Scale

g(n) =1 ﬁ w :

g(n) = n?
g(n) =lgn
n)=n
e o(n) = n?
© 201“4 G(godriéh, T;ma;sia, *Gold\(Nass:er Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

3/16/14

Analysis of Algorithms

Primitive Operations

o Basic computations
performed by an algorithm

o Identifiable in pseudocode

o Largely independent from the *
programming language

o Exact definition not important

(we will see why later) .
o Assumed to take a constant "
amount of time in the RAM
model
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms

o Examples:

Evaluating an
expression

Assigning a value
to a variable

Indexing into an
array

Calling a method

Returning from a
method

11

function of the input size

- Counting Primitive Operations

To By inspecting the pseudocode, we can determine the maximum
number of primitive operations executed by an algorithm, as a

1 /#* Returns the maximum value of a nonempty array of numbers. x/
2 public static double arrayMax(double| | data) {
3 int n = data.length;
4 double currentMax = datal0]; // assume first entry is biggest (for now)
5 for (int j=1;j < n; j++4) // consider all other entries
6 if (data[j] > currentMax) // if datalj] is biggest thus far...
7 currentMax = datalj]; // record it as the current max
8 return currentMax;
9 }

o Step 3: 2 ops, 4: 2 ops, 5: 2n ops,

6: 2nops, 7: 0tonops, 8: 1 op

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 12

3/16/14

Analysis of Algorithms 3/16/14

—
—

Estimating Running Time %

o Algorithm arrayMax executes 5n + 5 primitive
operations in the worst case, 4n + 5 in the best
case. Define:

a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

o Let T(n) be worst-case time of arrayMax. Then

a(4n +5)<T(n) < b(5n +5)

o Hence, the running time T(n) is bounded by two
linear functions

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 13

Growth Rate of Running Time

o Changing the hardware/ software
environment
» Affects T(n) by a constant factor, but
» Does not alter the growth rate of T(n)

o The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

4

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 14

Analysis of Algorithms

Slide by Matt Stallmann
included with permission.
Why Growth Rate Matters
i rLiJSntlme timeforn+1 | timefor2n | timefor4n
clgn clgin+1) | c(gn+1)| c(lgn+2)
cn c(n+1) 2cn 4cn
enlan ~cnlgn | 2cnign+ | 4cnign+ | runtime
9 +lon oen 4cn quadruples
L, when
cn? ~cn2+2cn 4c n? 16¢ n2 problem
size doubles
cnd ~cnd+3cn? 8c nd 64c n3
02n 02n+1 C22n C24n
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 15

insertion sort vs merge sort

9000
» 8000
h-}

§ 7000
@ 6000

g 5000

E 4000
o
¢ 3000

£ 2000
2 1000

ol

0

50 100 150
number of elements

200

insertion sort =—=— merge sort

© 2014 Goodrich, Tamassia, Goldwasser

Slide by Matt Stallmann
included with permission.

Comparison of Two Algorithms

insertion sort is
n’/ 4

merge sort is
2nlign

sort a million items?
insertion sort takes
roughly 70 hours
while
merge sort takes
roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’ s 40 minutes
versus less than 0.5 seconds

Analysis of Algorithms 16

3/16/14

Analysis of Algorithms 3/16/14

. 1E+26 ‘
o The growth rate is 1g+24 + - --Quadratic :
not affected by 1E+22 - — Quadratic
1E+20 |- - -Linear -
= constant factors or 1E+18 1 — Linear
= lower-order terms _ 1E+16
= 1E+14 ;
o Examples < IE+12
= 1021 + 10%is a linear ”15;3
function oI —
s 10502+ 10%nis a 1E+4
quadratic function ~ 1E+2
1E+0
IE+0 1E+2 1E+4 1E+6 1E+8 1E+10
n
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 17

Big-Oh Notation

— 10,000
o Given functions f{n) and --3n

g(n), we say that f(n) is
O(g(n)) if there are
positive constants

¢ and n, such that 160 / '
f(n) < cg(n) for n = n, | /
o Example: 2n + 10 is O(n) -
m 2n+10=<cn

n (c—Z)nZIO 1 10 100 1,000
s n=10/(c-2) fi
m Pick c=3and n,=10

1,000 — —2n+10

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 18

Analysis of Algorithms

© 2014 Goodrich, Tamassia, Goldwasser

Big-Oh Example

1,000,000

Analysis of Algorithms

) —nA2
a Example: the function s
n2is not O(n) 000008 o
= n’scn 10,000 +L_—N
m n=s¢C
= The above inequality 1,000
cannot be satisfied
since ¢ must be a 100
constant
10
1
1 10 100

1,000

19

-

© 2014 Goodrich, Tamassia, Goldwasser

'a 7n-2
7n-2 is O(n)
needc>0andny=1suchthat7n-2<cnforn=n,
thisis true forc =7 and ny = 1

o 3n+20n2+5
3n3+20n2+ 5is O(n3)
needc>0andny=1suchthat3n®+20n2+5<cn3forn=n,
this is true for c = 4 and n, = 21

O 3logn+5
3log n + 5is O(log n)
need c >0and ny=1suchthat3logn+5=<clognfornzn,

this is true forc = 8 and ny = 2
Analysis of Algorithms

More Big-Oh Examples l{

20

3/16/14

10

Analysis of Algorithms 3/16/14

Big-Oh and Growth Rate

o The big-Oh notation gives an upper bound on the
growth rate of a function

o The statement “f{n) is O(g(n))” means that the growth
rate of f{n) is no more than the growth rate of g(n)

o We can use the big-Oh notation to rank functions
according to their growth rate

fin)is O(g(n)) | g(n)is O(fin))
g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 21

Big-Oh Rules

a If is f{n) a polynomial of degree d, then f(n) is
O(nY), i.e.,
1. Drop lower-order terms
2. Drop constant factors
o Use the smallest possible class of functions
= Say “2n is O(n)” instead of “2n is O(n?)”
o Use the simplest expression of the class
» Say “3n+ 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 22

11

Analysis of Algorithms

Asymptotic Algorithm Analysis

The asymptotic analysis of an algorithm determines
the running time in big-Oh notation
To perform the asymptotic analysis

= We find the worst-case number of primitive operations
executed as a function of the input size

= We express this function with big-Oh notation
Example:

= We say that algorithm arrayMax “runs in O(n) time”
Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 23

Computing Prefix Averages

o We further illustrate

35

asymptotic analysis with oxX
two algorithms for prefix 30194
averages 25
o The i-th prefix average of 20 | 1
an array X is average of the
first (i + 1) elements of X: 15 - i
A[i] = (X[0] + X[1] + ... + X[i])/(i+1) 10 A i
a Computing the array 4 of D I
prefix averages of another 0 - i
array X has applications to 1 2 3 4 5 6 7

financial analysis

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 24

3/16/14

12

Analysis of Algorithms 3/16/14

Prefix Averages (Quadratic)

T The following algorithm computes prefix averages in
quadratic time by applying the definition

1 /%% Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */
2 public static double[| prefixAveragel(double[] x) {

3 int n = x.length;

4 double[| a = new double[n]; // filled with zeros by default

5 for (int j=0; j < n; j++) {

6 double total = 0; // begin computing x[0] + ... + X[j]
7 for (int i=0; i <=j; i++)

8 total += x]i];

9 a[j] = total / (j+1); // record the average
10
11 return 3;
12}
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 25

Arithmetic Progression

o The running time of
prefixAveragel is
O1+2+...+n)

a The sum of the first n
integersis n(n+1)/2
= There is a simple visual
proof of this fact
o Thus, algorithm
prefixAveragel runs in
O(n?) time

S M= N W A O

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 26

13

Analysis of Algorithms

Prefix Averages 2 (Linear)

The following algorithm uses a running summation to
improve the efficiency

1 /#x Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */
2 public static double[] prefixAverage2(double| | x) {
3 int n = x.length;
4 double[| a = new double[n]; // filled with zeros by default
5 double total = 0; // compute prefix sum as x[0] + x[1] + ...
6 for (int j=0; j < n; j++) {
7 total += x][j]; // update prefix sum to include x[j]
8 a[j] = total / (j+1); // compute average based on current sum
9
10 return a;
1}
Algorithm prefixAverage2 runs in O(n) time!
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 27
Math you need to Review
| a Summations o Properties of powers:
a(b+C) — aba C
o Powers abe = (ab)c
o Logarithms ab /ac = a0
. — 5 log_b
o Proof techniques b =a"®s%
- - bc=ac Iogab
a Basic probability , properties of logarithms:
logy(xy) = logyx + logpy
log, (x/y) = logyx - logpy
log,xa = alogyx
log,a = log,a/log,b
© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 28

3/16/14

14

Analysis of Algorithms 3/16/14

Relatives of Big-Oh

big-Omega
n f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, = 1 such that

f(n) = c g(n) for n = n,

big-Theta
= f(n) is ®(g(n)) if there are constants ¢’ > 0 and
c” > 0 and an integer constant n, = 1 such that

c'g(n) < f(n) < c"g(n) for n = n,

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 29

Ny,

\

Intuition for Asymptotic
Notation

big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

= f(n) is ©(g(n)) if f(n) is asymptotically
equal to g(n)

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 30

15

Analysis of Algorithms 3/16/14

Example Uses of the
/Relatives of Big-Oh

m 5n?is Q(n?)

fn) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant r, = 1
such that f(n) = ¢ g(n) for n = n,

letc=5andn,=1
B S5n?is Q(n)

fn) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant r, = 1
such that f(n) = ¢ g(n) for n = n,

letc=1andn,=1
m Sn?is O@n?)

fin) is O(g(n)) if it is Q(n?) and O(n?). We have already seen the former,

for the latter recall that f{n) is O(g(n)) if there is a constant ¢ > 0 and an
integer constant n, = 1 such that f(n) < c g(n) for n = n,

Letc=5and n,=1

© 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 31

16

