
Heaps 3/19/14

1

Heaps 1

Heaps

2

6 5

7 9

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Heaps 2

Recall Priority Queue ADT

q  A priority queue stores a
collection of entries

q  Each entry is a pair
(key, value)

q  Main methods of the Priority
Queue ADT
n  insert(k, v)

inserts an entry with key k
and value v

n  removeMin()
removes and returns the
entry with smallest key

q  Additional methods
n  min()

returns, but does not
remove, an entry with
smallest key

n  size(), isEmpty()

q  Applications:
n  Standby flyers
n  Auctions
n  Stock market

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

2

Heaps 3

Recall PQ Sorting
q  We use a priority queue

n  Insert the elements with a
series of insert operations

n  Remove the elements in
sorted order with a series
of removeMin operations

q  The running time depends
on the priority queue
implementation:
n  Unsorted sequence gives

selection-sort: O(n2) time
n  Sorted sequence gives

insertion-sort: O(n2) time

q  Can we do better?

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

 comparator C
while ¬S.isEmpty ()

 e ← S.remove (S. first ())
P.insert (e, e)

while ¬P.isEmpty()
 e ← P.removeMin().getKey()
S.addLast(e)

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 4

Heaps
q  A heap is a binary tree storing

keys at its nodes and satisfying
the following properties:

q  Heap-Order: for every internal
node v other than the root,
key(v) ≥ key(parent(v))

q  Complete Binary Tree: let h be
the height of the heap
n  for i = 0, … , h - 1, there are 2i

nodes of depth i
n  at depth h - 1, the internal nodes

are to the left of the external
nodes

2

6 5

7 9

q  The last node of a heap
is the rightmost node of
maximum depth

last node

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

3

Heaps 5

Height of a Heap
q  Theorem: A heap storing n keys has height O(log n)

 Proof: (we apply the complete binary tree property)
n  Let h be the height of a heap storing n keys
n  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key

at depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1 + 1

n  Thus, n ≥ 2h , i.e., h ≤ log n

1

2

2h-1

1

keys
0

1

h-1

h

depth

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 6

Heaps and Priority Queues
q  We can use a heap to implement a priority queue
q  We store a (key, element) item at each internal node
q  We keep track of the position of the last node

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

4

Heaps 7

Insertion into a
Heap
q  Method insertItem of the

priority queue ADT
corresponds to the
insertion of a key k to
the heap

q  The insertion algorithm
consists of three steps
n  Find the insertion node z

(the new last node)
n  Store k at z
n  Restore the heap-order

property (discussed next)

2

6 5

7 9

insertion node

2

6 5

7 9 1

z

z

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 8

Upheap
q  After the insertion of a new key k, the heap-order property may be

violated
q  Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node
q  Upheap terminates when the key k reaches the root or a node

whose parent has a key smaller than or equal to k
q  Since a heap has height O(log n), upheap runs in O(log n) time

2

1 5

7 9 6 z

1

2 5

7 9 6 z

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

5

Heaps 9

Removal from a Heap
q  Method removeMin of

the priority queue ADT
corresponds to the
removal of the root key
from the heap

q  The removal algorithm
consists of three steps
n  Replace the root key with

the key of the last node w
n  Remove w
n  Restore the heap-order

property (discussed next)

2

6 5

7 9

last node

w

7

6 5

9
w

new last node

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 10

Downheap
q  After replacing the root key with the key k of the last node, the

heap-order property may be violated
q  Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root
q  Upheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to k
q  Since a heap has height O(log n), downheap runs in O(log n) time

7

6 5

9
w

5

6 7

9
w

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

6

Heaps 11

Updating the Last Node
q  The insertion node can be found by traversing a path of O(log n)

nodes
n  Go up until a left child or the root is reached
n  If a left child is reached, go to the right child
n  Go down left until a leaf is reached

q  Similar algorithm for updating the last node after a removal

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 12

Heap-Sort
q  Consider a priority

queue with n items
implemented by means
of a heap
n  the space used is O(n)
n  methods insert and

removeMin take O(log n)
time

n  methods size, isEmpty,
and min take time O(1)
time

q  Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time

q  The resulting algorithm is
called heap-sort

q  Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and
selection-sort

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

7

Heaps 13

Array-based Heap Implementation
q  We can represent a heap with n

keys by means of an array of
length n

q  For the node at rank i
n  the left child is at rank 2i + 1
n  the right child is at rank 2i + 2

q  Links between nodes are not
explicitly stored

q  Operation add corresponds to
inserting at rank n + 1

q  Operation remove_min
corresponds to removing at rank n

q  Yields in-place heap-sort

2

6 5

7 9

2 5 6 9 7
0 1 2 3 4

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

© 2014 Goodrich, Tamassia, Goldwasser Heaps 14

Heaps 3/19/14

8

Java Implementation, 2

© 2014 Goodrich, Tamassia, Goldwasser Heaps 15

Java Implementation, 3

© 2014 Goodrich, Tamassia, Goldwasser Heaps 16

Heaps 3/19/14

9

Heaps 17

Merging Two Heaps
q  We are given two two

heaps and a key k
q  We create a new heap

with the root node
storing k and with the
two heaps as subtrees

q  We perform downheap
to restore the heap-
order property

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 18

q  We can construct a heap
storing n given keys in
using a bottom-up
construction with log n
phases

q  In phase i, pairs of
heaps with 2i -1 keys are
merged into heaps with
2i+1-1 keys

Bottom-up Heap Construction

2i -1 2i -1

2i+1-1

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

10

Heaps 19

Example

15 16 12 4 7 6 20 23

25

15 16

5

12 4

11

7 6

27

20 23

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 20

Example (contd.)

25

15 16

5

12 4

11

9 6

27

20 23

15

25 16

4

12 5

6

9 11

23

20 27

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

11

Heaps 21

Example (contd.)

7

15

25 16

4

12 5

8

6

9 11

23

20 27

4

15

25 16

5

12 7

6

8

9 11

23

20 27

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 22

Example (end)

4

15

25 16

5

12 7

10

6

8

9 11

23

20 27

5

15

25 16

7

12 10

4

6

8

9 11

23

20 27

© 2014 Goodrich, Tamassia, Goldwasser

Heaps 3/19/14

12

Heaps 23

Analysis
q  We visualize the worst-case time of a downheap with a proxy path

that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

q  Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

q  Thus, bottom-up heap construction runs in O(n) time
q  Bottom-up heap construction is faster than n successive insertions

and speeds up the first phase of heap-sort

© 2014 Goodrich, Tamassia, Goldwasser

