
Skip Lists 3/19/14

1

Skip Lists 1

Skip Lists

+∞ -∞

S0

S1

S2

S3

+∞ -∞ 10 36 23 15

+∞ -∞ 15

+∞ -∞ 23 15

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Skip Lists 2

What is a Skip List
q  A skip list for a set S of distinct (key, element) items is a series of

lists S0, S1 , … , Sh such that
n  Each list Si contains the special keys +∞ and -∞
n  List S0 contains the keys of S in nondecreasing order
n  Each list is a subsequence of the previous one, i.e.,

 S0 ⊆ S1 ⊆ … ⊆ Sh
n  List Sh contains only the two special keys

q  We show how to use a skip list to implement the map ADT

56 64 78 +∞ 31 34 44 -∞ 12 23 26

+∞ -∞

+∞ 31 -∞

64 +∞ 31 34 -∞ 23

S0

S1

S2

S3

© 2014 Goodrich, Tamassia, Goldwasser

Skip Lists 3/19/14

2

Skip Lists 3

Search
q  We search for a key x in a a skip list as follows:

n  We start at the first position of the top list
n  At the current position p, we compare x with y ← key(next(p))

 x = y: we return element(next(p))
 x > y: we “scan forward”
 x < y: we “drop down”

n  If we try to drop down past the bottom list, we return null
q  Example: search for 78

+∞ -∞

S0

S1

S2

S3

+∞ 31 -∞

64 +∞ 31 34 -∞ 23

56 64 78 +∞ 31 34 44 -∞ 12 23 26

© 2014 Goodrich, Tamassia, Goldwasser

scan forward

drop down

Skip Lists 4

Randomized Algorithms
q  A randomized algorithm

performs coin tosses (i.e.,
uses random bits) to control
its execution

q  It contains statements of the
type

 b ← random()
 if b = 0
 do A …
 else { b = 1}
 do B …

q  Its running time depends on
the outcomes of the coin
tosses

q  We analyze the expected
running time of a
randomized algorithm under
the following assumptions
n  the coins are unbiased, and
n  the coin tosses are

independent
q  The worst-case running time

of a randomized algorithm is
often large but has very low
probability (e.g., it occurs
when all the coin tosses give
“heads”)

q  We use a randomized
algorithm to insert items into
a skip list

© 2014 Goodrich, Tamassia, Goldwasser

Skip Lists 3/19/14

3

Skip Lists 5

q  To insert an entry (x, o) into a skip list, we use a randomized
algorithm:
n  We repeatedly toss a coin until we get tails, and we denote with i

the number of times the coin came up heads
n  If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each

containing only the two special keys
n  We search for x in the skip list and find the positions p0, p1 , …, pi

of the items with largest key less than x in each list S0, S1, … , Si
n  For j ← 0, …, i, we insert item (x, o) into list Sj after position pj

q  Example: insert key 15, with i = 2

Insertion

+∞ -∞ 10 36

+∞ -∞

23

23 +∞ -∞

S0

S1

S2

+∞ -∞

S0

S1

S2

S3

+∞ -∞ 10 36 23 15

+∞ -∞ 15

+∞ -∞ 23 15
p0

p1

p2

© 2014 Goodrich, Tamassia, Goldwasser

Skip Lists 6

Deletion
q  To remove an entry with key x from a skip list, we proceed as

follows:
n  We search for x in the skip list and find the positions p0, p1 , …, pi

of the items with key x, where position pj is in list Sj

n  We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si
n  We remove all but one list containing only the two special keys

q  Example: remove key 34

-∞ +∞ 45 12

-∞ +∞

23

23 -∞ +∞

S0

S1

S2

-∞ +∞

S0

S1

S2

S3

-∞ +∞ 45 12 23 34

-∞ +∞ 34

-∞ +∞ 23 34
p0

p1

p2

© 2014 Goodrich, Tamassia, Goldwasser

Skip Lists 3/19/14

4

Skip Lists 7

Implementation
q  We can implement a skip list

with quad-nodes
q  A quad-node stores:

n  entry
n  link to the node prev
n  link to the node next
n  link to the node below
n  link to the node above

q  Also, we define special keys
PLUS_INF and MINUS_INF,
and we modify the key
comparator to handle them

x

quad-node

© 2014 Goodrich, Tamassia, Goldwasser

Skip Lists 8

Space Usage
q  The space used by a skip list

depends on the random bits
used by each invocation of the
insertion algorithm

q  We use the following two basic
probabilistic facts:
Fact 1: The probability of getting i

consecutive heads when
flipping a coin is 1/2i

Fact 2: If each of n entries is
present in a set with probability
p, the expected size of the set
is np

q  Consider a skip list with n
entries
n  By Fact 1, we insert an entry

in list Si with probability 1/2i

n  By Fact 2, the expected size
of list Si is n/2i

q  The expected number of
nodes used by the skip list is

nnn h

i
i

h

i
i 2

2
1

2 00
<= ∑∑

==

" Thus, the expected space
usage of a skip list with n
items is O(n)

© 2014 Goodrich, Tamassia, Goldwasser

Skip Lists 3/19/14

5

Skip Lists 9

Height
q  The running time of the

search an insertion
algorithms is affected by the
height h of the skip list

q  We show that with high
probability, a skip list with n
items has height O(log n)

q  We use the following
additional probabilistic fact:
Fact 3: If each of n events has

probability p, the probability
that at least one event
occurs is at most np

q  Consider a skip list with n
entires
n  By Fact 1, we insert an entry

in list Si with probability 1/2i

n  By Fact 3, the probability that
list Si has at least one item is
at most n/2i

q  By picking i = 3log n, we have
that the probability that S3log n
has at least one entry is
at most

 n/23log n = n/n3 = 1/n2

q  Thus a skip list with n entries
has height at most 3log n with
probability at least 1 - 1/n2

© 2014 Goodrich, Tamassia, Goldwasser

Skip Lists 10

Search and Update Times
q  The search time in a skip list

is proportional to
n  the number of drop-down

steps, plus
n  the number of scan-forward

steps
q  The drop-down steps are

bounded by the height of the
skip list and thus are O(log n)
with high probability

q  To analyze the scan-forward
steps, we use yet another
probabilistic fact:
Fact 4: The expected number of

coin tosses required in order
to get tails is 2

q  When we scan forward in a
list, the destination key does
not belong to a higher list
n  A scan-forward step is

associated with a former coin
toss that gave tails

q  By Fact 4, in each list the
expected number of scan-
forward steps is 2

q  Thus, the expected number of
scan-forward steps is O(log n)

q  We conclude that a search in a
skip list takes O(log n)
expected time

q  The analysis of insertion and
deletion gives similar results

© 2014 Goodrich, Tamassia, Goldwasser

Skip Lists 3/19/14

6

Skip Lists 11

Summary

q  A skip list is a data
structure for maps that
uses a randomized
insertion algorithm

q  In a skip list with n
entries
n  The expected space used

is O(n)
n  The expected search,

insertion and deletion
time is O(log n)

q  Using a more complex
probabilistic analysis,
one can show that
these performance
bounds also hold with
high probability

q  Skip lists are fast and
simple to implement in
practice

© 2014 Goodrich, Tamassia, Goldwasser

