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What is a Skip List 
q  A skip list for a set S of distinct (key, element) items is a series of 

lists S0, S1 , … , Sh such that 
n  Each list Si contains the special keys +∞ and -∞  
n  List S0 contains the keys of S in nondecreasing order  
n  Each list is a subsequence of the previous one, i.e., 

   S0 ⊆ S1 ⊆  … ⊆ Sh 
n  List Sh contains only the two special keys 

q  We show how to use a skip list to implement the map ADT 
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Search 
q  We search for a key x in a a skip list as follows: 

n  We start at the first position of the top list  
n  At the current position p, we compare x with y ← key(next(p)) 

  x = y: we return element(next(p)) 
  x > y: we “scan forward”  
  x < y: we “drop down” 

n  If we try to drop down past the bottom list, we return null 
q  Example: search for 78 
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Randomized Algorithms 
q  A randomized algorithm 

performs coin tosses (i.e., 
uses random bits) to control 
its execution 

q  It contains statements of the 
type 

 b ← random() 
 if  b = 0 
  do A … 
 else { b = 1} 
  do  B …  

q  Its running time depends on 
the outcomes of the coin 
tosses 

q  We analyze the expected 
running time of a 
randomized algorithm under 
the following assumptions 
n  the coins are unbiased, and  
n  the coin tosses are 

independent 
q  The worst-case running time 

of a randomized algorithm is 
often large but has very low 
probability (e.g., it occurs 
when all the coin tosses give 
“heads”) 

q  We use a randomized 
algorithm to insert items into 
a skip list 

© 2014 Goodrich, Tamassia, Goldwasser 



Skip Lists 3/19/14 

3 

Skip Lists 5 

q  To insert an entry (x, o) into a skip list, we use a randomized 
algorithm: 
n  We repeatedly toss a coin until we get tails, and we denote with i 

the number of times the coin came up heads 
n  If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each 

containing only the two special keys 
n  We search for x in the skip list and find the positions p0,  p1 , …, pi 

of the items with largest key less than x in each list S0, S1, … , Si 
n  For j ← 0, …, i, we insert item (x, o) into list Sj after position pj 

q  Example: insert key 15, with i = 2 
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Deletion 
q  To remove an entry with key x from a skip list, we proceed as 

follows: 
n  We search for x in the skip list and find the positions p0,  p1 , …, pi 

of the items with key x, where position pj is in list Sj 

n  We remove positions p0,  p1 , …, pi from the lists S0, S1, … , Si 
n  We remove all but one list containing only the two special keys 

q  Example: remove key 34 
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Implementation 
q  We can implement a skip list 

with  quad-nodes 
q  A quad-node stores: 

n  entry 
n  link to the node prev 
n  link to the node next 
n  link to the node below 
n  link to the node above 

q  Also, we define special keys 
PLUS_INF and MINUS_INF, 
and we modify the key 
comparator to handle them   
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Space Usage 
q  The space used by a skip list 

depends on the random bits 
used by each invocation of the 
insertion algorithm 

q  We use the following two basic 
probabilistic facts: 
Fact 1: The probability of getting i 

consecutive heads when 
flipping a coin is 1/2i 

Fact 2: If each of n entries is 
present in a set with probability 
p, the expected size of the set 
is np 

q  Consider a skip list with n 
entries 
n  By Fact 1, we insert an entry 

in list Si with probability 1/2i 

n  By Fact 2, the expected size 
of list Si is n/2i  

q  The expected number of 
nodes used by the skip list is 
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" Thus, the expected space 
usage of a skip list with n 
items is O(n) 
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Height 
q  The running time of the 

search an insertion 
algorithms is affected by the 
height h of the skip list 

q  We show that with high 
probability, a skip list with n 
items has height O(log n) 

q  We use the following 
additional probabilistic fact: 
Fact 3: If each of n events has 

probability p, the probability 
that at least one event 
occurs is at most np 

q  Consider a skip list with n 
entires 
n  By Fact 1, we insert an entry 

in list Si with probability 1/2i 

n  By Fact 3, the probability that 
list Si has at least one item is 
at most n/2i 

q  By picking i = 3log n, we have 
that the probability that S3log n 
has at least one entry is 
at most 

  n/23log n = n/n3 = 1/n2 

q  Thus a skip list with n entries 
has height at most 3log n with 
probability at least 1 -  1/n2 
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Search and Update Times 
q  The search time in a skip list 

is proportional to 
n  the number of drop-down 

steps, plus 
n  the number of scan-forward 

steps 
q  The drop-down steps are 

bounded by the height of the 
skip list and thus are O(log n) 
with high probability 

q  To analyze the scan-forward 
steps, we use yet another 
probabilistic fact: 
Fact 4: The expected number of 

coin tosses required in order 
to get tails is 2 

q  When we scan forward in a 
list, the destination key does 
not belong to a higher list 
n  A scan-forward step is 

associated with a former coin 
toss that gave tails 

q  By Fact 4, in each list the 
expected number of scan-
forward steps is 2 

q  Thus, the expected number of 
scan-forward steps is  O(log n) 

q  We conclude that a search in a 
skip list takes O(log n) 
expected time 

q  The analysis of insertion and 
deletion gives similar results 
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Summary 

q  A skip list is a data 
structure for maps that 
uses a randomized 
insertion algorithm 

q  In a skip list with n 
entries  
n  The expected space used 

is O(n) 
n  The expected search, 

insertion and deletion 
time is O(log n) 

q  Using a more complex 
probabilistic analysis, 
one can show that 
these performance 
bounds also hold with 
high probability 

q  Skip lists are fast and 
simple to implement in 
practice 
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