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Multi-Way Search Tree 
! A multi-way search tree is an ordered tree such that  

n  Each internal node has at least two children and stores  d -1 
key-element items (ki, oi), where d is the number of children  

n  For a node with children v1 v2 … vd  storing  keys k1 k2 … kd-1 
w  keys in the subtree of v1 are less than k1 
w  keys in the subtree of vi are between ki-1 and ki (i = 2, …, d - 1) 
w  keys in the subtree of vd are greater than kd-1 

n  The leaves store no items and serve as placeholders 
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Multi-Way Inorder Traversal 
! We can extend the notion of inorder traversal from binary trees 

to multi-way search trees 
! Namely, we visit item (ki, oi) of node v between the recursive 

traversals of the subtrees of v rooted at children vi and vi + 1 
! An inorder traversal of a multi-way search tree visits the keys in 

increasing order 
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Multi-Way Searching 
! Similar to search in a binary search tree 
! A each internal node with children v1 v2 … vd and keys k1 k2 … kd-1 

n  k = ki (i = 1, …, d - 1): the search terminates successfully 
n  k < k1: we continue the search in child v1 
n  ki-1 <  k < ki (i = 2, …, d - 1): we continue the search in child vi 
n  k > kd-1: we continue the search in child vd 

! Reaching an external node terminates the search unsuccessfully 
! Example: search for 30 
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(2,4) Trees 
! A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way 

search with the following properties 
n  Node-Size Property: every internal node has at most four children 
n  Depth Property: all the external nodes have the same depth 

! Depending on the number of children, an internal node of a 
(2,4) tree is called a 2-node, 3-node or 4-node 
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Height of a (2,4) Tree 
! Theorem: A (2,4) tree storing n items has height O(log n) 

 Proof: 
n  Let h be the height of a (2,4) tree with n items 
n  Since there are at least 2i items at depth i = 0, … , h - 1 and no 

items at depth h, we have 
   n ≥ 1 + 2 + 4 + … + 2h-1 = 2h - 1 

n  Thus, h ≤ log (n + 1) 
! Searching in a (2,4) tree with n items takes O(log n) time 
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Insertion 
! We insert a new item (k, o) at the parent v of the leaf reached by 

searching for k 
n  We preserve the depth property but  
n  We may cause an overflow (i.e., node v may become a 5-node) 

! Example: inserting key 30 causes an overflow 
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Overflow and Split 
! We handle an overflow at a 5-node v with a split operation: 

n  let v1 … v5 be the children of v and  k1 … k4 be the keys of v 
n  node v is replaced nodes v' and v" 

w  v' is a 3-node with keys k1 k2 and children v1 v2 v3 
w  v" is a 2-node with key k4 and children v4 v5 

n  key k3  is inserted into the parent u of v (a new root may be created) 

! The overflow may propagate to the parent node u 
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Analysis of Insertion 
Algorithm put(k, o) 
1.  We search for key k to locate 

the insertion node v 
2.  We add the new entry (k, o) at 

node v 
3. while overflow(v) 

if isRoot(v) 
  create a new empty root 
above v 

v ← split(v) 

! Let T be a (2,4) tree 
with n items 
n  Tree T has O(log n) 

height  
n  Step 1 takes O(log n) 

time because we visit 
O(log n) nodes 

n  Step 2 takes O(1) time 
n  Step 3 takes O(log n) 

time because each split 
takes O(1) time and we 
perform O(log n) splits 

! Thus, an insertion in a 
(2,4) tree takes O(log n) 
time 
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Deletion 
! We reduce deletion of an entry to the case where the item is at the 

node with leaf children 
! Otherwise, we replace the entry with its inorder successor (or, 

equivalently, with its inorder predecessor) and delete the latter entry 
! Example: to delete key 24, we replace it with 27 (inorder successor) 
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Underflow and Fusion 
! Deleting an entry from a node v may cause an underflow, where 

node v becomes a 1-node with one child and no keys 
! To handle an underflow at node v with parent u, we consider two 

cases 
! Case 1: the adjacent siblings of v are 2-nodes 

n  Fusion operation: we merge v with an adjacent sibling w and move an 
entry from u to the merged node v' 

n  After a fusion, the underflow may propagate to the parent u 
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Underflow and Transfer 
! To handle an underflow at node v with parent u, we consider 

two cases 
! Case 2: an adjacent sibling w of v is a 3-node or a 4-node 

n  Transfer operation: 
  1.  we move a child of w to v  
  2.  we move an item from u to v 
  3.  we move an item from w to u 

n  After a transfer, no underflow occurs 
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Analysis of Deletion 
! Let T be a (2,4) tree with n items 

n  Tree T has O(log n) height  
! In a deletion operation 

n  We visit O(log n) nodes to locate the node from 
which to delete the entry 

n  We handle an underflow with a series of O(log n) 
fusions, followed by at most one transfer 

n   Each fusion and transfer takes O(1) time 
! Thus, deleting an item from a (2,4) tree takes 

O(log n) time 
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Comparison of Map Implementations 

Search Insert Delete Notes 

Hash 
Table 

1 
expected 

1 
expected 

1 
expected 

o  no ordered map 
    methods 
o  simple to implement 

Skip List log n 
high prob. 

log n 
high prob. 

log n 
high prob. 

o  randomized insertion 
o  simple to implement 

AVL and 
(2,4) 
Tree 

log n 
worst-case 

log n 
worst-case 

log n 
worst-case 

o  complex to implement 


