
Splay Trees 3/20/14

1

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 1

Splay Trees
6

3 8

4

v

z

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 2

all the keys in the yellow
region are ≤ 20

all the keys in the blue
region are ≥ 20

Splay Trees are Binary Search Trees

! BST Rules:
n  entries stored only at

internal nodes
n  keys stored at nodes in the

left subtree of v are less
than or equal to the key
stored at v

n  keys stored at nodes in the
right subtree of v are
greater than or equal to the
key stored at v

! An inorder traversal will
return the keys in order

(20,Z)

(37,P) (21,O)
(14,J)

(7,T)

(35,R) (10,A)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

note that two keys of
equal value may be well-
separated

Slide by Matt Dickerson

Splay Trees 3/20/14

2

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 3

Searching in a Splay Tree:
Starts the Same as in a BST
! Search proceeds down

the tree to found item
or an external node.

! Example: Search for
time with key 11.

(20,Z)

(37,P) (21,O)
(14,J)

(7,T)

(35,R) (10,A)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

Slide by Matt Dickerson

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 4

Example Searching
in a BST, continued
! search for key 8, ends at

an internal node.

(20,Z)

(37,P) (21,O)
(14,J)

(7,T)

(35,R) (10,A)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

Slide by Matt Dickerson

Splay Trees 3/20/14

3

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 5

Splay Trees do Rotations after
Every Operation (Even Search)

! new operation: splay
n  splaying moves a node to the root using rotations

n  right rotation
n  makes the left child x of a node y

into y’s parent; y becomes the
right child of x

y

x

T1 T2

T3

y

x

T1

T2 T3

n  left rotation
n  makes the right child y of a node x

into x’s parent; x becomes the left
child of y

y

x

T1 T2

T3

y

x

T1

T2 T3

(structure of tree above y
is not modified)

(structure of tree above x
is not modified)

a right rotation about y a left rotation about x

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 6

Splaying:

is x the
root? stop

is x a child of
the root?

right-rotate
about the root

left-rotate about
the root

is x the left
child of the

root?

is x a left-left
grandchild?

is x a left-right
grandchild?

is x a right-right
grandchild?

is x a right-left
grandchild?

right-rotate about g,
right-rotate about p

left-rotate about g,
left-rotate about p

left-rotate about p,
right-rotate about g

right-rotate about p,
left-rotate about g

start with
node x

n “x is a left-left grandchild” means x is a left child of its
parent, which is itself a left child of its parent

n p is x’s parent; g is p’s parent

no

yes

yes

yes

yes

yes

yes

no

no

yes zig-zig

zig-zag

zig-zag

zig-zig

zig zig

Slide by Matt Dickerson

Splay Trees 3/20/14

4

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 7

Visualizing the
Splaying Cases

zig-zag

y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

y

x

T1 T2

T3

z

T4

zig-zig

y

z

T4 T3

T2

x

T1

zig

x

w

T1 T2

T3

y

T4
y

x

T2 T3 T4

w

T1

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 8

Splaying Example
! let x = (8,N)

n  x is the right child of its parent,
which is the left child of the
grandparent

n  left-rotate around p, then right-
rotate around g

(20,Z)

(37,P) (21,O)
(14,J)

(7,T)

(35,R) (10,A)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

x

g

p

(10,A)

(20,Z)

(37,P) (21,O)

(35,R)

(36,L) (40,X) (7,T)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(14,J) (8,N)

(7,P)

(10,U)

x

g

p (10,A)

(20,Z)

(37,P) (21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

g
p

1.
(before
rotating)

2.
(after first rotation) 3.

(after second
rotation)

x is not yet the root, so
we splay again

Slide by Matt Dickerson

Splay Trees 3/20/14

5

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 9

Splaying Example, Continued

! now x is the left child of the root
n  right-rotate around root

(10,A)

(20,Z)

(37,P) (21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

(10,A)

(20,Z)

(37,P) (21,O)

(35,R)

(36,L) (40,X)

(7,T)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(14,J)

(8,N)

(7,P)

(10,U)

x

1.
(before applying
rotation)

2.
(after rotation)

x is the root, so stop
Slide by Matt Dickerson

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 10

Example Result of
Splaying

! tree might not be more balanced
! e.g. splay (40,X)

n  before, the depth of the shallowest leaf is
3 and the deepest is 7

n  after, the depth of shallowest leaf is 1
and deepest is 8

(20,Z)

(37,P) (21,O)
(14,J)

(7,T)

(35,R) (10,A)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

(20,Z)

(37,P)

(21,O)

(14,J)
(7,T)

(35,R)

(10,A)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(8,N)

(7,P) (36,L) (10,U)

(40,X)

(20,Z)

(37,P)

(21,O)

(14,J)
(7,T) (35,R)

(10,A)

(1,C)

(1,Q)

(5,G) (2,R)

(5,H)

(6,Y) (5,I)

(8,N)

(7,P)

(36,L)

(10,U)

(40,X)

before

after first splay after second
splay

Slide by Matt Dickerson

Splay Trees 3/20/14

6

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 11

Splay Tree Definition

! a splay tree is a binary search tree where a
node is splayed after it is accessed (for a
search or update)
n  deepest internal node accessed is splayed
n  splaying costs O(h), where h is height of the tree

– which is still O(n) worst-case
w  O(h) rotations, each of which is O(1)

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 12

Splay Trees & Ordered
Dictionaries
! which nodes are splayed after each operation?

use the parent of the internal node that was actually
removed from the tree (the parent of the node that the
removed item was swapped with)

Remove item
with key k

use the new node containing the entry inserted Insert (k,v)

if key found, use that node
if key not found, use parent of ending external node

Search for k

splay node method

Splay Trees 3/20/14

7

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 13

Amortized Analysis of
Splay Trees
! Running time of each operation is proportional to time

for splaying.
! Define rank(v) as the logarithm (base 2) of the number

of nodes in subtree rooted at v.
! Costs: zig = $1, zig-zig = $2, zig-zag = $2.
! Thus, cost for playing a node at depth d = $d.
! Imagine that we store rank(v) cyber-dollars at each

node v of the splay tree (just for the sake of analysis).

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 14

Cost per zig

! Doing a zig at x costs at most rank’(x) - rank(x):
n  cost = rank’(x) + rank’(y) - rank(y) - rank(x)

 < rank’(x) - rank(x).

zig

x

w

T1 T2

T3

y

T4
y

x

T2 T3 T4

w

T1

Splay Trees 3/20/14

8

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 15

Cost per zig-zig and zig-zag

! Doing a zig-zig or zig-zag at x costs at most
 3(rank’(x) - rank(x)) - 2

y

x

T1 T2

T3

z

T4
zig-zig y

z

T4 T3

T2

x

T1

zig-zag
y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 16

Cost of Splaying
! Cost of splaying a node x at depth d of a tree

rooted at r:
n  at most 3(rank(r) - rank(x)) - d + 2:
n  Proof: Splaying x takes d/2 splaying substeps:

.2))(rank)(rank(3
2)/(2))(rank)(rank(3

2)2))(rank)(rank(3(

cost cost

0

1

2/

1

2/

1

+−−≤

+−−=

+−−≤

≤

−
=

=

∑

∑

dxr
ddxr

xx i

d

i
i

i

d

i

Splay Trees 3/20/14

9

© 2013 Goodrich, Tamassia, Goldwasser Splay Trees 17

Performance of
Splay Trees

! Recall: rank of a node is logarithm of its size.
! Thus, amortized cost of any splay operation is

O(log n)
! In fact, the analysis goes through for any

reasonable definition of rank(x)
! This implies that splay trees can actually

adapt to perform searches on frequently-
requested items much faster than O(log n) in
some cases

© 2013 Goodrich, Tamassia, Goldwasser

Java Implementation

Splay Trees 18

Splay Trees 3/20/14

10

© 2013 Goodrich, Tamassia, Goldwasser

Java Implementation

Splay Trees 19

