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Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014 
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all the keys in the yellow 
region are ≤ 20 

all the keys in the blue 
region are ≥ 20 

Splay Trees are Binary Search Trees 

! BST Rules: 
n  entries stored only at 

internal nodes 
n  keys stored at nodes in the 

left subtree of v are less 
than or equal to the key 
stored at v 

n  keys stored at nodes in the 
right subtree of v are 
greater than or equal to the 
key stored at v 

! An inorder traversal will 
return the keys in order 

(20,Z) 

(37,P) (21,O) 
(14,J) 

(7,T) 

(35,R) (10,A) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(8,N) 

(7,P) 

(36,L) 

(10,U) 

(40,X) 

note that two keys of 
equal value may be well-
separated 
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Searching in a Splay Tree:  
Starts the Same as in a BST 
! Search proceeds down 

the tree to found item 
or an external node. 

! Example: Search for 
time with key 11. 

(20,Z) 

(37,P) (21,O) 
(14,J) 

(7,T) 

(35,R) (10,A) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(8,N) 

(7,P) 

(36,L) 

(10,U) 

(40,X) 
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Example Searching  
in a BST, continued 
! search for key 8, ends at 

an internal node. 

(20,Z) 

(37,P) (21,O) 
(14,J) 

(7,T) 

(35,R) (10,A) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(8,N) 

(7,P) 

(36,L) 

(10,U) 

(40,X) 
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Splay Trees do Rotations after 
Every Operation (Even Search) 

! new operation: splay 
n  splaying moves a node to the root using rotations 

n  right rotation 
n  makes the left child x of a node y 

into y’s parent; y becomes the 
right child of x 

y 

x 

T1 T2 

T3 

y 

x 

T1 

T2 T3 

n  left rotation 
n  makes the right child y of a node x 

into x’s parent; x becomes the left 
child of y 

y 

x 

T1 T2 

T3 

y 

x 

T1 

T2 T3 

(structure of tree above y 
is not modified) 

(structure of tree above x 
is not modified) 

a right rotation about y a left rotation about x 
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Splaying: 

is x the 
root? stop 

is x a child of 
the root? 

right-rotate 
about the root 

left-rotate about 
the root 

is x the left 
child of the 

root? 

is x a left-left 
grandchild? 

is x a left-right 
grandchild? 

is x a right-right 
grandchild? 

is x a right-left 
grandchild? 

right-rotate about g, 
right-rotate about p 

left-rotate about g, 
left-rotate about p 

left-rotate about p, 
right-rotate about g 

right-rotate about p, 
left-rotate about g 

start with 
node x 

n “x is a left-left grandchild” means x is a left child of its 
parent, which is itself a left child of its parent  

n p is x’s parent; g is p’s parent 

no 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

yes zig-zig 

zig-zag 

zig-zag 

zig-zig 

zig zig 
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Visualizing the 
Splaying Cases 

zig-zag 

y 

x 

T2 T3 

T4 

z 

T1 

y 

x 

T2 T3 T4 

z 

T1 

y 

x 

T1 T2 

T3 

z 

T4 

zig-zig 

y 

z 

T4 T3 

T2 

x 

T1 

zig 

x 

w 

T1 T2 

T3 

y 

T4 
y 

x 

T2 T3 T4 

w 

T1 
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Splaying Example 
! let x = (8,N) 

n  x is the right child of its parent, 
which is the left child of the 
grandparent 

n  left-rotate around p, then right-
rotate around g 

(20,Z) 

(37,P) (21,O) 
(14,J) 

(7,T) 

(35,R) (10,A) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(8,N) 

(7,P) 

(36,L) 

(10,U) 

(40,X) 

x 

g 

p 

(10,A) 

(20,Z) 

(37,P) (21,O) 

(35,R) 

(36,L) (40,X) (7,T) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(14,J) (8,N) 

(7,P) 

(10,U) 

x 

g 

p (10,A) 

(20,Z) 

(37,P) (21,O) 

(35,R) 

(36,L) (40,X) 

(7,T) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(14,J) 

(8,N) 

(7,P) 

(10,U) 

x 

g 
p 

1. 
(before 
rotating) 

2. 
(after first rotation) 3. 

(after second 
rotation) 

x is not yet the root, so 
we splay again 
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Splaying Example, Continued 

! now x is the left child of the root 
n  right-rotate around root 

(10,A) 

(20,Z) 

(37,P) (21,O) 

(35,R) 

(36,L) (40,X) 

(7,T) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(14,J) 

(8,N) 

(7,P) 

(10,U) 

x 

(10,A) 

(20,Z) 

(37,P) (21,O) 

(35,R) 

(36,L) (40,X) 

(7,T) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(14,J) 

(8,N) 

(7,P) 

(10,U) 

x 

1. 
(before applying 
rotation) 

2. 
(after rotation) 

x is the root, so stop 
Slide by Matt Dickerson 
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Example Result of 
Splaying 

! tree might not be more balanced 
! e.g. splay (40,X) 

n  before, the depth of the shallowest leaf is 
3 and the deepest is 7 

n  after, the depth of shallowest leaf is 1 
and deepest is 8 

(20,Z) 

(37,P) (21,O) 
(14,J) 

(7,T) 

(35,R) (10,A) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(8,N) 

(7,P) 

(36,L) 

(10,U) 

(40,X) 

(20,Z) 

(37,P) 

(21,O) 

(14,J) 
(7,T) 

(35,R) 

(10,A) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(8,N) 

(7,P) (36,L) (10,U) 

(40,X) 

(20,Z) 

(37,P) 

(21,O) 

(14,J) 
(7,T) (35,R) 

(10,A) 

(1,C) 

(1,Q) 

(5,G) (2,R) 

(5,H) 

(6,Y) (5,I) 

(8,N) 

(7,P) 

(36,L) 

(10,U) 

(40,X) 

before 

after first splay after second 
splay 
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Splay Tree Definition 

! a splay tree is a binary search tree where a 
node is splayed after it is accessed (for a 
search or update) 
n  deepest internal node accessed is splayed 
n  splaying costs O(h), where h is height of the tree 

– which is still O(n) worst-case 
w  O(h) rotations, each of which is O(1) 
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Splay Trees & Ordered 
Dictionaries 
! which nodes are splayed after each operation? 

use the parent of the internal node that was actually 
removed from the tree (the parent of the node that the 
removed item was swapped with) 

Remove item 
with key k 

use the new node containing the entry inserted Insert (k,v) 

if key found, use that node 
if key not found, use parent of ending external node 

Search for k 

splay node method 
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Amortized Analysis of 
Splay Trees 
! Running time of each operation is proportional to time 

for splaying. 
! Define rank(v) as the logarithm (base 2) of the number 

of nodes in subtree rooted at v. 
! Costs: zig = $1, zig-zig = $2, zig-zag = $2. 
! Thus, cost for playing a node at depth d = $d. 
! Imagine that we store rank(v) cyber-dollars at each 

node v of the splay tree (just for the sake of analysis). 
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Cost per zig 

! Doing a zig at x costs at most rank’(x) - rank(x): 
n  cost = rank’(x) + rank’(y) - rank(y) - rank(x)  

       < rank’(x) - rank(x). 

zig 

x 

w 

T1 T2 

T3 

y 

T4 
y 

x 

T2 T3 T4 

w 

T1 
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Cost per zig-zig and zig-zag 

! Doing a zig-zig or zig-zag at x costs at most   
  3(rank’(x) - rank(x)) - 2 

y 

x 

T1 T2 

T3 

z 

T4 
zig-zig y 

z 

T4 T3 

T2 

x 

T1 

zig-zag 
y 

x 

T2 T3 

T4 

z 

T1 

y 

x 

T2 T3 T4 

z 

T1 
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Cost of Splaying 
! Cost of splaying a node x at depth d of a tree 

rooted at r: 
n  at most 3(rank(r) - rank(x)) - d + 2: 
n  Proof: Splaying x takes d/2 splaying substeps: 

.2))(rank)(rank(3
2)/(2))(rank)(rank(3

2)2))(rank)(rank(3(

cost cost 
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1

2/
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i
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Performance of 
Splay Trees 

! Recall: rank of a node is logarithm of its size. 
! Thus, amortized cost of any splay operation is 

O(log n) 
! In fact, the analysis goes through for any 

reasonable definition of rank(x) 
! This implies that splay trees can actually 

adapt to perform searches on frequently-
requested items much faster than O(log n) in 
some cases 
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Java Implementation 
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Java Implementation 
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