Merge Sort

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

~

Merge Sort

[72|94—>2479]

(712>27] [9]a»a09]

(7-7] [2-2) [9-9] [4—4]

(

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 1

Divide-and-Conquer

Divide-and conquer is a @ Merge-sort is a sorting
general algorithm design algorithm based on the
paradigm: divide-and-conquer

= Divide: divide the input data paradigm

S in two disjoint subsets S, @ Like heap-sort

and S, « It has O(n log n) running
= Recur: solve the time

subproblems associated]

with S, and S, # Unlike heap-sort

= It does not use an

= Conquer: combine the o L
auxiliary priority queue

solutions for §, and S, into a

solution for S = It accesses data in a
@ The base case for the ?Sgilflaetglgatlon;grrlcng;ta ona
recursion are subproblems of :
- disk)
sizeOor1l
© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 2

3/25/14 15:46

Merge Sort

Merge-Sort

@ Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into
two sequences S, and S,

of about n/2 elements
each

= Recur: recursively sort
and S,

= Conquer: merge S, and
S, into a unique sorted

Algorithm mergeSort(S)

Input sequence § with n
elements

Output sequence S sorted
according to C

if S.size() > 1
(S, S,) < partition(S, n/2)
mergeSori(S,)
mergeSort(S,)
S < merge(S,, S,)

sequence

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort 3

@ The conquer step of
merge-sort consists
of merging two
sorted sequences 4
and B into a sorted
sequence S
containing the union
of the elements of 4
and B

4 Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes O(n)
time

© 2014 Goodrich, Tamassia, Goldwasser

Merging Two Sorted Sequences

Algorithm merge(A, B)

Input sequences 4 and B with
n/2 elements each

Output sorted sequence of 4 U B

S < empty sequence
while = A.isEmpty() A =B.isEmpty()
if A.first().element() < B.first().element()
S.addLast(A.remove(A.first()))
else
S.addLast(B.remove(B.first()))

while —A.isEmpty()
S.addLast(A.remove(A.first()))

while - B.isEmpty()
S.addLast(B.remove(B.first()))

return S

Merge Sort 4

3/25/14 15:46

Merge Sort

Java Merge Implementation

1 /#% Merge contents of arrays S1 and S2 into properly sized array S. %/
2 public static <K> void merge(K[] S1, K[] S2, K[] S, Comparator<K> comp) {
3 inti=0j=0;
4 while (i + j < S.length) {
5 if (j == S2.length || (i < Sl.length && comp.compare(S1[i], S2[j]) < 0))
6 S[i++j] = S1fi++]; // copy ith element of S1 and increment i
7 else
8 S[i++j] = S2[j++]; // copy jth element of S2 and increment j
o)
10}
0 1 2 3 4 5 6 0 1 2 3 4 5 6
S1 [2] s [s [ufi2]ua]is] S1 [2] s [s [ui2[ia]is]
0123456 0123 45
82 [3]o [iof1s[15]22]as] 82 3]0 [1o[18[15]22[as]
01;;3—-;\‘5678910111213 012;45678910111213
sIeTsTele] [[T T T T T T] sEIsTsTeleqol [[TTTTT]
i+j i+j
© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 5

Java Merge-Sort
Implementation

1 /*x Merge-sort contents of array S. %/
2 public static <K> void mergeSort(K[] S, Comparator<K> comp) {
3 int n = S.length;
4 if (n < 2) return; // array is trivially sorted
5 // divide
6 int mid = n/2;
7 K[] S1 = Arrays.copyOfRange(S, 0, mid); // copy of first half
8 K[] S2 = Arrays.copyOfRange(S, mid, n); // copy of second half
9 // conquer (with recursion)
10 mergeSort(S1, comp); // sort copy of first half
11 mergeSort(S2, comp); // sort copy of second half
12 // merge results
13 merge(S1, S2, S, comp); // merge sorted halves back into original
14}
© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 6

3/25/14 15:46

Merge Sort

Merge-Sort Tree

@ An execution of merge-sort is depicted by a binary tree
= each node represents a recursive call of merge-sort and stores
+ unsorted sequence before the execution and its partition
+ sorted sequence at the end of the execution
= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[72|94—>2479]

[7|2—>27] [9|4—>49]

7-7] [2=2] [9-9] [4-4]

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 7

Execution Example
@ Partition

(72943861]

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 8

3/25/14 15:46

Merge Sort

Execution Example (cont.)

@ Recursive call, partition

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort

(7294]3861)

Execution Example (cont.)

#Recursive call, partition

————————————

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort

(7294]3861)

3/25/14 15:46

Merge Sort

Execution Example (cont.)

#Recursive call, base case

(7294]3861)

(72]94 | (|

iz) |) |)
¥
=7]) OO OO

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 11

Execution Example (cont.)

#®Recursive call, base case

(7294]3861)

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 12

3/25/14 15:46

Merge Sort

Execution Example (cont.)
Merge

(7294]386 1)

(72194

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 13

Execution Example (cont.)

#Recursive call, ..., base case, merge

(7294]3861)

(72]94 |

(7]12-27] [94—49]

A\ A NEYAN
9 ESD 629 (9 U 0n OO 0n

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 14

3/25/14 15:46

Merge Sort

Execution Example (cont.)

Merge

(7294]386 1)

¢

-~ N

712227 (94->49]

=7 (2=2] (=9 [1~4

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 15

Execution Example (cont.)

#Recursive call, ..., merge, merge

(7294]3861)

(72]94>2479 (3861136 8]

~ N

712-27 (94 —>49] 38—-38 (6116
]

=) G20 629 (=9 (=3 G

=9 =1

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 16

3/25/14 15:46

Merge Sort

Execution Example (cont.)

Merge
(7294|3861 >1234673809]
— ~
(72]94>2479 (38611368
712227 [94-49] [38-38 (6116

RN

=7 (2=2] [p=9 =9 [=3 b=g (=6 (=4

© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 17

Analysis of Merge-Sort

@ The height & of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,

4 The overall amount or work done at the nodes of depth i is O(n)
= we partition and merge 2/ sequences of size n/2!
= we make 27! recursive calls

@ Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n ()
1 2 nR2 (] (J
i 20 n2t |]]]]
© 2014 Goodrich, Tamassia, Goldwasser Merge Sort 18

3/25/14 15:46

Merge Sort

Summary of Sorting Algorithms

Algorithm

Time

Notes

selection-sort

o(n?)

= slow
= in-place
= for small data sets (< 1K)

insertion-sort

o(n?)

= slow
= in-place
= for small data sets (< 1K)

heap-sort

O(n log n)

= fast
= in-place
= for large data sets (1K — 1M)

merge-sort

O(n log n)

= fast
= sequential data access
= for huge data sets (> 1M)

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

19

3/25/14 15:46

10

