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Presentation for use with the textbook Data Structures and 
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and M. H. Goldwasser, Wiley, 2014 
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Preprocessing Strings 
! Preprocessing the pattern speeds up pattern matching 

queries 
n  After preprocessing the pattern, KMP’s algorithm performs 

pattern matching in time proportional to the text size 

! If the text is large, immutable and searched for often 
(e.g., works by Shakespeare), we may want to 
preprocess the text instead of the pattern 

! A trie is a compact data structure for representing a 
set of strings, such as all the words in a text 
n  A tries supports pattern matching queries in time 

proportional to the pattern size 
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Standard Tries 
! The standard trie for a set of strings S is an ordered tree such that: 

n  Each node but the root is labeled with a character 
n  The children of a node are alphabetically ordered 
n  The paths from the external nodes to the root yield the strings of S 

! Example: standard trie for the set of strings 
S = { bear, bell, bid, bull, buy, sell, stock, stop } 
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Analysis of Standard Tries 
! A standard trie uses O(n) space and supports 

searches, insertions and deletions in time O(dm), 
where: 
n  total size of the strings in S 
m  size of the string parameter of the operation 
d  size of the alphabet  

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d



Tries 3/25/14 16:11 

3 

© 2014 Goodrich, Tamassia, Goldwasser Tries 5 

Word Matching with a Trie 
! insert the words of 

the text into trie 
! Each leaf is 

associated w/ one 
particular word 

! leaf stores indices 
where associated 
word begins 
(“see” starts at 
index 0 & 24, leaf 
for “see” stores 
those indices) 
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Compressed Tries 
! A compressed trie has 

internal nodes of degree at 
least two 

! It is obtained from standard 
trie by compressing chains of 
“redundant” nodes 

! ex. the “i” and “d” in “bid” 
are “redundant” because 
they signify the same word 

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d



Tries 3/25/14 16:11 

4 

© 2014 Goodrich, Tamassia, Goldwasser Tries 7 

Compact Representation 
! Compact representation of a compressed trie for an array of strings: 

n  Stores at the nodes ranges of indices instead of substrings 
n  Uses O(s) space, where s is the number of strings in the array 
n  Serves as an auxiliary index structure 
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Suffix Trie 
! The suffix trie of a string X is the compressed trie of all the 

suffixes of X 
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Analysis of Suffix Tries 
! Compact representation of the suffix trie for a string 

X of size n from an alphabet of size d 
n  Uses O(n) space 
n  Supports arbitrary pattern matching queries in X in O(dm) 

time, where m is the size of the pattern 
n  Can be constructed in O(n) time 
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Encoding Trie (1) 
! A code is a mapping of each character of an alphabet to a binary 

code-word 
! A prefix code is a binary code such that no code-word is the prefix 

of another code-word 
! An encoding trie represents a prefix code 

n  Each leaf stores a character 
n  The code word of a character is given by the path from the root to 

the leaf storing the character (0 for a left child and 1 for a right child 

a 

b c 

d e 

00 010 011 10 11 

a b c d e 



Tries 3/25/14 16:11 

6 

© 2014 Goodrich, Tamassia, Goldwasser Tries 11 

Encoding Trie (2) 
! Given a text string X, we want to find a prefix code for the characters 

of X that yields a small encoding for X 
n  Frequent characters should have short code-words 
n  Rare characters should have long code-words 

! Example 
n  X = abracadabra 
n  T1 encodes X into 29 bits 
n  T2 encodes X into 24 bits 
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