
Tries 3/25/14 16:11

1

© 2014 Goodrich, Tamassia, Goldwasser Tries 1

Tries

e nimize

nimize ze

zei mi

mize nimize ze

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser Tries 2

Preprocessing Strings
! Preprocessing the pattern speeds up pattern matching

queries
n  After preprocessing the pattern, KMP’s algorithm performs

pattern matching in time proportional to the text size

! If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

! A trie is a compact data structure for representing a
set of strings, such as all the words in a text
n  A tries supports pattern matching queries in time

proportional to the pattern size

Tries 3/25/14 16:11

2

© 2014 Goodrich, Tamassia, Goldwasser Tries 3

Standard Tries
! The standard trie for a set of strings S is an ordered tree such that:

n  Each node but the root is labeled with a character
n  The children of a node are alphabetically ordered
n  The paths from the external nodes to the root yield the strings of S

! Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

© 2014 Goodrich, Tamassia, Goldwasser Tries 4

Analysis of Standard Tries
! A standard trie uses O(n) space and supports

searches, insertions and deletions in time O(dm),
where:
n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

Tries 3/25/14 16:11

3

© 2014 Goodrich, Tamassia, Goldwasser Tries 5

Word Matching with a Trie
! insert the words of

the text into trie
! Each leaf is

associated w/ one
particular word

! leaf stores indices
where associated
word begins
(“see” starts at
index 0 & 24, leaf
for “see” stores
those indices)

a
e

b

l

s
u

l
e t

e
0, 24

o
c

i
l

r
6

l
78

d
47, 58

l
30

y
36

l
12 k

17, 40,
51, 62

p
84

h
e

r
69

a

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
a r

87 88

© 2014 Goodrich, Tamassia, Goldwasser Tries 6

Compressed Tries
! A compressed trie has

internal nodes of degree at
least two

! It is obtained from standard
trie by compressing chains of
“redundant” nodes

! ex. the “i” and “d” in “bid”
are “redundant” because
they signify the same word

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

Tries 3/25/14 16:11

4

© 2014 Goodrich, Tamassia, Goldwasser Tries 7

Compact Representation
! Compact representation of a compressed trie for an array of strings:

n  Stores at the nodes ranges of indices instead of substrings
n  Uses O(s) space, where s is the number of strings in the array
n  Serves as an auxiliary index structure

s e e
b e a r
s e l l
s t o c k

b u l l
b u y
b i d

h e
b e l l
s t o p

0 1 2 3 4
a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

1, 1, 1

1, 0, 0 0, 0, 0

4, 1, 1

0, 2, 2

3, 1, 2

1, 2, 3 8, 2, 3

6, 1, 2

4, 2, 3 5, 2, 2 2, 2, 3 3, 3, 4 9, 3, 3

7, 0, 3

0, 1, 1

© 2014 Goodrich, Tamassia, Goldwasser Tries 8

Suffix Trie
! The suffix trie of a string X is the compressed trie of all the

suffixes of X

e nimize

nimize ze

zei mi

mize nimize ze

m i n i z em i
0 1 2 3 4 5 6 7

Tries 3/25/14 16:11

5

© 2014 Goodrich, Tamassia, Goldwasser Tries 9

Analysis of Suffix Tries
! Compact representation of the suffix trie for a string

X of size n from an alphabet of size d
n  Uses O(n) space
n  Supports arbitrary pattern matching queries in X in O(dm)

time, where m is the size of the pattern
n  Can be constructed in O(n) time

7, 7 2, 7

2, 7 6, 7

6, 7

4, 7 2, 7 6, 7

1, 1 0, 1

m i n i z em i
0 1 2 3 4 5 6 7

© 2014 Goodrich, Tamassia, Goldwasser Tries 10

Encoding Trie (1)
! A code is a mapping of each character of an alphabet to a binary

code-word
! A prefix code is a binary code such that no code-word is the prefix

of another code-word
! An encoding trie represents a prefix code

n  Each leaf stores a character
n  The code word of a character is given by the path from the root to

the leaf storing the character (0 for a left child and 1 for a right child

a

b c

d e

00 010 011 10 11

a b c d e

Tries 3/25/14 16:11

6

© 2014 Goodrich, Tamassia, Goldwasser Tries 11

Encoding Trie (2)
! Given a text string X, we want to find a prefix code for the characters

of X that yields a small encoding for X
n  Frequent characters should have short code-words
n  Rare characters should have long code-words

! Example
n  X = abracadabra
n  T1 encodes X into 29 bits
n  T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2

