Breadth-First Search 3/25/14 16:17

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

~

Breadth-First Search

© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 1

Breadth-First Search

o Breadth-first search o BFS on a graph with n
(BFS) is a general vertices and m edges
gectlgl%ue for traversing takes O(n + m) time

a AgBFSptraversaI of a a BFS can be further
graph G extended to solve other

= Visits all the vertices and graph problems
edges of G = Find and report a path

» Determines whether G is with the minimum
connected number of edges

= Computes the connected between two given
components of G vertices

= Computes a spanning = Find a simple cycle, if
forest of G there is one

© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 2

Breadth-First Search

BFS Algorithm

o The algorithm uses a
mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G)
Input graph G
Output labeling of the edges
and partition of the
vertices of G

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()

Algorithm BFS(G, s)
L, < new empty sequence
Ly.addLast(s)
setLabel(s, VISITED)
i< 0
while -L.isEmpty()
L, ., <= new empty sequence
for all v € L,elements()
for all ¢ € Gl.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
L; . ,.addLast(w)

else
if getLabel(v) = UNEXPLORED setLabel(e, CROSS)
BFS(G, v) i< 1i+1
© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 3

J

level.addLast(s);

1
2
3
4
5 known.add(s);
6
7 while (!level.isEmpty()) {
8

Java Implementation

/*x Performs breadth-first search of Graph g starting at Vertex u. x/

public static <V,E> void BFS(Graph<V,E> g, Vertex<V> s,

Set<Vertex<V>> known, Map<Vertex<V>,Edge<E>> forest) {
PositionalList<Vertex<V>> level = new LinkedPositionalList<>();

// first level includes only s

PositionalList<Vertex<V>> nextLevel = new LinkedPositionalList<>();

9 for (Vertex<V> u : level)
10 for (Edge<E> e : g.outgoingEdges(u)) {
11 Vertex<V> v = g.opposite(u, e);
12 if (!known.contains(v)) {
13 known.add(v);
14 forest.put(v, e); // e is the tree edge that discovered v
15 nextLevel.addLast(v); // v will be further considered in next pass
16 }
17
18 level = nextLevel; // relabel 'next’ level to become the current
19
20 }

© 2014 Goodrich, Tamassia, Goldwasser

Breadth-First Search 4

3/25/14 16:17

Breadth-First Search 3/25/14 16:17

Example

(®) unexplored vertex
@ visited vertex
— unexplored edge
— discovery edge
- = =» (ross edge

© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 5

Example (cont.)

© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 6

Breadth-First Search 3/25/14 16:17

Example (cont.)

L, — <"]

© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 7

Properties

Notation ()
G,: connected component of s

Property 1
BFS(G, s) visits all the vertices and
edges of G,

Property 2 ® ®
The discovery edges labeled by
BFS(G, s) form a spanning tree T,
of G|

Property 3

For each vertex v in L,
= The path of 7, from sto vhas i
edges
= Every path from sto vin G, has at
least i edges

© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 8

Breadth-First Search 3/25/14 16:17

Analysis

Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled twice
= once as UNEXPLORED
= once as VISITED

Each edge is labeled twice
= once as UNEXPLORED
= once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence L,
Method incidentEdges is called once for each vertex
BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

= Recall that 2 deg(v) = 2m

O

O

O

|]

O

© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 9

Applications

o Using the template method pattern, we can
specialize the BFS traversal of a graph G to
solve the following problems in O(n + m) time

= Compute the connected components of G
= Compute a spanning forest of G

= Find a simple cycle in G, or report that G is a
forest

= Given two vertices of G, find a path in G between
them with the minimum number of edges, or
report that no such path exists

© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 10

Breadth-First Search 3/25/14 16:17

DFS vs. BFS

Applications DFS | BFS
Spanning forest, connected

v v
components, paths, cycles
Shortest paths v
Biconnected components v

~
~
~
B »(C) »>(D
© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 11

DFS vs. BFS (cont.)

Back edge (v,w) Cross edge (v,w)
= wis an ancestor of v in = wis in the same level as
the tree of discovery v or in the next level
edges

-~
~
~
~
B »(C) »(D
DFS
© 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 12

