Graphs

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

~

Graphs

O3 Er

© 2014 Goodrich, Tamassia, Goldwasser Graphs 1

Graphs

o A graph is a pair (V, E), where
= Vs a set of nodes, called vertices
= E is a collection of pairs of vertices, called edges
= Vertices and edges are positions and store elements
o Example:
= A vertex represents an airport and stores the three-letter airport code

= An edge represents a flight route between two airports and stores the
mileage of the route

3/25/14 15:37

Graphs

Edge Types

o Directed edge
= ordered pair of vertices (u,v)
n first vertex u is the origin
= second vertex v is the destination
= e.g., aflight
o Undirected edge
= unordered pair of vertices (u,v)
= e.g., aflight route
o Directed graph
= all the edges are directed
= e.g., route network
o Undirected graph
= all the edges are undirected
= e.g., flight network

© 2014 Goodrich, Tamassia, Goldwasser Graphs

Applications

o Electronic circuits
= Printed circuit board
= Integrated circuit
o Transportation networks
= Highway network
= Flight network
o Computer networks
= Local area network
= Internet
= Web

o Databases Paul

» Entity-relationship diagram

© 2014 Goodrich, Tamassia, Goldwasser Graphs

math.brown.edu

|- ()

oooooo

oooooo

3/25/14 15:37

Graphs

Terminology

o End vertices (or endpoints) of
an edge

= U and V are the endpoints of a
o Edges incident on a vertex

= 3, d, and b are incident on V
o Adjacent vertices

= UandV are adjacent
o Degree of a vertex

= X has degree 5
o Parallel edges

= hand i are parallel edges
o Self-loop

= jis a self-loop

© 2014 Goodrich, Tamassia, Goldwasser Graphs

Terminology (cont.)

o Path

= sequence of alternating
vertices and edges

= begins with a vertex
= ends with a vertex

= each edge is preceded and
followed by its endpoints

o Simple path
= path such that all its vertices
and edges are distinct
o Examples
= P,=(V,b,X,h,Z) is a simple path
= P,=(U,c,W,eXg,Y,fW,dV)isa
path that is not simple

© 2014 Goodrich, Tamassia, Goldwasser Graphs

3/25/14 15:37

Graphs 3/25/14 15:37

Terminology (cont.)

a Cycle

= circular sequence of alternating
vertices and edges

= each edge is preceded and
followed by its endpoints
o Simple cycle
= cycle such that all its vertices
and edges are distinct
o Examples
= Cl=(VlbIXIgIYIfIWICIUIaI(—]) is a
simple cycle
- C2=(UICIWIeIXIgIYIfIWIdIVIaI(J)
is a cycle that is not simple

© 2014 Goodrich, Tamassia, Goldwasser Graphs 7

Properties

Property 1 Notation
3, deg(v) = 2m n number of vertices
Proof: each edge is m number of edges
counted twice deg(v) degree of vertex v
Property 2
In an undirected graph Example
with no self-loops and
no multiple edges »n=4
ms=n(n-1)/2 mm=06
Proof: each vertex has a deg(v) =3

degree at most (n - 1)

What is the bound for a
directed graph?

© 2014 Goodrich, Tamassia, Goldwasser Graphs 8

Graphs

]

]

Vertices and Edges

A graph is a collection of vertices and edges.

We model the abstraction as a combination of three
data types: Vertex, Edge, and Graph.

A Vertex is a lightweight object that stores an
arbitrary element provided by the user (e.g., an
airport code)

= We assume it supports a method, element(), to retrieve the stored
element.

An Edge stores an associated object (e.g., a flight
number, travel distance, cost), retrieved with the
element() method.

© 2014 Goodrich, Tamassia, Goldwasser Graphs 9

Graph ADT

numVertices(): Returns the number of vertices of the graph.

0
vertices(): Returns an iteration of all the vertices of the graph.
-4 numEdges(): Returns the number of edges of the graph.
T edges(): Returns an iteration of all the edges of the graph.
getEdge(u, v): Returns the edge from vertex u to vertex v, if one exists;
otherwise return null. For an undirected graph, there is no
difference between getEdge(u, v) and getEdge(v, u).
endVertices(e): Returns an array containing the two endpoint vertices of
edge e. If the graph is directed, the first vertex is the origin
and the second is the destination.
opposite(v, ¢): For edge e incident to vertex v, returns the other vertex of
the edge; an error occurs if ¢ is not incident to v.
outDegree(v): Returns the number of outgoing edges from vertex v.
inDegree(v): Returns the number of incoming edges to vertex v. For
an undirected graph, this returns the same value as does
outDegree(v).
outgoingEdges(v): Returns an iteration of all outgoing edges from vertex v.
incomingEdges(v): Returns an iteration of all incoming edges to vertex v. For
an undirected graph, this returns the same collection as
does outgoingEdges(v).
insertVertex(x): Creates and returns a new Vertex storing element x.
insertEdge(u, v, x): Creates and returns a new Edge from vertex u to vertex v,
storing element .x; an error occurs if there already exists an
edge from u to v.
removeVertex(v): Removes vertex v and all its incident edges from the graph.
removeEdge(e): Removes edge e from the graph.
© 2014 Goodrich, Tamassia, Goldwasser Graphs 10

3/25/14 15:37

Graphs

Edge List Structure

o Vertex object
= element

= reference to position in
vertex sequence

o Edge object v f N\ h @
= element
= origin vertex object v E
= destination vertex object

= reference to position in
edge sequence

o Vertex sequence
= sequence of vertex

®
o]

objects w~—1¢]
o Edge sequence \ﬁ
= sequence of edge objects g @)
© 2014 Goodrich, Tamassia, Goldwasser Graphs 11
o Incidence sequence
for each vertex
= sequence of € §
references to edge
objects of incident v 7 W @
edges
o Augmented edge
objects v
=« references to R ¢
associated @
positions in
incidence NEO,
sequences of end
vertices
W f g h
@
© 2014 Goodrich, Tamassia, Goldwasser Graphs ~ 12

3/25/14 15:37

Graphs

Adjacency Matrix Structure

o Edge list structure
o Augmented vertex g
objects e
= Integer key (index
asso%iatedyw(ith veZtex v f N h @
o 2D-array adjacency
array
= Reference to edge 0
object for adjacent
vertices
= Null for non
nonadjacent vertices
a The “old fashioned”
version just has 0 for
no edge and 1 for edge

Q| =

®
|0 [N

NS < =
|
W N = O
o
<~
=
>

© 2014 Goodrich, Tamassia, Goldwasser Graphs 13

Performance

‘o ses | F%e | Adiacency | Adjacency
= no self-loops

Space n+m n+m n?
incidentEdges(v) m deg(v) n
areAdjacent (v, w) m | min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n?
insertEdge(v, w, 0) 1 1 1
removeVertex(v) m deg(v) n?
removeEdge(e) 1 1 1

© 2014 Goodrich, Tamassia, Goldwasser Graphs 14

3/25/14 15:37

