Minimum Spanning Tree 3/25/14 15:52

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

~
N>

Minimum Spanning Trees

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 1

Minimum Spanning Trees

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of G

Spanning tree

= Spanning subgraph that is
itself a (free) tree

Minimum spanning tree (MST)
= Spanning tree of a weighted
graph with minimum total
edge weight
o Applications
= Communications networks
= Transportation networks

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 2

Minimum Spanning Tree

Cycle Property

Cycle Property:

= Let 7 be a minimum
spanning tree of a
weighted graph G

» Let e be an edge of G
that is not in Tand C let
be the cycle formed by e
with T

= For every edge f of C,
weight(f) < weight(e)

Proof:

= By contradiction

n If weight(f) > weight(e) we
can get a spanning tree of
smaller weight by
replacing e with f

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees

a better spanning tree

ﬂ Replacing f with e yields

Partition Property

Partition Property:
= Consider a partition of the vertices of
G into subsets U and V

n Let e be an edge of minimum weight
across the partition

= There is @ minimum spanning tree of
G containing edge e

Proof:

s Let T be an MST of G

= If T does not contain e, consider the
cycle € formed by e with Tand let f
be an edge of C across the partition

= By the cycle property,

weight(f) < weight(e)

n Thus, weight(f) = weight(e)

= We obtain another MST by replacing
f with e

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees

ﬂReplacing f with eyields

another MST

3/25/14 15:52

Minimum Spanning Tree 3/25/14 15:52

Prim-Jarnik’ s Algorithm

a Similar to Dijkstra’ s algorithm

o We pick an arbitrary vertex s and we grow the MST as
a cloud of vertices, starting from s

o We store with each vertex v label d(v) representing

the smallest weight of an edge connecting vto a
vertex in the cloud

o At each step:
= We add to the cloud the vertex u outside the cloud with the
smallest distance label
= We update the labels of the vertices adjacent to u
© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 5

Prim-Jarnik Pseudo-code

Algorithm PrimJarnik(G):
Input: Anundirected, weighted, connected graph G with » vertices and m edges
Output: A minimum spanning tree 7' for G
Pick any vertex s of G
Ds]=0
for each vertex v # s do
D[v] = o0
Initialize T = 0.
Initialize a priority queue Q with an entry (D[v], (v,None)) for each vertex v,
where D[v] is the key in the priority queue, and (v, None) is the associated value.
while Q is not empty do
(u,e) = value returned by Q.remove_min()
Connect vertex u to T using edge e.
for each edge ¢’ = (u,v) such that visin Q do
{check if edge (u,v) better connects v to 7'}
if w(u,v) < D[v| then
D] = w(u,v)
Change the key of vertex v in Q to D[v].
Change the value of vertex vin Q to (v,€’).
return the tree T

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 6

Minimum Spanning Tree 3/25/14 15:52

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 7

Example (contd.)

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 8

Minimum Spanning Tree 3/25/14 15:52

Analysis

o Graph operations
= We cycle through the incident edges once for each vertex
o Label operations

= We set/get the distance, parent and locator labels of vertex z O(deg(z))
times

= Setting/getting a label takes O(1) time
o Priority queue operations

= Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

o Prim-Jarnik’ s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

= Recall that 2, deg(v) = 2m
o The running time is O(m log n) since the graph is connected

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 9

Kruskal’ s Approach

o Maintain a partition of the vertices into clusters
= Initially, single-vertex clusters
= Keep an MST for each cluster
= Merge “closest” clusters and their MSTs
o A priority queue stores the edges outside
clusters
= Key: weight
= Element: edge
o At the end of the algorithm
= One cluster and one MST

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 10

Minimum Spanning Tree 3/25/14 15:52

Kruskal’s Algorithm

Algorithm Kruskal(G):
Input: A simple connected weighted graph G with n vertices and m edges
Output: A minimum spanning tree T for G

for each vertex vin G do
Define an elementary cluster C(v) = {v}.
Initialize a priority queue Q to contain all edges in G, using the weights as keys.
T=0 {T will ultimately contain the edges of the MST}
while T has fewer than n — 1 edges do
(u,v) = value returned by Q.remove_min()
Let C(u) be the cluster containing u, and let C(v) be the cluster containing v.
if C(u) # C(v) then
Add edge (u,v) to T.
Merge C(u) and C(v) into one cluster.
return tree T

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 11

4
2
4
2
© 2014 Goodrich, Tamassia, Goldwasser Campus Tour 12

Minimum Spanning Tree 3/25/14 15:52

Example (contd.)

© 2014 Goodrich, Tamassia, Goldwasser Campus Tour 13

Data Structure for Kruskal’s
Algorithm

o The algorithm maintains a forest of trees

o A priority queue extracts the edges by increasing
weight
o An edge is accepted it if connects distinct trees

o We need a data structure that maintains a
partition, i.e., a collection of disjoint sets, with
operations:

= makeSet(u): create a set consisting of u
= find(u): return the set storing u
= union(A, B): replace sets A and B with their union

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 14

Minimum Spanning Tree 3/25/14 15:52

List-based Partition)

\oess
o Each set is stored in a sequence

o Each element has a reference back to the set

= operation find(u) takes O(1) time, and returns the set of
which u is a member.

= in operation union(A,B), we move the elements of the
smaller set to the sequence of the larger set and update
their references

= the time for operation union(A,B) is min(|A|, |B])

o Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 15

Partition-Based Implementation

o Partition-based version of Kruskal’ s
Algorithm

= Cluster merges as unions
= Cluster locations as finds
o Running time O((n + m) log n)
» Priority Queue operations: O(m log n)
= Union-Find operations: O(n log n)

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 16

Minimum Spanning Tree

1 /*x Computes a minimum spanning tree of graph g using Kruskal's algorithm. x/
2 public static <V> PositionalList<Edge<Integer>> MST(Graph<V,Integer> g) {
3 // tree is where we will store result as it is computed
-+ PositionalList<Edge<Integer>> tree = new LinkedPositionalList<>();
5 // pq entries are edges of graph, with weights as keys
6 PriorityQueue<Integer, Edge<Integer>> pq = new HeapPriorityQueue<>();
7 // union-find forest of components of the graph
8 Partition<Vertex<V>> forest = new Partition<>();
9 // map each vertex to the forest position
10 Map<Vertex<V>,Position<Vertex<V>>> positions = new ProbeHashMap<>();
11
12 for (Vertex<V> v : g.vertices())
13 positions.put(v, forest.makeGroup(v));
14
15 for (Edge<Integer> e : g.edges())
16 pg.insert(e.getElement(), e);
17
© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 17

Java Implementation, 2
18 int size = g.numVertices();
19 // while tree not spanning and unprocessed edges remain...
20 while (tree.size() != size — 1 && !pq.isEmpty()) {
21 Entry<Integer, Edge<Integer>> entry = pq.removeMin();
22 Edge<Integer> edge = entry.getValue();
23 Vertex<V>[] endpoints = g.endVertices(edge);
24 Position<Vertex<V>> a = forest.find(positions.get(endpoints[0]));
25 Position<Vertex<V>> b = forest.find(positions.get(endpoints[1]));
26 if (a 1= b) {
27 tree.addLast(edge);
28 forest.union(a,b);
29 }
30}
31
32 return tree;
33}

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 18

3/25/14 15:52

Minimum Spanning Tree

Baruvka’ s Algorithm (Exercise)

o Like Kruskal’ s Algorithm, Baruvka’ s algorithm grows many
clusters at once and maintains a forest T

o Each iteration of the while loop halves the number of
connected components in forest 7

o The running time is O(m log n)

Algorithm BaruvkaMST(G)
T < V {just the vertices of G}
while 7 has fewer than n — 1 edges do
for each connected component C'in 7 do
Let edge e be the smallest-weight edge from C to another component in 7'
if e is not already in 7 then
Addedgeeto T
return 7’

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 19

Slide by Matt Stallmann

Example Of Ba I‘UVka’ S included with permission.
“Algorithm (animated)

© 2014 Goodrich, Tamassia, Goldwasser ~ Minimum Spanning Trees 20

3/25/14 15:52

10

