
Shortest Path 3/29/14 21:11

1

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 1

Shortest Paths

C B

A

E

D

F

0

3 2 8

5 8

4 8

7 1

2 5

2

3 9

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 2

Weighted Graphs
q  In a weighted graph, each edge has an associated numerical

value, called the weight of the edge
q  Edge weights may represent, distances, costs, etc.
q  Example:

n  In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1387 17
43

1843

1120
1233

337 2555

142

1205

Shortest Path 3/29/14 21:11

2

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 3

Shortest Paths
q  Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.
n  Length of a path is the sum of the weights of its edges.

q  Example:
n  Shortest path between Providence and Honolulu

q  Applications
n  Internet packet routing
n  Flight reservations
n  Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1387 17
43

1843

1120
1233

337 2555

142

1205

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 4

Shortest Path Properties
Property 1:

 A subpath of a shortest path is itself a shortest path
Property 2:

 There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
 Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1387 17
43

1843

1120
1233

337 2555

142

1205

Shortest Path 3/29/14 21:11

3

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 5

Dijkstra’s Algorithm
q  The distance of a vertex

v from a vertex s is the
length of a shortest path
between s and v

q  Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

q  Assumptions:
n  the graph is connected
n  the edges are

undirected
n  the edge weights are

nonnegative

q  We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

q  We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices

q  At each step
n  We add to the cloud the vertex

u outside the cloud with the
smallest distance label, d(u)

n  We update the labels of the
vertices adjacent to u

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 6

Edge Relaxation
q  Consider an edge e = (u,z)

such that
n  u is the vertex most recently

added to the cloud
n  z is not in the cloud

q  The relaxation of edge e
updates distance d(z) as
follows:
 d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75

d(u) = 50 10

z s
u

d(z) = 60

d(u) = 50 10

z s
u

e

e

Shortest Path 3/29/14 21:11

4

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 7

Example

C B

A

E

D

F

0

4 2 8

∞ ∞

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 8

5 11

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 8

5 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 8

Example (cont.)

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

Shortest Path 3/29/14 21:11

5

© 2014 Goodrich, Tamassia, Goldwasser

Dijkstra’s Algorithm

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 10

Analysis of Dijkstra’s Algorithm
q  Graph operations

n  We find all the incident edges once for each vertex
q  Label operations

n  We set/get the distance and locator labels of vertex z O(deg(z)) times
n  Setting/getting a label takes O(1) time

q  Priority queue operations
n  Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
n  The key of a vertex in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
q  Dijkstra’s algorithm runs in O((n + m) log n) time provided the

graph is represented by the adjacency list/map structure

n  Recall that Σv deg(v) = 2m
q  The running time can also be expressed as O(m log n) since the

graph is connected

Shortest Path 3/29/14 21:11

6

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

Shortest Paths 11

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation, 2

Shortest Paths 12

Shortest Path 3/29/14 21:11

7

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 13

Why Dijkstra’s Algorithm Works
q  Dijkstra’s algorithm is based on the greedy

method. It adds vertices by increasing distance.

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

n  Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

n  When the previous node, D, on the
true shortest path was considered,
its distance was correct

n  But the edge (D,F) was relaxed at
that time!

n  Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 14

Why It Doesn’t Work for Negative-
Weight Edges

n  If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

C B

A

E

D

F

0

4 5 7

5 9

4 8

7 1

2 5

6

0 -8

" Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud
with d(C)=5!

Shortest Path 3/29/14 21:11

8

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 15

Bellman-Ford Algorithm
(not in book)
q  Works even with negative-

weight edges
q  Must assume directed

edges (for otherwise we
would have negative-
weight cycles)

q  Iteration i finds all shortest
paths that use i edges.

q  Running time: O(nm).
q  Can be extended to detect

a negative-weight cycle if it
exists
n  How?

Algorithm BellmanFord(G, s)
 for all v ∈ G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, ∞)
 for i ← 1 to n - 1 do

 for each e ∈ G.edges()
 { relax edge e }
 u ← G.origin(e)
 z ← G.opposite(u,e)
 r ← getDistance(u) + weight(e)
 if r < getDistance(z)
 setDistance(z,r)

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 16

∞

-2

Bellman-Ford Example

∞ ∞

0

∞

∞

∞

4 8

7 1

-2 5

-2

3 9

∞

0

∞

∞

∞

4 8

7 1

-2 5
3 9

Nodes are labeled with their d(v) values

-2

-2 8

0

4

∞

4 8

7 1

-2 5
3 9

∞

8 -2 4

-1 5

6
1

9

-2 5

0

1

-1

9

4 8

7 1

-2 5

-2

3 9
4

Shortest Path 3/29/14 21:11

9

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 17

DAG-based Algorithm
(not in book)

q  Works even with
negative-weight edges

q  Uses topological order
q  Doesn’t use any fancy

data structures
q  Is much faster than

Dijkstra’s algorithm
q  Running time: O(n+m).

Algorithm DagDistances(G, s)
 for all v ∈ G.vertices()
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, ∞)
 { Perform a topological sort of the vertices }
 for u ← 1 to n do {in topological order}

 for each e ∈ G.outEdges(u)
 { relax edge e }
 z ← G.opposite(u,e)
 r ← getDistance(u) + weight(e)
 if r < getDistance(z)
 setDistance(z,r)

© 2014 Goodrich, Tamassia, Goldwasser Shortest Paths 18

∞

-2

DAG Example

∞ ∞

0

∞

∞

∞

4 8

7 1

-5 5

-2

3 9

∞

0

∞

∞

∞

4 8

7 1

-5 5
3 9

Nodes are labeled with their d(v) values

-2

-2 8

0

4

∞

4 8

7 1

-5 5
3 9

∞

-2 4

-1

1 7

-2 5

0

1

-1

7

4 8

7 1

-5 5

-2

3 9
4

1

2 4 3

6 5

1

2 4 3

6 5

8

1

2 4 3

6 5

1

2 4 3

6 5

5

0

(two steps)

