Union-Find

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,

and M. H. Goldwasser, Wiley, 2014

Union-Find Partition Structures
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Partitions with Union-Find
Operations

@ makeSet(x): Create a singleton set containing
the element x and return the position storing x

in this set

@ union(A,B ): Return the set A U B, destroying
the old A and B

@ find(p): Return the set containing the element
at position p
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Union-Find

List-based Implementation

: @ Each set is stored in a sequence represented
with a linked-list

4 Each node should store an object containing
the element and a reference to the set name
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Analysis of List-based
Representation

#When doing a union, always move
elements from the smaller set to the
larger set

= Each time an element is moved it goes to a
set of size at least double its old set

= Thus, an element can be moved at most
O(log n) times
# Total time needed to do n unions and
finds is O(n log n).
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Tree-based Implementation

@ Each element is stored in a node, which contains a

pointer to a set name

4 A node v whose set pointer points back to v is also a
set hame

# Each set is a tree, rooted at a node with a self-
referencing set pointer

@ For example: The sets “1”7, “2”, and “5”:
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4 To do a union, simply
make the root of one tree
point to the root of the
other

@ To do a find, follow set-
name pointers from the
starting node until
reaching a node whose
set-name pointer refers
back to itself
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Union-Find Heuristic 1

4 Union by size:

= When performing a union,
make the root of smaller tree
point to the root of the larger

@ Implies O(n log n) time for
performing n union-find
operations:

= Each time we follow a pointer,
we are going to a subtree of
size at least double the size of
the previous subtree

= Thus, we will follow at most
O(log n) pointers for any find.
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Union-Find Heuristic 2

4 Path compression:
= After performing a find, compress all the pointers on the path
just traversed so that they all point to the root

@ Implies O(n log™ n) time for performing n union-find

operations:
= Proof is somewhat involved... (and not in the book)
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Java Implementation

1 /% A Union-Find structure for maintaining disjoint sets. %/
2 public class Partition<E> {

3 /) nested Locator class --—---——---—-

4 private class Locator<E> implements Position<E> {

5 public E element;

6 public int size;

7 public Locator<E> parent;

8 public Locator(E elem) {

9 element = elem;
10 size = 1;
11 parent = this; // convention for a cluster leader
12
13 public E getElement() { return element; }
14} /) end of nested Locator class ---------

15 /%% Makes a new cluster containing element e and returns its position. %/
16 public Position<E> makeCluster(E e) {

17 return new Locator<E>(e);
18}
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Java Implementation, 2

19 [*x
B 20 * Finds the cluster containing the element identified by Position p
21 * and returns the Position of the cluster's leader.
22 */
23 public Position<E> find(Position<E> p) {
24 Locator<E> loc = validate(p);
25 if (loc.parent != loc)
26 loc.parent = (Locator<E>) find(loc.parent); // overwrite parent after recursion
27 return loc.parent;
28
29 /*x Merges the clusters containing elements with positions p and q (if distinct). %/
30 public void union(Position<E> p, Position<E> q) {
31 Locator<E> a = (Locator<E>) find(p);
32 Locator<E> b = (Locator<E>) find(q);
33 if (a!l=b)
34 if (a.size > b.size) {
35 b.parent = a;
36 a.size += b.size;
37 } else {
38 a.parent = b;
39 b.size += a.size;
40 }
41 }
42 }
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Proof of log* n Amortized Time

@ For each node v that is a root
= define n(v) to be the size of the subtree rooted at v
(including v)
= identified a set with the root of its associated tree.

4 We update the size field of v each time a set is
unioned into v. Thus, if v is not a root, then n(v) is
the largest the subtree rooted at v can be, whic
occurs just before we union v into some other node
whose size is at least as large as v ’s.

# For any node v, then, define the rank of v, which we
denote as r (v), as r (v) = [log n(v)]:

@ Thus, n(v) = 2V,

@ Also, since there are at most n nodes in the tree of v,
r (v) = [log n], for each node v.
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Proof of log* n Amortized Time (2)

4 For each node v with parent w:
mr(v)>r(w)
# Claim: There are at most n/ 25 nodes of rank s.

@ Proof:

= Since r (v) < r (w), for any node v with parent w, ranks are
monotonically increasing as we follow parent pointers up any
tree.

= Thus, if r (v) = r (w) for two nodes v and w, then the nodes
counted in n(v) must be separate and distinct from the
nodes counted in n(w).

= If a node v is of rank s, then n(v) > 2s,

= Therefore, since there are at most n nodes total, there can
be at most n/ 2s that are of rank s.
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PLofof log* n Amortized Time (3)

# Definition: Tower of two’ s function:
a t(i) = 2t-1)

#Nodes v and u are in the same rank
group g if
= g = log*(r(v)) = log*(r(u)):

@ Since the largest rank is log n, the
largest rank group is
= log*(log n) = (log* n) - 1
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Proof of log* n Amortized Time (4)

# Charge 1 cyber-dollar per pointer hop during
a find:
» If wis the root or if w is in a different rank group

than v, then charge the find operation one cyber-
dollar.

= Otherwise (w is not a root and v and w are in the
same rank group), charge the node v one cyber-
dollar.
# Since there are most (log* n)-1 rank groups,
this rule guarantees that any find operation is
charged at most log* n cyber-dollars.
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Proof of log* n Amortized Time (5)

@ After we charge a node v then v will get a new
parent, which is a node higher up in v ’ s tree.

# The rank of v ' s new parent will be greater than the
rank of v ' s old parent w.

# Thus, any node v can be charged at most the
number of different ranks that are in v ' s rank group.

# If visin rank group g > 0, then v can be charged at
most t(g)-t(g-1) times before v has a parent in a
higher rank group (and from that point on, v will
never be charged again). In other words, the total
number, C, of cyber-dollars that can ever be charged
to nodes can be bounded by

log*n-1
Cs Y n(g)(H(g)-1(g-1)

=
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Proof of log* n Amortized Time (end)

4 Bounding n(g): 4 Returning to C:
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