Trees

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

~

Trees

Mammal

© 2014 Goodrich, Tamassia, Goldwasser Trees 1

What is a Tree

o In computer science, a
tree is an abstract model
of a hierarchical
structure

o A tree consists of nodes
with a parent-child
relation

o Applications:

= Organization charts

e () () ()

environments

Computers”R”Us

[Manufacturing] [R&D]

[International] [Laptops] [Desktops]

© 2014 Goodrich, Tamassia, Goldwasser Trees 2

3/19/14

Trees

Tree Terminology

Root: node without parent (A)
Internal node: node with at least
one child (A, B, C, F)

o External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)

a Ancestors of a node: parent,
grandparent, grand-grandparent,
etc.

o Depth of a node: nhumber of
ancestors

o Height of a tree: maximum depth
of any node (3)

o Descendant of a node: child,
grandchild, grand-grandchild, etc.

© 2014 Goodrich, Tamassia, Goldwasser Trees

o Subtree: tree consisting of
a node and its
descendants

Tree ADT

o We use positions to abstract @
nodes
o Generic methods:
= integer size()
= boolean isEmpty()
= Iterator iterator()
= [terable positions() vY
o Accessor methods:
= position root()
= position parent(p)
= [terable children(p)
= Integer numcChildren(p)

© 2014 Goodrich, Tamassia, Goldwasser Trees

Query methods:

= boolean isInternal(p)
= boolean isExternal(p)
= boolean isRoot(p)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

3/19/14

Trees

Java Interface

Methods for a Tree interface:

1 /xx An interface for a tree where nodes can have an arbitrary number of children. x/
2 public interface Tree<E> extends Iterable<E> {

3 Position<E> root();

4 Position<E> parent(Position<E> p) throws lllegalArgumentException;
5 lterable<Position<E>> children(Position<E> p)

6 throws lllegalArgumentException;

7 int numChildren(Position<E> p) throws lllegalArgumentException;

8 boolean isInternal(Position<E> p) throws lllegal ArgumentException;
9 boolean isExternal(Position<E> p) throws lllegalArgumentException;
10 boolean isRoot(Position<E> p) throws lllegal ArgumentException;

11 int size();
12 boolean isEmpty();

13 Iterator<E> iterator();

14 Iterable<Position<E>> positions();

15}

© 2014 Goodrich, Tamassia, Goldwasser Trees 5

Preorder Traversal

o A traversal visits the nodes of a Algorithm preOrder(v)
tree in a systematic manner visit(v)
a In a preorder traversal, a node is .
visited before its descendants for each child w of v
o Application: print a structured preorder (w)

document

1
Make Money Fast!

1. Motivations

9
6

3 4
o 2.1 Stock 2.2 Ponzi 2.3 Bank
[1.1 Greed] [1.2 Avidity] [Fraud] [Scheme] [Robbery]

© 2014 Goodrich, Tamassia, Goldwasser Trees

3/19/14

Trees

Postorder Traversal

o In a postorder traversal, a
node is visited after its

Algorithm postOrder(v)
for each child w of v

descendants
o Application: compute space postOrder (w)
used by files in a directory and visit(v)

its subdirectories

homeworks/

1 2 4
hlc.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K
© 2014 Goodrich, Tamassia, Goldwasser Trees 7

Binary Trees

o A binary tree is a tree with the
foIIowmg properties: = arithmetic expressions
= Each internal node has at most two » decision processes
children (exactly two for proper .
binary trees) = searching
= The children of a node are an
ordered pair

a We call the children of an internal
node left child and right child
o Alternative recursive definition: a
binary tree is either
= a tree consisting of a single node, or

= a tree whose root has an ordered
pair of children, each of which is a
binary tree

o Applications:

© 2014 Goodrich, Tamassia, Goldwasser Trees 8

3/19/14

Trees 3/19/14

Arithmetic Expression Tree

o Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands
o Example: arithmetic expression tree for the
expression (2 x (a-1) + (3 x b))

Decision Tree

o Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

o Example: dining decision

[Want a fast meal?]
Yes No

[How about cof'fee?] [On expense account?]

Yes No Yes No

Starbucks| |Chipotle| |Gracie’s Café Paragon

© 2014 Goodrich, Tamassia, Goldwasser Trees 10

Trees

Properties of Proper Binary Trees

o Notation @ Properties:
n number of nodes me=i+1
e number of i Y=

external nodes

i number of internal m h=<i

nodes h=<(n-1)2
h height e<2h
h=log, e
hzlog,(n+1)-1
© 2014 Goodrich, Tamassia, Goldwasser Trees 11
BinaryTree ADT
o The BinaryTree ADT o The above methods
extends the Tree return null when
ADT, i.e., it inherits there is no left,
all the methods of right, or sibling of p,
the Tree ADT respectively
o Additional methods: o Update methods
= position left(p) may be defined by
= position right(p) data structures
= position sibling(p) implementing the
BinaryTree ADT
© 2014 Goodrich, Tamassia, Goldwasser Trees 12

3/19/14

Trees

Inorder Traversal

o Inaninorder traversal a
node is visited after its left
subtree and before its right
subtree

o Application: draw a binary
tree
= Xx(v) = inorder rank of v
= y(v) = depth of v 6

Algorithm inOrder(v)
if left (v) # null
inOrder (left (v))
Visit(v)
if right(v) # null
inOrder (right (v))

© 2014 Goodrich, Tamassia, Goldwasser

Trees 13

o Specialization of an inorder
traversal

= print operand or operator
when visiting node

= print “(“ before traversing left
subtree

= print “)“ after traversing right
subtree

© 2014 Goodrich, Tamassia, Goldwasser

Print Arithmetic Expressions

Algorithm printExpression(v)
if left (v) # null
print("("")
inOrder (left(v))
print(v.element ())
if right(v) # null
inOrder (right(v))
print (")’ ")

(2x@-1)) +(3xb))

Trees 14

3/19/14

Trees

o Specialization of a postorder
traversal

= recursive method returning
the value of a subtree

= when visiting an internal
node, combine the values
of the subtrees

Evaluate Arithmetic Expressions

Algorithm evalExpr(v)

if isExternal (v)
return v.element ()

else
x < evalExpr(left(v))
y < eval Expr(right(v))
) < operator stored at v
return x { y

© 2014 Goodrich, Tamassia, Goldwasser Trees 15

= on the left (preorder)
= from below (inorder)
= on the right (postorder)

Euler Tour Traversal

a Generic traversal of a binary tree
o Includes a special cases the preorder, postorder and inorder traversals
o Walk around the tree and visit each node three times:

© 2014 Goodrich, Tamassia, Goldwasser

Trees 16

3/19/14

Trees

Linked Structure for Trees

o A node is represented by
an object storing
= Element
= Parent node

= Sequence of children
nodes

o Node objects implement
the Position ADT

© 2014 Goodrich, Tamassia, Goldwasser Trees 17

Linked Structure for Binary Trees

a A node is represented by

an object storing %)
= FElement ?
= Parent node / l\
= Left child node B
= Right child node

o Node objects implement [@ b Q] ‘
the Position ADT ? ?

! !

() A p

C E

© 2014 Goodrich, Tamassia, Goldwasser Trees 18

3/19/14

Trees

Array-Based Representation of
Binary Trees

o Nodes are stored in an array A 0
[a][8][D .. [a][H
0 1 2 9 10

Node v is stored at A[rank(v)]
m rank(root) = 0 3
m if node is the left child of parent(node),

rank(node) = 2 - rank(parent(node)) + 1

m if node is the right child of parent(node),
rank(node) = 2 - rank(parent(node)) + 2

© 2014 Goodrich, Tamassia, Goldwasser Trees 19

3/19/14

10

