Red-Black Trees 3/20/14

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

~

Red-Black Trees

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 1

From (2,4) to Red-Black Trees

@ A red-black tree is a representation of a (2,4) tree by means of a
binary tree whose nodes are colored red or black

4 In comparison with its associated (2,4) tree, a red-black tree has
= same logarithmic time performance
= simpler implementation with a single node type

RS
4
OR

4
o)

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees

Red-Black Trees

Red-Black Trees

@ A red-black tree can also be defined as a binary
search tree that satisfies the following properties:
= Root Property: the root is black
External Property: every leaf is black
Internal Property: the children of a red node are black
Depth Property: all the leaves have the same black depth

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 3

Height of a Red-Black Tree

4 Theorem: A red-black tree storing n items has height
O(log n)
Proof:
= The height of a red-black tree is at most twice the height of
its associated (2,4) tree, which is O(log n)
The search algorithm for a binary search tree is the
same as that for a binary search tree
4 By the above theorem, searching in a red-black tree
takes O(log n) time

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 4

3/20/14

Red-Black Trees

Insertion

@ To insert (k, 0), we execute the insertion algorithm for binary
search trees and color red the newly inserted node z unless it is
the root

= We preserve the root, external, and depth properties

= If the parent v of z is black, we also preserve the internal property and
we are done

= Else (v is red) we have a double red (i.e., a violation of the internal
property), which requires a reorganization of the tree

@ Example where the insertion of 4 causes a double red:

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 5

Remedying a Double Red

@ Consider a double red with child z and parent v, and let w be
the sibling of v

Case 1: w is black Case 2: wiis red
= The double red is an incorrect = The double red corresponds
replacement of a 4-node to an overflow
= Restructuring: we change the = Recoloring: we perform the
4-node replacement equivalent of a split

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 6

3/20/14

Red-Black Trees

Restructuring

@ A restructuring remedies a child-parent double red when the
parent red node has a black sibling

It is equivalent to restoring the correct replacement of a 4-node

The internal property is restored and the other properties are
preserved e

\ e

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 7

Restructuring (cont.)

There are four restructuring configurations depending on
whether the double red nodes are left or right children

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 8

3/20/14

Red-Black Trees

Recoloring

red node has a red sibling

@ A recoloring remedies a child-parent double red when the parent

4 The parent v and its sibling w become black and the grandparent u
becomes red, unless it is the root

Itis equivalent to performing a split on a 5-node
4 The double red violation may propagate to the grandparent «

- F=

© 2014 Goodrich, Tamassia, Goldwasser

Red-Black Trees

Algorithm insert(k, o)

insertion node z

2. We add the new entry (k, o) at
node z and color z red

3. while doubleRed(z)
if isBlack(sibling(parent(z)))
7 < restructure(z)
return
else { sibling(parent(z) is red }
g < recolor(z)

1. We search for key k to locate the

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Insertion

4 Recall that a red-black tree
has O(log n) height
4 Step 1 takes O(log n) time
because we visit O(log n)
nodes
@ Step 2 takes O(1) time
Step 3 takes O(log n) time
because we perform
= O(log n) recolorings, each
taking O(1) time, and
= at most one restructuring
taking O(1) time
4 Thus, an insertion in a red-
black tree takes O(log n) time

Red-Black Trees 10

3/20/14

Red-Black Trees

Deletion

@ To perform operation remove(k), we first execute the deletion
algorithm for binary search trees
@ Let v be the internal node removed, w the external node removed,
and r the sibling of w
= If either v of r was red, we color r black and we are done

= Else (v and r were both black) we color r double black, which is a
violation of the internal property requiring a reorganization of the tree

4 Example where the deletion of 8 causes a double black:

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 11

Remedying a Double Black

@ The algorithm for remedying a double black node w with sibling
y considers three cases
Case 1: y is black and has a red child

= We perform a restructuring, equivalent to a transfer , and we are
done

Case 2: y is black and its children are both black
= We perform a recoloring, equivalent to a fusion, which may
propagate up the double black violation
Case 3: yis red

= We perform an adjustment, equivalent to choosing a different
representation of a 3-node, after which either Case 1 or Case 2
applies
Deletion in a red-black tree takes O(log n) time

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 12

3/20/14

Red-Black Trees

Red-Black Tree Reorganization

Insertion remedy double red
Red-black tree action (2,4) tree action result
restructuring ?QSP egszr?tgfc‘i;)nnOde double red removed
recoloring split double red removed
or propagated up
Deletion remedy double black
Red-black tree action (2,4) tree action result
restructuring transfer double black removed
recoloring fusion double black removed
or propagated up
adjustment change of 3_-node restrucfcuring or
representation recoloring follows
© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 13

Java Implementation

1 /*x An implementation of a sorted map using a red-black tree. x/

2 public class RBTreeMap<K,V> extends TreeMap<K,V> {

3 /#x Constructs an empty map using the natural ordering of keys. %/

4 public RBTreeMap() { super(); }

5 /**x Constructs an empty map using the given comparator to order keys. */

6 public RBTreeMap(Comparator<K> comp) { super(comp); }

7 // we use the inherited aux field with convention that O=black and 1=red|

8 // (note that new leaves will be black by default, as aux=0)

9 private boolean isBlack(Position<Entry<K,V>> p) { return tree.getAux(p)==0;}
10 private boolean isRed(Position<Entry<K,V>> p) { return tree.getAux(p)==1; }
11 private void makeBlack(Position<Entry<K,V>> p) { tree.setAux(p, 0); }
12 private void makeRed(Position<Entry<K,V>> p) { tree.setAux(p, 1); }
13 private void setColor(Position<Entry<K,V>> p, boolean toRed) {
14 tree.setAux(p, toRed ? 1 : 0);

16 /**x Overrides the TreeMap rebalancing hook that is called after an insertion. */
17 protected void rebalancelnsert(Position<Entry<K,V>> p) {

18 if (lisRoot(p)) {
19 makeRed(p); // the new internal node is initially colored red
20 resolveRed(p); // but this may cause a double-red problem
21 }
22 }
© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 14

3/20/14

Red-Black Trees

Java Implementation, 2

// double-red problem exists

// Case 1: misshapen 4-node
// do trinode restructuring

// Case 2: overfull 5-node

// grandparent becomes red
// recur at red grandparent

) 23 /*x Remedies potential double-red violation above red position p. x/

24 private void resolveRed(Position<Entry<K,V>> p) {
25 Position<Entry<K,V>> parent,uncle,middle,grand; // used in case analysis
26 parent = parent(p);
27 if (isRed(parent)) {
28 uncle = sibling(parent);
29 if (isBlack(uncle)) {
30 middle = restructure(p);
31 makeBlack(middle);
32 makeRed(left(middle));
33 makeRed(right(middle));
34 } else {
35 makeBlack(parent); // perform recoloring
36 makeBlack(uncle);
37 grand = parent(parent);
38 if (lisRoot(grand)) {
39 makeRed(grand);
40 resolveRed(grand);
41 }
42 }
43 }
44 }

© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees

15

Java Implementation, 3

45 /%% Overrides the TreeMap rebalancing hook that is called after a deletion. x/
46 protected void rebalanceDelete(Position<Entry<K,V>> p) {

47 if (isRed(p))

48

makeBlack(p);

49 else if (lisRoot(p)) {

// deleted parent was black
// so this restores black depth

50 Position<Entry<K,V>> sib = sibling(p);
51 if (isInternal(sib) && (isBlack(sib) || isInternal(left(sib))))
52 remedyDoubleBlack(p); // sib's subtree has nonzero black height
53 }
54 }
55
© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 16

3/20/14

Red-Black Trees

Java Implementation, 4

56 /** Remedies a presumed double-black violation at the given (nonroot) position. */
(1. 57 private void remedyDoubleBlack(Position<Entry<K,V>> p) {
58 Position<Entry<K,V>> z = parent(p);
59 Position<Entry<K,V>> y = sibling(p);
60 if (isBlack(y)) {
61 if (isRed(left(y)) || isRed(right(y))) { // Case 1: trinode restructuring
62 Position<Entry<K,V>> x = (isRed(left(y)) ? left(y) : right(y));
63 Position<Entry<K,V>> middle = restructure(x);
64 setColor(middle, isRed(z)); // root of restructured subtree gets z's old color
65 makeBlack(left(middle));
66 makeBlack(right(middle));
67 } else { // Case 2: recoloring
68 makeRed(y);
69 if (isRed(z))
70 makeBlack(z); // problem is resolved
71 else if (lisRoot(z))
72 remedyDoubleBlack(z); // propagate the problem
73
74 } else { // Case 3: reorient 3-node
75 rotate(y);
76 makeBlack(y);
71 makeRed(z);
78 remedyDoubleBlack(p); // restart the process at p
79 }
80}
81 }
© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees

17

3/20/14

