Quick-Sort

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

~
N>

Quick-Sort

(74962-24679 |

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 1

Quick-Sort

@ Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer

DDDIHD
paradigm:

= Divide: pick a random
element x (called pivot) and I
partition .S into |:| [] |:| I

+ L elements less than x

+ E elements equal x L E G
+ G elements greater than x
= Recur:sort Land G
= Conquer: join L, E and G i |:| |:|
© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 2

3/25/14 15:58

Quick-Sort

© 2014 Goodrich, Tamassia, Goldwasser

Partition

@ We partition an input
sequence as follows:
= We remove, in turn, each
element y from § and
s Weinsertyinto L, E or G,
depending on the result of
the comparison with the
pivot x
Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time

@ Thus, the partition step of
quick-sort takes O(n) time

%

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the
clements of § less than, equal to,
or greater than the pivot, resp.
L, E, G < empty sequences
x < S.remove(p)
while - S.isEmpty()
y < S.remove(S.first())
ify<x
L.addLast(y)
elseif y =x
E.addLast(y)
else {y>x}
G.addLast(y)
return L, E, G

Quick-Sort 3

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

1 /#x Quick-sort contents of a queue. */

10 while (1S.isEmpty()) {

2 public static <K> void quickSort(Queue<K> S, Comparator<K> comp) {

3 int n = S.size();

4 if (n < 2) return; // queue is trivially sorted

5 // divide

6 K pivot = S-first(); // using first as arbitrary pivot
7 Queue<K> L = new LinkedQueue<>();

8 Queue<K> E = new LinkedQueue<>();

9 Queue<K> G = new LinkedQueue<>();

// divide original into L, E, and G

11 K element = S.dequeue();

12 int ¢ = comp.compare(element, pivot);

13 if (c <0) // element is less than pivot

14 L.enqueue(element);

15 else if (c == 0) // element is equal to pivot

16 E.enqueue(element);

17 else // element is greater than pivot
18 G.enqueue(element);

19

20 // conquer

21 quickSort(L, comp); // sort elements less than pivot
22 quickSort(G, comp); // sort elements greater than pivot
23 // concatenate results

24 while (!L.isEmpty())

25 S.enqueue(L.dequeue());

26 while (!E.isEmpty())

27 S.enqueue(E.dequeue());

28 while (!G.isEmpty())

29 S.enqueue(G.dequeue());

30

Quick-Sort 4

3/25/14 15:58

Quick-Sort

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree
= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
+ Sorted sequence at the end of the execution
= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962 —>24679]

(42 >24) (29>79]
S B N N
© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 5

Execution Example

#Pivot selection

(72943761]

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 6

3/25/14 15:58

Quick-Sort

Execution Example (cont.)

@ Partition, recursive call, pivot selection

(72943761)

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 7

Execution Example (cont.)

Partition, recursive call, base case

(72943761)

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 8

3/25/14 15:58

Quick-Sort

Execution Example (cont.)

#Recursive call, ..., base case, join

(72943761)

¢

-
=1 [43=-34 | j
454
© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 9

Execution Example (cont.)

@ Recursive call, pivot selection

(72943761)

(2431 -1234] (797 |

(1-1] (43 >34 8 8

) =3

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 10

3/25/14 15:58

Quick-Sort

Execution Example (cont.)

Partition, ..., recursive call, base case

(72943761)

(24311234 (7972 |

N
(1=1) (43 - 34 L) 99

) 3

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 11

Execution Example (cont.)

#Join, join

(72943761 5123467709]

- A

(2431 -1234)]

(7972 - 779 |

(1-1] (43 >34 L) 99
[] [a=4

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 12

3/25/14 15:58

Quick-Sort

Worst-case Running Time

@ The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

4 One of L and G has size n - 1 and the other has size 0
4 The running time is proportional to the sum
n+(n-1)+..+2+1
@ Thus, the worst-case running time of quick-sort is O(n?)
depth time

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 13

Expected Running Time

4 Consider a recursive call of quick-sort on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

(72943761) (72943761)
2431 797
Good call Bad call

4 A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:
(12345678910111213141516 |
\ J \\ ~ J \ J

Y
Bad pivots Good pivots Bad pivots

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 14

3/25/14 15:58

Quick-Sort

Expected Running Time, Part 2

® Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k

4 For a node of depth i, we expect
= i/2 ancestors are good calls

@ Therefore, we have
= For a node of depth 2log, ;n, the
expected input size is one
= The expected height of the
quick-sort tree is O(log n)
4 The amount or work done at the
nodes of the same depth is O(n)

@ Thus, the expected running time
of quick-sort is O(n log n)

© 2014 Goodrich, Tamassia, Goldwasser

= The size of the input sequence for the current call is at most (3/4)"*n

expected height time per level

4 P D — o)

O(log n)

total expected time: O(n log n)

Quick-Sort 15

@ Quick-sort can be implemented
to run in-place
@ In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that
= the elements less than the
pivot have rank less than i
= the elements equal to the pivot
have rank between h and k
= the elements greater than the
pivot have rank greater than &
@ The recursive calls consider
= elements with rank less than &

= elements with rank greater
than &

© 2014 Goodrich, Tamassia, Goldwasser

In-Place Quick-Sort

Algorithm inPlaceQuickSort(S, I, r)
Input sequence S, ranks / and r
Output sequence .S with the

elements of rank between / and r
rearranged in increasing order
ifl=r
return
i < arandom integer between / and r
x < S.elemAtRank(i)
(h, k) <= inPlacePartition(x)
inPlaceQuickSor«(S, I, h — 1)
inPlaceQuickSort(S, k + 1, r)

Quick-Sort 16

3/25/14 15:58

Quick-Sort

In-Place Partitioning

‘@ Perform the partition using two indices to split S into L

and E U G (a similar method can split E U G into E and G).
] k

(32510735927989769 | (pivot = 6)

@ Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan k to the left until finding an element < x.
= Swap elements at indices j and k

1 K ——

(32510/7|3592[79897609 |

~—"

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 17

Java Implementation

/*% Sort the subarray S[a..b] inclusive. x/

1
2 private static <K> void quickSortInPlace(K[] S, Comparator<K> comp,
- 3 int a, int b) {
4 if (a >=b) return; /I/ subarray is trivially sorted
5 int left = a;
6 int right = b—1;
7 K pivot = S[b];
8 K temp; // temp object used for swapping
9 while (left <= right) {
10 // scan until reaching value equal or larger than pivot (or right marker)
11 while (left <= right && comp.compare(S][left], pivot) < 0) left++;
12 // scan until reaching value equal or smaller than pivot (or left marker)
13 while (left <= right && comp.compare(S[right], pivot) > 0) right——;
14 if (left <= right) { // indices did not strictly cross
15 // so swap values and shrink range
16 temp = S[left]; S[left] = S[right]; S[right] = temp;
17 left++; right——;
18 }
19 }
20 // put pivot into its final place (currently marked by left index)
21 temp = S[left]; S[left] = S[b]; S[b] = temp;
22 // make recursive calls
23 quickSortInPlace(S, comp, a, left — 1);
24 quickSortInPlace(S, comp, left + 1, b);
25}
© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 18

3/25/14 15:58

Quick-Sort

Summary of Sorting Algorithms

Algorithm Time Notes
selection-sort O(n?) : isTc;l\j\lla(cg;eood for small inputs)
insertion-sort O(n?) : isrllt;'\j\lla(cgeood for small inputs)
quick-sort Z%:feg) : ifz_s[:!easie(’groa:j (f)c;l: iIzaer(;e inputs)
heap-sort O(n log n) : ifr;:tJl?gcsod for large inputs)
merge-sort | O(mlogn) | 1ol S o et
© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 19

3/25/14 15:58

10

