Tries

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6% edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

nimize

Imize] |[nimize | [ze| |nimize | |ze]

© 2014 Goodrich, Tamassia, Goldwasser Tries 1

Preprocessing Strings

@ Preprocessing the pattern speeds up pattern matching
queries

= After preprocessing the pattern, KMP’ s algorithm performs
pattern matching in time proportional to the text size
@ If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

@ A trie is a compact data structure for representing a
set of strings, such as all the words in a text

= A tries supports pattern matching queries in time
proportional to the pattern size

© 2014 Goodrich, Tamassia, Goldwasser Tries 2

3/25/14 16:11

Tries

‘Standard Tries

-4

@ The standard trie for a set of strings S is an ordered tree such that:
= Each node but the root is labeled with a character
= The children of a node are alphabetically ordered
= The paths from the external nodes to the root yield the strings of S
4 Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

© 2014 Goodrich, Tamassia, Goldwasser Tries 3

‘Analysis of Standard Tries

-
C

A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:

n total size of the stringsin S
m size of the string parameter of the operation
d size of the alphabet

© 2014 Goodrich, Tamassia, Goldwasser Tries 4

3/25/14 16:11

Tries

Word Matching with a Trie

" insert the words dg| el el [& l bl e[a] r[2] [s[e[[1] [s[t[of [k |
o ItEhergel)(t |fnto trie o 3456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23
o llllllbllllll?llbIUIIlItIOICIkI!II
slelel |a u yl |s
Sgsrgcczhaltaerdwvg/rdoné 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
& leaf stores indices| bl il o [s[t[o[[k[! [b[i[d [s[t[of c[k []
where associated 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
word peains (o[o[al | [l e[[o[[[117 [+ [pl 1
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|ndex 0 & 24, leaf
for “see” stores
those indices)
© 2014 Goodrich, Tamassia, Goldwasser Tries 1571 ‘ég 5

Compressed Tries

@ A compressed trie has
internal nodes of degree at
least two

@ It is obtained from standard
trie by compressing chains of
“redundant” nodes

@ ex. the “i” and “d” in “bid”
are “redundant” because ﬂ

© 2014 Goodrich, Tamassia, Goldwasser Tries 6

3/25/14 16:11

Tries

‘Compact Representation

@ Compact representation of a compressed trie for an array of strings:
= Stores at the nodes ranges of indices instead of substrings

= Uses O(s) space, where s is the number of strings in the array

= Serves as an auxiliary index structure

01234 0123 0123
sio1= [s]ele] S[41= S[71=
sii= [ble[alr] sis1= [bluly] sig1= [ble[T]T]
S[2] = s[e] = sio1 = [s[t]olp]
si31= [s[t]o[c[k]

© 2014 Goodrich, Tamassia, Goldwasser Tries 7

Suffix Trie

N

@ The suffix trie of a string X is the compressed trie of all the
suffixes of X

nimize

[mize| |nimize | |ze| |nimize | |ze |

© 2014 Goodrich, Tamassia, Goldwasser Tries 8

3/25/14 16:11

Tries

‘Analysis of Suffix Tries

-4

| @ Compact representation of the suffix trie for a string
X of size n from an alphabet of size d
= Uses O(n) space

= Supports arbitrary pattern matching queries in X in O(dm)
time, where m is the size of the pattern

= Can be constructed in O(n) time

[mli[n]i|m[i[z]e]
01234567

47| [2,7]| [6,7| [2,7] |67]

© 2014 Goodrich, Tamassia, Goldwasser Tries 9

Encoding Trie (1)

-4

@ Acodeis a mapping of each character of an alphabet to a binary
code-word
@ A prefix code is a binary code such that no code-word is the prefix
of another code-word
@ An encoding trie represents a prefix code
= Each leaf stores a character

= The code word of a character is given by the path from the root to
the leaf storing the character (0 for a left child and 1 for a right child

00 | 010|011 | 10 | 11

© 2014 Goodrich, Tamassia, Goldwasser Tries

3/25/14 16:11

Tries

Encoding Trie (2)

@ Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X

Frequent characters should have short code-words
Rare characters should have long code-words

@ Example
= X =abracadabra

T, encodes X into 29 bits
T, encodes X into 24 bits

© 2014 Goodrich, Tamassia, Goldwasser

Tries 11

3/25/14 16:11

