
Memory Management 3/29/14 21:38

1

Memory Management 1

Memory Management

© 2014 Goodrich, Tamassia, Goldwasser

Diagram of a 4×4 plane of magnetic core memory in an X/Y line coincident-current setup.
By Tetromino. This file is licensed under the Creative Commons Attribution 3.0 Unported license.

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Memory Management 2

Computer Memory
q  In order to implement any data structure on an actual

computer, we need to use computer memory.
q  Computer memory is organized into a sequence of words,

each of which typically consists of 4, 8, or 16 bytes
(depending on the computer).

q  These memory words are numbered from 0 to N −1, where
N is the number of memory words available to the
computer.

q  The number associated with each memory word is known
as its memory address.

© 2014 Goodrich, Tamassia, Goldwasser

Memory Management 3/29/14 21:38

2

Object Creation

q  With Python, all objects are stored in a pool of
memory, known as the memory heap or
Python heap (which should not be confused
with the “heap” data structure).

q  Consider what happens when we execute a
command such as:

 w = Widget()
q  A new instance of the class is created and

stored somewhere within the memory heap.

© 2014 Goodrich, Tamassia, Goldwasser Memory Management 3

Memory Management 4

Free List
q  The storage available in the memory heap is divided

into blocks, which are contiguous array-like “chunks” of
memory that may be of variable or fixed sizes.

q  The system must be implemented so that it can quickly
allocate memory for new objects.

q  One popular method is to keep contiguous “holes” of
available free memory in a linked list, called the free
list.

q  Deciding how to allocate blocks of memory from the
free list when a request is made is known as memory
management.

© 2014 Goodrich, Tamassia, Goldwasser

Memory Management 3/29/14 21:38

3

Memory Management 5

Memory Management
q  Several heuristics have been suggested for allocating

memory from the heap so as to minimize
fragmentation.
n  The best-fit algorithm searches the entire free list to find

the hole whose size is closest to the amount of memory
being requested.

n  The first-fit algorithm searches from the beginning of the
free list for the first hole that is large enough.

n  The next-fit algorithm is similar, in that it also searches
the free list for the first hole that is large enough, but it
begins its search from where it left off previously, viewing
the free list as a circularly linked list.

n  The worst-fit algorithm searches the free list to find the
largest hole of available memory.

© 2014 Goodrich, Tamassia, Goldwasser

Memory Management 6

Garbage Collection
q  The process of detecting “stale” objects, deallocating

the space devoted to those objects, and returning the
reclaimed space to the free list is known as garbage
collection.

q  In order for a program to access an object, it must have
a direct or indirect reference to that object.
n  Such objects are live objects.

q  We refer to all live objects with direct reference (that is
a variable pointing to them) as root objects.

q  An indirect reference to a live object is a reference
that occurs within the state of some other live object,
such as a cell of a live array or field of some live object.

© 2014 Goodrich, Tamassia, Goldwasser

Memory Management 3/29/14 21:38

4

Memory Management 7

Mark-Sweep Algorithm

© 2014 Goodrich, Tamassia, Goldwasser

q  In the mark-sweep garbage collection algorithm, we
associate a “mark” bit with each object that identifies whether
that object is live.

q  When we determine at some point that garbage collection is
needed, we suspend all other activity and clear the mark bits of
all the objects currently allocated in the memory heap.

q  We then trace through the active namespaces and we mark all
the root objects as “live.”

q  We must then determine all the other live objects—the ones that
are reachable from the root objects.

q  To do this efficiently, we can perform a depth-first search (see
Section 14.3.1) on the directed graph that is defined by objects
reference other objects.

Memory Management 8

Memory Hierarchies
q  Computers have a hierarchy of different kinds of memories, which

vary in terms of their size and distance from the CPU.
q  Closest to the CPU are the internal registers. Access to such

locations is very fast, but there are relatively few such locations.
q  At the second level in the hierarchy are the memory caches.
q  At the third level in the hierarchy is the internal memory, which is

also known as main memory or core memory.
q  Another level in the hierarchy is the external memory, which

usually consists of disks.	

© 2014 Goodrich, Tamassia, Goldwasser

Memory Management 3/29/14 21:38

5

Virtual Memory
q  Virtual memory consists of providing an address

space as large as the capacity of the external
memory, and of transferring data in the secondary
level into the primary level when they are addressed.
n  Virtual memory does not limit the programmer to the

constraint of the internal memory size.

q  The concept of bringing data into primary memory is
called caching, and it is motivated by temporal
locality.

q  By bringing data into primary memory, we are hoping
that it will be accessed again soon, and we will be
able to respond quickly to all the requests for this
data that come in the near future.

© 2014 Goodrich, Tamassia, Goldwasser Memory Management 9

Page Replacement Strategies

q  When a new block is referenced and the
space for blocks from external memory
is full, we must evict an existing block.

q  There are several such page
replacement strategies, including:
n  FIFO
n  LIFO
n  Random

© 2014 Goodrich, Tamassia, Goldwasser Memory Management 10

Memory Management 3/29/14 21:38

6

The Random Strategy
q  Choose a page at random to evict from the cache.

n  The overhead involved in implementing this policy is an O(1)
additional amount of work per page replacement.

n  Still, this policy makes no attempt to take advantage of any
temporal locality exhibited by a user’s browsing.

© 2014 Goodrich, Tamassia, Goldwasser Memory Management 11

The FIFO Strategy
q  The FIFO strategy is quite simple to implement, as it only

requires a queue Q to store references to the pages in the cache.
n  Pages are enqueued in Q when they are referenced, and then are

brought into the cache.
n  When a page needs to be evicted, the computer simply performs a

dequeue operation on Q to determine which page to evict. Thus, this
policy also requires O(1) additional work per page replacement.

n  Moreover, it tries to take some advantage of temporal locality.

© 2014 Goodrich, Tamassia, Goldwasser Memory Management 12

Memory Management 3/29/14 21:38

7

The LRU Strategy
q  The LRU strategy evicts the page that was least-

recently used.
n  From a policy point of view, this is an excellent approach, but

it is costly from an implementation point of view.
n  Implementing the LRU strategy requires the use of an

adaptable priority queue Q that supports updating the priority
of existing pages. If Q is implemented with a sorted sequence
based on a linked list, then the overhead for each page
request and page replacement is O(1).

© 2014 Goodrich, Tamassia, Goldwasser Memory Management 13

