
Programming 2

Inheritance & Polymorphism

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

this “graphics-suite”
can handle

Rectangles, Circles,
Triangles

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

three list
implementations,
very much alike

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

first the Rectangles,
then the Circles, then

the Triangles.
we do not support
different layers!

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

three times pretty
much the same code:

call draw() on all
instances

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

What changes would be
necessary, if we wanted
to include more Shapes,

e.g. Polygons, Lines,
Stars,… ?

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

Polygon[] thePolys=new Polygon[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void addShape(Polygon p){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

for (Polygon p : thePolys)

p.draw();

}

}

another array

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

Polygon[] thePolys=new Polygon[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void addShape(Polygon p){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

for (Polygon p : thePolys)

p.draw();

}

}

another addShape-
version

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

Polygon[] thePolys=new Polygon[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void addShape(Polygon p){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

for (Polygon p : thePolys)

p.draw();

}

}

more of the same :
polygons are drawn on

top of the rest!

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

Polygon[] thePolys=new Polygon[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void addShape(Polygon p){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

for (Polygon p : thePolys)

p.draw();

}

}

now, we have drawing and
list logic implemented four
times, plus we still do NOT

support layers

Shape Classes

BWI PROG2 SS11 v1.0 TeM

Rectangle

- Position

- rotationAngle

- width

- height

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setWidth(double):void

+ getWidth(): double

+ setHeight(double):void

+ getHeight(): double

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Circle

- Position

- rotationAngle

- center

- radius

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setCenter(Point) :void

+ setRadius(double): void

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Triangle

- Position

- rotationAngle

- a,b,c

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setA(Point):void

+ getA():Point

+ setB(Point):void

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Shape Classes – common members

BWI PROG2 SS11 v1.0 TeM

Rectangle

- Position

- rotationAngle

- width

- height

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setWidth(double):void

+ getWidth(): double

+ setHeight(double):void

+ getHeight(): double

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Circle

- Position

- rotationAngle

- center

- radius

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setCenter(Point) :void

+ setRadius(double): void

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Triangle

- Position

- rotationAngle

- a,b,c

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setA(Point):void

+ getA():Point

+ setB(Point):void

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Encapsulate commons in a class

BWI PROG2 SS11 v1.0 TeM

Rectangle

- width

- height

+ setWidth(double):void

+ getWidth(): double

[…]

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Triangle

- a,b,c

+ setA(Point):void

+ getA():Point

[…]

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

[…]

Encapsulate commons in a class

BWI PROG2 SS11 v1.0 TeM

Rectangle

- width

- height

+ setWidth(double):void

+ getWidth(): double

[…]

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Triangle

- a,b,c

+ setA(Point):void

+ getA():Point

[…]

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

[…]

Inheritance

 Inheritance is the mechanism of creating
classes based on existing classes

 Shape encapsulates the common
attributes and behavior of Rectangle,
Triangle, Circle

 Rectangle, Triangle, Circle extend the
attributes and behavior of Shape

 Shape is the base class (superclass)

 Rectangle, Triangle, Circle are
subclasses of Shape

BWI PROG2 SS11 v1.0 TeM

Inheritance Tree

BWI PROG2 SS11 v1.0 TeM

Rectangle

Shape

Triangle

Circle

 Rectangle, Circle, Trianlge IS-A Shape

 Rectangle, Circle, Trianlge extend Shape

 Rectangle, Circle, Trianlge are subclasses of
Shape

 Shape is the superclass of Rectangle, Circle,
Trianlge

specializationgeneralization
<<extends>>

Circle IS-A Shape

 Circle has everything
Shape has, plus some
more

 Circle extends Shape

 at heart, Circle is still
(also) Shape

 Circle can act as Shape

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

[…]

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Circle redefines Shape behavior

 some methods might
need to be
reimplemented in Circle

 Circle implements
subclass-specific
behavior

 superclass interface-
contract is obeyed

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

+ getArea(): double

+ getPerimeter(): double

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Polymorphism

 Polymorphism is the mechanism that

 a subclass instance can act as a superclass
instance

 a subclass can re-implement a superclass
interface with subclass specific behavior

 Circle, Rectangle, Triangle cannot
change the getArea-signature (the
interface)

 Circle, Rectangle, Triangle can redefine
the calculation of the area (the
implementation of the interface)

BWI PROG2 SS11 v1.0 TeM

Shape in Java

BWI PROG2 SS11 v1.0 TeM

public class Shape {

private Position position;

private double rotationAngle;

private Style lineStyle;

private Color lineColor;

private int lineWidth;

private Color fillColor;

public Shape() {/**/}

public Position getPosition() {/**/}

public void setPosition(Position position) {/**/}

public void rotate(double angle) {/**/}

public double getArea() {/**/}

public double getPerimeter() {/**/}

public void shrink(double factor) {/**/}

public void move(double x, double y) {/**/}

public void draw() {/**/}

}

Shape in Java

BWI PROG2 SS11 v1.0 TeM

public class Shape {

/**/

public Shape() {

position=new Position();

rotationAngle=0;

lineStyle=new Style();

lineColor=new Color();

lineWidth=1;

fillColor=new Color();

}

/**/

}

default position
no rotation

default style, color,
etc..

Shape in Java

BWI PROG2 SS11 v1.0 TeM

public class Shape {

/**/

public void rotate(double angle) {

rotationAngle+=angle;

rotationAngle%=360;

}

public double getArea() {

return 0;

}

public double getPerimeter() {

return 0;

}

public void move(double x, double y) {

position.move(x,y);

}

/**/

}

keep in [0,360)

position has move()

play it safe, we do
not know how to
calculate area,
perimeter of a
generic shape

Extending Shape in Java

BWI PROG2 SS11 v1.0 TeM

public class Circle extends Shape {

private Point center;

private double radius;

public void setRadius(double radius) {

this.radius= ((radius<0)?-1:1)*radius;

}

public double getArea(){

return radius*radius*Math.PI;

}

public double getPerimeter(){

return 2*radius*Math.PI;

}

public void move(double x, double y){/**/}

public void draw(){/**/}

/**/

}

additional
properties+methods

Circle is a subclass
of Shape

redefine behavior by
overriding inherited

methods

Circle Application

BWI PROG2 SS11 v1.0 TeM

public class CirlceApp {

public static void main(String[] args) {

Circle c=new Circle();

c.setRadius(1);

TextIO.putln("rotation="+c.getRotationAngle());

c.rotate(20);

TextIO.putln("rotation="+c.getRotationAngle());

TextIO.putln("area="+c.getArea());

c.setRadius(2);

TextIO.putln("area="+c.getArea());

}

}

rotation=0.0

rotation=20.0

area=3.141592653589793

area=12.566370614359172

already defined in Shape

Circle-version is called

Circle acts like a special Shape

BWI PROG2 SS11 v1.0 TeM

public class CirlceApp {

public static void main(String[] args) {

Shape c=new Circle(1);

TextIO.putln("rotation="+c.getRotationAngle());

c.rotate(20);

TextIO.putln("rotation="+c.getRotationAngle());

TextIO.putln("area="+c.getArea());

}

}

rotation=0.0

rotation=20.0

area=3.141592653589793

treat the Circle as a
Shape

Circle-version is called

Polymorphism revisited

 subclass instances
can act as superclass
instances

 Circle IS-A Shape

 Circle has everything
that is expected of a
Shape – it can act as
a Shape

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

+ getArea(): double

+ getPerimeter(): double

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Shape c=new Circle(1);

Polymorphism revisited

 call to a Shape
method

 overidden in Circle

 most specific version
of method is called at
runtime

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

+ getArea(): double

+ getPerimeter(): double

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Shape c=new Circle(1);

c.getArea();

Polymorphism

 A subclass instance can be stored in a
superclass reference

 It is a reference to the superclass-aspect
of the instance

 calling a polymorphic method using a
superclass reference executes the most
specific implementation of the method

BWI PROG2 SS11 v1.0 TeM

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

one array to hold all
different kinds of

shapes

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

list logic implemented
once – works for all

kinds of shapes

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

drawing logic
implemented once – for

all kinds of shapes.
plus: we finally support

layers

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

What changes would be
necessary, if we wanted
to include more Shapes,

e.g. Polygons, Lines,
Stars,… ?

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

none!
this code works for

ALL FUTURE SHAPES
(that obey the contract)

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

after defining a new
Shape subtype, only the

code that creates its
instances must be aware

of the new type

BWI PROG2 SS11 v1.0 TeM

Super-Constructor

BWI PROG2 SS11 v1.0 TeM

public class Circle extends Shape {

/**/

public Circle(){

super();

center=new Point();

radius=1;

}

public Circle(double radius){

this();

setRadius(radius);

}

/**/

}

call the super
constructor to create a
default shape and add
Circle-specific default

values

Super-Constructor

BWI PROG2 SS11 v1.0 TeM

public class Circle extends Shape {

/**/

public Circle(){

super();

center=new Point();

radius=1;

}

public Circle(double radius){

this();

setRadius(radius);

}

/**/

}

call to super
constructor must be

first statement

Super-Constructor

BWI PROG2 SS11 v1.0 TeM

public class Circle extends Shape {

/**/

public Circle(){

super();

center=new Point();

radius=1;

}

public Circle(double radius){

this();

setRadius(radius);

}

/**/

}

call an overloaded
constructor, then set

values

Polymorphism revisited

 cannot call a Circle
method using a
Shape reference

 setRadius is not part
of Shape

 Circle lost part of its
identity – it is treated
as a Shape instance

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

+ getArea(): double

+ getPerimeter(): double

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Shape c=new Circle(1);

c.setRadius(2);

Late Binding

 An invoked method must be part of the
reference-class

 This is checked at compile-time

 If it is not part (even though we are pretty sure
that the object has the method) compilation
fails

 compiler cannot know which type is stored in a
reference at runtime – it could be any (future)
subclass

 the check is safe, because any subclass is
guaranteed to have all methods of the
superclass (interface-contract!)

BWI PROG2 SS11 v1.0 TeM

Late Binding

If the method is part of the reference-
definition, compilation proceeds

 WHICH version of a polymorphic method is
executed, is decided at runtime

 this is decided based on the actual type of the
instance

 the most specific implementation is then
executed

 this process is called Late Binding

BWI PROG2 SS11 v1.0 TeM

Type casting

 With the cast operator, a reference can
be converted

 a reference can be converted to a
subtype-reference : this is called “down-
casting”

 do NOT cast unless you are at least a
100% positive it works

BWI PROG2 SS11 v1.0 TeM

Shape c=new Circle(1);

((Shape) c).setRadius(2);

Shape reference is
converted to a Circle

reference

Type casting

 This is why you should NOT cast

 compiler cannot know what c is at runtime

 cast COULD be possible, since we COULD
HAVE stored a Rectangle in the Shape
reference

BWI PROG2 SS11 v1.0 TeM

Shape c=new Circle(1);

((Rectangle) c).setRadius(2);

Shape reference is
converted to a Rectangle
reference – although it is

actually a Circle
instance!!

BWI PROG2 SS11 v1.0 TeM

Access levels revisited

 any member (attributes, methods,
constructors,…) can be assigned one of
the following access levels
 public:

any code can access

 default (no access modifier):
any code in the same package can access

 protected:

any subclass can access, even in different
packages

 private:

only the class itself can access

BWI PROG2 SS11 v1.0 TeM

Packages

BWI PROG2 SS11 v1.0 TeM

 private members in the baseclass

are not inherited within a package

 members without access modifier
are inherited

SuperClass

default

public

protected

private

[...]

[...]

Subclass1

Not inherited

inherited

inherited

Not inherited

[...]

[...]

SubClass2

inherited

inherited

inherited

Not inherited

[...]

[...]

package1package2

only public and

protected

members are

inherited

Programming 2

Class Object

class Object

 Every Java class is
implicitly derived from
the base class Object

 Object has a number
of methods that all
our classes “get for
free”

BWI PROG2 SS11 v1.0 TeM

Object

+ equals(Object): boolean

+ hasCode():int

+ toString(): String

finalize

clone

+ notify

+ notifyAll

+ wait

not covered here,
important for

concurrency (threads)

Object methods

 Object.toString():String

 returns a String representation of the object

 default is: <type>@<hashcode>

e.g.: Circle@c17164

 this is the reason why everything can be an
argument to putln(): putln calls toString on
the argument and displays the returned
String

BWI PROG2 SS11 v1.0 TeM

Object methods

 Object.toString():String

 Always override toString()

 When practical, it should return all the
interesting information contained in the
object

 Provide access to all the information
contained in the value returned by toString()
– otherwise client code is forced to parse
that String

 call the superclass toString() with

super.toString(), if necessary

BWI PROG2 SS11 v1.0 TeM

Object methods

 Object.equals(Object):boolean

 indicates whether some other object is
“equal” to this one

 defines a null-consistent equivalence relation
(symmetric, reflexive, transitive)

 by default, every instance is equals only to
itself

 override only if equality other than object
equality is needed

 obey the contract, if you override equals –
other code (Collections) depend on it

BWI PROG2 SS11 v1.0 TeM

Object methods

 hashCode():int

 returns a hash code value for the object

 equal objects have same hash code

 unequal objects need not have different hash
code

 should be overridden when equals is
overridden

BWI PROG2 SS11 v1.0 TeM

Object methods

 Object.finalize():void

 called when the garbage collector eventually
destroys the object

 overriding should be avoided for
performance (and other) reasons

 Object.clone():Object

 creates and returns a copy of the object

 many technical complications when
overridden and/or used

BWI PROG2 SS11 v1.0 TeM

