
Avoid embarassing
OO mistakes

Fool around in
the Java Library

Head First

Java
Learn how threads
can change your life

Make Java concepts
stick to your brain

Kathy Sierra & Bert Bates

Avoid embarassingAvoid embarassing

JJaaaJaJ vvvava aavav

Bend your mind
around 42
Java puzzlesJava puzzlesJava puzzles

Your Brain on Java—A Learner’s Guide
2nd Edition - Covers Java 5.0

Make attractive
and useful GUIs

this is a new chapter 197

8 interfaces and abstract classes

Inheritance is just the beginning. To exploit polymorphism, we need interfaces

(and not the GUI kind). We need to go beyond simple inheritance to a level of flexibility and

extensibility you can get only by designing and coding to interface specifications. Some of the

coolest parts of Java wouldn’t even be possible without interfaces, so even if you don’t design

with them yourself, you still have to use them. But you’ll want to design with them. You’ll need

to design with them. You’ll wonder how you ever lived without them. What’s an interface? It’s

a 100% abstract class. What’s an abstract class? It’s a class that can’t be instantiated. What’s that

good for? You’ll see in just a few moments. But if you think about the end of the last chapter,

and how we used polymorphic arguments so that a single Vet method could take Animal

subclasses of all types, well, that was just scratching the surface. Interfaces are the poly in

polymorphism. The ab in abstract. The caffeine in Java.

Serious Polymorphism

Make it Stick

198 chapter 8

Animal

Feline

roam()

Canine

size
picture
food
prey

size
picture
food
prey

Lion

size
picture
food
prey

size
picture
food
prey

Tiger
size
picture
food
prey

size
picture
food
prey

Cat

size
picture
food
prey

size
picture
food
prey

Wolf

size
picture
food
prey

size
picture
food
prey

Dog

size
picture
food
prey

size
picture
food
prey

Hippo

makeNoise()
eat()

roam()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

designing with inheritance

Did we forget about something
when we designed this?
The class structure isn’t too bad. We’ve designed
it so that duplicate code is kept to a minimum,
and we’ve overridden the methods that we think
should have subclass-specifi c implementations.
We’ve made it nice and fl exible from a
polymorphic perspective, because we can design
Animal-using programs with Animal arguments
(and array declarations), so that any Animal
subtype—including those we never imagined at the
time we wrote our code—can be passed in and used
at runtime. We’ve put the common protocol for
all Animals (the four methods that we want the
world to know all Animals have) in the Animal
superclass, and we’re ready to start making new
Lions and Tigers and Hippos.

interfaces and polymorphism

you are here4 199

Wolf aWolf = new Wolf();

We know we can say:

A Wolf reference to a
Wolf object. Wolf

aWolf
 Wolf object

These two are the same type.

Animal aHippo = new Hippo();

And we know we can say:

Animal reference to
a Hippo object.

Animal

aHippo
Hippo object

These two are NOT the same type.

Animal anim = new Animal();

But here’s where it gets weird:

Animal reference to
an Animal object.

Animal

anim
Animal object

These two are the same type, but...
what the heck does an Animal object look like?

?

200 chapter 8

scary objects

What does a new Animal() object
look like?

when objects go bad

It makes sense to create a Wolf object or a Hippo
object or a Tiger object, but what exactly is an
Animal object? What shape is it? What color, size,
number of legs...

Trying to create an object of type Animal is like a
nightmare Star Trek™ transporter accident. The
one where somewhere in the beam-me--up process
something bad happened to the buffer.

But how do we deal with this? We need an Animal
class, for inheritance and polymorphism. But we
want programmers to instantiate only the less
abstract subclasses of class Animal, not Animal itself.
We want Tiger objects and Lion objects, not Animal
objects.

Fortunately, there’s a simple way to prevent a class
from ever being instantiated. In other words, to stop
anyone from saying “new” on that type. By marking
the class as abstract, the compiler will stop any
code, anywhere, from ever creating an instance of
that type.

You can still use that abstract type as a reference type.
In fact,that’s a big part of why you have that abstract
class in the fi rst place (to use it as a polymorphic
argument or return type, or to make a polymorphic
array).

When you’re designing your class inheritance
structure, you have to decide which classes are
abstract and which are concrete. Concrete classes are
those that are specifi c enough to be instantiated. A
concrete class just means that it’s OK to make objects
of that type.

Making a class abstract is easy—put the keyword
abstract before the class declaration:

abstract class Canine extends Animal {

 public void roam() { }

}

What are the instance variable values?

Some classes just should not be
instantiated!

interfaces and polymorphism

you are here4 201

The compiler won’t let you instantiate
an abstract class
An abstract class means that nobody can ever make a new
instance of that class. You can still use that abstract class as a
declared reference type, for the purpose of polymorphism, but
you don’t have to worry about somebody making objects of that
type. The compiler guarantees it.

abstract public class Canine extends Animal
{

 public void roam() { }

}

public class MakeCanine {

 public void go() {

 Canine c;

 c = new Dog();

 c = new Canine();

 c.roam();

 }

}

File Edit Window Help BeamMeUp

% javac MakeCanine.java

MakeCanine.java:5: Canine is abstract;
cannot be instantiated
 c = new Canine();
 ^
1 error

class Canine is marked abstract,so the compiler will NOT let you do this.

An abstract class has virtually* no use, no value, no
purpose in life, unless it is extended.

With an abstract class, the guys doing the work at runtime
are instances of a subclass of your abstract class.

This is OK, because you c
an always assign

a subclass obje
ct to a superc

lass reference
,

even if the su
perclass is abs

tract.

*There is an exception to this—an abstract class can
have static members (see chapter 10).

202 chapter 8

Abstract vs. Concrete
A class that’s not abstract is called
a concrete class. In the Animal
inheritance tree, if we make
Animal, Canine, and Feline
abstract, that leaves Hippo, Wolf,
Dog, Tiger, Lion, and Cat as the
concrete subclasses.

Flip through the Java API and
you’ll fi nd a lot of abstract classes,
especially in the GUI library. What
does a GUI Component look
like? The Component class is the
superclass of GUI-related classes
for things like buttons, text areas,
scrollbars, dialog boxes, you name
it. You don’t make an instance of
a generic Component and put it on
the screen, you make a JButton. In
other words, you instantiate only a
concrete subclass of Component, but
never Component itself.

Tiger

Animal

Canine

abstract

abstract

abstract
Hippo

concrete

Dog

Wolf

concrete
Cat

Lion

concrete

Hmmmm... do I
feel like red or
white tonight?

 Hmmmm... the Camelot
Vineyards 1997 Pinot
Noir was a pretty
decent year...

How do you know when a class should be

abstract? Wine is probably abstract. But what

about Red and White? Again probably abstract

(for some of us, anyway). But at what point in the

hierarchy do things become concrete?

Do you make PinotNoir concrete, or is it abstract

too? It looks like the Camelot Vineyards 1997

Pinot Noir is probably concrete no matter what.

But how do you know for sure?

Look at the Animal inheritance tree above. Do the

choices we’ve made for which classes are abstract

and which are concrete seem appropriate?

Would you change anything about the Animal

inheritance tree (other than adding more Animals,

of course)?

abstract or concrete?

concrete

concrete

abstract and concrete classes

Feline

concrete

brain
powerA

interfaces and polymorphism

you are here4 203

Abstract methods

Besides classes, you can mark methods abstract, too. An abstract
class means the class must be extended; an abstract method means
the method must be overridden. You might decide that some (or all)
behaviors in an abstract class don’t make any sense unless they’re
implemented by a more specific subclass. In other words, you can’t
think of any generic method implementation that could possibly be
useful for subclasses. What would a generic eat() method look like?

An abstract method has no body!

Because you’ve already decided there isn’t any code that would make
sense in the abstract method, you won’t put in a method body. So no
curly braces— just end the declaration with a semicolon.

public abstract void eat();

No method body !
End it with a semicolon.

If you declare an abstract method, you MUST
mark the class abstract as well. You can’t have
an abstract method in a non-abstract class.

If you put even a single abstract method in a class, you have to
make the class abstract. But you can mix both abstract and non-
abstract methods in the abstract class.

Q: What is the point of an abstract method? I thought
the whole point of an abstract class was to have common
code that could be inherited by subclasses.

A: Inheritable method implementations (in other words,
methods with actual bodies) are A Good Thing to put in a
superclass. When it makes sense. And in an abstract class, it
often doesn’t make sense, because you can’t come up with
any generic code that subclasses would find useful. The
point of an abstract method is that even though you haven’t
put in any actual method code, you’ve still defined part of
the protocol for a group of subtypes (subclasses).

Q: Which is good because...

A: Polymorphism! Remember, what you want is the
ability to use a superclass type (often abstract) as a method
argument, return type, or array type. That way, you get to
add new subtypes (like a new Animal subclass) to your
program without having to rewrite (or add) new methods
to deal with those new types. Imagine how you’d have to
change the Vet class, if it didn’t use Animal as its argument
type for methods. You’d have to have a separate method
for every single Animal subclass! One that takes a Lion, one
that takes a Wolf, one that takes a... you get the idea. So with
an abstract method, you’re saying, “All subtypes of this type
have THIS method.” for the benefit of polymorphism.

there are noDumb Questions

It really sucks to
be an abstract method.
You don’t have a body.

204 chapter 8

you must implement abstract methods

You MUST implement all abstract methods

Abstract methods don’t have a body; they exist solely for polymorphism. That
means the first concrete class in the inheritance tree must implement all abstract
methods.

You can, however, pass the buck by being abstract yourself. If both Animal and
Canine are abstract, for example, and both have abstract methods, class Canine
does not have to implement the abstract methods from Animal. But as soon as we
get to the first concrete subclass, like Dog, that subclass must implement all of the
abstract methods from both Animal and Canine.

But remember that an abstract class can have both abstract and non-abstract
methods, so Canine, for example, could implement an abstract method from
Animal, so that Dog didn’t have to. But if Canine says nothing about the abstract
methods from Animal, Dog has to implement all of Animal’s abstract methods.

Implementing an abstract
method is just like
overriding a method.

When we say “you must implement the abstract method”, that means you must
provide a body. That means you must create a non-abstract method in your class
with the same method signature (name and arguments) and a return type that is
compatible with the declared return type of the abstract method. What you put in
that method is up to you. All Java cares about is that the method is there, in your
concrete subclass.

 I have wonderful news,
mother. Joe finally implemented
all his abstract methods! Now
everything is working just the
way we planned...

interfaces and polymorphism

you are here4 205

Sharpen your pencil
Let’s put all this abstract rhetoric into some concrete use. In the middle
column we’ve listed some classes. Your job is to imagine applications
where the listed class might be concrete, and applications where the listed
class might be abstract. We took a shot at the first few to get you going.
For example, class Tree would be abstract in a tree nursery program, where
differences between an Oak and an Aspen matter. But in a golf simulation
program, Tree might be a concrete class (perhaps a subclass of Obstacle),
because the program doesn’t care about or distinguish between different
types of trees. (There’s no one right answer; it depends on your design.)

Concrete Sample class Abstract

golf course simulation Tree tree nursery application

____________________ House architect application

satellite photo application Town _____________________

____________________ Football Player coaching application

____________________ Chair _____________________

____________________ Customer _____________________

____________________ Sales Order _____________________

____________________ Book _____________________

____________________ Store _____________________

____________________ Supplier _____________________

____________________ Golf Club _____________________

____________________ Carburetor _____________________

____________________ Oven _____________________

Abstract vs. Concrete Classes

206 chapter 8

polymorphism examples

Polymorphism in action
Let’s say that we want to write our own kind of list class, one that will hold
Dog objects, but pretend for a moment that we don’t know about the
ArrayList class. For the fi rst pass, we’ll give it just an add() method. We’ll use
a simple Dog array (Dog []) to keep the added Dog objects, and give it a
length of 5. When we reach the limit of 5 Dog objects, you can still call the
add() method but it won’t do anything. If we’re not at the limit, the add()
method puts the Dog in the array at the next available index position, then
increments that next available index (nextIndex).

public class MyDogList {

 private Dog [] dogs = new Dog[5];

 private int nextIndex = 0;

 public void add(Dog d) {

 if (nextIndex < dogs.length) {

 dogs[nextIndex] = d;

 System.out.println(“Dog added at “ + nextIndex);

 nextIndex++;

 }
 }
}

MyDogList

Dog[] dogs
int nextIndex

add(Dog d)

Dog[] dogs

add(Dog d)

Use a plain old Dog array

behind the scene
s.

We’ll increment this each
time a new Dog is added.

If we’re not already at the limit

of the dogs array, add the
Dog

and print a message.

increment, to give us the next index to use

Building our own Dog-specifi c list
(Perhaps the world’s worst attempt at making our
own ArrayList kind of class, from scratch.)

ve
rsion

1

interfaces and polymorphism

you are here4 207

public class MyAnimalList {

 private Animal[] animals = new Animal[5];
 private int nextIndex = 0;

 public void add(Animal a) {
 if (nextIndex < animals.length) {
 animals[nextIndex] = a;
 System.out.println(“Animal added at “ + nextIndex);
 nextIndex++;

 }
 }
}

MyAnimalList

Animal[] animals
int nextIndex

add(Animal a)

Building our own Animal-specifi c list

ve
rsion

2

Uh-oh, now we need to keep Cats, too.
We have a few options here:

1) Make a separate class, MyCatList, to hold Cat objects. Pretty clunky.

2) Make a single class, DogAndCatList, that keeps two different arrays as instance
variables and has two different add() methods: addCat(Cat c) and addDog(Dog
d). Another clunky solution.

3) Make heterogeneous AnimalList class, that takes any kind of Animal subclass
(since we know that if the spec changed to add Cats, sooner or later we’ll have
some other kind of animal added as well). We like this option best, so let’s change
our class to make it more generic, to take Animals instead of just Dogs. We’ve
highlighted the key changes (the logic is the same, of course, but the type has
changed from Dog to Animal everywhere in the code.

public class AnimalTestDrive{
 public static void main (String[] args) {
 MyAnimalList list = new MyAnimalList();
 Dog a = new Dog();
 Cat c = new Cat();
 list.add(a);
 list.add(c);
 }
}
 File Edit Window Help Harm

% java AnimalTestDrive

Animal added at 0

Animal added at 1

Don’t panic. We’re not making a

new Animal object; we’re making a

new array object, o
f type Animal.

(Remember, you cannot
make a new

instance of an a
bstract type, bu

t

you CAN make an array obj
ect

declared to HOLD that type.)

208 chapter 8

You know where this is heading. We want to change the
type of the array, along with the add() method argument, to
something above Animal. Something even more generic, more
abstract than Animal. But how can we do it? We don’t have a
superclass for Animal.

Then again, maybe we do...

Remember those methods of ArrayList?
Look how the remove, contains, and
indexOf method all use an object of type...
Object!

Every class in Java extends
class Object.

Class Object is the mother of all classes; it’s
the superclass of everything.

ve
rsion

3

What about non-Animals? Why not make
a class generic enough to take anything?

Many of the ArrayList methods use the

ultimate polymorphic type, Object. Since

every class in Java is a subclass of Object,

these ArrayList methods can take anythi
ng!

(Note: as of Java 5.0, the get() and add()

methods actually look a l
ittle different

than the ones shown here, but for now this

is the way to think about it. W
e’ll get into

the full story a little l
ater.)

the ultimate superclass: Object

ArrayList

(These are just a fe
w of the

methods in ArrayList...there

are many more.)

Even if you take advantage of polymorphism,
you still have to create a class with methods
that take and return your polymorphic type.
Without a common superclass for everything
in Java, there’d be no way for the developers
of Java to create classes with methods that
could take your custom types... types they never
knew about when they wrote the ArrayList class.

So you were making subclasses of class Object
from the very beginning and you didn’t even
know it. Every class you write extends Object,
without your ever having to say it. But you can
think of it as though a class you write looks like
this:

public class Dog extends Object { }

But wait a minute, Dog already extends something, Canine.
That’s OK. The compiler will make Canine extend Object
instead. Except Canine extends Animal. No problem, then the
compiler will just make Animal extend Object.

Any class that doesn’t explicitly extend another
class, implicitly extends Object.

So, since Dog extends Canine, it doesn’t directly extend Object
(although it does extend it indirectly), and the same is true
for Canine, but Animal does directly extend Object.

Removes the object at the index parameter. Returns

‘true’ if the element was in the list.

Returns ‘true’ if there’s a match for the object parameter.

Returns ‘true’ if the list has no elements.

Returns either the index of the object parameter, or -1.

Returns the element at this position in the list.

Adds the element to the list (returns ‘true’).

boolean remove(Object elem)

boolean contains(Object elem)

boolean isEmpty()

int indexOf(Object elem)

Object get(int index)

boolean add(Object elem)

// more

interfaces and polymorphism

you are here4 209

So what’s in this ultra-super-megaclass Object?

Object

boolean equals()

Class getClass()

int hashCode()

String toString()

If you were Java, what behavior would you want every
object to have? Hmmmm... let’s see... how about a
method that lets you fi nd out if one object is equal
to another object? What about a method that can
tell you the actual class type of that object? Maybe a
method that gives you a hashcode for the object, so
you can use the object in hashtables (we’ll talk about
Java’s hashtables in chapter 17 and appendix B).
Oh, here’s a good one—a method that prints out a
String message for that object.

And what do you know? As if by magic, class Object
does indeed have methods for those four things.
That’s not all, though, but these are the ones we
really care about.

Just SOME of the methods

of class Object.

Dog a = new Dog();
Cat c = new Cat();

if (a.equals(c)) {
 System.out.println(“true”);
} else {
 System.out.println(“false”);
}

equals(Object o)1

Cat c = new Cat();
System.out.println(c.getClass());

getClass()2

File Edit Window Help Stop

% java TestObject

false

File Edit Window Help Faint

% java TestObject

class Cat

Cat c = new Cat();
System.out.println(c.hashCode());

hashCode()3

File Edit Window Help Drop

% java TestObject

8202111

Cat c = new Cat();
System.out.println(c.toString());

toString()4

File Edit Window Help LapseIntoComa

% java TestObject

Cat@7d277f

Prints out a hashco
de

for the object (fo
r

now, think of it as a

unique ID).

Tells you if two objects are
considered ‘equal’ (we’ll talk
about what ‘equal’ really
means in appendix B).

Gives you back the
class that object was
instantiated from.

Prints out a String
 message

with the name of the class

and some other number we

rarely care about.

YourClassHere Every class you write inherits all the methods of class Object. The classes you’ve written inherited methods you didn’t even know you had.

210 chapter 8

there are noDumb Questions
Q: Is class Object abstract?

A: No. Well, not in the formal
Java sense anyway. Object is a
non-abstract class because it’s
got method implementation
code that all classes can inherit
and use out-of-the-box, without
having to override the methods.

Q: Then can you override

the methods in Object?

A: Some of them. But some of
them are marked final, which
means you can’t override them.
You’re encouraged (strongly) to
override hashCode(), equals(),
and toString() in your own
classes, and you’ll learn how to
do that a little later in the book.
But some of the methods, like
getClass(), do things that must
work in a specific, guaranteed
way.

Q: If ArrayList methods are
generic enough to use Object,
then what does it mean to say
ArrayList<DotCom>? I thought
I was restricting the ArrayList to
hold only DotCom objects?

A: You were restricting it.
Prior to Java 5.0, ArrayLists
couldn’t be restricted. They
were all essentially what you
get in Java 5.0 today if you write
ArrayList<Object>. In other
words, an ArrayList restricted
to anything that’s an Object,
which means any object in Java,
instantiated from any class type!
We’ll cover the details of this new
<type> syntax later in the book.

Q: OK, back to class Object
being non-abstract (so I guess
that means it’s concrete), HOW
can you let somebody make an
Object object? Isn’t that just
as weird as making an Animal

object?

A: Good question! Why is
it acceptable to make a new
Object instance? Because
sometimes you just want a
generic object to use as, well, as
an object. A lightweight object.
By far, the most common use of
an instance of type Object is for
thread synchronization (which
you’ll learn about in chapter 15).
For now, just stick that on the
back burner and assume that
you will rarely make objects of
type Object, even though you
can.

Q: So is it fair to say that the
main purpose for type Object
is so that you can use it for a
polymorphic argument and
return type? Like in ArrayList?

A: The Object class serves
two main purposes: to act as a
polymorphic type for methods
that need to work on any class
that you or anyone else makes,
and to provide real method code
that all objects in Java need at
runtime (and putting them in
class Object means all other
classes inherit them). Some of
the most important methods in
Object are related to threads,
and we’ll see those later in the
book.

Q: If it’s so good to use
polymorphic types, why
don’t you just make ALL your
methods take and return type
Object?

A: Ahhhh... think about what
would happen. For one thing,
you would defeat the whole
point of ‘type-safety’, one
of Java’s greatest protection
mechanisms for your code. With
type-safety, Java guarantees that
you won’t ask the wrong object
to do something you meant to
ask of another object type. Like,
ask a Ferrari (which you think is a
Toaster) to cook itself.
But the truth is, you don’t have
to worry about that fiery Ferrari
scenario, even if you do use
Object references for everything.
Because when objects are
referred to by an Object
reference type, Java thinks it’s
referring to an instance of type
Object. And that means the
only methods you’re allowed to
call on that object are the ones
declared in class Object! So if
you were to say:

Object o = new Ferrari();
o.goFast(); //Not legal!

You wouldn’t even make it past
the compiler.

Because Java is a strongly-typed
language, the compiler checks
to make sure that you’re calling
a method on an object that’s
actually capable of responding.
In other words, you can call a
method on an object reference
only if the class of the reference
type actually has the method.
We’ll cover this in much greater
detail a little later, so don’t worry
if the picture isn’t crystal clear.

Object and abstract classes

interfaces and polymorphism

you are here4 211

Before you run off and start using type Object for all your ultra-fl exible argument and return
types, you need to consider a little issue of using type Object as a reference. And keep in mind
that we’re not talking about making instances of type Object; we’re talking about making
instances of some other type, but using a reference of type Object.

When you put an object into an ArrayList<Dog>, it goes in as a Dog, and comes out as a Dog:

ArrayList<Dog> myDogArrayList = new ArrayList<Dog>();

Dog aDog = new Dog();

myDogArrayList.add(aDog);

Dog d = myDogArrayList.get(0);

But what happens when you declare it as ArrayList<Object>? If you want to make an ArrayList
that will literally take any kind of Object, you declare it like this:

ArrayList<Object> myDogArrayList = new ArrayList<Object>();

Dog aDog = new Dog();

myDogArrayList.add(aDog);

But what happens when you try to get the Dog object and assign it to a Dog reference?

Dog d = myDogArrayList.get(0);

Everything comes out of an ArrayList<Object> as a reference of type Object, regardless of what the
actual object is, or what the reference type was when you added the object to the list.

Using polymorphic references of type Object has a price...

Objects come out of
an ArrayList<Object>
acting like they’re
generic instances
of class Object. The
Compiler cannot
assume the object
that comes out is of
any type other than
Object.

ArrayList<Object>

The objects go IN
as SoccerBall,
Fish, Guitar, and
Car.

Object Object Object Object

Make an ArrayList declared

to hold Dog objects.
Make a Dog.

Add the Dog to the list.
Assign the Dog from the list to a new Dog reference variable.

(Think of it as though the get() m
ethod declares a Dog return

type because you used ArrayList<Dog>.)

Make an ArrayList declared

to hold any type of Object.
Make a Dog.

Add the Dog to the list.
(These two steps are the same.)

NO!! Won’t compile!! When you use ArrayList<Object>, the get() method
returns type Object. The Compiler knows only that the object inherits from
Object (somewhere in its inheritance tree) but it doesn’t know it’s a Dog !!

Dog d = myDogArrayList.get(0);Dog d = myDogArrayList.get(0);Dog d = myDogArrayList.get(0);Dog d = myDogArrayList.get(0);

But they come
OUT as though
they were of type
Object.

212 chapter 8

 public void go() {

 Dog aDog = new Dog();

 Object sameDog = getObject(aDog);

 }

 public Object getObject(Object o) {

 return o;

 }

 public void go() {

 Dog aDog = new Dog();

 Dog sameDog = getObject(aDog);

 }

 public Object getObject(Object o) {

 return o;

 }

The problem with having everything treated
polymorphically as an Object is that the objects
appear to lose (but not permanently) their
true essence. The Dog appears to lose its dogness.
Let’s see what happens when we pass a Dog to
a method that returns a reference to the same
Dog object, but declares the return type as type
Object rather than Dog.

When a Dog won’t act like a Dog

This line won’t work! Even though th
e method

returned a re
ference to th

e very same Dog the

argument referred
 to, the retu

rn type Object

means the compiler won’t let you a
ssign the retu

rned

reference to
anything but

Object.

File Edit Window Help Remember

DogPolyTest.java:10: incompatible types

found : java.lang.Object

required: Dog

 Dog sameDog = takeObjects(aDog);
1 error ^

The compiler doesn’t know that the
thing returned from the method is
actually a Dog, so it won’t let you
assign it to a Dog reference. (You’ll
see why on the next page.)

BAD

This works (although it may not be very
useful, as you’ll see in a moment) because you
can assign ANYTHING to a reference of type
Object, since every class passes the IS-A test
for Object. Every object in Java is an instance
of type Object, because every class in Java has
Object at the top of its inheritance tree.

GOOD

L

J

I don’t know what you’re
talking about. Sit? Stay?
bark? Hmmmm... I don’t

recall knowing those.

When a Dog loses its Dogness

 Dog sameDog = getObject(aDog); Dog sameDog = getObject(aDog); Dog sameDog = getObject(aDog); Dog sameDog = getObject(aDog);

We’re returning a reference to
 the same Dog, but as a

return type of Object. This part is perfectly legal. Note:

this is similar to how the get() method works when you have

an ArrayList<Object> rather than an ArrayList<Dog>.

interfaces and polymorphism

you are here4 213

So now we know that when an object is
referenced by a variable declared as type
Object, it can’t be assigned to a variable
declared with the actual object’s type.
And we know that this can happen when
a return type or argument is declared
as type Object, as would be the case,
for example, when the object is put
into an ArrayList of type Object using
ArrayList<Object>. But what are the
implications of this? Is it a problem to
have to use an Object reference variable
to refer to a Dog object? Let’s try to call
Dog methods on our Dog-That-Compiler-
Thinks-Is-An-Object:

Objects don’t bark.

Object o = al.get(index);

int i = o.hashCode();

o.bark();

This is fine. C
lass Object has a

hashCode() method, so yo
u can call

that method on A
NY object in J

ava.

Can’t do this!! The Object class has no idea what
it means to bark(). Even though YOU know it’s
really a Dog at that index, the compiler doesn’t..

Object

 o
 Dog object

When you get an object reference from
an ArrayList<Object> (or any method
that declares Object as the return type),
it comes back as a polymorphic reference
type of Object. So you have an Object
reference to (in this case) a Dog instance.

Won’t compile!

The compiler decides whether
you can call a method based
on the reference type, not the
actual object type.

Even if you know the object is capable
(“...but it really is a Dog, honest...”), the
compiler sees it only as a generic Object.
For all the compiler knows, you put a
Button object out there. Or a Microwave
object. Or some other thing that really
doesn’t know how to bark.
The compiler checks the class of the
reference type—not the object type—to
see if you can call a method using that
reference.

Object

 o
 Dog object

Object

equals()

getClass()

hashCode()

toString()

The method you’re calling on a
reference MUST be in the class of
that reference type. Doesn’t matter
what the actual object is.

o.hashCode();

The “o” reference was declared as type
Object, so you can call methods only if
those methods are in class Object..

o.bark(); o.bark(); o.bark(); o.bark();

hashCode()

214 chapter 8

An object contains everything it inherits from each of its
superclasses. That means every object—regardless of its
actual class type—is also an instance of class Object.That
means any object in Java can be treated not just as a Dog,
Button, or Snowboard, but also as an Object. When you
say new Snowboard(), you get a single object on the
heap—a Snowboard object—but that Snowboard wraps
itself around an inner core representing the Object
(capital “O”) portion of itself.

Get in touch with your inner Object.

There is only ONE object on the heap here. A Snowboard
object. But it contains both the Snowboard class parts of
itself and the Object class parts of itself.

objects are Objects

Object

equals()

getClass()

hashCode()

toString()

Snowboard

equals()

getClass()

hashCode()

toString()

turn()

shred()

getAir()

loseControl()

Snowboard inherits methods
from superclass Object, and
adds four more.

to
St

rin
g() hashCode()

getA
ir()

turn()

sh
re

d()

equals()
getClass

()

loseContro
l(

)

Object

Snowboard

Snowboard object

He treats me like an
Object. But I can do so

much more...if only he’d see
me for what I really am.

A single object
on the heap.

interfaces and polymorphism

you are here4 215

Snowboard s = new Snowboard();
Object o = s;

to
St

rin
g() hashCode()

getA
ir()

turn()
sh

re
d()

equals()
getClass

()

loseContro
l(

)

Object

Snowboard

The Object reference can see only the
Object parts of the Snowboard object.
It can access only the methods of class
Object. It has fewer buttons than the
Snowboard remote control.

o

s

The Snowboard remote control
(reference) has more buttons than
an Object remote control. The
Snowboard remote can see the full
Snowboardness of the Snowboard
object. It can access all the methods
in Snowboard, including both the
inherited Object methods and the
methods from class Snowboard.

Snowboard object

If a reference is like a remote control, the
remote control takes on more and more buttons
as you move down the inheritance tree. A
remote control (reference) of type Object has
only a few buttons—the buttons for the exposed
methods of class Object. But a remote control
of type Snowboard includes all the buttons from
class Object, plus any new buttons (for new
methods) of class Snowboard. The more specific
the class, the more buttons it may have.

Of course that’s not always true; a subclass might
not add any new methods, but simply override
the methods of its superclass. The key point is
that even if the object is of type Snowboard, an
Object reference to the Snowboard object can’t see
the Snowboard-specific methods.

‘Polymorphism’ means
‘many forms’.

You can treat a Snowboard as a
Snowboard or as an Object.

When you put
an object in an
ArrayList<Object>, you
can treat it only as an
Object, regardless of
the type it was when
you put it in.

When you get a
reference from an
ArrayList<Object>, the
reference is always of
type Object.

That means you get an
Object remote control.

fewer methods here...

216 chapter 8

Wait a minute... what good
is a Dog if it comes out of an

ArrayList<Object> and it can’t do
any Dog things? There’s gotta be a

way to get the Dog back to a state
of Dogness...

I hope it doesn’t hurt.
And what’s so wrong with

staying an Object? OK, I can’t
fetch, sure, but I can give you

a real nice hashcode.

casting objects

Casting an object reference
back to its real type.

Object

 o

It’s really still a Dog object, but if you want to call
Dog-specific methods, you need a reference declared
as type Dog. If you’re sure* the object is really a
Dog, you can make a new Dog reference to it by
copying the Object reference, and forcing that
copy to go into a Dog reference variable, using a
cast (Dog). You can use the new Dog reference to
call Dog methods.

Object o = al.get(index);
Dog d = (Dog) o;
d.roam();

Object

 o Dog object

Dog

d

*If you’re not sure it’s a Dog, you can use the
instanceof operator to check. Because if
you’re wrong when you do the cast, you’ll get a
ClassCastException at runtime and come to a
grinding halt.

 if (o instanceof Dog) {
 Dog d = (Dog) o;
 }

 Dog object

cast the Object back to

a Dog we know is there.

Cast the so-called ‘Object’ (but
we know he’s actually a Dog) to
type Dog, so that you can treat
him like the Dog he really is.

interfaces and polymorphism

you are here4 217

When you write a class, you almost always expose some
of the methods to code outside the class. To expose a
method means you make a method accessible, usually by
marking it public.

Imagine this scenario: you’re writing code for a small
business accounting program. A custom application
for “Simon’s Surf Shop”. The good re-
user that you are, you found an Account
class that appears to meet your needs
perfectly, according to its documentation,
anyway. Each account instance represents
an individual customer’s account with the
store. So there you are minding your own
business invoking the credit() and debit()
methods on an account object when you realize you
need to get a balance on an account. No problem—
there’s a getBalance() method that should do nicely.

Except... when you invoke the getBalance() method,
the whole thing blows up at runtime. Forget the
documentation, the class does not have that method.
Yikes!

But that won’t happen to you, because everytime you
use the dot operator on a reference (a.doStuff()), the
compiler looks at the reference type (the type ‘a’ was
declared to be) and checks that class to guarantee the
class has the method, and that the method does indeed
take the argument you’re passing and return the kind of
value you’re expecting to get back.

Just remember that the compiler checks the class of the
reference variable, not the class of the actual object at the
other end of the reference.

Think of the public methods in your class as
your contract, your promise to the outside
world about the things you can do.

business accounting program. A custom application

Account

debit(double amt)

credit(double amt)

double getBalance()

So now you’ve seen how much Java
cares about the methods in the
class of the reference variable.

You can call a method on an object only if
the class of the reference variable has that
method.

218 chapter 8

OK, pretend you’re a Dog. Your Dog class
isn’t the only contract that defines who you
are. Remember, you inherit accessible (which
usually means public) methods from all of
your superclasses.

True, your Dog class defines a contract.

But not all of your contract.

Everything in class Canine is part of your
contract.

Everything in class Animal is part of your
contract.

Everything in class Object is part of your
contract.

According to the IS-A test, you are each of
those things—Canine, Animal, and Object.

But what if the person who designed your
class had in mind the Animal simulation
program, and now he wants to use you (class
Dog) for a Science Fair Tutorial on Animal
objects.

That’s OK, you’re probably reusable for that.

But what if later he wants to use you for a
PetShop program? You don’t have any Pet
behaviors. A Pet needs methods like beFriendly()
and play().

OK, now pretend you’re the Dog class
programmer. No problem, right? Just add
some more methods to the Dog class. You
won’t be breaking anyone else’s code by
adding methods, since you aren’t touching
the existing methods that someone else’s code
might be calling on Dog objects.

Can you see any drawbacks to that approach
(adding Pet methods to the Dog class)?

What if you need to change
the contract?

Think about what YOU would do if YOU were
the Dog class programmer and needed to
modify the Dog so that it could do Pet things,
too. We know that simply adding new Pet be-
haviors (methods) to the Dog class will work,
and won’t break anyone else’s code.

But... this is a PetShop program. It has more
than just Dogs! And what if someone wants
to use your Dog class for a program that has
wild Dogs? What do you think your options
might be, and without worrying about how
Java handles things, just try to imagine how
you’d like to solve the problem of modifying
some of your Animal classes to include Pet
behaviors.

Stop right now and think about it,
before you look at the next page where we
begin to reveal everything.

(thus rendering the whole exercise completely useless, robbing

you of your One Big Chance to burn some brain calories)

modifying a class tree

brain
powerA

interfaces and polymorphism

you are here4 219

On the next few pages, we’re going to walk through
some possibilities. We’re not yet worried about
whether Java can actually do what we come up with.
We’ll cross that bridge once we have a good idea of
some of the tradeoffs.

Let’s explore some design options
for reusing some of our existing
classes in a PetShop program.

We take the easy path, and put pet
methods in class Animal.

1 Option one

All the Animals will instantly inherit
the pet behaviors. We won’t have to
touch the existing Animal subclasses
at all, and any Animal subclasses
created in the future will also get to
take advantage of inheriting those
methods. That way, class Animal can
be used as the polymorphic type in
any program that wants to treat the
Animals as pets

Pros:

So... when was the last time you
saw a Hippo at a pet shop? Lion?
Wolf? Could be dangerous to give
non-pets pet methods.

Also, we almost certainly WILL
have to touch the pet classes
like Dog and Cat, because (in
our house, anyway) Dogs
and Cats tend to imple-
ment pet behaviors
VERY differently.

Cons:

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

put all
the pet

method c
ode up

here

for inhe
ritance.

220 chapter 8

We start with Option One, putting the pet methods
in class Animal, but we make the methods abstract,
forcing the Animal subclasses to override them.

2 Option two

That would give us all the benefi ts of Option One, but with-
out the drawback of having non-pet Animals running around
with pet methods (like beFriendly()). All Animal classes
would have the method (because it’s in class Animal), but
because it’s abstract the non-pet Animal classes won’t
inherit any functionality. All classes MUST override the
methods, but they can make the methods “do-nothings”.

Pros:

Because the pet methods in the Animal class are all
abstract, the concrete Animal subclasses are forced to
implement all of them. (Remember, all abstract methods
MUST be implemented by the fi rst concrete subclass
down the inheritance tree.) What a waste of time!
You have to sit there and type in each and every
pet method into each and every concrete non-
pet class, and all future subclasses as well.
And while this does solve the problem of
non-pets actually DOING pet things
(as they would if they inherited pet
functionality from class Animal), the
contract is bad. Every non-pet
class would be announcing to the
world that it, too, has those
pet methods, even though
the methods wouldn’t
actually DO anything
when called.

This approach doesn’t
look good at all. It just
seems wrong to stuff
everything into class Animal
that more than one Animal type
might need, UNLESS it applies to
ALL Animal subclasses.

Cons:

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

put all
the pet

 methods

up here
, but with no

implementatio
ns. Make all

pet methods
abstrac

t.

Ask me to be friendly.
No, seriously... ask me.

I have the method.

modifying existing classes

interfaces and polymorphism

you are here4 221

Put the pet methods ONLY in the
classes where they belong.

3 Option three

No more worries about Hippos greeting you at the
door or licking your face. The methods are where
they belong, and ONLY where they belong. Dogs can
implement the methods and Cats can implement the
methods, but nobody else has to know about them.

Pros:

Two Big Problems with this approach. First off, you’d
have to agree to a protocol, and all programmers of
pet Animal classes now and in the future would have
to KNOW about the protocol. By protocol, we mean
the exact methods that we’ve decided all pets should
have. The pet contract without anything to back it up.
But what if one of the programmers gets it just a tiny
bit wrong? Like, a method takes a String when it was
supposed to take an int? Or they named it doFriendly()
instead of beFriendly()? Since it isn’t in a contract,
the compiler has no way to check you to see if you’ve
implemented the methods correctly. Someone
could easily come along to use the pet Animal
classes and fi nd that not all of them work
quite right.

And second, you don’t get to use
polymorphism for the pet methods.
Every class that needs to use
pet behaviors would have to
know about each and every
class! In other words,
you can’t use Animal
as the polymorphic
type now, because the
compiler won’t let you call
a Pet method on an Animal
reference (even if it’s really a
Dog object) because class Animal
doesn’t have the method.

Cons:

Put the pet methods ONLY in the

Animal classes that
 can be pets,

instead of in
Animal.

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

222 chapter 8

So what we REALLY need is:

Æ A way to have pet behavior in just the pet classes

Æ A way to guarantee that all pet classes have all of the same
methods defined (same name, same arguments, same return
types, no missing methods, etc.), without having to cross your
fingers and hope all the programmers get it right.

Æ A way to take advantage of polymorphism so that all pets can have
their pet methods called, without having to use arguments, return
types, and arrays for each and every pet class.

Tiger

Animal

Canine

Hippo

Dog

WolfCat Lion

Feline

Pet

It looks like we need TWO
superclasses at the top

We make a n
ew abstra

ct

supercla
ss calle

d Pet, and

give it
all the

pet methods.

Cat now extends

from both Animal

AND Pet, so it gets

the methods of both
.

Dog extends both Pet and Animal

The non-pet Animals
don’t have any inherited
Pet stuff.

multiple inheritance?

interfaces and polymorphism

you are here4 223

It’s called “multiple inheritance”
and it can be a Really Bad Thing.

That is, if it were possible to do in Java.

But it isn’t, because multiple inheritance has a problem
known as The Deadly Diamond of Death.

There’s just one problem with the “two superclasses” approach...

CDBurner

burn()

DVDBurner

DigitalRecorder
int i

burn()

burn()

ComboDrive

CDBurner and DVDBurner both

inherit from DigitalRecorder,

and both ove
rride the bur

n()

method. Both inherit t
he “i”

instance varia
ble.

Deadly Diamond of Death

Problem with multiple inheritance. Which burn() method runs when you call burn() on the ComboDrive?

Imagine that
 the “i” in

stance

variable is
used by bo

th CDBurner

and DVDBurner, with differ
ent

values. What happen
s if ComboDrive

needs to u
se both va

lues of “i”
?

A language that allows the Deadly Diamond of Death can lead to
some ugly complexities, because you have to have special rules to
deal with the potential ambiguities. And extra rules means extra
work for you both in learning those rules and watching out for
those “special cases”. Java is supposed to be simple, with consistent
rules that don’t blow up under some scenarios. So Java (unlike
C++) protects you from having to think about the Deadly Dia-
mond of Death. But that brings us back to the original problem!
How do we handle the Animal/Pet thing?

224 chapter 8

Interface to the rescue!

Pet

abstract void beFriendly();

abstract void play();

A Java interface is like a
100% pure abstract class.

All methods in an int
erface are

abstract, so an
y class that IS-

A

Pet MUST implement (i.e. overrid
e)

the methods of Pet.

Java gives you a solution. An interface. Not a GUI interface, not the generic
use of the word interface as in, “That’s the public interface for the Button
class API,” but the Java keyword interface.

A Java interface solves your multiple inheritance problem by giving you
much of the polymorphic benefi ts of multiple inheritance without the pain
and suffering from the Deadly Diamond of Death (DDD).

The way in which interfaces side-step the DDD is surprisingly simple: make
all the methods abstract! That way, the subclass must implement the methods
(remember, abstract methods must be implemented by the fi rst concrete
subclass), so at runtime the JVM isn’t confused about which of the two
inherited versions it’s supposed to call.

To DEFINE an interface:

To IMPLEMENT an interface:

public interface Pet {...}

public class Dog extends Canine implements Pet {...}

Use the keyword “interface” instead of “class”

Use the keyword “implements” followed

by the interface
name. Note that

when you implement an interface y
ou

still get to extend
 a class

interfaces

interfaces and polymorphism

you are here4 225

Making and Implementing
the Pet interface

public interface Pet {

 public abstract void beFriendly();

 public abstract void play();

}

public class Dog extends Canine implements Pet {

 public void beFriendly() {...}

 public void play() {..}

 public void roam() {...}

 public void eat() {...}

}

All interface methods are

abstract, so th
ey MUST end in

semicolons. Remember, they have

no body!

You say ‘interfac
e’ instead

of ‘class’ here

You say ‘implements’
followed by the name
of the interface.

You SAID you are a Pet, so you MUST
implement the Pet methods. It’s your
contract. Notice the curly braces instead of semicolons.

Dog IS-A Animal

and Dog IS-A Pet

These are just normal overriding methods.

there are noDumb Questions
Q:Wait a minute, interfaces don’t
really give you multiple inheritance,
because you can’t put any
implementation code in them. If all
the methods are abstract, what does
an interface really buy you?

A:Polymorphism, polymorphism,
polymorphism. Interfaces are the
ultimate in flexibility, because if you
use interfaces instead of concrete
subclasses (or even abstract superclass
types) as arguments and return

types, you can pass anything that
implements that interface. And think
about it—with an interface, a class
doesn’t have to come from just one
inheritance tree. A class can extend
one class, and implement an interface.
But another class might implement
the same interface, yet come from a
completely different inheritance tree!
So you get to treat an object by the
role it plays, rather than by the class
type from which it was instantiated.

In fact, if you wrote your code to use
interfaces, you wouldn’t even have to
give anyone a superclass that they had

to extend. You could just give them
the interface and say, “Here,’ I don’t
care what kind of class inheritance
structure you come from, just
implement this interface and you’ll be
good to go.”

The fact that you can’t put in
implementation code turns out not to
be a problem for most good designs,
because most interface methods
wouldn’t make sense if implemented
in a generic way. In other words, most
interface methods would need to
be overridden even if the methods
weren’t forced to be abstract.

interface methods are implicitly public and abstract, so typing in ‘public’ and ‘abstract’ is optional (in fact, it’s not considered ‘good style’ to type the words in, but we did here just to reinforce it, and because we’ve never been slaves to fashion...)

226 chapter 8

Classes from different inheritance trees
can implement the same interface.

Tiger

Animal

Canine

Hippo

Dog

WolfCat Lion

Feline

Pet

RoboDog

Robot

Agent

Class RoboDog doesn’t come from the Animal inheritance tree, but it still gets to be a Pet!

When you use a class as a polymorphic type (like an
array of type Animal or a method that takes a Canine
argument), the objects you can stick in that type
must be from the same inheritance tree. But not just
anywhere in the inheritance tree; the objects must be
from a class that is a subclass of the polymorphic type.
An argument of type Canine can accept a Wolf and a
Dog, but not a Cat or a Hippo.

But when you use an interface as a polymorphic
type (like an array of Pets), the objects can be
from anywhere in the inheritance tree. The only
requirement is that the objects are from a class that
implements the interface. Allowing classes in different
inheritance trees to implement a common interface
is crucial in the Java API. Do you want an object
to be able to save its state to a fi le? Implement the
Serializable interface. Do you need objects to run

their methods in a separate thread of execution?
Implement Runnable. You get the idea. You’ll
learn more about Serializable and Runnable in later
chapters, but for now, remember that classes from
any place in the inheritance tree might need to
implement those interfaces. Nearly any class might
want to be saveable or runnable.

Better still, a class can implement
multiple interfaces!

A Dog object IS-A Canine, and IS-A Animal, and
IS-A Object, all through inheritance. But a Dog IS-A
Pet through interface implementation, and the Dog
might implement other interfaces as well. You could
say:

public class Dog extends Animal implements
Pet, Saveable, Paintable { ... }

interface polymorphism

interfaces and polymorphism

you are here4 227

Make it Sticki kkk

Roses are red, violets are blue.

Extend only one, but implement two.

Java weighs in on family values:

Single Parents Only!! A Java class can have

only one parent (superclass), and that parent

class defines who you are. But you can imple-

ment multiple interfaces, and those interfaces

define roles you can play.

How do you know whether to make a
class, a subclass, an abstract class, or
an interface?

$ Make a class that doesn’t extend anything
(other than Object) when your new class doesn’t
pass the IS-A test for any other type.

$ Make a subclass (in other words, extend a class)
only when you need to make a more specifi c
version of a class and need to override or add
new behaviors.

$ Use an abstract class when you want to defi ne
a template for a group of subclasses, and you
have at least some implementation code that all
subclasses could use. Make the class abstract
when you want to guarantee that nobody can
make objects of that type.

$ Use an interface when you want to defi ne a role
that other classes can play, regardless of where
those classes are in the inheritance tree.

228 chapter 8

class BuzzwordsReport extends Report {

 void runReport() {
 super.runReport();
 buzzwordCompliance();
 printReport();

 }
 void buzzwordCompliance() {...}
}

using super

Q: What if you make a concrete subclass

and you need to override a method, but you

want the behavior in the superclass version of

the method? In other words, what if you don’t

need to replace the method with an override,

but you just want to add to it with some

additional specific code.

A: Ahhh... think about the meaning of the
word ‘extends’. One area of good OO design looks
at how to design concrete code that’s meant to
be overridden. In other words, you write method
code in, say, an abstract class, that does work
that’s generic enough to support typical concrete
implementations. But, the concrete code isn’t
enough to handle all of the subclass-specific
work. So the subclass overrides the method
and extends it by adding the rest of the code.
The keyword super lets you invoke a superclass
version of an overridden method, from within the
subclass.

Invoking the superclass
version of a method

super.runReport();

BuzzwordReport

subclass method (over
rides

the supercla
ss version)

super.runReport();

The super keyword is really a reference
to the superclass portion of an object.
When subclass code uses super, as in
super.runReport(), the superclass version of
the method will run.

abstract class Report {
 void runReport() {
 // set-up report
 }
 void printReport() {
 // generic printing
 }
}

Report

runReport()
printReport()

runReport()
buzzwordCompliance() superclass methods

(including the overridden

runReport()

A reference to the subclass object
(BuzzwordReport) will always call
the subclass version of an overridden
method. That’s polymorphism.
But the subclass code can call
super.runReport() to invoke the
superclass version.

If method code inside a
BuzzwordReport subclass says:

the runReport() method inside
the superclass Report will run

superclass ver
sion of the

method does im
portant stuf

f

that subclass
es could use

call superclass
 version,

then come back and

do some subclass-

specific stuff

interfaces and polymorphism

you are here4 229

 BULLET POINTS

$ When you don’t want a class to be instantiated (in other words, you don’t
want anyone to make a new object of that class type) mark the class with the
abstract keyword.

$ An abstract class can have both abstract and non-abstract methods.

$ If a class has even one abstract method, the class must be marked abstract.

$ An abstract method has no body, and the declaration ends with a semicolon (no
curly braces).

$ All abstract methods must be implemented in the first concrete subclass in the
inheritance tree.

$ Every class in Java is either a direct or indirect subclass of class Object (java.lang.
Object).

$ Methods can be declared with Object arguments and/or return types.

$ You can call methods on an object only if the methods are in the class (or interface)
used as the reference variable type, regardless of the actual object type. So, a
reference variable of type Object can be used only to call methods defined in class
Object, regardless of the type of the object to which the reference refers.

$ A reference variable of type Object can’t be assigned to any other reference type
without a cast. A cast can be used to assign a reference variable of one type to a
reference variable of a subtype, but at runtime the cast will fail if the object on the
heap is NOT of a type compatible with the cast.
Example: Dog d = (Dog) x.getObject(aDog);

$ All objects come out of an ArrayList<Object> as type Object (meaning, they can be
referenced only by an Object reference variable, unless you use a cast).

$ Multiple inheritance is not allowed in Java, because of the problems associated with
the “Deadly Diamond of Death”. That means you can extend only one class (i.e. you
can have only one immediate superclass).

$ An interface is like a 100% pure abstract class. It defines only abstract methods.

$ Create an interface using the interface keyword instead of the word class.

$ Implement an interface using the keyword implements
Example: Dog implements Pet

$ Your class can implement multiple interfaces.

$ A class that implements an interface must implement all the methods of the
interface, since all interface methods are implicitly public and abstract.

$ To invoke the superclass version of a method from a subclass that’s overridden the
method, use the super keyword. Example: super.runReport();

Q:There’s still something
strange here... you never
explained how it is that
ArrayList<Dog> gives back Dog
references that don’t need to be
cast, yet the ArrayList class uses
Object in its methods, not Dog
(or DotCom or anything else).
What’s the special trick going on
when you say ArrayList<Dog>?

A: You’re right for calling it a
special trick. In fact it is a special
trick that ArrayList<Dog> gives
back Dogs without you having
to do any cast, since it looks like
ArrayList methods don’t know
anything about Dogs, or any type
besides Object.

The short answer is that the
compiler puts in the cast for you!
When you say ArrayList<Dog>,
there is no special class that has
methods to take and return Dog
objects, but instead the <Dog>
is a signal to the compiler that
you want the compiler to let
you put ONLY Dog objects in
and to stop you if you try to add
any other type to the list. And
since the compiler stops you
from adding anything but Dogs
to the ArrayList, the compiler
also knows that its safe to cast
anything that comes out of that
ArrayList do a Dog reference. In
other words, using ArrayList<Dog>
saves you from having to cast
the Dog you get back. But it’s
much more important than that...
because remember, a cast can
fail at runtime, and wouldn’t you
rather have your errors happen
at compile time rather than, say,
when your customer is using it for
something critical?

But there’s a lot more to this story,
and we’ll get into all the details in
the Collections chapter.

230 chapter 8

1)

2)

3)

4)

5)

Given:

public interface Foo { }

public class Bar implements Foo { }

public interface Vinn { }

public abstract class Vout implements Vinn { }

public abstract class Muffie implements Whuffie { }

public class Fluffie extends Muffie { }

public interface Whuffie { }

public class Zoop { }

public class Boop extends Zoop { }

public class Goop extends Boop { }

public class Gamma extends Delta implements Epsilon { }

public interface Epsilon { }

public interface Beta { }

public class Alpha extends Gamma implements Beta { }

public class Delta { }

What’s the Picture ?

(interface)
Foo

Bar

1)

2)

3)

4)

5)

Here’s your chance to demonstrate your artistic abilities. On the left you’ll
find sets of class and interface declarations. Your job is to draw the associated
class diagrams on the right. We did the first one for you. Use a dashed line for
“implements” and a solid line for “extends”.

Exercise

exercise: What’s the Picture?

interfaces and polymorphism

you are here4 231

Click

Top

Fee

Clack

Tip

Fi

Foo

Bar

Baz

Zeta

Beta

Alpha

Delta

1

2

3

4

5

Given:
What’s the Declaration ?

1)

2)

3)

4)

5)

public class Click { }
public class Clack extends Click { }

On the left you’ll fi nd sets of class diagrams. Your job is to turn
these into valid Java declarations. We did number 1 for you
(and it was a tough one).

Clack

Clack

Clack

extends

implements

class

interface

abstract class

 KEY

Exercise

232 chapter 8

public int iMethod() ;
public int iMethod { }
public int iMethod () {
public int iMethod () { }

class
extends
interface
implements

Your job is to take code snippets from the pool and
place them into the blank lines in the code and out-

put. You may use the same snippet more than once,
and you won’t need to use all the snippets. Your
goal is to make a set of classes that will compile
and run and produce the output listed.

Note: Each snippet
from the pool can be
used more than once!

File Edit Window Help BeAfraid

%java ______________
5 class Acts
7 class Clowns
________Of76

Output

____________ Nose {

}

abstract class Picasso implements ______{

 return 7;

 }

}

class _________ ________ __________ { }

class _________ ________ __________ {

 return 5;

 }

}

public ___________ ________ extends Clowns {

 public static void main(String [] args) {

 i[0] = new __________

 i[1] = new __________

 i[2] = new __________

 for(int x = 0; x < 3; x++) {

 System.out.println(__________________

 + “ “ + _______.getClass());

 }

 }

}

Acts();
Nose();
Of76();
Clowns();
Picasso();

Acts
Nose
Of76
Clowns
Picasso

i
i()
i(x)
i[x]

i.iMethod(x)
i(x).iMethod[]
i[x].iMethod()
i[x].iMethod[]

Of76 [] i = new Nose[3];
Of76 [3] i;
Nose [] i = new Nose();
Nose [] i = new Nose[3];

class
5 class
7 class
7 public class

Pool
Puzzle

puzzle: Pool Puzzle

interfaces and polymorphism

you are here4 233

(interface)
Vinn

public abstract class Top { }
public class Tip extends Top { }

What’s the Declaration ?

What’s the Picture ?

2)
3)

4)

5)

Fluffie

(interface)
Epsilon

(interface)
Beta

(interface)
Whuffie

Vout

Muffie

Boop

Goop

Alpha

Zoop

Delta

Gamma

public abstract class Fee { }
public abstract class Fi extends Fee { }

public interface Foo { }
public class Bar implements Foo { }
public class Baz extends Bar { }

public interface Zeta { }
public class Alpha implements Zeta { }
public interface Beta { }
public class Delta extends Alpha implements Beta { }

2)

3)

4)

5)

 Exercise Solutions

public ___________ ________ extends Clowns {

 public static void main(String [] args) {

 i[0] = new __________

 i[1] = new __________

 i[2] = new __________

 for(int x = 0; x < 3; x++) {

 System.out.println(__________________

 + “ “ + _______.getClass());

 }

 }

}

234 chapter 8

public class Of76 extends Clowns {
 public static void main(String [] args) {

 Nose [] i = new Nose [3] ;
 i[0] = new Acts() ;
 i[1] = new Clowns() ;
 i[2] = new Of76() ;
 for(int x = 0; x < 3; x++) {

 System.out.println(i [x] . iMethod()
 + “ “ + i [x].getClass());
 }

 }

}

File Edit Window Help KillTheMime

%java Of76
5 class Acts
7 class Clowns
7 class Of76

Output

interface Nose {
 public int iMethod() ;
}

abstract class Picasso implements Nose {
 public int iMethod() {
 return 7;

 }

}

class Clowns extends Picasso { }

class Acts extends Picasso {
 public int iMethod() {
 return 5;

 }

}

puzzle solution

