
© DZONE, INC.   |   DZONE.COM

C
O

N
T

E
N

T
S

SURVIVAL IS NOT MANDATORY
It is not necessary to change. Survival is not mandatory.  

-W. Edwards Deming

In today's hypercompetitive international market, all 
businesses are software businesses (or they're quickly 
replaced by software businesses) and speed-to-market is a 
differentiator—sometimes the only one! Organizations look 
for small batches of work that they can move from concept 
to production quickly. These small batches of work demand 
fewer people to finish, are easier to iterate on, and can be 
moved to production independently: they are microservices.

It is critical that an organization be prepared to address the 
complexities of standing up new services and to address the 
complexities implied by moving to a distributed systems world.

MOVING BEYOND THE WIKI PAGE: "500 EASY 
STEPS TO PRODUCTION"

Microservices are APIs. How quickly can you stand up a 
new service? Microframeworks like Spring Boot, Grails, 
DropWizard, Play Framework, WildFly Swarm and Payara 
Micro are optimized for quickly standing up REST services 
with a minimum of fuss. Extra points go to technologies that 
make it easy to build smart, self-describing hypermedia APIs as 
Spring Boot does with Spring HATEOAS.

YOU CAN'T FIX WHAT YOU CAN'T MEASURE

A microservice must support visibility and transparency, 
indicators of its own state and of system state, in a single-pane-
of-glass experience. The DropWizard Metrics library is one of 
the more popular approaches to capturing application metrics 
(gauges, meters, histograms, and counters). Spring Boot's 
Actuator module provides deep integration with the DropWizard 
Metrics library, and supports exposing health endpoints, 
environment information, endpoint mapping information, 
request logs, and more. Time-series databases like Hazelcast, 
StatsD, Graphite, InfluxDB, and OpenTSDB support the 
visualization and processing of metrics. DropWizard Metrics 
and Spring Boot Actuator can transparently export collected 
metrics to these time-series databases.

Code snippet continued on following column

G
et

 M
or

e 
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
234

M
IC

R
O

S
ER

V
IC

E
S

 IN
 J

A
VA

Log multiplexers like Logstash or Cloud Foundry's 
Loggregator funnel the logs from application instances 
and ship them to downstream log analysis tools like 
ElasticSearch, Splunk, or PaperTrail.

Getting all of this out of the box is a good start, but not 
enough. There is often much more to be done before a 
service can get to production. Spring Boot uses a mechanism 
called auto-configuration that lets developers codify 
things—identity provider integrations, connection pools, 
frameworks, auditing infrastructure, literally anything—
and have it stood up as part of the Spring Boot application 
just by being on the CLASSPATH if all the conditions 

“Using Hazelcast  
with Microservices”

www.hazelcast.com/microservices

Get the white paper

Microservices in Java
BY JOSH LONG

» Survival Is Not Mandatory

» 500 Easy Steps to Production

» You Can’t Fix What You Can’t Measure

» Centralized Configuration

» Client-Side Load Balancing...and more!

BROUGHT TO YOU IN PARTNERSHIP WITH

    
    @Value(“${graphite.url}”) URL url, 

  @Value(“${graphite.port}”) int port, 
  MetricRegistry registry) { 
 
  GraphiteReporter reporter = GraphiteReporter

      .forRegistry(registry) 
    .prefixedWith(prefix) 
    .build(new Graphite(url.getHost(), port)); 
  reporter.start(1, TimeUnit.SECONDS); 
  return reporter; 
}

} 

@RestController
class FulfillmentRestController { 

 
@Autowired 
private CounterService counterService; 
 
@RequestMapping(“/customers/{customerId}/fulfillment”) 
Fulfillment fulfill(@PathVariable long customerId) { 
  // .. 
  counterService.increment(

      “meter.customers-fulfilled”); 
  // .. 
}

}

@SpringBootApplication
public class DemoApplication { 

 
public static void main(String args[]) { 
  SpringApplication.run(DemoApplication.class, args); 
} 
 
@Bean 
GraphiteReporter graphite(

    @Value(“${graphite.prefix}”) String prefix,

http://www.dzone.com?refcardz
http://start.spring.io/
http://grails.org
http://dropwizard.io
https://www.playframework.com/
http://wildfly.org/swarm/
http://www.payara.fish/payara_micro
http://www.payara.fish/payara_micro
http://www.dropwizard.io
http://start.spring.io
http://start.spring.io
http://www.refcardz.com
https://DZone.com/Refcardz
http://www.hazelcast.com/microservices
https://twitter.com/starbuxman
http://www2.hazelcast.com/l/30822/2016-03-15/74y3mw
http://www2.hazelcast.com/l/30822/2016-03-15/74y3mw
http://www2.hazelcast.com/l/30822/2016-03-15/74z5jk
http://www2.hazelcast.com/l/30822/2016-03-15/74z5jk
http://www.hazelcast.com/microservices


“Using Hazelcast with Microservices”
Get the white paper www.hazelcast.com/microservices

http://www.hazelcast.com/microservices


© DZONE, INC.   |   DZONE.COM

 

3 MICROSERVICES IN JAVA

stipulated by the auto-configuration are met! These conditions 
can be anything, and Spring Boot ships with many common and 
reusable conditions: is a library on the CLASSPATH? Is a bean of a 
certain type defined (or not defined)? Is an environment property 
specified? Starting a new service need not be more complex than 
a public static void main entry-point and a library on the 
CLASSPATH if you use the right technology.

CENTRALIZED CONFIGURATION

The Twelve-Factor App methodology provides a set of guidelines 
for building applications with good, clean cloud hygiene. One tenet 
is that environment-specific configuration should live external to 
the application itself. It might live in environment variables, -D 
arguments, externalized .properties, .yml files, or any other 
place, so long as the application code itself need not be recompiled. 
DropWizard, Spring Boot, Apache Commons Configuration, and 
others support this foundational requirement. However, this 
approach fails a few key use cases: how do you change configuration 
centrally and propagate those changes? How do you support 
symmetric encryption and decryption of things like connection 
credentials? How do you support feature flags which toggle 
configuration values at runtime, without restarting the process?

Spring Cloud provides the Spring Cloud Config Server which 
stands up a REST API in front of a version-controlled repository of 
configuration files, and Spring Cloud provides support for using 
Apache Zookeeper and HashiCorp Consul as configuration sources. 
Spring Cloud provides various clients for all of these so that all 
properties—whether they come from the Config Server, Consul, a 
-D argument, or an environment variable—work the same way for a 

Spring client. Netflix provides a solution called Archaius that acts 
as a client to a pollable configuration source. This is a bit too low-
level for many organizations and lacks a supported, open-source 
configuration source counterpart, but Spring Cloud bridges the 
Archaius properties with Spring's, too.

THE CONFIG SERVER

# application.properties 
spring.cloud.config.server.git.uri=https://github.com/
joshlong/my-config.git 
server.port=8888

@EnableConfigServer
@SpringBootApplication
public class ConfigServiceApplication { 

 
public static void main(String[] args) { 
  SpringApplication.run(ConfigServiceApplication

      .class, args); 
}

}

THE CONFIG CLIENT
# application.properties 

spring.cloud.config.uri=http://localhost:8888 
spring.application.name=message-client

# will read https://github.com/joshlong/my-config/message-
client.properties

@SpringBootApplication
public class ConfigClientApplication { 

 
public static void main(String[] args) { 
  SpringApplication.run(ConfigClientApplication

      .class, args); 
}

} 

// supports dynamic re-configuration:
// curl -d{} http://localhost:8000/refresh
@RestController
@RefreshScope
class MessageRestController { 

 
@Value(“${message}”) 
private String message; 
 
@RequestMapping(“/message”) 
String read() { 
  return this.message; 
}

}

SERVICE REGISTRATION AND DISCOVERY

DNS is sometimes a poor fit for intra-service communication. 
DNS benefits from layers of caching and time-to-liveness that 
works against services in a dynamic cloud environment. In most 
cloud environments, DNS resolution requires a trip out of the 
platform to the router and then back again, introducing latency. 
DNS doesn't provide a way to answer the question: is the service 
I am trying to call still alive and responding? A request to such 
a fallen service will block until the service responds, unless 
the client specifies a timeout (which it should!). DNS is often 
paired with load balancers, but third-party load balancers are 
not sophisticated things: they may support round-robin load 
balancing, or even availability-zone aware load balancing, but 
may not be able to accomodate business-logic-specific routing, 
like routing a request with an OAuth token to a specific node, or 
routing requests to nodes collocated with data, etc. It's important 
to decouple the client from the location of the service, but DNS 
might be a poor fit. A little bit of indirection is required.

A service registry provides that indirection. A service registry 
is a phonebook, letting clients look up services by their logical 
names. There are many such service registries out there. Netflix's 
Eureka, Apache Zookeeper, and HashiCorp Consul are three good 
examples. Spring Cloud's DiscoveryClient abstraction provides 
a convenient client-side API implementation for working with 
service registries.

@Autowired
public void enumerateServiceInstances(
  DiscoveryClient client) { 

client.getInstances(“reservation-service”) 
  .forEach( si -> System.out.println( si.getHost() 

      + “:” + si.getPort() ));
} 

http://www.dzone.com?refcardz
http://12factor.net/
http://commons.apache.org/proper/commons-configuration/
http://start.spring.io
https://www.consul.io
https://github.com/Netflix/archaius
https://github.com/Netflix/eureka
https://github.com/Netflix/eureka
https://zookeeper.apache.org/
https://www.consul.io/
http://www2.hazelcast.com/l/30822/2016-03-15/74y3mw


© DZONE, INC.   |   DZONE.COM

4

CLIENT-SIDE LOAD BALANCING

A big benefit of using a service registry is client-side load balancing. 
Client-side load balancing lets the client pick from among the 
registered instances of a given service—if there are ten or a 
thousand they're all discovered through the registry—and then 
choose from among the candidate instances which one to route 
requests to. The client can programmatically decide based on 
whatever criteria it likes—capacity, round-robin, cloud-provider 
availability-zone awareness, multi-tenancy, etc.—to which node 
a request should be sent. Netflix provides a great client-side load 
balancer called Ribbon. Spring Cloud readily integrates Ribbon, and 
it is automatically in play at all layers of the framework, whether 
you're using the RestTemplate, declarative REST clients powered 
by Netflix's Feign, or the Zuul microproxy.

@EnableDiscoveryClient
@SpringBootApplication
public class ReservationClientApplication { 

 
@Bean 
@LoadBalanced

  // lets us use service registry service IDs as hosts 
RestTemplate restTemplate() { 
  return new RestTemplate(); 
} 
 
public static void main(String[] args) { 
  SpringApplication.run(ReservationClientApplication

      .class, args); 
}

} 

@RestController
class ApiClientRestController { 

 
@Autowired 
private RestTemplate restTemplate; 
 
@RequestMapping(method = RequestMethod.GET,

    value = “/reservations/names”) 
public Collection<String> names() { 
 
  ResponseEntity<JsonNode> responseEntity = 
    restTemplate.exchange(

        “http://reservation-service/reservations”, 
      HttpMethod.GET, null, JsonNode.class); 
  // ... 
}

}

EDGE SERVICES: MICROPROXIES AND API GATEWAYS

Client-side load-balancing works for intra-service communication, 
usually behind a firewall. External clients—iPhones, HTML5 
clients, Android clients, etc.—have client-specific security, payload, 
and protocol requirements. An edge service may proxy or mediate 
requests and replies between the system of services and the clients. 
An edge service is exposed via DNS and forwards requests using 
service discovery. Edge services are intermediaries and an ideal 
place to insert API translation or protocol translation. HTML5 
clients, for example, exist in a sandbox and must issue requests to 
the same origin host and port. HTML5 clients may reach across their 
origin server to other resources so long as those resources have been 
configured to support CORS. This requirement is untenable and 
unscalable as you add more clients connecting to more microservices. 
A microproxy, like Netflix's Zuul, forwards all requests at the edge 
service to microservices, often to those it discovers in a service 

registry. If your application is an HTML5 application it might be 
enough to stand up a microproxy, insert HTTP BASIC or OAuth 
security, support HTTPS, and be done with it.

Sometimes the client needs a coarser-grained view of the data 
coming from the services. This implies API translation. An 
edge service, stood up using something like Spring Boot, might 
use Reactive programming technologies like Netflix's RxJava, 
Lightbend’s Akka, RedHat's Vert.x, or Pivotal's Reactor to compose 
requests and transformations across multiple services into a single 
response. Indeed, all of these technologies implement a common 
API called the reactive streams API because this subset of problems 
is so common.

An edge service is the last line of defense from the outside world 
and must be tolerant to service outages and failure, as shown:

@EnableZuulProxy
@EnableCircuitBreaker
@EnableDiscoveryClient
@SpringBootApplication
public class EdgeServiceApplication { 

  public static void main(String[] args) { 
  SpringApplication.run(EdgeServiceApplication.class, args); 
}

} 

@RestController
class TradesStreamingApiGateway { 

 
@Autowired 
private MarketService marketService; 
 
@RequestMethod(method=HttpMethod.GET,

    value = “/market/trades”) 
public SseEmitter trades() { 
  SseEmitter sseEmitter = new SseEmitter(); 
  Observable<StockTrade> trades = 

      marketService.observeTrades();  // RxJava 
  trades.subscribe( value -> publishNewTrade(sseEmitter,     

      value), 
    sseEmitter::completeWithError, 
    sseEmitter::complete 
  ); 
  return sseEmitter; 
} 
 
private void publishNewTrade(SseEmitter sseEmitter, 

    Trade t) { 
  try { 
    sseEmitter.send(t); 
  } catch (IOException e) { 
    e.printStackTrace(); 
  } 
}

}

CLUSTERING PRIMITIVES

In a complex distributed system, there are many actors with many 
roles to play. Cluster coordination and cluster consensus is one of 
the most difficult problems to solve. How do you handle leadership 
election, active/passive handoff, or global locks? Thankfully, many 
technologies provide the primitives required to support this sort of 
coordination, including Apache Zookeeper, Redis, and Hazelcast. 
Spring Cloud's Cluster support provides a clean integration with all 
of these technologies.

MICROSERVICES IN JAVA

http://www.dzone.com?refcardz
https://github.com/Netflix/ribbon
https://github.com/Netflix/zuul
https://github.com/ReactiveX/RxJava
http://Akka.io
http://vertx.io/
http://projectreactor.io/
http://www.reactive-streams.org/
http://redis.io
https://hazelcast.com/
http://start.spring.io
http://www2.hazelcast.com/l/30822/2016-03-15/74y3mw


© DZONE, INC.   |   DZONE.COM

5

In the following example, we've configured a component 
to change its state whenever Spring Cloud Cluster emits an 
OnGrantedEvent or an OnRevokedEvent, which it will do when 
the underlying coordination technology promotes and demotes a 
leader node.

@Component
class LeadershipApplicationListener { 

 
@EventListener 
public void leadershipGranted(OnGrantedEvent evt) { 
  // .. 
} 
 
@EventListener 
public void leadershipRevoked(OnRevokedEvent evt) { 
  // .. 
}

}

MESSAGING, CQRS, AND STREAM PROCESSING

When you move into the world of microservices, state 
synchronization becomes more difficult. The reflex of the 
experienced architect might be to reach for distributed 
transactions, ;a; la JTA. Ignore this urge at all costs. Transactions 
are a stop-the-world approach to state synchronization and 
will slow the system as a whole: the worst possible outcome 
in a distributed system. Instead, services today use eventual 
consistency through messaging to ensure that state eventually 
reflects the correct system worldview. REST is a fine technology 
for reading data but it doesn't provide any guarantees about the 
propagation and eventual processing of a transaction. Actor 
systems like Lightbend Akka and message brokers like Apache 
ActiveMQ, Apache Kafka, RabbitMQ, or even Redis have become 
the norm. Akka provides a supervisory system that guarantees a 
message will be processed at-least once. If you're using messaging, 
there are many APIs that can simplify the chore, including Apache 
Camel, Spring Integration, and—at a higher abstraction level—
Spring Cloud Stream. Using messaging for writes and using REST 
for reads optimizes reads separately from writes. The Command 
Query Responsibility Segregation—or CQRS—design pattern 
specifically describes this approach.

Code snippet continued on following column

CIRCUIT BREAKERS

Circuit breakers, like Netflix's Hystrix or JRugged, help prevent 
a downstream service from being overwhelmed and help isolate 
failures, permitting downstream services time to recover. Systems 
are complex, living things. Failure in one system can trigger a 
domino effect across other systems if care isn't taken to isolate them. 
A circuit breaker will slowly attempt to reintroduce traffic. Circuit 
breakers represent connections between services in a system; it is 
important to monitor them. Hystrix provides a dashboard for its 
circuits. WildFly Swarm has support for using Hystrix. The Play 
Framework provides support for circuit breakers. Spring Cloud 
also has deep support for Hystrix and the dashboard, as well as 
multiplexing the server-sent event streams emitted from different 
components into a single stream using Spring Cloud Turbine.

@RestController
class EdgeService { 

 
public Collection<String> fallback(){ 
  // .. 
} 
 
/* the dashboard will show a circuit named

     ‘reservation-service’*/ 
@HystrixCommand(fallbackMethod = “fallback”) 
@RequestMapping(method = RequestMethod.GET,

    value = “/names”) 
public Collection<String> names() { 
  // .. 
}

}

DISTRIBUTED TRACING

It is difficult to reason about a microservice system with REST-
based, messaging-based, and proxy-based egress and ingress points. 
How do you trace (correlate) requests across a series of services and 
understand where something has failed? This is difficult enough 
a challenge without a sufficient upfront investment in a tracing 

MICROSERVICES IN JAVA

@EnableBinding(CrmChannels.class)
@SpringBootApplication
public class ProductsEdgeService { 

 
public static void main(String[] args) { 
  SpringApplication.run(ReservationClientApplication

      .class, args); 
}

} 

interface CrmChannels { 
 
@Output 
MessageChannel orders(); 
 
@Output 
MessageChannel customers(); 
 
@Output 
MessageChannel products();

} 

@RestController
@RequestMapping(“/products”)
class ProductsApiGatewayRestController { 

 
@Autowired 
private MessageChannel products; 
 
@RequestMapping(method = RequestMethod.POST) 
public void write(@RequestBody Product p) { 
  Message<Product> msg = MessageBuilder

      .withPayload (p).build(); 
  products.send(msg); 
}

}

@EnableBinding(Sink.class)
public class ProductHandler { 

 
@Autowired 
private ProductRepository products; 
 
@StreamListener(Sink.INPUT) 
public void handle(Product p) { 
  products.addProduct(vote); 
}

}

http://www.dzone.com?refcardz
http://akka.io
http://activemq.apache.org/
http://activemq.apache.org/
http://kafka.apache.org/
http://rabbitmq.com
http://redis.io/
http://camel.apache.org/
http://camel.apache.org/
http://projects.spring.io/spring-integration/
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/bliki/CQRS.html
https://github.com/Netflix/Hystrix
https://github.com/Comcast/jrugged
https://www.playframework.com/
https://www.playframework.com/
http://www2.hazelcast.com/l/30822/2016-03-15/74y3mw


6

strategy. Google introduced their distributed tracing strategy 
in their Dapper paper. Apache HTRace is a Dapper-inspired 
alternative. Twitter's Zipkin is another Dapper-inspired tracing 
system. It provides the trace collection infrastructure and a UI in 
which you can view waterfall graphs of calls across services along 
with their timings and trace-specific information. Spring Cloud 
Sleuth provides an abstraction around the concepts of distributed 
tracing. Spring Cloud Sleuth automatically traces common ingress 
and egress points in the system. Spring Cloud Zipkin integrates 
Twitter Zipkin in terms of the Spring Cloud Sleuth abstraction.

SINGLE SIGN-ON AND SECURITY

Security is hard. In a distributed system, it is critical to ascertain the 
providence and authenticity of a request in a consistent way across 
all services. OAuth and OpenID Connect are very popular on the 
open web, and SAML rules the enterprise. OAuth 2 provides explicit 
integration with SAML. API gateway tools like Apigee and SaaS 
identity providers like Stormpath can act as a security hub, exposing 
OAuth (for example) and connecting the backend to more traditional 
identity providers like ActiveDirectory, SiteMinder, or LDAP. Finally, 
Spring Security OAuth provides an identity server which can then 
talk to any identity provider in the backend. Whatever your choice of 
identity provider, it should be trivial to protect services based on some 

sort of token. Spring Cloud Security makes short work of protecting 
any REST API with tokens from any OAuth 2 provider—Google, 
Facebook, the Spring Security OAuth server, Stormpath, etc. Apache 
Shiro can also act as an OAuth client using the Scribe OAuth client.

A CLOUD NATIVE ARCHITECTURE IS AN AGILE ARCHITECTURE

Instead, systems must optimize for time-to-remediation; when 
a service goes down, how quickly can the system replace it? If 
time-to-remediation is 0 seconds, then the system is (apparently) 
highly available 100% of the time. The apparent appearance of the 
system is the same in a single-node service that is 100% highly 
available, but it has profound impacts on the architecture of the 
system. The patterns we've looked at in this Refcard support 
building systems that are tolerant of failure and service topology 
changes common in a dynamic cloud environment. Remember: 
the goal here is to achieve velocity, and to waste as little time 
as possible on non-functional requirements. Automation at the 
platform and application tiers support this velocity. Embracing one 
without the other only invites undifferentiating complexity into an 
architecture and defeats the purpose of moving to this architecture 
in the first place.

MICROSERVICES IN JAVA

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.

150 PRESTON EXECUTIVE DR.

CARY, NC 27513

888.678.0399

919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com 

SPONSORSHIP OPPORTUNITIES 
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. 

DZone communities deliver over 6 million pages each month to more than 3.3 million software 

developers, architects and decision makers. DZone offers something for everyone, including 

news, tutorials, cheat sheets, research guides, feature articles, source code and more. 

"DZone is a developer's dream," says PC Magazine.

JOSH LONG (@starbuxman) is the Spring Developer Advocate at Pivotal. Josh is a Java Champion, 
author of 5 books (including O’Reilly’s upcoming Cloud Native Java: Designing Resilient Systems 
with Spring Boot, Spring Cloud, and Cloud Foundry) and 3 best-selling video trainings (including 
Building Microservices with Spring Boot Livelessons with Spring Boot co-founder Phil Webb), and an 
open-source contributor (Spring Boot, Spring Integration, Spring Cloud, Activiti and Vaadin).

ABOUT THE AUTHOR

BROUGHT TO YOU IN PARTNERSHIP WITH

http://research.google.com/pubs/pub36356.html
http://incubator.apache.org/projects/htrace.html
https://blog.twitter.com/2012/distributed-systems-tracing-with-zipkin
http://apigee.com/
https://stormpath.com/
http://projects.spring.io/spring-security-oauth/
http://shiro.apache.org/
http://shiro.apache.org/
https://dzone.com/user/register?step=1
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.twitter.com/starbuxman
http://www2.hazelcast.com/l/30822/2016-03-15/74y3mw

