

Matrix Chain-Product: ■ Compute A=A₀*A₁*...*A_{n-1} ■ A_i is d_i × d_{i+1} ■ Problem: How to parenthesize? ■ Example ■ B is 3 × 100 ■ C is 100 × 5 ■ D is 5 × 5 ■ (B*C)*D takes 1500 + 75 = 1575 ops ■ B*(C*D) takes 1500 + 2500 = 4000 ops

A Greedy Approach

- Idea #1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

© 2014 Goodrich, Tamassia, Goldwasser

Dynamic Programming

- 11

Another Greedy Approach

- Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

© 2014 Goodrich, Tamassia, Goldwasser

Dynamic Programming

A "Recursive" Approach

- Define subproblems:
 - Find the best parenthesization of A_i*A_{i+1}*...*A_i.
 - Let N_{i,j} denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is N_{0,n-1}.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_0^*...^*A_i)^*(A_{i+1}^*...^*A_{n-1})$.
 - Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.
- © 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming

- -

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for N_{i,j} is the following:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

 Note that subproblems are not independent--the subproblems overlap.

© 2014 Goodrich, Tamassia, Goldwasser D

Dynamic Programming


```
Java Implementation
         public static int[ ][ ] matrixChain(int[ ] d) {
           int n = d.length - 1;
                                                       // number of matrices
           int[][] N = new int[n][n];
                                                       // n-by-n matrix; initially zeros
           for (int b=1; b < n; b++)
                                                       // number of products in subchain
             for (int i=0; i < n - b; i++) {
                                                       // start of subchain
               int j = i + b;
                                                      // end of subchain
               N[i][j] = Integer.MAX_VALUE;
                                                      // used as 'infinity'
               for (int k=i; k < j; k++)
                 N[i][j] = Math.min(N[i][j], N[i][k] + N[k+1][j] + d[i]*d[k+1]*d[j+1]);
     10
           return N;
     12
© 2014 Goodrich, Tamassia, Goldwasser
                                    Dynamic Programming
```


The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming

Subsequences

- A **subsequence** of a character string $x_0x_1x_2...x_{n-1}$ is a string of the form $x_{j_1}x_{j_2}...x_{j_k}$, where $i_j < i_{j+1}$.
- Not the same as substring!
- ◆ Example String: ABCDEFGHIJK
 - Subsequence: ACEGJIK
 - Subsequence: DFGHK
 - Not subsequence: DAGH

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming

13

The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet is {A,C,G,T})
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

© 2014 Goodrich, Tamassia, Goldwasser

Dynamic Programming

A Poor Approach to the LCS Problem

- A Brute-force solution:
 - Enumerate all subsequences of X
 - Test which ones are also subsequences of Y
 - Pick the longest one.
- Analysis:
 - If X is of length n, then it has 2ⁿ subsequences
 - This is an exponential-time algorithm!

© 2014 Goodrich, Tamassia, Goldwasser

Dynamic Programming

15

A Dynamic-Programming Approach to the LCS Problem

- Define L[i,j] to be the length of the longest common subsequence of X[0..i] and Y[0..j].
- Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to indicate that the null part of X or Y has no match with the other.
- ◆ Then we can define L[i,j] in the general case as follows:
 - 1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
 - If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no match here)

Case 1: Case 2:

Y=CGATAATTGAGA L[8,10]=5

X=GTTCCTAATA

Y=CGATAATTGAG

X=GTTCCTAATA

L[9,9]=6 *L*[8,10]=5

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming

```
An LCS Algorithm
       Algorithm LCS(X,Y ):
       Input: Strings X and Y with n and m elements, respectively
       Output: For i = 0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string
           that is a subsequence of both the string X[0..i] = x_0x_1x_2...x_i and the
           string Y [0.. j] = y_0 y_1 y_2 ... y_j
       for i =1 to n-1 do
          L[i,-1] = 0
       for j = 0 to m-1 do
          L[-1,j] = 0
       for i = 0 to n-1 do
           for j = 0 to m-1 do
                if x_i = y_i then
                          L[i, j] = L[i-1, j-1] + 1
                else
                          L[i, j] = max\{L[i-1, j], L[i, j-1]\}
       return array L
© 2014 Goodrich, Tamassia, Goldwasser
                                   Dynamic Programming
                                                                                 17
```


Analysis of LCS Algorithm

- We have two nested loops
 - The outer one iterates *n* times
 - The inner one iterates *m* times
 - A constant amount of work is done inside each iteration of the inner loop
 - Thus, the total running time is O(*nm*)
- Answer is contained in L[n,m] (and the subsequence can be recovered from the L table).

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming

19

Java Implementation /** Returns table such that L[j][k] is length of LCS for X[0..j-1] and Y[0..k-1]. */ public static int[][] LCS(char[] X, char[] Y) { int n = X.length;int m = Y.length; int[][] L = new int[n+1][m+1];for (int j=0; j < n; j++) for (int k=0; k < m; k++) if(X[j] == Y[k])// align this match L[j+1][k+1] = L[j][k] + 1;10 // choose to ignore one character $L[j+1][k+1] = \mathsf{Math.max}(L[j][k+1], \ L[j+1][k]);$ 11 12 return L; 13 © 2014 Goodrich, Tamassia, Goldwasser **Dynamic Programming**

Java Implementation, Output of the Solution /** Returns the longest common substring of X and Y, given LCS table L. */public static char[] reconstructLCS(char[] X, char[] Y, int[][] L) { StringBuilder solution = **new** StringBuilder(); **int** j = X.length; int k = Y.length; while (L[j][k] > 0)// common characters remain if (X[j-1] == Y[k-1]) { solution.append(X[j-1]); } else if (L[j-1][k] >= L[j][k-1])11 12 13 else k--; 15 // return left-to-right version, as char array return solution.reverse().toString().toCharArray(); 17 © 2014 Goodrich, Tamassia, Goldwasser 21 **Dynamic Programming**