Dynamic Programming 3/29/14 21:19

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming

Matrix Chain-Products

@ Dynamic Programming is a general
algorithm design paradigm.
= Rather than give the general structure, let us f

first give a motivating example: A

= Matrix Chain-Products B

@ Review: Matrix Multiplication.
» C=A*B
. . e
m AisdxeandBisex f

Cli /1= SA[i’k] * Blk, j] e

A C
= O(def) time d{ M i }d

© 2014 Goodrich, Tamassia, Goldwasser ~ Dynamic Programming f

Dynamic Programming 3/29/14 21:19

Matrix Chain-Products

Matrix Chain-Product:
= Compute A=A *A*.. . *A
= Ajis d; X diyy
= Problem: How to parenthesize?
@ Example
Bis 3 x 100
Cis 100 x 5
Dis5x5
(B*C)*D takes 1500 + 75 = 1575 ops
B*(C*D) takes 1500 + 2500 = 4000 ops

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 3

An Enumeration Approach

@ Matrix Chain-Product Alg.:
= Try all possible ways to parenthesize
A=A *A ¥ *A)
= Calculate number of ops for each one
= Pick the one that is best

4 Running time:

= The number of paranethesizations is equal
to the number of binary trees with n nodes

= This is exponential!

= It is called the Catalan number, and it is
almost 4.

= This is a terrible algorithm!

-

© 2014 Goodrich, Tamassia, Goldwasser ~ Dynamic Programming 4

Dynamic Programming

4

A Greedy Approach Qe@

@ Idea #1: repeatedly select the product that
uses (up) the most operations.
Counter-example:
m Ais10 x5
Bis5x 10
Cis10 x5
m Dis5x 10

Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
A*((B*C)*D) takes 500+250+250 = 1000 ops

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 5

(G
Mer Greedy Approach t

@ Idea #2: repeatedly select the product that uses
the fewest operations.

4 Counter-example:
» Ais 101 x 11
m Bisll1 x9
= Cis9 x 100
= Dis 100 x 99

» Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

= (A*B)*(C*D) takes 9999-+89991+89100=189090 ops

The greedy approach is not giving us the optimal
value.

© 2014 Goodrich, Tamassia, Goldwasser ~ Dynamic Programming 6

3/29/14 21:19

Dynamic Programming 3/29/14 21:19

A “Recursive” Approach

@ Define subproblems:
= Find the best parenthesization of A*A,, *...*A;.
= Let N;; denote the number of operations done by this
subproblem.
= The optimal solution for the whole problem is N, ,, ;.

4 Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

= There has to be a final multiplication (root of the expression
tree) for the optimal solution.

= Say, the final multiply is at index i: (Ag*... *A)* (A1 *... %A 1)

= Then the optimal solution N .., is the sum of two optimal
subproblems, N, ; and N, ., plus the time for the last multiply.

= If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”

solution.
© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 7

A Characterizing
Equation

@ The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

@ Let us consider all possible places for that final multiply:

= Recall that A is a d; x d,,; dimensional matrix.
= So, a characterizing equation for N;; is the following:

N, =min{N,, + N,

o isk<

+ didk+1dj+1}

+1,j

@ Note that subproblems are not independent--the
subproblems overlap.

© 2014 Goodrich, Tamassia, Goldwasser ~ Dynamic Programming 8

Dynamic Programming 3/29/14 21:19

A Dynamic Programming
Algorithm
@ Since subproblems
overlap, we don’t | Algorithm matrixChain(S):
use recursion. Input: sequence S of n matrices to be multiplied
Instead, we Output: number of operations in an optimal
construct optimal paranethization of §
subproblems for i < 1 to n-1 do
“bottom-up.” N,;<0
@ N,;/'s are easy, so for b < 1 to n-1 do
start with them for i < 0 to n-b-1 do
4 Then do length 2,3, Jj<ith
... subproblems, and N;; < +infinity
SO on. for k < itoj-1 do
@ The running time is N < min{N;;, N;; +Ny.y; +d;dyy diva}
0o(n3)
© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 9

Java Implementation
I public static int[][] matrixChain(int[] d) {
2 int n = d.length — 1; // number of matrices
3 int[][] N = new int[n][n]; // n-by-n matrix; initially zeros
4 for (int b=1; b < n; b++) // number of products in subchain
5 for (int i=0; i < n — b; i++) { // start of subchain
6 intj=i+b; // end of subchain
7 N[i][i] = Integer. MAX_VALUE; // used as "infinity’
8 for (int k=i; k < j; k++)
9 N[i][j] = Math.min(N[i][j], N[i][k] + N[k+1][j] + d[i]*d[k+1]*d[j+1]);

10

11 return N;

2}

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 10

Dynamic Programming

A Dynamic Programming
Algorithm Visualization

N, =min{N,, +N,, +dd,_d.
@ The bottom_up i,j isk<j{ ik k+1,j i k+l]+l}

construction fills inthe NJo 12 I

answer
N array by diagonals 0 . —

@ N,; gets values from 1
pervious entries in i-th

row and j-th column i [|
@ Filling in each entry in
the N table takes O(n)
time.

@ Total run time: O(n3)

@ Getting actual n-1
parenthesization can be
done by remembering
“k” for each N entry

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 11

The General Dynamic
Programming Technique

@ Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:
= Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 12

3/29/14 21:19

Dynamic Programming 3/29/14 21:19

Subsequences

#® A subsequence of a character string
XgX{X5...X,,.1 IS @ string of the form x;x;,...
X;, Where ij < ij+1.

@ Not the same as substring!

@ Example String: ABCDEFGHIJK

» Subsequence: ACEGJIK
= Subsequence: DFGHK
= Not subsequence: DAGH

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 13

The Longest Common
Subsequence (LCS) Problem

@ Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

@ Has applications to DNA similarity
testing (alphabet is {A,C,G,T})

@ Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 14

Dynamic Programming 3/29/14 21:19

A Poor Approach to the
LCS Problem

@ A Brute-force solution:
= Enumerate all subsequences of X
= Test which ones are also subsequences of Y
= Pick the longest one.

@ Analysis:

» If X is of length n, then it has 2"
subsequences

= This is an exponential-time algorithm!

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 15

A Dynamic-Programming
Approach to the LCS Problem

" @ Define L[i,j] to be the length of the longest common
subsequence of X[0..i] and Y[0..j].

Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to
indicate that the null part of X or Y has no match with the
other.

4 Then we can define L[i,j] in the general case as follows:
1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)

2. If xi#yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no
match here)

Case 1: Case 2:

0123456789 1011 012345678910
Y=CGATAATTGAGA Y=CGATAATTGAG j991-6
X=GTTCCTAATA X-GTT AATA

0123456789 1234567

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 16

Dynamic Programming

An LCS Algorithm

Algorithm LCS(X,Y):

Output: Fori =0,...,n-1, j = 0,...,m-1, the length
that is a subsequence of both the string X[0..i]
string Y [0.. j1 = YoY1Ya---Y;

fori=1ton-1do

L[i-1]1=0
forj =0 to m-1 do
L[-1,j1=0

fori =0ton-1do
forj =0 to m-1 do
if x, = y; then
L[, j] = L[i-1,j-1] + 1
else
L[, j1 = max{L[i-1, j], LIi, j-11}
return array L

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming

Input: Strings X and Y with n and m elements, respectively

L[i, j] of a longest string
= XgX;X,...X; and the

17

L|-1/0[1(2|3[4(5|6]|7|8|9]10]11
110{0/0(0{0|0]|0|O0O|0O|0O|0O| O] O
ojojojr|{rj1|f1rpr{rjr|y1{1r{1ji1
rjojojr|jrj2f(2j2{2|2(2(22/|2
210101122233 |3|3]3]|3
31011122233 |3(3|3|3
410 (1|1 |1(2|2]2(3|3[3|3(3]|3
SO (1|1 |1]|2(2]2[3]|4|4(|4]| 4|4
610 |1|1(2|2|3[3|3[4|4|5]5]|°5
710 (1]1]|2|2(3[4|4|4|4|5|5]6
810 |1(1]2|3|3|4[5|5|5|5|5]|6
910 |1|1|2]|3[4]4|5|5|5|6|6]|6

© 2014 Goodrich, Tamassia, Goldwasser ~ Dynamic Programming

Visualizing the LCS Algorithm

01234567891011
Y=CGATAATTGAGA

X=GTTCCTAATA
0123456789

18

3/29/14 21:19

Dynamic Programming 3/29/14 21:19

AnaIyS|s of LCS Algorithm

#We have two nested loops
= The outer one iterates n times
= The inner one iterates m times

s A constant amount of work is done inside
each iteration of the inner loop

= Thus, the total running time is O(nm)
@ Answer is contained in L[n,m] (and the

subsequence can be recovered from the
L table).

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 19

Java Implementation

1 /#x Returns table such that L[j][k] is length of LCS for X[0..j—1] and Y[0..k—1]. %/
2 public static int[][] LCS(char[] X, char[] Y) {

3 int n = Xlength;

4 int m = Y.length;

5 int[][] L = new int[n+1][m+1];

6 for (int j=0;j < n; j++)

7 for (int k=0; k < m; k++)

8 if (X[j] == Y[K]) // align this match

9 L{j+1][k+1] = L[j][k] + 1;
10 else // choose to ignore one character

11 L[j+1][k+1] = Math.max(L[j][k+1], L[j+1][K]);
12 return L;

13}

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 20

10

Dynamic Programming 3/29/14 21:19

Java Implementation,
Output of the Solution

1 /*x Returns the longest common substring of X and Y, given LCS table L. x/
2 public static char|] reconstructLCS(char[] X, char[] Y, int[][] L) {

3 StringBuilder solution = new StringBuilder();

4 int j = X.length;

5 int k = Y.length;
6
7
8

while (L[j][k] > 0) // common characters remain
if (X[j—1] == Y[k—1]) {
solution.append(X[j—1]);

9 -

10 Jk——;

11 } else if (L[j—1][k] >= L[j][k—1])
12 j——;

13 elie

14 k——;

15 // return left-to-right version, as char array
16 return solution.reverse().toString().toCharArray();

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 21

11

