Lists and Iterators

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Lists and Iterators

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 1

The java.util.List ADT

o The java.util.List interface includes the following methods:

size(): Returns the number of elements in the list.
isEmpty(): Returns a boolean indicating whether the list is empty.
get(i): Returns the element of the list having index i; an error condition
occurs if i is not in range [0,size() — 1].
set(i, e): Replaces the element at index i with e, and returns the old element
that was replaced; an error condition occurs if 7 is not in range
[0,size() —1].
add(i, e): Inserts a new element e into the list so that it has index i, mov-
ing all subsequent elements one index later in the list; an error
condition occurs if 7 is not in range [0, size()].
remove(i): Removes and returns the element at index i, moving all subse-
quent elements one index earlier in the list; an error condition
occurs if 7 is not in range [0,size() — 1].
© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 2

3/19/14

Lists and Iterators

Example
o A sequence of List operations:
Method | Return Value | List Contents
add(0, A) - (A)
add(0, B) - (B, A)
get(1) A (B, A)
set(2, C) “error” (B, A)
add(2, C) - (B, A Q)
add(4, D) “error” (B, A, Q)
remove(1) A (B, ©)
add(1, D) - (B, D, Q)
add(1, E) - (B, E, D, Q)
get(4) “error” (B, E D, Q)
add(4, F) - (B,E, D, C F)
set(2, G) D (B,E G, C F)
get(2) G (B,E G, C F)
© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators

Array Lists

o An obvious choice for implementing the list ADT is
to use an array, A, where A[i] stores (a reference
to) the element with index i.

o With a representation based on an array A, the
get(i) and set(i, €) methods are easy to implement
by accessing A[i] (assuming i is a legitimate index).

AT i1t trtig
012 i n

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators

3/19/14

Lists and Iterators

Insertion

o In an operation add(i, o), we need to make room
for the new element by shifting forward the n — i
elements A[f], ..., A[n — 1]

o In the worst case (i = 0), this takes O(n) time

AT T TPV PP P T T PRIl

012 i n
CYY YY)
AT TTI T TP PPTT il
012 i n
AL 1111 lTled P T TP TT I
012 i n
© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 5

Element Removal

a In an operation remove(i), we need to fill the hole left by
the removed element by shifting backward the n —i -1
elements A[i + 1], ..., A[n — 1]

o In the worst case (i = 0), this takes O(n) time

AT T I T Tl VT T VT TP IT]

012 i n
YY Y Y
AT TTI T TP TPTT il
012 i n
AT TTITT I PP P fTT il
012 i n
© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 6

3/19/14

Lists and Iterators

Performance

o In an array-based implementation of a
dynamic list:
= The space used by the data structure is O(n)
= Indexing the element at i takes O(1) time
» add and remove run in O(n) time
o In an add operation, when the array is full,

instead of throwing an exception, we can
replace the array with a larger one ...

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 7

Java Implementation

11 // public methods
12 /*% Returns the number of elements in the array list. x/
13 public int size() { return size; }
14 /*% Returns whether the array list is empty. */
15 public boolean isEmpty() { return size == 0; }
16 /*x Returns (but does not remove) the element at index i. %/
17 public E get(int i) throws IndexOutOfBoundsException {

18 checkIndex(i, size);

19 return datali];

20}

21 /*% Replaces the element at index i with e, and returns the replaced element. %/

public E set(int i, E e) throws IndexOutOfBoundsException {
checkindex(i, size);
E temp = datali];
datafi] = e;
return temp;

}

[SST ST ST NS NS 9]
~N NN R W

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 8

3/19/14

Lists and Iterators

Java Implementation, 2

’?9
30
31
32
33
34
35
36

© 2014 Goo 55

/*x Inserts element e to be at index i, shifting all Subsequent elements later. x/
public void add(int i, E) throws IndexOutOfBoundsException,
lllegalStateException {
checkIndex(i, size + 1);

if (size == data.length) // not enough capacity
throw new lllegalStateException("Array is full");
for (int k=size—1; k >=i; k——) // start by shifting rightmost
datalk+1] = data[k];
datafi] = ¢; // ready to place the new element
size++;

/*x Removes/returns the element at index i, shifting subsequent elements earlier. */
public E remove(int i) throws IndexOutOfBoundsException {

checkIndex(i, size);

E temp = datali;

for (int k=i; k < size—1; k++) // shift elements to fill hole
datalk] = data[k+1];

data[size—1] = null; // help garbage collection

size——;

return temp;

// utility method
/#% Checks whether the given index is in the range [0, n—1]. %/
protected void checkIndex(int i, int n) throws IndexOutOfBoundsException {
if(i<O0]|li>=n)
throw new IndexOutOfBoundsException("Illegal index: " + i);

}

a Let push(o) be the operation

Growable Array-based Array List

that adds element o at the | Algorithm push(o)
end of the list if t=S.length - 1 then
. A < new array of
o When the array is full, we Size ...
replace the array with a for i < 0 to n-1 do
larger one A[i] < S[i]
a How large should the new S<A
array be? n<—ntl
» Incremental strategy: increase Sln-l]< o
the size by a constant ¢
= Doubling strategy: double the
size
© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 10

3/19/14

Lists and Iterators

Comparison of the Strategies

o We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations

o We assume that we start with an empty list
represented by a growable array of size 1

o We call amortized time of a push operation
the average time taken by a push operation
over the series of operations, i.e., T(n)/n

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 11

Incremental Strategy Analysis

o Over n push operations, we replace the array & =
n/c times, where c is a constant

o The total time T(n) of a series of n push operations
is proportional to

n+tc+2c+3ctdc+...+kc=
n+tc(l+2+3+...+k)=
n + ck(k+1)/2
o Since c is a constant, T(n) is O(n + k%), i.e., O(n?)
a Thus, the amortized time of a push operation is
O(n)

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 12

3/19/14

Lists and Iterators

Doubling Strategy Analysis

o We replace the array & = log, n
times

o The total time T(n) of a series of n
push operations is proportional to

n+1+2+4+8+ .. +2k=
n+2k1 -1 =

3n—1
o T(n) is O(n)
o The amortized time of a push
operation is O(1)

geometric series

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 13

Positional Lists

o To provide for a general abstraction of a sequence of
elements with the ability to identify the location of an
element, we define a positional list ADT.

o A position acts as a marker or token within the
broader positional list.

o A position p is unaffected by changes elsewhere in a
list; the only way in which a position becomes invalid
is if an explicit command is issued to delete it.

o A position instance is a simple object, supporting only
the following method:

= P.getElement(): Return the element stored at position p.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 14

3/19/14

Lists and Iterators

Positional List ADT

o Accessor methods:

first(): Returns the position of the first element of L (or null if empty).
last(): Returns the position of the last element of L (or null if empty).

before(p): Returns the position of L immediately before position p

(or null if p is the first position).

after(p): Returns the position of L immediately after position p
(or null if p is the last position).

isEmpty(): Returns true if list L does not contain any elements.

size(): Returns the number of elements in list L.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 15

Positional List ADT, 2

addFirst(e):

addLast(e):

addBefore(p, e):

addAfter(p, e):

set(p, e):

remove(p):

v Update methods:

Inserts a new element e at the front of the list, returning the
position of the new element.

Inserts a new element e at the back of the list, returning the
position of the new element.

Inserts a new element e in the list, just before position p,
returning the position of the new element.

Inserts a new element e in the list, just after position p,
returning the position of the new element.

Replaces the element at position p with element e, return-
ing the element formerly at position p.

Removes and returns the element at position p in the list,
invalidating the position.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 16

3/19/14

Lists and Iterators

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators

Example
o A sequence of Positional List operations:
Method Return Value | List Contents
addLast(8) P 8p)
first() p @p)
addAfter(p, 5) q Bp. 5¢)
before(q) p Bp.5q)
addBefore(q, 3) r (8p. 3r.5q)
r.getElement() 3 8p. 3r.5¢)
after(p) r 8p, 3rs5q)
before(p) null 8ps3rs5¢)
addFirst(9) s 95, 8p, 3r, 5¢)
remove(last()) 5 s, 8p, 3r)
set(p, 7) 8 (9s, 7p, 3r)
remove(q) “error” s, 7p, 3r)

17

to implement a

header !

o The most natural way

positional list is with a
doubly-linked list.

P05|t|onal List Implementatlon

node

nodes/posmons‘ trailer

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators

@‘

elements;

[fF::j”lfl“ﬁ::jflr|“ﬁ::jf|f|“ﬁ::j/|/|“F::jE]

18

\
|
|
|
!
|
|
|
|
|
|
|
|
I

3/19/14

Lists and Iterators

Insertion

o Insert a new node, g, between p and its successor.

P
ESANESANESANES2
\A \B e

p
ESANESAN
\ A \

P | q |
G AN B AL N AT s A N
\A K‘B \X K‘C

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 19

Deletion

o Remove a node, p, from a doubly-linked list. —

5 231 2 A 5 N 2 Tl K S P N N 2
\ A \g \c . ‘\p
ENANESANENSE

ESANEWSANESANEYw2
W \B \c

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 20

3/19/14

10

Lists and Iterators

Iterators

o An iterator is a software design pattern
that abstracts the process of scanning
through a sequence of elements, one
element at a time.

hasNext(): Returns true if there is at least one additional element in the
sequence, and false otherwise.

next(): Returns the next element in the sequence.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 21

The Iterable Interface

o Java defines a parameterized interface, named
Iterable, that includes the following single method:

= iterator(): Returns an iterator of the elements in the
collection.

o An instance of a typical collection class in Java, such
as an Arraylist, is iterable (but not itself an iterator); it
produces an iterator for its collection as the return
value of the iterator() method.

o Each call to iterator() returns a new iterator instance,
thereby allowing multiple (even simultaneous)
traversals of a collection.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 22

3/19/14

11

Lists and Iterators

’The for-each Loop

/u Java’s Iterable class also plays a fundamental
role in support of the “for-each” loop syntax:

for (ElementType variable : collection) {
loopBody

}
is equivalent to:

Iterator<ElementType> iter = collection.iterator();

while (iter.hasNext()) {
ElementType variable = iter.next();
loopBody

}

// may refer to "variable”

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 23

// may refer to "variable”

3/19/14

12

