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The java.util.List ADT 
q  The java.util.List interface includes the following methods: 
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Example 
q  A sequence of List operations: 
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Array Lists 
q  An obvious choice for implementing the list ADT is 

to use an array, A, where A[i] stores (a reference 
to) the element with index i. 

q  With a representation based on an array A, the 
get(i) and set(i, e) methods are easy to implement 
by accessing A[i] (assuming i is a legitimate index). 

A 
0 1 2 n i 
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Insertion 
q  In an operation add(i, o), we need to make room 

for the new element by shifting forward the n - i 
elements A[i], …, A[n - 1] 

q  In the worst case (i = 0), this takes O(n) time 

A 
0 1 2 n i 

A 
0 1 2 n i 

A 
0 1 2 n 

o 
i 
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Element Removal 
q  In an operation remove(i), we need to fill the hole left by 

the removed element by shifting backward the n - i - 1 
elements A[i + 1], …, A[n - 1] 

q  In the worst case (i = 0), this takes O(n) time 

A 
0 1 2 n i 
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Performance 
q  In an array-based implementation of a 

dynamic list: 
n  The space used by the data structure is O(n) 
n  Indexing the element at i takes O(1) time 
n  add and remove run in O(n) time 

q  In an add operation, when the array is full, 
instead of throwing an exception, we can 
replace the array with a larger one … 

© 2014 Goodrich, Tamassia, Goldwasser 

Java Implementation 
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Java Implementation, 2 

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 9 

Lists and Iterators 10 

Growable Array-based Array List 
q  Let push(o) be the operation 

that adds element o at the 
end of the list 

q  When the array is full, we 
replace the array with a 
larger one 

q  How large should the new 
array be? 
n  Incremental strategy: increase 

the size by a constant c 
n  Doubling strategy: double the 

size 

Algorithm push(o) 
 if t = S.length - 1 then 
  A ← new array of 
     size … 
  for i ← 0 to n-1 do 
    A[i] ← S[i] 
  S ← A 
 n ← n + 1 
 S[n-1] ← o 
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Comparison of the Strategies 

q  We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n 
push operations 

q  We assume that we start with an empty list 
represented by a growable array of size 1 

q  We call amortized time of a push operation 
the average time taken by a push operation 
over the series of operations, i.e.,  T(n)/n 
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Incremental Strategy Analysis  
q  Over n push operations, we replace the array k = 

n/c times, where c is a constant 
q  The total time T(n) of a series of n push operations 

is proportional to 
n + c + 2c + 3c + 4c + … + kc = 

n + c(1 + 2 + 3 + … + k) = 
n + ck(k + 1)/2 

q  Since c is a constant, T(n) is O(n + k2), i.e., O(n2) 
q  Thus, the amortized time of a push operation is 

O(n) 
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Doubling Strategy Analysis 
q  We replace the array k = log2 n 

times 
q  The total time T(n) of a series of n 

push operations is proportional to 
  n + 1 + 2 + 4 + 8 + …+ 2k = 

 n + 2k + 1 - 1  =  
  3n - 1 

q  T(n) is O(n) 
q  The amortized time of a push 

operation is O(1) 

geometric series 
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Positional Lists 
q  To provide for a general abstraction of a sequence of 

elements with the ability to identify the location of an 
element, we define a positional list ADT.  

q  A position acts as a marker or token within the 
broader positional list.  

q  A position p is unaffected by changes elsewhere in a 
list; the only way in which a position becomes invalid 
is if an explicit command is issued to delete it. 

q  A position instance is a simple object, supporting only 
the following method: 
n  P.getElement( ): Return the element stored at position p. 
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Positional List ADT 
q  Accessor methods: 
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Positional List ADT, 2 
q  Update methods: 
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Example 
q  A sequence of Positional List operations: 
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Positional List Implementation 
q  The most natural way 

to implement a 
positional list is with a 
doubly-linked list. 
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Insertion 
q  Insert a new node, q, between p and its successor. 

A B X C 

A B C 

p 

A B C 

p 

X 

q 

p q 
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Deletion 
q  Remove a node, p, from a doubly-linked list. 

A B C D

p 

A B C 

D

p 

A B C 
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Iterators 
q  An iterator is a software design pattern 

that abstracts the process of scanning 
through a sequence of elements, one 
element at a time. 
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The Iterable Interface 
q  Java defines a parameterized interface, named 

Iterable, that includes the following single method: 
n  iterator( ): Returns an iterator of the elements in the 

collection. 

q  An instance of a typical collection class in Java, such 
as an ArrayList, is iterable (but not itself an iterator); it 
produces an iterator for its collection as the return 
value of the iterator( ) method.  

q  Each call to iterator( ) returns a new iterator instance, 
thereby allowing multiple (even simultaneous) 
traversals of a collection. 
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The for-each Loop 
q  Java’s Iterable class also plays a fundamental 

role in support of the “for-each” loop syntax: 

 
is equivalent to: 

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 23 


