
Lists and Iterators 3/19/14

1

Lists and Iterators 1

Lists and Iterators

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

The java.util.List ADT
q  The java.util.List interface includes the following methods:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 2

Lists and Iterators 3/19/14

2

Example
q  A sequence of List operations:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 3

Lists and Iterators 4

Array Lists
q  An obvious choice for implementing the list ADT is

to use an array, A, where A[i] stores (a reference
to) the element with index i.

q  With a representation based on an array A, the
get(i) and set(i, e) methods are easy to implement
by accessing A[i] (assuming i is a legitimate index).

A
0 1 2 n i

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 3/19/14

3

Lists and Iterators 5

Insertion
q  In an operation add(i, o), we need to make room

for the new element by shifting forward the n - i
elements A[i], …, A[n - 1]

q  In the worst case (i = 0), this takes O(n) time

A
0 1 2 n i

A
0 1 2 n i

A
0 1 2 n

o
i

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 6

Element Removal
q  In an operation remove(i), we need to fill the hole left by

the removed element by shifting backward the n - i - 1
elements A[i + 1], …, A[n - 1]

q  In the worst case (i = 0), this takes O(n) time

A
0 1 2 n i

A
0 1 2 n

o
i

A
0 1 2 n i

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 3/19/14

4

Lists and Iterators 7

Performance
q  In an array-based implementation of a

dynamic list:
n  The space used by the data structure is O(n)
n  Indexing the element at i takes O(1) time
n  add and remove run in O(n) time

q  In an add operation, when the array is full,
instead of throwing an exception, we can
replace the array with a larger one …

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 8

Lists and Iterators 3/19/14

5

Java Implementation, 2

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 9

Lists and Iterators 10

Growable Array-based Array List
q  Let push(o) be the operation

that adds element o at the
end of the list

q  When the array is full, we
replace the array with a
larger one

q  How large should the new
array be?
n  Incremental strategy: increase

the size by a constant c
n  Doubling strategy: double the

size

Algorithm push(o)
 if t = S.length - 1 then
 A ← new array of
 size …
 for i ← 0 to n-1 do
 A[i] ← S[i]
 S ← A
 n ← n + 1
 S[n-1] ← o

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 3/19/14

6

Lists and Iterators 11

Comparison of the Strategies

q  We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations

q  We assume that we start with an empty list
represented by a growable array of size 1

q  We call amortized time of a push operation
the average time taken by a push operation
over the series of operations, i.e., T(n)/n

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 12

Incremental Strategy Analysis
q  Over n push operations, we replace the array k =

n/c times, where c is a constant
q  The total time T(n) of a series of n push operations

is proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =
n + ck(k + 1)/2

q  Since c is a constant, T(n) is O(n + k2), i.e., O(n2)
q  Thus, the amortized time of a push operation is

O(n)
© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 3/19/14

7

Lists and Iterators 13

Doubling Strategy Analysis
q  We replace the array k = log2 n

times
q  The total time T(n) of a series of n

push operations is proportional to
 n + 1 + 2 + 4 + 8 + …+ 2k =

 n + 2k + 1 - 1 =
 3n - 1

q  T(n) is O(n)
q  The amortized time of a push

operation is O(1)

geometric series

1

2

1
4

8

© 2014 Goodrich, Tamassia, Goldwasser

Positional Lists
q  To provide for a general abstraction of a sequence of

elements with the ability to identify the location of an
element, we define a positional list ADT.

q  A position acts as a marker or token within the
broader positional list.

q  A position p is unaffected by changes elsewhere in a
list; the only way in which a position becomes invalid
is if an explicit command is issued to delete it.

q  A position instance is a simple object, supporting only
the following method:
n  P.getElement(): Return the element stored at position p.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 14

Lists and Iterators 3/19/14

8

Positional List ADT
q  Accessor methods:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 15

Positional List ADT, 2
q  Update methods:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 16

Lists and Iterators 3/19/14

9

Example
q  A sequence of Positional List operations:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 17

Positional List Implementation
q  The most natural way

to implement a
positional list is with a
doubly-linked list.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 18

prev next

element

trailer header nodes/positions

elements

node

Lists and Iterators 3/19/14

10

Lists and Iterators 19

Insertion
q  Insert a new node, q, between p and its successor.

A B X C

A B C

p

A B C

p

X

q

p q

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 20

Deletion
q  Remove a node, p, from a doubly-linked list.

A B C D

p

A B C

D

p

A B C
© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 3/19/14

11

Iterators
q  An iterator is a software design pattern

that abstracts the process of scanning
through a sequence of elements, one
element at a time.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 21

The Iterable Interface
q  Java defines a parameterized interface, named

Iterable, that includes the following single method:
n  iterator(): Returns an iterator of the elements in the

collection.

q  An instance of a typical collection class in Java, such
as an ArrayList, is iterable (but not itself an iterator); it
produces an iterator for its collection as the return
value of the iterator() method.

q  Each call to iterator() returns a new iterator instance,
thereby allowing multiple (even simultaneous)
traversals of a collection.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 22

Lists and Iterators 3/19/14

12

The for-each Loop
q  Java’s Iterable class also plays a fundamental

role in support of the “for-each” loop syntax:

is equivalent to:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 23

