Sorting Lower Bound

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

N

Sorting Lower Bound

© 2014 Goodrich, Tamassia, Goldwasser Sorting Lower Bound 1

e

Comparison-Based Sorting
S X
@ Many sorting algorithms are comparison based.
= They sort by making comparisons between pairs of objects
= Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...
@ Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, Xy, X, ..., X,

no

yes

© 2014 Goodrich, Tamassia, Goldwasser Sorting Lower Bound 2

3/29/14 21:28

Sorting Lower Bound 3/29/14 21:28

Counting Comparisons

@ Letus just count comparisons then.

Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

[xe<xf?} [x,ﬁx,?} Ecm<xo?j [xp<xq ?j

© 2014 Goodrich, Tamassia, Goldwasser Sorting Lower Bound 3

Decision Tree Height

& The height of the decision tree is a lower bound on the running time
@ Every input permutation must lead to a separate leaf output

@ If not, some input ...4...5... would have same output ordering as ...
5...4..., which would be wrong

@ Since there are nl=1-2 - ... -n leaves, the height is at least log (n!)

minimum height (time)

log (n!)

[xe<xf?J [xk<x1 ?] Ecm<x0?] [xp<xq ?]

| | |
n:
© 2014 Goodrich, Tamassia, GoIdwassler Sorting Lower Bound ! 4

Sorting Lower Bound 3/29/14 21:28

The Lower Bound

4 Any comparison-based sorting algorithms takes at
least log (n!) time

@ Therefore, any such algorithm takes time at least

|3

log (n!) > log(g)z — (n/2)log(n/2).

That is, any comparison-based sorting algorithm must
run in Q(n log n) time.

© 2014 Goodrich, Tamassia, Goldwasser Sorting Lower Bound 5

