Depth-First Search

~

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,

and M. H. Goldwasser, Wiley, 2014

Depth-First Search

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

© 2014 Goodrich, Tamassia, Goldwasser

Subgraphs

o A subgraph S of a graph

G is a graph such that

= The vertices of S are a
subset of the vertices of G

= The edges of S are a
subset of the edges of G

o A spanning subgraph of G

is a subgraph that
contains all the vertices
of G

Depth-First Search

Spanning subgraph

3/25/14 15:22

Depth-First Search

Connectivity

o A graph is
connected if there is
a path between
every pair of
vertices

a A connected
component of a
graph Gis a
maximal connected

© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search

Connected graph

o—=o0O

subgraph of G Non connected graph with two

connected components

Trees and Forests

o A (free) tree is an
undirected graph T such
that

= T is connected
= T has no cycles

This definition of tree is
different from the one of
a rooted tree

a The connected
components of a forest
are trees

© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search

|

o—O

Tree

o A forest is an undirected
graph without cycles ® ?'O OW
o0 O

Forest

3/25/14 15:22

Depth-First Search

Spanning Trees and Forests

o A spanning tree of a
connected graph is a
spanning subgraph that is
a tree

o A spanning tree is not

© 2014 Goodrich, Tamassia, Goldwasser

unique unless the graph is
a tree

o Spanning trees have
applications to the design
of communication
networks

a A spanning forest of a
graph is a spanning
subgraph that is a forest

Spanning tree

Depth-First Search 5

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

o Depth-first search (DFS)
is a general technique
for traversing a graph

o A DFS traversal of a
graph G
= Visits all the vertices and
edges of G

= Determines whether G is
connected

= Computes the connected
components of G

= Computes a spanning
forest of G

]

]

DFS on a graph with n
vertices and m edges
takes O(n + m) time

DFS can be further

extended to solve other

graph problems

= Find and report a path
between two given
vertices

= Find a cycle in the graph
Depth-first search is to
graphs what Euler tour
is to binary trees

Depth-First Search 6

3/25/14 15:22

Depth-First Search 3/25/14 15:22

DFS Algorithm from a Vertex

Algorithm DFS(G, u):
Input: A graph G and a vertex u of G
Output: A collection of vertices reachable from u, with their discovery edges
Mark vertex u as visited.
for each of u’s outgoing edges, ¢ = (u,v) do
if vertex v has not been visited then

Record edge e as the discovery edge for vertex v.
Recursively call DFS(G, v).

© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search 7

Java Implementation

1 /*x Performs depth-first search of Graph g starting at Vertex u. %/
2 public static <V,E> void DFS(Graph<V,E> g, Vertex<V> u,
3 Set<Vertex<V>> known, Map<Vertex<V> Edge<E>> forest) {

4 known.add(u); // u has been discovered
5 for (Edge<E> e : g.outgoingEdges(u)) { // for every outgoing edge from u
6 Vertex<V> v = g.opposite(u, e);
7 if (known.contains(v)) {
8 forest.put(v, e); // e is the tree edge that discovered v
9 DFS(g, v, known, forest); // recursively explore from v
10
1}
12}
© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search 8

Depth-First Search 3/25/14 15:22

Example
(®) unexplored vertex (A)
@ visited vertex
— unexplored edge 9"9 ®
— discovery edge ()
- ==»> back edge ﬂ

© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search 9

Example (cont.)

© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search 10

Depth-First Search 3/25/14 15:22

DFS and Maze Traversal

o The DFS algorithm is
similar to a classic
strategy for exploring -——- I

d maze —
= We mark each | T l

intersection, corner
and dead end (vertex)

visited
= We mark each corridor)

(edge) traversed
= We keep track of the |

path back to the
entrance (start vertex)

by means of a rope
(recursion stack)

© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search 11

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of

the connected
component of v

© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search 12

Depth-First Search

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of DFS

Setting/getting a vertex/edge label takes O(1) time

Method incidentEdges is called once for each vertex

a
o Each vertex is labeled twice
= once as UNEXPLORED
= once as VISITED
o Each edge is labeled twice
= once as UNEXPLORED
= once as DISCOVERY or BACK
a
a

DFS runs in O(n + m) time provided the graph is

represented by the adjacency list structure

= Recall that X deg(v) = 2m

Depth-First Search 13

Path Finding

o We can specialize the DFS
algorithm to find a path
between two given
vertices u and z using the
template method pattern

o We call DES(G, u) with u

as the start vertex

o We use a stack S to keep
track of the path between
the start vertex and the

=

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v=z
return S.elements()
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
current vertex S.push(e)
o As soon as destination pathDFS(G, w, 7)

vertex z is encountered, S.pop(e)
we return the path as the else
contents of the stack setLabel(e, BACK)

S.pop(v)

© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search 14

3/25/14 15:22

Depth-First Search

© 2014 Goodrich, Tamassia, Goldwasser

Path Finding in Java

/#% Returns an ordered list of edges comprising the directed path from u to v. %/

// v was discovered during the search

// we construct the path from back to front

// add edge to *front* of path
// repeat with opposite endpoint

1

2 public static <V,E> PositionalList<Edge<E>>

3 constructPath(Graph<V,E> g, Vertex<V> u, Vertex<V> v,
-+ Map<Vertex<V> Edge<E>> forest) {

5 PositionalList<Edge<E>> path = new LinkedPositionalList<>();
6 if (forest.get(v) !'= null) {

7 Vertex<V> walk = v;

8 while (walk = u) {

9 Edge<E> edge = forest.get(walk);
10 path.addFirst(edge);
11 walk = g.opposite(walk, edge);
12 }
13
14 return path;
15}

Depth-First Search

© 2014 Goodrich, Tamassia, Goldwasser

Cycle Finding

o We can specialize the
DFS algorithm to find a
simple cycle using the
template method pattern

o We use a stack S to
keep track of the path
between the start vertex
and the current vertex

o As soon as a back edge

(v, w) is encountered,
we return the cycle as
the portion of the stack

from the top to vertex w

Algorithm cycleDFS(G, v, 7)
setLabel(v, VISITED)
S.push(v)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <— opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
pathDFS(G, w, 7)
S.pop(e)
else
T < new empty stack
repeat
0 < S.pop()
T.push(o)
untilo =w
return 7.elements()
S.pop(v)

Depth-First Search

3/25/14 15:22

Depth-First Search

a The algorithm uses a mechanism
for setting and getting “labels”
of vertices and edges

Algorithm DFS(G)
Input graph ¢
Output labeling of the edges of G
as discovery edges and
back edges
for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()

DFS for an Entire Graph

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G
in the connected component of v
as discovery edges and back edges
setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, UNEXPLORED) setLabel(e, DISCOVERY)
for all v € G.vertices() DFS(G, w)
if getLabel(v) = UNEXPLORED else
DFS(G, v) setLabel(e, BACK)
© 2014 Goodrich, Tamassia, Goldwasser Depth-First Search 17

© 2014 Goodrich, Tamassia, Goldwasser

All Connected Components

o Loop over all vertices, doing a DFS from

each unvisted one.

/#% Performs DFS for the entire graph and returns the DFS forest as a map. */
public static <V,E> Map<Vertex<V> Edge<E>> DFSComplete(Graph<V,E> g) {

Map<Vertex<V> Edge<E>> forest = new ProbeHashMap<>();

// (re)start the DFS process at u

1

2

3 Set<Vertex<V>> known = new HashSet<>();
4

5 for (Vertex<V> u : g.vertices())

6 if ('known.contains(u))

7 DFS(g, u, known, forest);

8 return forest;

9}

Depth-First Search 18

3/25/14 15:22

