Directed Graphs

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

N

Directed Graphs

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 1

Digraphs

o A digraph is a graph
whose edges are all
directed

= Short for “directed graph”
o Applications
= One-way streets

» task scheduling Q

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 2

3/29/14 21:36

Directed Graphs

Digraph Properties

a A graph G=(V,E) such that
» Each edge goes in one direction:
= Edge (a,b) goes from a to b, but not b to a

o IfGissimple, m < n‘(n-1)

o If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of
incoming edges and outgoing edges in time
proportional to their size

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 3

Digraph Application

o Scheduling: edge (a,b) means task a must be
completed before b can be started

The good life

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 4

3/29/14 21:36

Directed Graphs

Directed DFS

o We can specialize the traversal
algorithms (DFS and BFS) to
digraphs by traversing edges
only along their direction

o In the directed DFS algorithm,
we have four types of edges

= discovery edges
= back edges

= forward edges
= Cross edges

o A directed DFS starting at a
vertex s determines the vertices
reachable from s

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 5

Reachability

o DFS tree rooted at v: vertices reachable
from v via directed paths

@ ©
E (D) ®
(| e I
®
® (B

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 6

3/29/14 21:36

Directed Graphs

Strong Connectivity WS

o Each vertex can reach all other vertices

N
:

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 7

Strong Connectivity
Algorithm

o Pick a vertex vin G
a Perform a DFS from v in G

= If there’s a w not visited, print *no”
o Let G’ be G with edges reversed
a Perform a DFS from v in G’

= If there’s a w not visited, print *no”
» Else, print “yes”

o Running time: O(n+m)

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 8

3/29/14 21:36

Directed Graphs 3/29/14 21:36

Strongly Connected
Components

o Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

a Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

O—Y {a,c,g}

0@
o {fadaeab}

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 9

Transitive Closure

o Given a digraph G, the
transitive closure of G is the
digraph G* such that 9

= G* has the same vertices
as G

» if G has a directed path
fromutov(u=v), G*
has a directed edge from
utov

o The transitive closure
provides reachability
information about a digraph

©
Q)

@
Q

(&

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 10

Directed Graphs

Computing the
Transitive Closure

o We can perform
DFS starting at
each vertex

= O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a

way to get from A to C.

Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 11

Floyd-Warshall
Transitive Closure

‘o Idea #1: Number the vertices 1, 2, ..., n.

o Idea #2: Consider paths that use only
vertices numbered 1, 2, ..., k, as
intermediate vertices:

Uses only vertices numbered 1,...,k
(add this edge if it’ s not already in)

"
e
.......
™
.
e
.
.
0
-

Uses only vertices

numbered 1,...,k-1 Uses only vertices

numbered 1,...,k-1

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 12

3/29/14 21:36

Directed Graphs

Qa

u]

© 2014 Goodrich, Tamassia, Goldwasser

Floyd-Warshall’ s Algorithm

Algorithm FloydWarshall(G)

Number vertices v, ..., v,
Compute digraphs G, ..., G,
» G=G
= G, has directed edge (v, v)
if G has a directed path

from v, to v, with
intermediate vertices in

{Vis e Vi)
We have that G,= G*
In phase &, digraph G, is
computed from G, _,
Running time: O(n?),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

Input digraph G
Output transitive closure G* of G
i< 1
for all v € G.vertices()
denote v as v,
i<—i+1
G, <~ G
for k < 1 ton do
G, <= G-,
fori<—1ton(i=k)do
forj< 1ton(j =i k) do
if G, _,.areAdjacent(v, v;) A
G, _.areAdjacent(v;, v))
if = G.areddjacent(v, v;)
G.insertDirectedEdge(v, v;, k)
return G,

Directed Graphs 13

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

1 /xx Converts graph g into its transitive closure. %/

2 public static <V,E> void transitiveClosure(Graph<V,E> g) {
3 for (Vertex<V> k : g.vertices())

4 for (Vertex<V> i : g.vertices())

5 // verify that edge (i,k) exists in the partial closure

6 if (i = k && g.getEdge(i,k) != null)

7 for (Vertex<V> j : g.vertices())

8 // verify that edge (k,j) exists in the partial closure
9 if (i1=j && j 1=k && g.getEdge(k,j) != null)

10 // if (i,j) not yet included, add it to the closure
11 if (g.getEdge(i,j) == null)

12 g.insertEdge(i, j, null);

13}

Directed Graphs 14

3/29/14 21:36

Directed Graphs

Floyd-Warshall Example

ORD V4 ;
JFK

LAX V\’/

V1
MIA
© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 15

Floyd-Warshall, Iteration 1

JFK

MIA

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 16

3/29/14 21:36

Directed Graphs 3/29/14 21:36

Floyd-Warshall, Iteration 2

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 17

Floyd-Warshall, Iteration 3

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 18

Directed Graphs

Floyd-Warshall, Iteration 4

© 2014 Goodrich, Tamassia, Goldwasser

Directed Graphs

20

3/29/14 21:36

10

Directed Graphs 3/29/14 21:36

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 21

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 22

11

Directed Graphs

DAGs and Topological Ordering

o A directed acyclic graph (DAG) is a @ G
digraph that has no directed cycles @

o A topological ordering of a digraph
is a numbering

@

Vis eens ¥y

of the vertices such that for every Q DAG G
edge (v;, v), we have i <j

o Example: in a task scheduling v, Vs
digraph, a topological ordering a _.®
task sequence that satisfies the v,
precedence constraints 9

Theorem v,
A digraph admits a topological " G)
ordering if and only if it is a DAG | Topological

Q ordering of G
© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 23

dream about graphs

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 24

3/29/14 21:36

12

Directed Graphs

© 2014 Goodrich, Tamassia, Goldwasser

‘Algorithm for Topological Sorting

o Note: This algorithm is different than the

one in the book

Label vy «<— n
n<n-1

Algorithm TopologicalSort(G)
H<G // Temporary copy of G
n < G.numVertices()
while H is not empty do
Let v be a vertex with no outgoing edges

Remove v from H

o Running time: O(n + m)

Directed Graphs 25

© 2014 Goodrich, Tamassia, Goldwasser

‘ o Simulate the algorithm by

using depth-first search
a O(n+m) time.

Implementation with DFS

Algorithm fopological DFS(G)
Input dag G

OQutput topological ordering of G
n < G.numVertices()

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)

Algorithm fopological DFS(G, v)
Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)
for all e € G.outEdges(v)
{ outgoing edges }
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
{ e is a discovery edge }
topological DFS(G, w)
else
{ e is a forward or cross edge }
Label v with topological number n
n<—n-1

Directed Graphs 26

3/29/14 21:36

13

Directed Graphs

Topological Sorting Example

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 27

. Topological Sorting Example

~

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 28

3/29/14 21:36

14

Directed Graphs

Topological Sorting Example

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 29

. Topological Sorting Example

—
N

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 30

3/29/14 21:36

15

Directed Graphs

Topological Sorting Example

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 31

. Topological Sorting Example

© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 32

3/29/14 21:36

16

Directed Graphs

Topological Sorting Example

9
© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 33
. Topological Sorting Example
5
\ 7
9
© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 34

3/29/14 21:36

17

Directed Graphs

Topological Sorting Example
/ 2

\\4

\.
\
7
8
\\ 9
© 2014 Goodrich, Tamassi ia, Goldwasser Directed Graphs 35
. Topological Sorting Example
/ 2 -
3 \ /
Sl
6 5
N 7
8
\\ 9

3/29/14 21:36

18

Directed Graphs

Java Implementation

1 /%% Returns a list of verticies of directed acyclic graph g in topological order. x/

2 public static <V,E> PositionalList<Vertex<V>> topologicalSort(Graph<V,E> g) {
- 3 // list of vertices placed in topological order

4 PositionalList<Vertex<V>> topo = new LinkedPositionalList<>();

5 // container of vertices that have no remaining constraints

6 Stack<Vertex<V>> ready = new LinkedStack<>();

7 // map keeping track of remaining in-degree for each vertex

8 Map<Vertex<V>, Integer> inCount = new ProbeHashMap<>();

9 for (Vertex<V> u : g.vertices()) {

10 inCount.put(u, g.inDegree(u)); // initialize with actual in-degree
11 if (inCount.get(u) == 0) // if u has no incoming edges,
12 ready.push(u); // it is free of constraints
13}
14 while (ready.isEmpty()) {
15 Vertex<V> u = ready.pop();
16 topo.addLast(u);
17 for (Edge<E> e : g.outgoingEdges(u)) { // consider all outgoing neighbors of u
18 Vertex<V> v = g.opposite(u, e);
19 inCount.put(v, inCount.get(v) — 1); ~ // v has one less constraint without u
20 if (inCount.get(v) == 0)
21 ready.push(v);
22 }
23}
24 return topo;
25}
© 2014 Goodrich, Tamassia, Goldwasser Directed Graphs 37

3/29/14 21:36

19

