
Object Oriented Programming

in Java

Jaanus Pöial, PhD

Tallinn, Estonia

Decrease complexity (use layers of abstraction,

interfaces, modularity, ...)

Reuse existing code, avoid duplication of code

Support formal contracting between independent

development teams

Detect errors as early as possible (general goal of

software engineering)

Motivation for Object Oriented

Programming

Motivation

Object oriented approach was introduced on 1980-s to

reduce complexity of programming large software

systems (e.g. graphical user interfaces).

Flat library of standard functions (common for early

imperative programming languages) is not flexible

enough to create complex software systems.

Powerful and well organized object oriented framework

makes programming easier – programmer re-uses

existing codebase and specifies only these

properties/functions she needs to elaborate/change (and

framework adjusts to these changes).

Object

Object is characterized by

• State (defined by values of instance variables in Java)

• Behaviour (defined by instance methods in Java)

• Identity (defined by memory location in Java)

Object = Instance = Specimen = ...

• Instance variable (Java terminology) = (Object) field

= Property = Attribute = ...

• Method = Subroutine = Function / Procedure = ...

Object

Encapsulation – data and operations on the data are

integrated into whole (object = capsule)

ADT approach – set of operations is a part of data type

Data hiding – object state can be changed only by

dedicated (usually public) methods - instance variables

should be protected from direct modification

Object is an instance of the class. E.g. „Rex is a dog“.

Class

Class defines common features of its objects („template“).

E.g. „All dogs have a name“.

Instantiation – creating a new object of the class.

Subclass can be derived from the class – subclass inherits

all the features of its parent class. Subclass allows to add

new (specific) features and redefine (=override) inherited

features. E.g. „Dog is (a special kind of) Animal“.

If A is a subclass of B then B is superclass of A.

Class Hierarchy

Generalization – common features of similar classes are

described on the level of superclass (mental process –

design the hierarchy of classes).

Specialization – subclass is created to concretize (refine)

certain general features and add specific data/operations

to the subclass (process of coding).

Instance Methods and Class Methods

Instance methods define the behaviour of an object

(=instance).
• s.length() - the length of string s in Java.

Class methods can be used without creating an

object (imperative style).

• Math.sqrt(2.) - square root of 2.

Keyword static in Java is used to define class

methods.

Instance Variables and Class Variables

Instance variables define the state of an object. Each

object has individual values of instance variables. In
Java, keyword private is appropriate.

• a.length – the length of an array a.

Class variables are common (global variables in class

scope). Single value is shared between all objects.
Keyword static in Java is used.

• Math.PI – constant Pi in Java.

Message Passing

Objects communicate in OOP system by sending

messages. Message, sent to an object, is interpreted

by the object and causes appropriate instance

method to be executed.

OOP systems may support:

Early binding – method to be executed when a

message is received is known at compile time

(from the program text, statically).

Late binding („true“ OOP systems) – method to be

executed is chosen dynamically (decision depends

on runtime type of the receiver object).

Polymorphism

Same notation has different meaning in different contexts

Two types of polymorphism:

Overloading – operation is redefined in subclass and is

binded to the activating message statically (compile

time choice).

Java constructors support overloading.

Overriding – operation is redefined in subclass and is

binded to the activating message dynamically (runtime

choice).

Java instance methods support overriding.

Inheritance

Subclass inherits all the variables and methods of its

parent class (if it is not explicitly forbidden).

Single inheritance – up to one superclass is allowed

for each class. Class hierarhy is a tree structure. In
Java, class Object is the root class.

Multiple inheritance – a class may have more than

one superclass. If several parents have the same

property defined, it may not be clear, which one is

inherited (the so-called „diamond dilemma“).

„Is-a“ vs „Is-able-to“ and „Has-a“ Relations

Inheritance relation means „is a kind of“. It is possible

to model the multiple inheritance using „is able to“ and

„has a“ relations.

Java supports only single inheritance for classes, but

allows a class to implement several interfaces („is able

to“ contracts).

Constructors

Constructor is a special class method to create a

new object. Memory for the object is allocated

dynamically.

E.g. new Integer(6) - returns a new object of

type Integer in Java (object is represented by

memory location).

Calendar.getInstance() - returns a new

object of type Calendar in Java (the so-called

„factory“ method).

Names in Constructors

Constructor name = Class name, if Java new-

expression is used.

Keyword this inside constructor is used to call

another constructor of the same class (with different

signature), constructor overloading.

Keyword super is used to call a constructor of the

superclass.

Destructors

Destructor is used to destroy the object and free the

memory. There are no implicit destructors in Java –

garbage collection is used instead.

Garbage collection is „hidden“, sometimes it is

possible to make a suggestion to clean up.

Abstract Features

It is reasonable to define common features of similar

classes in superclass (to reduce the duplication of

code). But... sometimes it is impossible to implement

these features in superclass.

E.g. circle, square, triangle, ... are figures and have

an area as a common feature. But for each figure

the method to calculate its area is different. It is said

that area is an abstract feature of a figure and its

implementation is delegated to corresponding

subclasses.

Abstract Classes and Interfaces

Abstract class has some abstract features that are not

implemented. It is impossible to create instances of

abstract classes. The role of an abstract class is to be

a parent class for its subclasses.

Interface is a pure abstract class without any

implementation. It serves as a contract between

programmers – certain class implements an interface,

if it defines all the methods listed in interface

description.

Functional interface introduced in Java 8 has one

method that can be described using functional style.

Keywords “extends” and “implements”

Class hierarchy in Java

class A extends B implements C, D { ... }

Class A is a subclass of B (inheritance applies) and also

it provides all the methods listed in interfaces C and D

(no „diamond dilemma“ here).

If extends-part is missing, a class is a subclass of class
Object

Object Identity and Equality

Object identity in Java is defined by the memory

location returned by the new-expression that

allocates memory for the object and activates

corresponding constructor.

Object is represented by this address, there is no

difference between reference and object in Java.

o1==o2 tests object identity (it means „o1 is the

same object as o2“).

To test the object equality, use o1.equals(o2)

(„o1 is equal to o2“).

Sending Messages

Messages to objects are sent using dot-operator:

// create o1

Object o1 = new Object();

// send message toString() to the object o1

String s1 = o1.toString();

Class methods use the same syntax, but message is sent to the
class:

double s2 = Math.sqrt (2.0);

Receiver of the Message

In method body the receiver object is referred as this.

If message is sent without indicating the receiver, this

object (in case of instance method) or current class (in

case of class method) is assumed.

If we need to call a superclass method, we use keyword
super as the receiver.

Overriding

Methods are binded to messages during runtime in

Java (late binding).

To change the behaviour of Java framework, a

programmer can redefine (override) methods in

subclass.

If an object receives a message, system has to

choose appropriate method to be executed. Search is

performed bottom-up, starting from the most specific

class (runtime class of the object), then its superclass,
etc. up to the root class Object.

Important Object Methods

Important methods to override:

toString – textual representation of an object,

equals – predicate to decide, whether two objects are

equal, important with testing frameworks like JUnit

clone – create a clone of an object (different identity,

but equal content)

Deep clone vs. shallow clone.

hashCode – influences behaviour of certain collections

(like HashMap)

Interfaces

Generic built-in methods will work for our class, if we

implement corresponding interface.

Example.
public int compareTo (Object o)

is a method in Comparable interface. Making a class

Comparable (by implementing compareTo) gives a lot

of API methods for free, e.g. sort, max, min, ...

o1.compareTo(o2) < 0 , if o1 is less than o2

== 0 , if o1 equals to o2

> 0 , if o1 is greater than o2

Examples

Pets.java

Phones.java

Num.java

Complex.java

