
Starting with Kotlin

TABLE OF CONTENTS

Preface 2

Introduction 2

Key Features of Kotlin . 2

Getting Started with Kotlin . 2

Variables and Data Types 3

Variables . 3

Data Types . 3

Type Inference . 4

Type Aliases . 4

Strings. 5

Booleans. 6

Arrays . 7

Ranges . 8

Collections . 9

Control Flow 12

If-Else Expressions . 12

When Expressions. 13

For Loops. 14

While Loops . 14

Jump Statements . 14

Functions 15

Function Basics . 15

Default Arguments . 16

Named Arguments . 16

Variable Number of Arguments. 17

Extension Functions . 17

Higher-Order Functions. 18

Tail Recursive Functions . 18

Classes and Objects 19

Classes . 19

Constructors . 19

Inheritance . 20

Data Classes . 21

Object Declarations. 22

Companion Objects . 22

Null Safety 22

STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Nullable and Non-Nullable Types . 22

Safe Calls . 23

Elvis Operator . 23

Non-Null Assertion . 23

Safe Casts . 24

Extensions and Lambdas 24

Extensions . 24

Extension Properties . 25

Lambdas . 25

Higher-Order Functions. 25

Collections 26

Lists. 26

Sets . 27

Maps . 27

Coroutines 28

Introduction to Coroutines . 28

Launching Coroutines . 28

Suspending Functions . 28

Coroutine Context and Dispatchers . 29

Async/Await . 29

Resources 30

1 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

PREFACEPREFACE

Welcome to the Kotlin Cheatsheet! This document
aims to provide you with a quick reference guide to
Kotlin programming language. Whether you are a
beginner getting started with Kotlin or an
experienced developer looking for a quick
reminder, this cheatsheet has got you covered.

Kotlin is a modern, statically typed programming
language developed by JetBrains. It is designed to
be concise, expressive, and interoperable with
existing Java code. Kotlin is known for its safety
features, null safety, and excellent support for
functional programming.

This cheatsheet is divided into several sections,
each focusing on a specific aspect of Kotlin
programming. Each section provides code examples
and explanations to help you understand the
concepts better. Let’s dive in!

INTRODUCTIONINTRODUCTION

Kotlin is a modern programming language that
runs on the Java Virtual Machine (JVM) and can be
used to develop various types of applications,
including Android apps, server-side applications,
and desktop applications. It was officially released
by JetBrains in 2016 and has gained popularity due
to its concise syntax, null safety, and seamless
interoperability with Java.

KEY FEATURES OF KOTLIN

• Concise Syntax: Kotlin provides a more
concise and expressive syntax compared to
Java. It reduces boilerplate code and enhances
readability.

• Null Safety: Kotlin has built-in null safety
features, which help eliminate null pointer
exceptions by distinguishing nullable and non-
nullable types at the language level.

• Interoperability: Kotlin is fully interoperable
with Java, allowing developers to call Java code
from Kotlin and vice versa. This makes it easy
to adopt Kotlin gradually in existing Java
projects.

• Extension Functions: Kotlin allows you to
extend existing classes with new functions,
even without modifying their source code. This
enables adding new behavior to classes without

subclassing or modifying their implementation.

• Coroutines: Kotlin provides native support for
coroutines, which are lightweight concurrency
primitives that simplify asynchronous
programming and enable writing
asynchronous code in a sequential manner.

• Data Classes: Kotlin provides a concise syntax
for creating data classes that automatically
generate standard boilerplate code, such as
equals(), hashCode(), toString(), and copy()
methods.

• Type Inference: Kotlin’s type inference system
automatically infers the types of variables and
expressions, reducing the need for explicit type
declarations.

• Smart Casts: Kotlin has smart casts that
automatically cast variables after null checks,
eliminating the need for explicit type casts in
many cases.

• Functional Programming: Kotlin supports
functional programming constructs, such as
higher-order functions, lambda expressions,
and immutability, making it suitable for
functional programming paradigms.

GETTING STARTED WITH KOTLIN

To start writing Kotlin code, you need to have the
Kotlin compiler installed on your system. You can
download the Kotlin compiler from the official
Kotlin website (https://kotlinlang.org) or use Kotlin
plugins for popular Integrated Development
Environments (IDEs) like IntelliJ IDEA, Android
Studio, or Eclipse.

Once you have the Kotlin compiler or plugin
installed, you can create Kotlin source files with a
.kt extension and start writing Kotlin code. Kotlin
code can be compiled and executed just like Java
code, as both Kotlin and Java bytecode run on the
JVM.

Here’s a simple "Hello, World!" program in Kotlin:

fun main() {
 println("Hello, World!")
}

In this example, the main() function serves as the

2 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://kotlinlang.org
https://www.javacodegeeks.com/minibook

entry point of the program. The println() function
is used to print the string "Hello, World!" to the
console.

You can compile and run the Kotlin code using the
Kotlin compiler or your IDE’s built-in Kotlin
support.

VARIABLES AND DATA TYPESVARIABLES AND DATA TYPES

Variables are used to store data in a program, and
data types define the kind of data that can be stored
in a variable. Kotlin provides a rich set of data
types, including primitives and reference types. In
this section, we’ll explore variables, data types, type
inference, type aliases, strings, booleans, arrays,
ranges, and collections in Kotlin.

VARIABLES

In Kotlin, variables are declared using the val or var
keyword, followed by the variable name and an
optional type annotation. The val keyword is used
for read-only (immutable) variables, while the var
keyword is used for mutable variables.

Here’s an example of declaring variables in Kotlin:

val message: String = "Hello,
Kotlin!" // Read-only variable
var count: Int = 42 // Mutable
variable

count = 10 // Variable can be
reassigned

In this example, we declare a read-only variable
message of type String and initialize it with the
value "Hello, Kotlin!". We also declare a mutable
variable count of type Int and initialize it with the
value 42. Later, we reassign the value of count to 10.

Kotlin supports type inference, so you can omit the
type annotation if the type can be inferred from the
initializer expression:

val message = "Hello, Kotlin!" //
Type inferred as String
var count = 42 // Type inferred as

Int

In this case, the Kotlin compiler infers the types of
the variables based on the types of their initializers.

DATA TYPES

Kotlin provides a rich set of data types, including
both primitives and reference types. The following
table lists some commonly used data types in
Kotlin:

Data Type Description

Byte 8-bit signed integer

Short 16-bit signed integer

Int 32-bit signed integer

Long 64-bit signed integer

Float 32-bit floating-point
number

Double 64-bit floating-point
number

Char 16-bit Unicode character

Boolean Represents the truth
values true and false

String Sequence of characters

Array Fixed-size ordered
collection of elements

List Ordered collection of
elements

Set Unordered collection of
unique elements

Map Collection of key-value
pairs

Here’s an example that demonstrates the use of
different data types in Kotlin:

val age: Int = 25
val price: Double = 9.99
val name: String = "John Doe"
val isReady: Boolean = true

val numbers: Array<Int> = arrayOf(1,
2, 3, 4, 5)
val fruits: List<String> =

3 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

listOf("Apple", "Banana", "Orange")
val uniqueNumbers: Set<Int> =
setOf(1, 2, 3, 4, 5)
val studentMap: Map<String, String>
= mapOf("id" to "123", "name" to
"John Doe")

In this example, we declare variables of different
data types and assign them with appropriate
values. The age variable is of type Int, the price
variable is of type Double, the name variable is of
type String, and the isReady variable is of type
Boolean. We also declare variables of array, list, set,
and map types and initialize them with sample
values.

TYPE INFERENCE

Kotlin has a powerful type inference system that
can automatically determine the types of variables
and expressions based on their context. This
eliminates the need for explicit type annotations in
many cases and makes the code more concise.

When you initialize a variable with an expression,
the Kotlin compiler infers the type of the variable
based on the type of the expression:

val name = "John Doe" // Type
inferred as String
val count = 42 // Type inferred as
Int

In this example, the Kotlin compiler infers that the
name variable is of type String because it is
initialized with a string literal. Similarly, it infers
that the count variable is of type Int because it is
initialized with an integer literal.

Type inference also works with function return
types and expressions:

fun add(a: Int, b: Int) = a + b //
Return type inferred as Int

val result = add(2, 3) // Type
inferred as Int

In this example, the return type of the add()
function is inferred as Int because the expression a
+ b is of type Int. The result variable is also
inferred as Int because it is assigned the value
returned by the add() function.

Type inference improves code readability and
reduces redundancy, as you don’t have to explicitly
specify types that can be easily inferred.

TYPE ALIASES

Kotlin allows you to define type aliases, which
provide alternative names for existing types. Type
aliases can be useful to make your code more
expressive or to provide descriptive names for
complex types.

To define a type alias, you use the typealias
keyword followed by the new name and the
existing type:

typealias Name = String
typealias EmployeeData = Map<String,
Any>

In this example, we define a type alias Name for the
String type and a type alias EmployeeData for the
Map<String, Any> type.

Type aliases can be used interchangeably with their
corresponding types:

val fullName: Name = "John Doe"
val employee: EmployeeData =
mapOf("name" to "John Doe", "age" to
30)

In this example, we declare variables fullName and
employee using the type aliases Name and
EmployeeData, respectively. Under the hood, these
variables have the same types as String and
Map<String, Any>, but the type aliases provide more
descriptive names.

Type aliases are particularly useful when you have
complex types or generic types with long names.
They can make your code more readable and easier
to understand.

4 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

STRINGS

Strings are a fundamental data type in
programming languages, and Kotlin provides rich
support for working with strings. In Kotlin, strings
are represented by the String class, which provides
various methods and operators for string
manipulation.

Creating Strings

In Kotlin, you can create strings using string literals
or by using the String constructor:

val message = "Hello, Kotlin!" //
String literal
val emptyString = String() // Empty
string
val charArray = charArrayOf('H',
'e', 'l', 'l', 'o') // From char
array

In this example, we create a string message using a
string literal. We also create an empty string using
the String() constructor, and a string charArray by
converting a character array to a string.

String Templates

String templates are a powerful feature in Kotlin
that allows you to embed expressions and variables
inside string literals. To create a string template,
you use the $ character followed by the expression
or variable name:

val name = "John Doe"
val greeting = "Hello, $name!"
val count = 42
val message = "The count is $count"

In this example, we use string templates to create
dynamic strings. The greeting string template
includes the value of the name variable, and the
message string template includes the value of the
count variable.

You can also use curly braces {} for more complex
expressions inside string templates:

val a = 10
val b = 20
val result = "The sum of $a and $b
is ${a + b}"

In this example, the expression inside the curly
braces ${a + b} is evaluated and the result is
included in the result string template.

String templates make it easy to create dynamic
strings without the need for string concatenation or
explicit conversion of variables to strings.

String Interpolation

String interpolation is a variant of string templates
that allows you to specify a format for the
interpolated value. To perform string interpolation,
you use the syntax ${expression.format()}.

Here’s an example that demonstrates string
interpolation:

val pi = 3.14159
val formattedPi = "The value of pi
is %.2f".format(pi)

In this example, we format the value of pi to two
decimal places using the format() function with the
format specifier %.2f. The resulting string
formattedPi is "The value of pi is 3.14".

String interpolation is particularly useful when you
need to control the formatting of interpolated
values, such as numbers or dates.

String Operations and Functions

The String class in Kotlin provides various
operations and functions for string manipulation.
Here are some commonly used functions:

Function Description

length() Returns the length of the
string.

isEmpty() Returns true if the string
is empty.

5 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Function Description

isNotEmpty() Returns true if the string
is not empty.

toUpperCase() Converts the string to
uppercase.

toLowerCase() Converts the string to
lowercase.

substring() Returns a substring of
the string.

startsWith() Returns true if the string
starts with the specified
prefix.

endsWith() Returns true if the string
ends with the specified
suffix.

contains() Returns true if the string
contains the specified
substring.

replace() Replaces occurrences of
a substring with another
substring.

trim() Removes leading and
trailing whitespace from
the string.

split() Splits the string into an
array of substrings
based on a delimiter.

Here’s an example that demonstrates some of these
string functions:

val message = " Hello, Kotlin! "
println(message.length) // Output:
19
println(message.toUpperCase()) //
Output: " HELLO, KOTLIN! "
println(message.trim()) // Output:
"Hello, Kotlin!"
println(message.replace("Hello",
"Hi")) // Output: " Hi, Kotlin!
"
println(message.split(",")) //
Output: [" Hello", " Kotlin! "]

In this example, we apply various string functions
to the message string. We calculate the length of the

string, convert it to uppercase, remove leading and
trailing whitespace using trim(), replace the word
"Hello" with "Hi" using replace(), and split the
string into substrings using split().

The String class provides many more functions for
string manipulation, and you can refer to the Kotlin
documentation for a complete list of available
functions.

BOOLEANS

Booleans are a fundamental data type that
represents the truth values true and false. In
Kotlin, the Boolean type is used to declare boolean
variables and express boolean logic.

Here’s an example that demonstrates the use of
booleans in Kotlin:

val isTrue = true // Boolean
variable
val isFalse = false // Boolean
variable

val a = 10
val b = 20
val isGreater = a > b // Boolean
expression

if (isGreater) {
 println("a is greater than b")
} else {
 println("a is not greater than
b")
}

In this example, we declare boolean variables
isTrue and isFalse with the values true and false,
respectively. We also evaluate a boolean expression
a > b and store the result in the isGreater variable.
The if-else statement checks the value of isGreater
and prints the appropriate message.

Boolean variables and expressions are commonly
used in conditional statements, loop conditions, and
logical operations.

6 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

ARRAYS

Arrays are used to store fixed-size collections of
elements of the same type. In Kotlin, arrays are
represented by the Array class, which provides
various operations for working with arrays.

Creating Arrays

To create an array in Kotlin, you use the arrayOf()
function and provide the elements of the array as
arguments:

val numbers = arrayOf(1, 2, 3, 4, 5)
// Array of integers
val names = arrayOf("John", "Jane",
"Alice") // Array of strings

In this example, we create an array numbers
containing integers and an array names containing
strings.

You can also create an array with a specified size
and initialize it with default values using the
Array() constructor:

val zeros = Array(5) { 0 } // Array
of size 5 initialized with zeros
val squares = Array(5) { it * it }
// Array of size 5 initialized with
squares

In this example, we create an array zeros of size 5
and initialize it with zeros. We also create an array
squares of size 5 and initialize it with the squares of
the indices.

Accessing Array Elements

You can access individual elements of an array
using the indexing operator []:

val numbers = arrayOf(1, 2, 3, 4, 5)
val firstNumber = numbers[0] //
Access the first element
val lastNumber =
numbers[numbers.size - 1] // Access
the last element

In this example, we access the first element of the
numbers array using the index 0 and store it in the
firstNumber variable. We also access the last
element of the array using the index numbers.size -
1 and store it in the lastNumber variable.

Modifying Array Elements

You can modify individual elements of an array by
assigning a new value to them:

val numbers = arrayOf(1, 2, 3, 4, 5)
numbers[2] = 10 // Modify the
element at index 2

In this example, we modify the element at index 2
of the numbers array and assign it the value 10.

Array Functions

The Array class in Kotlin provides various functions
for working with arrays. Here are some commonly
used functions:

Function Description

size Returns the size of the
array.

indices Returns the range of
valid indices for the
array.

get(index) Returns the element at
the specified index.

set(index, value) Sets the element at the
specified index to the
specified value.

forEach { element → …
 }

Iterates over the
elements of the array.

filter { element → …
}

Returns a new array
containing only the
elements that satisfy the
specified condition.

map { element → … } Returns a new array
resulting from applying
the specified
transformation to each
element.

7 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Function Description

plus(element) Returns a new array
with the specified
element appended.

Here’s an example that demonstrates some of these
array functions:

val numbers = arrayOf(1, 2, 3, 4, 5)
println(numbers.size) // Output: 5
println(numbers.indices) // Output:
0..4

numbers.forEach { println(it) } //
Output: 1 2 3 4 5

val filteredNumbers = numbers.filter
{ it % 2 == 0 }
println(filteredNumbers) // Output:
[2, 4]

val squaredNumbers = numbers.map {
it * it }
println(squaredNumbers) // Output:
[1, 4, 9, 16, 25]

val newArray = numbers.plus(6)
println(newArray) // Output: [1, 2,
3, 4, 5, 6]

val removedArray = numbers.minus(3)
println(removedArray) // Output: [1,
2, 4, 5]

In this example, we apply various array functions
to the numbers array. We calculate the size of the
array using size(), get the range of valid indices
using indices, iterate over the elements using
forEach, filter the even numbers using filter,
transform the numbers into their squares using map,
append an element using plus, and remove an
element using minus.

The Array class provides many more functions for
array manipulation, and you can refer to the Kotlin
documentation for a complete list of available
functions.

RANGES

Ranges are a useful feature in Kotlin for
representing a sequence of values. Kotlin provides
the .. operator to create ranges and various
functions for working with ranges.

Creating Ranges

To create a range in Kotlin, you use the .. operator
and specify the start and end values:

val numbers = 1..5 // Range from 1
to 5 (inclusive)
val alphabets = 'a'..'z' // Range
from 'a' to 'z' (inclusive)

In this example, we create a range numbers from 1 to
5 (inclusive) and a range alphabets from 'a' to 'z'
(inclusive).

You can also create a range that excludes the end
value using the until function:

val exclusiveRange = 1 until 5 //
Range from 1 to 4 (exclusive)

In this case, the range exclusiveRange includes
values from 1 to 4 (exclusive of 5).

Iterating over Ranges

Ranges can be used to iterate over a sequence of
values using the for loop:

for (number in numbers) {
 println(number)
}

In this example, we use a for loop to iterate over
the numbers range and print each value.

Checking Value Membership

You can check if a value is contained within a range
using the in operator:

8 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

val number = 3
val isInRange = number in numbers //
Check if number is in the range

In this example, we check if the number is contained
within the numbers range and store the result in the
isInRange variable.

Range Functions

The IntRange and CharRange classes in Kotlin provide
various functions for working with ranges. Here
are some commonly used functions:

Method Description

start Returns the start value
of the range.

endInclusive Returns the end value of
the range.

step Returns the step value of
the range.

contains(value) Returns true if the range
contains the specified
value.

isEmpty() Returns true if the range
is empty.

reversed() Returns a new range
with the start and end
values reversed.

forEach { value → … } Iterates over the values
in the range.

count() Returns the number of
values in the range.

sum() Returns the sum of the
values in the range.

average() Returns the average of
the values in the range.

min() Returns the minimum
value in the range.

max() Returns the maximum
value in the range.

Here’s an example that demonstrates some of these
range functions:

val numbers = 1..5
println(numbers.start) // Output: 1
println(numbers.endInclusive) //
Output: 5

println(3 in numbers) // Output:
true
println(6 in numbers) // Output:
false

numbers.forEach { println(it) } //
Output: 1 2 3 4 5

println(numbers.count()) // Output:
5
println(numbers.sum()) // Output: 15
println(numbers.average()) //
Output: 3.0
println(numbers.min()) // Output: 1
println(numbers.max()) // Output: 5

val reversedNumbers =
numbers.reversed()
println(reversedNumbers) // Output:
5..1

In this example, we apply various range functions
to the numbers range. We access the start and end
values using start and endInclusive, check if values
are in the range using contains, iterate over the
values using forEach, calculate the count, sum,
average, minimum, and maximum using count, sum,
average, min, and max respectively. Finally, we create
a reversed range using reversed.

The IntRange and CharRange classes provide many
more functions for working with ranges, and you
can refer to the Kotlin documentation for a
complete list of available functions.

COLLECTIONS

Collections are used to store and manipulate groups
of elements in Kotlin. Kotlin provides a rich set of
collection classes and functions that make working
with collections easy and efficient.

9 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

List

A list is an ordered collection of elements that
allows duplicate elements. In Kotlin, the List
interface represents an immutable (read-only) list,
while the MutableList interface represents a
mutable (read-write) list.

To create a list in Kotlin, you can use the listOf()
function:

val numbers = listOf(1, 2, 3, 4, 5)
// Immutable list
val names = mutableListOf("John",
"Jane", "Alice") // Mutable list

In this example, we create an immutable list
numbers and a mutable list names containing integers
and strings, respectively.

Lists provide various functions for accessing and
manipulating their elements:

Method Description

size Returns the size of the
list.

isEmpty Returns true if the list is
empty.

isNotEmpty Returns true if the list is
not empty.

get(index) Returns the element at
the specified index.

set(index, element) Sets the element at the
specified index to the
specified value.

contains(element) Returns true if the list
contains the specified
element.

indexOf(element) Returns the index of the
first occurrence of the
element.

lastIndexOf(element) Returns the index of the
last occurrence of the
element.

add(element) Adds the element to the
end of the list.

Method Description

add(index, element) Inserts the element at
the specified index.

remove(element) Removes the first
occurrence of the
element from the list.

removeAt(index) Removes the element at
the specified index.

subList(fromIndex,
toIndex)

Returns a new list
containing the elements
between the indices.

Here’s an example that demonstrates some of these
list functions:

val numbers = listOf(1, 2, 3, 4, 5)
println(numbers.size) // Output: 5
println(numbers.isEmpty()) //
Output: false

println(numbers.get(2)) // Output: 3
println(numbers.contains(4)) //
Output: true

val names = mutableListOf("John",
"Jane", "Alice")
names.add("Bob")
names.remove("John")

println(names) // Output: [Jane,
Alice, Bob]

In this example, we apply various list functions to
the numbers and names lists. We calculate the size of
the lists using size(), check if the lists are empty
using isEmpty(), access elements using get(), check
if an element exists using contains(), add elements
using add(), and remove elements using remove().

Set

A set is an unordered collection of unique elements.
In Kotlin, the Set interface represents an immutable
(read-only) set, while the MutableSet interface
represents a mutable (read-write) set.

To create a set in Kotlin, you can use the setOf()
function:

10 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

val numbers = setOf(1, 2, 3, 4, 5)
// Immutable set
val names = mutableSetOf("John",
"Jane", "Alice") // Mutable set

In this example, we create an immutable set numbers
and a mutable set names containing integers and
strings, respectively.

Sets provide various functions for accessing and
manipulating their elements:

Function Description

size Returns the size of the
set.

isEmpty Returns true if the set is
empty.

isNotEmpty Returns true if the set is
not empty.

contains(element) Returns true if the set
contains the specified
element.

add(element) Adds the specified
element to the set.

remove(element) Removes the specified
element from the set.

intersect(otherSet) Returns a new set
containing the common
elements between the
set and the specified set.

union(otherSet) Returns a new set
containing all elements
from the set and the
specified set.

subtract(otherSet) Returns a new set
containing the elements
from the set excluding
the elements present in
the specified set.

Here’s an example that demonstrates some of these
set functions:

val numbers = setOf(1, 2, 3, 4, 5)
println(numbers.size) // Output: 5
println(numbers.isEmpty()) //

Output: false

println(numbers.contains(4)) //
Output: true

val names = mutableSetOf("John",
"Jane", "Alice")
names.add("Bob")
names.remove("John")

println(names) // Output: [Jane,
Alice, Bob]

In this example, we apply various set functions to
the numbers and names sets. We calculate the size of
the sets using size(), check if the sets are empty
using isEmpty(), check if an element exists using
contains(), add elements using add(), and remove
elements using remove().

Map

A map is a collection of key-value pairs, where each
key is unique. In Kotlin, the Map interface represents
an immutable (read-only) map, while the
MutableMap interface represents a mutable (read-
write) map.

To create a map in Kotlin, you can use the mapOf()
function:

val studentMap = mapOf("id" to 123,
"name" to "John Doe") // Immutable
map
val employee

Map = mutableMapOf("id" to 456,
"name" to "Jane Smith") // Mutable
map

In this example, we create an immutable map
studentMap and a mutable map employeeMap
containing key-value pairs representing student
and employee data, respectively.

Maps provide various functions for accessing and
manipulating their elements:

11 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Method Description

size Returns the number of
key-value pairs in the
map.

isEmpty Returns true if the map
is empty.

isNotEmpty Returns true if the map
is not empty.

containsKey(key) Returns true if the map
contains the specified
key.

containsValue(value) Returns true if the map
contains the specified
value.

get(key) Returns the value
associated with the
specified key, or null if
the key is not found.

put(key, value) Associates the specified
value with the specified
key.

remove(key) Removes the key-value
pair with the specified
key.

keys Returns a set of all keys
in the map.

values Returns a collection of
all values in the map.

entries Returns a set of all key-
value pairs in the map.

Here’s an example that demonstrates some of these
map functions:

val studentMap = mapOf("id" to 123,
"name" to "John Doe")
println(studentMap.size) // Output:
2
println(studentMap.isEmpty()) //
Output: false

println(studentMap.containsKey("id")
) // Output: true
println(studentMap.get("name")) //
Output: "John Doe"

val employeeMap = mutableMapOf("id"
to 456, "name" to "Jane Smith")
employeeMap.put("age", 30)
employeeMap.remove("id")

println(employeeMap) // Output:
{name=Jane Smith, age=30}

In this example, we apply various map functions to
the studentMap and employeeMap. We calculate the
size of the maps using size(), check if the maps are
empty using isEmpty(), check if a key exists using
containsKey(), retrieve values using get(), add key-
value pairs using put(), and remove key-value pairs
using remove().

Collections in Kotlin provide a wide range of
functions and capabilities for working with data in
a structured and efficient manner. They are a
fundamental part of many Kotlin programs, and
you can leverage their power to handle complex
data scenarios.

CONTROL FLOWCONTROL FLOW

Control flow statements are used to control the
execution flow of a program based on certain
conditions or criteria. Kotlin provides a set of
control flow statements, including if-else
expressions, when expressions, for loops, while
loops, and jump statements. In this section, we’ll
explore each of these control flow statements in
detail.

IF-ELSE EXPRESSIONS

The if-else expression is used to conditionally
execute a block of code based on a boolean
condition. In Kotlin, the if-else expression can be
used as an expression that returns a value.

Here’s the general syntax of the if-else expression:

val result = if (condition) {
 // Code to execute if the
condition is true
} else {
 // Code to execute if the
condition is false
}

12 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

In this syntax, condition is the boolean expression
that determines which block of code to execute. If
the condition is true, the code inside the first block
is executed; otherwise, the code inside the second
block is executed.

The if-else expression returns a value that is
assigned to the variable result. The type of the
value returned depends on the types of the code
blocks. The types of the code blocks must be
compatible, meaning they should either have the
same type or be subtypes of a common type.

Here’s an example that demonstrates the use of if-
else expressions:

val number = 10
val result = if (number > 0) {
 "Positive"
} else if (number < 0) {
 "Negative"
} else {
 "Zero"
}

println(result) // Output:
"Positive"

In this example, we use the if-else expression to
determine the sign of a number. If the number is
greater than 0, the first block is executed and the
string "Positive" is returned. If the number is less
than 0, the second block is executed and the string
"Negative" is returned. If the number is 0, the third
block is executed and the string "Zero" is returned.

WHEN EXPRESSIONS

The when expression is used to conditionally
execute code based on multiple branches. In Kotlin,
the when expression can be used as an expression
that returns a value or as a statement that performs
an action.

Here’s the general syntax of the when expression:

val result = when (value) {
 branch1 -> {

// Code to execute if value
matches branch1

 }
 branch2 -> {

// Code to execute if value
matches branch2
 }
 branch3, branch4 -> {

// Code to execute if value
matches either branch3 or branch4
 }
 else -> {

// Code to execute if value
doesn't match any branch
 }
}

In this syntax, value is the expression whose value
is matched against the branches. Each branch
consists of a value or a condition followed by the
code to execute if the value matches. If a branch’s
value or condition matches the value, the
corresponding code block is executed. If none of the
branches match the value, the code block inside the
else branch is executed.

The when expression returns a value that is
assigned to the variable result. The types of the
values in the branches must be compatible,
meaning they should either have the same type or
be subtypes of a common type.

Here’s an example that demonstrates the use of
when expressions:

val day = 3
val dayOfWeek = when (day) {
 1 -> "Monday"
 2 -> "Tuesday"
 3 -> "Wednesday"
 4 -> "Thursday"
 5 -> "Friday"
 else -> "Weekend"
}

println(dayOfWeek) // Output:
"Wednesday"

In this example, we use the when expression to
determine the day of the week based on the day
variable. If day is 1, the first branch matches and the

13 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

string "Monday" is returned. If day is 2, the second
branch matches and the string "Tuesday" is
returned. If day is 3, the third branch matches and
the string "Wednesday" is returned. If day is 4, the
fourth branch matches and the string "Thursday" is
returned. If day is 5, the fifth branch matches and
the string "Friday" is returned. For any other value
of day, the else branch matches and the string
"Weekend" is returned.

FOR LOOPS

The for loop is used to iterate over a collection or a
range of values. In Kotlin, the for loop is more
concise and expressive compared to traditional for
loops found in other programming languages.

Here’s the general syntax of the for loop:

for (element in collection) {
 // Code to execute for each
element
}

In this syntax, element is a variable that represents
each element in the collection. The code inside the
loop is executed once for each element in the
collection.

Here’s an example that demonstrates the use of for
loops:

val numbers = listOf(1, 2, 3, 4, 5)

for (number in numbers) {
 println(number)
}

In this example, we use a for loop to iterate over the
numbers list and print each element. The loop
assigns each element of the list to the number
variable, and the code inside the loop prints the
value of number.

The for loop can also be used to iterate over a range
of values:

for (i in 1..5) {
 println(i)

}

In this example, we use a for loop to iterate over the
range from 1 to 5 (inclusive) and print each value.
The loop assigns each value of the range to the
variable i, and the code inside the loop prints the
value of i.

WHILE LOOPS

The while loop is used to repeatedly execute a block
of code as long as a boolean condition is true. In
Kotlin, the while loop is similar to while loops in
other programming languages.

Here’s the general syntax of the while loop:

while (condition) {
 // Code to execute while the
condition is true
}

In this syntax, condition is the boolean expression
that determines whether to continue executing the
code inside the loop. As long as the condition is
true, the code inside the loop is executed
repeatedly.

Here’s an example that demonstrates the use of
while loops:

var count = 0

while (count < 5) {
 println(count)
 count++
}

In this example, we use a while loop to repeatedly
print the value of the count variable as long as it is
less than 5. The code inside the loop prints the value
of count and increments it by 1 in each iteration.

JUMP STATEMENTS

Jump statements are used to transfer control to a
different part of the program. Kotlin provides three
jump statements: break, continue, and return.

14 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

• The break statement is used to terminate the
execution of a loop or a when expression.
When the break statement is encountered, the
program execution resumes at the next
statement after the loop or the when
expression.

• The continue statement is used to skip the
current iteration of a loop and move to the next
iteration. When the continue statement is
encountered, the program execution jumps to
the beginning of the loop and evaluates the
loop condition again.

• The return statement is used to exit a function
or a lambda expression and return a value.
When the return statement is encountered, the
program execution exits the current function
or lambda and returns the specified value, if
any.

Here’s an example that demonstrates the use of
jump statements:

val numbers = listOf(1, 2, 3, 4, 5)

for (number in numbers) {
 if (number == 3) {

break // Terminate the loop
when number is 3
 }

 if (number == 2) {
continue // Skip the

iteration when number is 2
 }

 println(number)
}

fun sum(a: Int, b: Int): Int {
 if (a == 0 || b == 0) {

return 0 // Exit the
function and return 0 if either a or
b is 0
 }

 return a + b
}

In this example, we use the break statement to
terminate the loop when the number is 3. When the
break statement is encountered, the loop is
terminated and the program execution resumes at
the next statement after the loop. We also use the
continue statement to skip the iteration when the
number is 2. When the continue statement is
encountered, the program execution jumps to the
beginning of the loop and evaluates the loop
condition again.

In the sum function, we use the return statement to
exit the function and return a value. If either a or b
is 0, the function exits immediately and returns 0.
Otherwise, it calculates the sum of a and b and
returns the result.

Jump statements provide flexibility in controlling
the flow of a program, allowing you to terminate
loops early, skip iterations, or exit functions when
certain conditions are met.

FUNCTIONSFUNCTIONS

Functions are a fundamental building block in
Kotlin that allow you to group and reuse code.
Functions encapsulate a sequence of statements
and can accept input parameters and return output
values. In this section, we’ll explore how to define
and use functions in Kotlin.

FUNCTION BASICS

A function in Kotlin is declared using the fun
keyword, followed by the function name, a
parameter list (optional), a return type (optional),
and a body enclosed in curly braces.

Here’s the general syntax of a function declaration:

fun functionName(parameters):
returnType {
 // Code to execute
 // Optional return statement
}

In this syntax:

• functionName is the name of the function.

• parameters is an optional comma-separated list
of input parameters, each with a name and a

15 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

type.

• returnType is the optional return type of the
function.

• The body of the function contains the code to
be executed.

Here’s an example of a simple function that
calculates the sum of two integers:

fun sum(a: Int, b: Int): Int {
 return a + b
}

In this example, we declare a function named sum
that takes two parameters of type Int named a and
b. The function returns an Int value, which is the
sum of the parameters.

Functions can be called by using their names
followed by parentheses containing the arguments.
Here’s an example that demonstrates calling the sum
function:

val result = sum(3, 4)
println(result) // Output: 7

In this example, we call the sum function with
arguments 3 and 4. The function calculates the sum
of the arguments and returns the result, which is
assigned to the result variable. Finally, we print the
value of result, which outputs 7.

DEFAULT ARGUMENTS

Kotlin allows you to specify default values for
function parameters. A default value is used when
no argument is provided for that parameter in a
function call.

Here’s an example of a function with default
arguments:

fun greet(name: String = "Guest") {
 println("Hello

, $name!")
}

In this example, the greet function has a parameter
name of type String with a default value of "Guest". If
no argument is provided for name in a function call,
the default value "Guest" is used.

Here are some examples of calling the greet
function:

greet() // Output: "Hello, Guest!"
greet("John") // Output: "Hello,
John!"

In the first example, we call the greet function
without providing an argument for name. Since no
argument is provided, the default value "Guest" is
used.

In the second example, we call the greet function
and provide the argument "John" for name. The
provided argument overrides the default value, and
"John" is used instead.

Default arguments are useful when you want to
provide flexibility in function calls by allowing
some arguments to be omitted.

NAMED ARGUMENTS

Kotlin allows you to specify function arguments by
name, instead of relying on the order of arguments.

Here’s an example of a function with named
arguments:

fun fullName(firstName: String,
lastName: String) {
 println("Full Name: $firstName
$lastName")
}

In this example, the fullName function has two
parameters: firstName and lastName. To specify the
arguments by name, you use the parameter names
followed by the = symbol.

Here are some examples of calling the fullName
function using named arguments:

fullName(firstName = "John",

16 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

lastName = "Doe") // Output: "Full
Name: John Doe"
fullName(lastName = "Smith",
firstName = "Jane") // Output: "Full
Name: Jane Smith"

In the first example, we call the fullName function
and specify the arguments by name. The order of
the arguments is not important because we
explicitly provide the parameter names.

In the second example, we provide the arguments
in a different order, but the function still produces
the correct output because we use the parameter
names to specify the arguments.

Named arguments are useful when a function has
many parameters and you want to make the
function calls more readable and self-explanatory.

VARIABLE NUMBER OF ARGUMENTS

Kotlin allows you to define functions with a
variable number of arguments, known as varargs.
Varargs are useful when you want to pass a
variable number of arguments of the same type to a
function.

Here’s an example of a function with a vararg
parameter:

fun sum(vararg numbers: Int): Int {
 var total = 0
 for (number in numbers) {

total += number
 }
 return total
}

In this example, the sum function takes a vararg
parameter numbers of type Int. The function
calculates the sum of all the numbers passed as
arguments and returns the result.

Here are some examples of calling the sum function
with different numbers of arguments:

val result1 = sum(1, 2, 3, 4, 5)

val result2 = sum(10, 20, 30)

In the first example, we call the sum function with
five arguments 1, 2, 3, 4, and 5. The function
calculates the sum of these numbers and returns
the result, which is assigned to the result1 variable.

In the second example, we call the sum function
with three arguments 10, 20, and 30. The function
calculates the sum of these numbers and returns
the result, which is assigned to the result2 variable.

Varargs provide flexibility in function calls by
allowing a variable number of arguments to be
passed without explicitly creating an array or a
collection.

EXTENSION FUNCTIONS

Extension functions allow you to add new functions
to existing classes without modifying their source
code. Extension functions are defined outside the
class they extend and can be called on instances of
the extended class.

Here’s the general syntax of an extension function:

fun
ClassName.functionName(parameters):
returnType {
 // Code to execute
}

In this syntax, ClassName is the name of the class
being extended, functionName is the name of the
extension function, parameters is the optional
comma-separated list of input parameters, and
returnType is the return type of the function.

Here’s an example of an extension function that
calculates the square of an Int:

fun Int.square(): Int {
 return this * this
}

In this example, we define an extension function
square for the Int class. The extension function can
be called on instances of the Int class and calculates

17 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

the square of the value.

Here’s an example of calling the square extension
function:

val number = 5
val result = number.square()
println(result) // Output: 25

In this example, we call the square extension
function on the number variable of type Int. The
extension function calculates the square of the
value 5 and returns the result, which is assigned to
the result variable. Finally, we print the value of
result, which outputs 25.

Extension functions are a powerful feature of
Kotlin that allows you to add functionality to
existing classes, even if you don’t have access to
their source code.

HIGHER-ORDER FUNCTIONS

Higher-order functions are functions that can
accept other functions as parameters or return
functions as results. Higher-order functions are a
key feature of functional programming and enable
you to write code that is more concise and
expressive.

Here’s an example of a higher-order function that
takes a function as a parameter:

fun operateOnNumbers(a: Int, b: Int,
operation: (Int, Int) -> Int): Int {
 return operation(a, b)
}

In this example, the operateOnNumbers function takes
two parameters a and b of type Int, and a third
parameter operation of type (Int, Int) → Int. The
operation parameter represents a function that
takes two Int parameters and returns an Int result.

Here’s an example of calling the operateOnNumbers
higher-order function:

val sum = operateOnNumbers(3, 4) {
a, b ->

 a + b
}

val product = operateOnNumbers(5, 6)
{ a, b ->
 a * b
}

In this example, we call the operateOnNumbers
function twice, passing different functions as the
operation parameter. The first call calculates the
sum of 3 and 4 using a lambda expression, and the
second call calculates the product of 5 and 6 using
another lambda expression.

Higher-order functions enable you to write more
generic and reusable code by abstracting the
behavior of a function and allowing it to be
customized at runtime.

TAIL RECURSIVE FUNCTIONS

Kotlin supports tail recursion optimization, which
allows certain recursive functions to be executed
without consuming additional stack space. A tail
recursive function is a function where the recursive
call is the last operation in the function.

To define a tail recursive function, you can use the
tailrec modifier before the function declaration.

Here’s an example of a tail recursive function that
calculates the factorial of a number:

tailrec fun factorial(n: Int, acc:
Int = 1): Int {
 return if (n == 0) {

acc
 } else {

factorial(n - 1, n * acc)
 }
}

In this example, the factorial function is defined as
tail recursive using the tailrec modifier. The
function takes two parameters n and acc, where n
represents the number for which factorial is
calculated, and acc represents the accumulated
result. The function calculates the factorial of n
using a tail recursive approach.

18 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Tail recursive functions can be called like any other
function:

val result = factorial(5)
println(result) // Output: 120

In this example, we call the factorial function with
the argument 5. The function calculates the
factorial of 5 using a tail recursive approach and
returns the result, which is assigned to the result
variable. Finally, we print the value of result,
which outputs 120.

Using tail recursive functions can help prevent
stack overflow errors for recursive computations
that involve large input values.

Functions are a powerful feature in Kotlin that
allow you to encapsulate code, organize logic, and
promote code reuse. Understanding how to define
and use functions is essential for writing clean and
maintainable Kotlin code.

CLASSES AND OBJECTSCLASSES AND OBJECTS

Classes and objects are the basic building blocks of
object-oriented programming in Kotlin. They allow
you to define blueprints for creating objects and
encapsulate data and behavior. In this section, we’ll
explore how to define classes and objects, and how
to work with them in Kotlin.

CLASSES

A class is a blueprint for creating objects. It defines
the properties and behavior that objects of the class
will have. In Kotlin, classes are defined using the
class keyword, followed by the class name, an
optional primary constructor, and a body enclosed
in curly braces.

Here’s the general syntax of a class declaration:

class ClassName {
 // Properties
 // Methods
}

In this syntax, ClassName is the name of the class.
Inside the class body, you can define properties and

methods.

Here’s an example of a simple class that represents
a person:

class Person {
 var name: String = ""
 var age: Int = 0

 fun speak() {
println("Hello, my name is

$name and I'm $age years old.")
 }
}

In this example, we define a class named Person.
The class has two properties: name, which is of type
String, and age, which is of type Int. The class also
has a method named speak, which prints a greeting
message using the values of the name and age
properties.

To create an object of a class, you can use the new
keyword followed by the class name and
parentheses:

val person = Person()

In this example, we create an object of the Person
class and assign it to the person variable.

You can access the properties and methods of an
object using the dot notation:

person.name = "John"
person.age = 25
person.speak() // Output: "Hello, my
name is John and I'm 25 years old."

In this example, we set the name and age properties
of the person object and call the speak method,
which prints a greeting message.

CONSTRUCTORS

A constructor is a special member function that is
used to initialize the properties of a class when an
object is created. In Kotlin, classes can have one

19 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

primary constructor and one or more secondary
constructors.

Primary Constructor

The primary constructor is part of the class header
and is defined after the class name. It can have
parameters, which are used to initialize the
properties of the class.

Here’s an example of a class with a primary
constructor:

class Person(name: String, age: Int)
{
 var name: String = name
 var age: Int = age

 fun speak() {
println("Hello, my name is

$name and I'm $age years old.")
 }
}

In this example, the Person class has a primary
constructor that takes two parameters: name of type
String and age of type Int. The primary constructor
initializes the name and age properties of the class.

To create an object of a class with a primary
constructor, you can use the new keyword followed
by the class name and the constructor arguments:

val person = Person("John", 25)

In this example, we create an object of the Person
class with the name and age constructor arguments.

Secondary Constructors

Secondary constructors are additional constructors
that can be defined inside a class. They are defined
using the constructor keyword and can have their
own parameters.

Here’s an example of a class with a secondary
constructor:

class Person {

 var name: String = ""
 var age: Int = 0

 constructor(name: String, age:
Int) {

this.name = name
this.age = age

 }

 fun speak() {
println("Hello, my name is

$name and I'm $age years old.")
 }
}

In this example, the Person class has a secondary
constructor that takes the name and age parameters.
The secondary constructor initializes the name and
age properties of the class.

To create an object of a class with a secondary
constructor, you can use the new keyword followed
by the class name and the constructor arguments:

val person = Person("John", 25)

In this example, we create an object of the Person
class with the name and age constructor arguments.

INHERITANCE

Inheritance is a mechanism that allows a class to
inherit properties and behavior from another class.
In Kotlin, classes can inherit from other classes
using the : superclass() syntax.

Here’s an example of a class that inherits from
another class:

open class Animal {
 open fun speak() {

println("The animal makes a
sound.")
 }
}

class Dog : Animal() {
 override fun speak() {

20 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

println("The dog barks.")
 }
}

In this example, the Animal class is a base class that
has a method named speak. The Dog class is a
derived class that inherits from the Animal class
using the : Animal() syntax. The Dog class overrides
the s peak method to provide its own
implementation.

To create an object of a derived class, you can use
the same syntax as creating an object of the base
class:

val dog = Dog()

In this example, we create an object of the Dog class
and assign it to the dog variable.

You can call the overridden method of the derived
class using the dot notation:

dog.speak() // Output: "The dog
barks."

In this example, we call the speak method of the dog
object, which outputs "The dog barks.". The derived
class overrides the method of the base class to
provide its own implementation.

Inheritance allows you to create class hierarchies
and promote code reuse by inheriting properties
and behavior from base classes.

DATA CLASSES

Data classes are special classes in Kotlin that are
used to hold data and automatically provide useful
functions such as equals, hashCode, and toString.
Data classes are defined using the data keyword
before the class keyword.

Here’s an example of a data class:

data class Person(val name: String,
val age: Int)

In this example, we define a data class named
Person that has two properties: name of type String
and age of type Int. The val keyword before the
properties makes them read-only (immutable).

Data classes automatically generate the following
functions:

• equals(other: Any?): Boolean: Compares two
objects for structural equality.

• hashCode(): Int: Calculates a hash code value
for the object.

• toString(): String: Returns a string
representation of the object.

Data classes also provide a componentN function for
each property, which allows you to access the
properties using destructuring declarations.

Here’s an example of using a data class:

val person1 = Person("John", 25)
val person2 = Person("John", 25)

println(person1 == person2) //
Output: true

val (name, age) = person1
println("Name: $name, Age: $age") //
Output: "Name: John, Age: 25"

In this example, we create two objects of the Person
data class with the same property values. We use
the == operator to compare the objects for equality,
which returns true. Data classes automatically
generate the equals function based on the property
values.

We also use a destructuring declaration to assign
the property values of person1 to the name and age
variables. The component1() and component2()
functions generated by the data class are used
internally in the destructuring declaration.

Data classes are useful when you need to define
classes that primarily hold data and want to
leverage the automatic generation of useful
functions.

21 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

OBJECT DECLARATIONS

Object declarations are a way to define a singleton
object, which is a class that has only one instance.
In Kotlin, you can define an object declaration using
the object keyword.

Here’s an example of an object declaration:

object Logger {
 fun log(message: String) {

println("Log: $message")
 }
}

In this example, we define an object declaration
named Logger. The Logger object has a log function
that prints a log message.

You can call the functions of an object declaration
directly:

Logger.log("Hello, World!") //
Output: "Log: Hello, World!"

In this example, we call the log function of the
Logger object, which prints the log message "Hello,
World!".

Object declarations are a convenient way to define
singleton objects without explicitly creating a class
and instantiating it.

COMPANION OBJECTS

Companion objects are objects that are associated
with a class and can access its private members. In
Kotlin, you can define a companion object inside a
class using the companion keyword.

Here’s an example of a class with a companion
object:

class MathUtils {
 companion object {

fun square(number: Int): Int
{

return number * number
}

 }
}

In this example, we define a class named MathUtils
with a companion object. The companion object has
a square function that calculates the square of a
number.

You can call the functions of a companion object
using the class name:

val result = MathUtils.square(5)
println(result) // Output: 25

In this example, we call the square function of the
MathUtils companion object using the class name
MathUtils. The function calculates the square of 5
and returns the result, which is assigned to the
result variable. Finally, we print the value of
result, which outputs 25.

Companion objects are useful when you want to
define utility functions or constants that are
associated with a class.

Classes and objects are the fundamental building
blocks of object-oriented programming in Kotlin.
Understanding how to define and work with classes
and objects is essential for creating reusable and
modular code.

NULL SAFETYNULL SAFETY

Null safety is a feature in Kotlin that helps prevent
null pointer exceptions, which are a common
source of bugs in many programming languages.
Kotlin provides a type system that distinguishes
between nullable and non-nullable types, and
enforces null safety through the use of safe calls
and null checks. In this section, we’ll explore the
null safety features in Kotlin and how to use them
effectively.

NULLABLE AND NON-NULLABLE TYPES

In Kotlin, there are two kinds of types: nullable
types and non-nullable types.

A nullable type is denoted by adding a ? after the
type name. A nullable type can hold a value of its
underlying type or null. For example, String? is a

22 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

nullable type that can hold a String value or null.

A non-nullable type does not allow null values. If
you declare a variable with a non-nullable type, you
must initialize it with a non-null value. For
example, String is a non-nullable type that can only
hold non-null String values.

Here’s an example that demonstrates nullable and
non-nullable types:

val nullableString: String? = null
val nonNullableString: String =
"Hello, World!"

println(nullableString) // Output:
null
println(nonNullableString) //
Output: "Hello, World!"

In this example, we declare a variable
nullableString of type String? and initialize it with
null. The variable can hold a String value or null.
We also declare a variable nonNullableString of type
String and initialize it with the non-null value
"Hello, World!".

SAFE CALLS

Safe calls are a way to safely access properties and
call methods on nullable objects. In Kotlin, you can
use the safe call operator ?. to perform safe calls.

Here’s an example that demonstrates safe calls:

val nullableString: String? = null

val length = nullableString?.length

println(length) // Output: null

In this example, we have a nullable variable
nullableString that is initialized with null. We use
the safe call operator ?. to access the length
property of the nullableString variable. If the
nullableString is null, the safe call expression
returns null, and the length variable is assigned
null. Otherwise, if the nullableString is not null,
the safe call expression returns the value of the

length property.

Safe calls provide a convenient way to access
properties and call methods on nullable objects
without the need for explicit null checks.

ELVIS OPERATOR

The Elvis operator ?: is used to provide a default
value when a nullable expression is null. The Elvis
operator can be used in conjunction with safe calls
to handle nullable expressions.

Here’s an example that demonstrates the Elvis
operator:

val nullableString: String? = null

val length = nullableString?.length
?: 0

println(length) // Output: 0

In this example, we use the Elvis operator ?: to
provide a default value of 0 when the
nullableString is null. If the nullableString is not
null, the safe call expression
nullableString?.length returns the value of the
length property. Otherwise, if the nullableString is
null, the Elvis operator expression returns 0.

The Elvis operator is a concise way to handle
nullable expressions and provide default values
when necessary.

NON-NULL ASSERTION

The non-null assertion operator !! is used to assert
that a nullable expression is not null. If the nullable
expression is null, a NullPointerException is
thrown.

Here’s an example that demonstrates the non-null
assertion operator:

val nullableString: String? = null

val length = nullableString!!.length

println(length) // Throws

23 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

NullPointerException

In this example, we use the non-null assertion
operator !! to assert that the nullableString is not
null before accessing its length property. If the
nullableString is null, a NullPointerException is
thrown.

The non-null assertion operator should be used
with caution, as it can lead to runtime exceptions if
used improperly. It should only be used when you
are certain that the nullable expression is not null.

SAFE CASTS

Safe casts are used to cast an object to a nullable
type when the cast may fail. In Kotlin, you can use
the safe cast operator as? to perform safe casts.

Here’s an example that demonstrates safe casts:

val obj: Any = "Hello, World!"

val string: String? = obj as? String

println(string) // Output: "Hello,
World!"

In this example, we have an object obj of type Any
that holds a String value. We use the safe cast
operator as? to cast obj to the nullable type String?.
If the cast is successful, the safe cast expression
returns the value of obj as a String. Otherwise, if
the cast fails, the safe cast expression returns null.

Safe casts provide a way to safely cast objects and
handle cases where the cast may fail.

Null safety is an important feature in Kotlin that
helps prevent null pointer exceptions. By using
nullable and non-nullable types, safe calls, the Elvis
operator, non-null assertions, and safe casts, you
can write more robust and error-free code.

EXTENSIONS AND LAMBDASEXTENSIONS AND LAMBDAS

Extensions and lambdas are powerful features in
Kotlin that allow you to add new functionality to
existing classes and work with functions as first-
class citizens. In this section, we’ll explore how to

define and use extensions and lambdas in Kotlin.

EXTENSIONS

Extensions allow you to add new functions and
properties to existing classes without modifying
their source code. Extensions are defined outside
the class they extend and can be called on instances
of the extended class.

Here’s the general syntax of an extension function:

fun
ClassName.functionName(parameters):
returnType {
 // Code to execute
}

In this syntax, ClassName is the name of the class
being extended, functionName is the name of the
extension function, parameters is the optional
comma-separated list of input parameters, and
returnType is the return type of the function.

Here’s an example of an extension function that
calculates the square of an Int:

fun Int.square(): Int {
 return this * this
}

In this example, we define an extension function
square for the Int class. The extension function can
be called on instances of the Int class and calculates
the square of the value.

Here’s an example of calling the square extension
function:

val number = 5
val result = number.square()
println(result) // Output: 25

In this example, we call the square extension
function on the number variable of type Int. The
extension function calculates the square of the
value 5 and returns the result, which is assigned to
the result variable. Finally, we print the value of

24 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

result, which outputs 25.

Extensions provide a way to add new functionality
to existing classes and promote code reuse without
modifying the original class.

EXTENSION PROPERTIES

In addition to extension functions, Kotlin also
allows you to define extension properties, which
are similar to regular properties but are added to
existing classes.

Here’s an example of an extension property:

val String.hasUppercase: Boolean
 get() = this.any {
it.isUpperCase() }

In this example, we define an extension property
hasUppercase for the String class. The extension
property is defined using the val keyword, followed
by the property name hasUppercase. The get()
function is the getter function that returns the
value of the property.

Here’s an example of accessing the extension
property:

val text = "Hello, World!"

println(text.hasUppercase) //
Output: true

In this example, we access the hasUppercase
extension property on the text variable of type
String. The extension property checks whether the
string contains any uppercase characters and
returns true if it does.

Extension properties provide a way to add
additional properties to existing classes, enhancing
their functionality.

LAMBDAS

Lambdas are anonymous functions that can be
treated as values and passed around in your code.
In Kotlin, you can define lambdas using a
lightweight syntax.

Here’s the general syntax of a lambda:

val lambdaName: (parameters) ->
returnType = { arguments ->

 // Code to execute
}

In this syntax, lambdaName is the name of the lambda
(optional), parameters is the optional comma-
separated list of input parameters, returnType is the
return type of the lambda (optional), and arguments
is the body of the lambda.

Here’s an example of a lambda that adds two
numbers:

val add: (Int, Int) -> Int = { a, b
->
 a + b
}

In this example, we define a lambda named add that
takes two Int parameters and returns their sum.

Here’s an example of calling the lambda:

val result = add(3, 4)
println(result) // Output: 7

In this example, we call the add lambda with the
arguments 3 and 4. The lambda adds the two
numbers and returns the sum, which is assigned to
the result variable. Finally, we print the value of
result, which outputs 7.

Lambdas are often used with higher-order
functions to provide concise and expressive code.

HIGHER-ORDER FUNCTIONS

Higher-order functions are functions that can
accept other functions as parameters or return
functions as results. Higher-order functions are a
key feature of functional programming and enable
you to write code that is more concise and
expressive.

25 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Here’s an example of a higher-order function that
takes a function as a parameter:

fun operateOnNumbers(a: Int, b: Int,
operation: (Int, Int) -> Int): Int {
 return operation(a, b)
}

In this example, the operateOnNumbers function takes
two parameters a and b of type Int, and a third
parameter operation of type (Int, Int) → Int. The
operation parameter represents a function that
takes two Int parameters and returns an Int result.

Here’s an example of calling the operateOnNumbers
higher-order function:

val sum = operateOnNumbers(3, 4) {
a, b ->
 a + b
}

val product = operateOnNumbers(5, 6)
{ a, b ->
 a * b
}

In this example, we call the operateOnNumbers
function twice, passing different functions as the
operation parameter. The first call calculates the
sum of 3 and 4 using a lambda expression, and the
second call calculates the product of 5 and 6 using
another lambda expression.

Higher-order functions enable you to write more
generic and reusable code by abstracting the
behavior of a function and allowing it to be
customized at runtime.

Extensions and lambdas are powerful features in
Kotlin that enable you to extend existing classes
with new functionality and work with functions as
first-class citizens. By using extensions and
lambdas, you can write code that is more modular,
reusable, and expressive.

COLLECTIONSCOLLECTIONS

Collections are a fundamental part of any

programming language, and Kotlin provides a rich
set of collection classes and functions. In this
section, we’ll explore the different types of
collections available in Kotlin and how to work
with them effectively.

LISTS

Lists are ordered collections of elements, where
each element has an index. In Kotlin, you can create
lists using the listOf() function or the
mutableListOf() function if you need to modify the
list.

Here’s an example of creating a list and accessing
its elements:

val fruits = listOf("Apple",
"Banana", "Orange")

println(fruits[0]) // Output:
"Apple"
println(fruits[1]) // Output:
"Banana"
println(fruits[2]) // Output:
"Orange"

In this example, we create a list of fruits using the
listOf() function. We can access the elements of
the list using the index in square brackets.

Lists are immutable by default, which means you
cannot add or remove elements once the list is
created. If you need to modify the list, you can use
the mutableListOf() function instead:

val mutableFruits =
mutableListOf("Apple", "Banana",
"Orange")

mutableFruits.add("Mango")
mutableFruits.removeAt(1)

println(mutableFruits) // Output:
["Apple", "Orange", "Mango"]

In this example, we create a mutable list of fruits
using the mutableListOf() function. We can add
elements to the list using the add() method and

26 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

remove elements using the removeAt() method.

Lists provide an ordered collection of elements and
are useful when you need to maintain the order of
elements or access elements by index.

SETS

Sets are collections of unique elements with no
defined order. In Kotlin, you can create sets using
the setOf() function or the mutableSetOf() function
if you need to modify the set.

Here’s an example of creating a set and accessing
its elements:

val numbers = setOf(1, 2, 3, 4, 5)

println(numbers.contains(3)) //
Output: true
println(numbers.contains(6)) //
Output: false

In this example, we create a set of numbers using
the setOf() function. We can check if an element is
present in the set using the contains() method.

Sets are immutable by default, but if you need to
modify the set, you can use the mutableSetOf()
function:

val mutableNumbers = mutableSetOf(1,
2, 3, 4, 5)

mutableNumbers.add(6)
mutableNumbers.remove(3)

println(mutableNumbers) // Output:
[1, 2, 4, 5, 6]

In this example, we create a mutable set of
numbers using the mutableSetOf() function. We can
add elements to the set using the add() method and
remove elements using the remove() method.

Sets are useful when you need to maintain a
collection of unique elements and don’t require a
specific order.

MAPS

Maps are collections of key-value pairs, where each
key is unique. In Kotlin, you can create maps using
the mapOf() function or the mutableMapOf() function
if you need to modify the map.

Here’s an example of creating a map and accessing
its values using keys:

val fruits = mapOf(
 "apple" to "red",
 "banana" to "yellow",
 "orange" to "orange"
)

println(fruits["apple"]) // Output:
"red"
println(fruits["banana"]) // Output:
"yellow"
println(fruits["orange"]) // Output:
"orange"

In this example, we create a map of fruits and their
corresponding colors using the mapOf() function. We
can access the values of the map using the keys in
square brackets.

Maps are immutable by default, but if you need to
modify the map, you can use the mutableMapOf()
function:

val mutableFruits = mutableMapOf(

 "apple" to "red",
 "banana" to "yellow",
 "orange" to "orange"
)

mutableFruits["grape"] = "purple"
mutableFruits.remove("apple")

println(mutableFruits) // Output:
{banana=yellow, orange=orange,
grape=purple}

In this example, we create a mutable map of fruits

27 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

and their colors using the mutableMapOf() function.
We can add key-value pairs to the map using the
square bracket syntax and the assignment operator,
and remove key-value pairs using the remove()
method.

Maps are useful when you need to associate values
with unique keys and perform efficient key-based
lookups.

Collections are a powerful tool in Kotlin that allow
you to store, access, and manipulate groups of
related data. By understanding the different types
of collections and how to work with them, you can
write code that is more organized and efficient.

COROUTINESCOROUTINES

Coroutines are a powerful concurrency framework
in Kotlin that allow you to write asynchronous code
in a sequential and structured manner. Coroutines
enable non-blocking, concurrent programming
without the complexities of traditional multi-
threading. In this section, we’ll explore how to use
coroutines in Kotlin to write asynchronous and
concurrent code.

INTRODUCTION TO COROUTINES

Coroutines are lightweight threads that can be
suspended and resumed at specific points without
blocking the execution of other coroutines.
Coroutines provide a way to write asynchronous
code that looks like sequential code, making it
easier to reason about and maintain.

To use coroutines in Kotlin, you need to add the
kotlinx.coroutines dependency to your project.
Coroutines are part of the Kotlin standard library
and provide a rich set of functions and utilities for
asynchronous programming.

LAUNCHING COROUTINES

To launch a new coroutine, you can use the launch
function provided by the kotlinx.coroutines library.
The launch function starts a new coroutine that
runs concurrently with the rest of the code.

Here’s an example of launching a coroutine:

import kotlinx.coroutines.*

fun main() {
 GlobalScope.launch {

// Code to execute in the
coroutine
 }

 // Code to execute outside the
coroutine

 Thread.sleep(1000) // Wait for
the coroutine to finish
}

In this example, we use the launch function from
GlobalScope to start a new coroutine. The code
inside the coroutine will execute concurrently with
the code outside the coroutine. We use
Thread.sleep(1000) to wait for the coroutine to
finish before the program exits.

SUSPENDING FUNCTIONS

Suspending functions are functions that can be
suspended and resumed later without blocking the
execution of other coroutines. Suspending
functions are defined using the suspend modifier.

Here’s an example of a suspending function:

import kotlinx.coroutines.delay

suspend fun doWork() {
 delay(1000) // Simulate some
work
 println("Work completed")
}

In this example, we define a suspending function
doWork using the suspend modifier. The function
suspends for 1000 milliseconds using the delay
function from the kotlinx.coroutines library,
simulating some work. After the suspension, it
prints a message indicating that the work is
completed.

Suspending functions can only be called from
within a coroutine or another suspending function.

28 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

COROUTINE CONTEXT AND
DISPATCHERS

Coroutines run in a specific context, which defines
the execution environment for the coroutine. The
context includes the dispatcher, which determines
the thread or thread pool on which the coroutine
runs.

In Kotlin, the Dispatchers object provides a set of
dispatchers that define different execution
environments for coroutines:

• Dispatchers.Default: Uses a shared pool of
threads for CPU-intensive work.

• Dispatchers.IO: Uses a shared pool of threads
for I/O-bound work, such as file I/O and
network requests.

• Dispatchers.Main: Uses the main thread for UI-
related work in Android applications.

• Dispatchers.Unconfined: Runs the coroutine in
the caller thread until the first suspension
point.

You can specify the dispatcher for a coroutine using
the CoroutineScope or the withContext function.

Here’s an example of specifying a dispatcher using
CoroutineScope:

import kotlinx.coroutines.*

fun main() = runBlocking {
 launch(Dispatchers.Default) {

// Code to execute in the
coroutine
 }

 // Code to execute outside the
coroutine

 delay(1000) // Wait for the
coroutine to finish
}

In this example, we use the launch function from
the CoroutineScope provided by runBlocking to start
a new coroutine with the Dispatchers.Default
dispatcher. The code inside the coroutine will

execute on a separate thread from the default pool.
The code outside the coroutine will execute on the
main thread.

ASYNC/AWAIT

The async function is used to perform concurrent
computations and await the result of a coroutine.
The async function returns a Deferred object, which
represents a future value or a promise.

Here’s an example of using async and await:

import kotlinx.coroutines.*

suspend fun getRemoteData(): String
{
 delay(1000) // Simulate fetching
remote data
 return "Remote Data"
}

fun main() = runBlocking {
 val deferred = async {
getRemoteData() }

 // Code to execute outside the
coroutine

 val result = deferred.await()
 println(result) // Output:
"Remote Data"
}

In this example, we define a suspending function
getRemoteData that simulates fetching remote data.
We use the async function to start a new coroutine
that invokes the getRemoteData function. The async
function returns a Deferred object, which
represents the result of the coroutine. We use the
await function to wait for the completion of the
coroutine and retrieve the result.

Async/await is a powerful pattern that allows you to
perform concurrent computations and wait for
their results without blocking the execution of
other coroutines.

Coroutines are a versatile tool for writing
asynchronous and concurrent code in Kotlin. By

29 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

using coroutines, you can write code that is more
structured, sequential, and easier to reason about.
Coroutines provide a rich set of functions and
utilities for handling concurrency, such as
launching coroutines, suspending functions,
specifying dispatchers, and using async/await for
concurrent computations.

RESOURCESRESOURCES

These resources provide a comprehensive starting
point for learning and working with Kotlin. They
cover official documentation, community-driven
content, online tools, and helpful forums. Feel free
to explore them based on your specific needs and
interests.

Resource Description

Kotlin Programming
Language

Official website for
Kotlin programming
language. Provides
documentation,
tutorials, and reference
material.

Kotlin Koans Interactive online
exercises to learn Kotlin
concepts and syntax.

Kotlin Standard Library Documentation for the
Kotlin Standard Library,
which includes a wide
range of utility functions
and classes.

Kotlin Coroutines Guide Official guide for Kotlin
coroutines. Covers the
basics, advanced topics,
and best practices for
working with
coroutines.

Kotlin for Android
Developers

Official documentation
and resources for using
Kotlin in Android
development. Includes
guides, samples, and
migration information.

Resource Description

Kotlin GitHub
Repository

GitHub repository for
the Kotlin programming
language. Contains the
source code, issue
tracker, and community
contributions.

Kotlin Forum Official forum for Kotlin.
A place to ask questions,
share knowledge, and
engage with the Kotlin
community.

Kotlin Blog Official blog for Kotlin.
Provides updates,
tutorials, and articles on
various Kotlin topics.

Kotlin Weekly A weekly newsletter
featuring curated Kotlin
news, articles, libraries,
and events.

Awesome Kotlin A curated list of Kotlin
libraries, frameworks,
and other resources.
Includes various
categories to explore
and find useful Kotlin
tools.

30 STARTING WITH KOTLIN

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

JCG delivers over 1 million pages each month to more than 700K software
developers, architects and decision makers. JCG offers something for everyone,
including news, tutorials, cheat sheets, research guides, feature articles, source code
and more.

Copyright © 2014 Exelixis Media P.C. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,

mechanical, photocopying, or otherwise, without prior written permission of the publisher.

CHEATSHEET FEEDBACK
WELCOME

support@javacodegeeks.com

SPONSORSHIP
OPPORTUNITIES

sales@javacodegeeks.com

https://kotlinlang.org/
https://kotlinlang.org/
https://play.kotlinlang.org/koans/overview
https://kotlinlang.org/api/latest/jvm/stdlib/
https://kotlinlang.org/docs/coroutines-guide.html
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://play.kotlinlang.org/
https://github.com/JetBrains/kotlin
https://github.com/JetBrains/kotlin
https://discuss.kotlinlang.org/
https://blog.jetbrains.com/kotlin/
https://kotlinweekly.net/
https://kotlin.link/
https://www.javacodegeeks.com/minibook

	Starting-with-Kotlin-Cheatsheet
	Starting with Kotlin
	Table of Contents
	Preface
	Introduction
	Key Features of Kotlin
	Getting Started with Kotlin

	Variables and Data Types
	Variables
	Data Types
	Type Inference
	Type Aliases
	Strings
	Booleans
	Arrays
	Ranges
	Collections

	Control Flow
	If-Else Expressions
	When Expressions
	For Loops
	While Loops
	Jump Statements

	Functions
	Function Basics
	Default Arguments
	Named Arguments
	Variable Number of Arguments
	Extension Functions
	Higher-Order Functions
	Tail Recursive Functions

	Classes and Objects
	Classes
	Constructors
	Inheritance
	Data Classes
	Object Declarations
	Companion Objects

	Null Safety
	Nullable and Non-Nullable Types
	Safe Calls
	Elvis Operator
	Non-Null Assertion
	Safe Casts

	Extensions and Lambdas
	Extensions
	Extension Properties
	Lambdas
	Higher-Order Functions

	Collections
	Lists
	Sets
	Maps

	Coroutines
	Introduction to Coroutines
	Launching Coroutines
	Suspending Functions
	Coroutine Context and Dispatchers
	Async/Await

	Resources

	cheatsheet ending

