
Breaking Down the Monolith

 VOLUME I

Microservices
 THE DZONE GUIDE TO

BROUGHT TO YOU IN PARTNERSHIP WITH

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

2

Executive Summary
BY MATT WERNER

Key Research Findings
BY G. RYAN SPAIN

Microservices on the JVM with Actors
BY MARKUS EISELE

Streamlined Microservice Design in Practice
BY MATT MCLARTY & IRAKLI NADAREISHVILI

An API-First Approach for Microservices on Kubernetes
BY BORIS SCHOLL & CLAUDIO CALDATO

Infographic: Big Things Come In Microservices

Microservices and Team Organization
BY THOMAS JARDINET

Communicating Between Microservices
BY PIOTR MINKOWSKI

Diving Deeper into Microservices

What to Consider When Dealing With Microservices Data
BY CHRISTIAN POSTA

Reactive Persistence for Reactive Systems
BY MARK MAKARY

Executive Insights on the Current and Future State of
Microservices
BY TOM SMITH

Microservices Solutions Directory

Glossary

3

4

8

12

15

20

22

26

29

32

36

40

44

49

DEAR READER,
The architectural pattern known as “microservices” has yet to

hit its 10th birthday, but it already feels well-established. First

coined in the 2010s, it aims to make large-scale application development

and maintenance easier. Microservices allow applications to adapt and

scale when needed by breaking their architecture into loosely coupled

services that developers can easily change, replace, and scale.

They help large teams work collaboratively on projects, as each team

or team member can work on individual services without blocking

other team members. Spikes in demand can be easier to handle with

microservices, which allow you to add new instances of services when

needed, and removing them when they’re not.

The pattern attracted so much popularity that it’s led to increased

interest and development in technologies that work well in collaboration

with it. This includes new design processes, containers, API design (and

subsequently GraphQL), message queues, front-end technologies, CI/

CD, and service orchestration frameworks.

Developers love microservices, as they enable them to have more control

over the design of their particular application area. They are also able to

experiment with new languages and practices without changing an entire

application, swapping in experimental components and monitoring their

effects. Architects, product owners, and engineering managers should

be aware that they use microservices-based architectures only when

necessary and have enough resources. There will be significant migration

time, and the approach can increase complexity in testing, deployment,

and deciding how to divide the services of an application.

Recent years have seen the pattern applied in a wider context. I spent

much of my programming past working with huge monolithic content

management systems (CMS) where we struggled against a maze of

interconnected parts. There is now a world of “headless CMS” platforms

that allow developers to create specialized services that excel at their

tasks. For example, a solid content management service that feeds

content to a JavaScript front-end framework.

This guide focuses on crucial pieces of the microservices puzzle, helping

you construct an effective, meaningful application architecture. We’ll

focus on the best approaches to reduce overhead during migration;

how individual services communicate with each other, including

the messaging options and formats; and how teams working with

microservices can better communicate with each other. When it comes

to digging deeper into individual applications, you’ll learn about the best

hosts for your applications, from container options and patterns to the

best approaches on the JVM. We also cover how to maintain consistency

between distributed nodes of an application, as what use is a distributed

application if it’s data never matches? Finally, to inspire you when you

need guidance, we have case studies from developers and architects

explaining how they tackled problems and their experiences.

Microservices introduce a new way of developing and managing your

applications, but there’s a lot of knowledge available, and with this

guide, we will get you on the right path as quickly as possible. Enjoy.

BY CHRIS WARD
ZONE LEADER, DZONE

PRODUCTION

Chris Smith
DIRECTOR OF PRODUCTION

Andre Powell
SR. PROD. COORDINATOR

G. Ryan Spain
PROD. PUBLICATIONS EDITOR

Ashley Slate
DESIGN DIR.

Billy Davis
PRODUCTION ASSISSTANT

MARKETING

Kellet Atkinson
DIR. OF MARKETING

Lauren Curatola
MARKETING SPECIALIST

Kristen Pagàn
MARKETING SPECIALIST

Natalie Iannello
MARKETING SPECIALIST

Miranda Casey
MARKETING SPECIALIST

Julian Morris
MARKETING SPECIALIST

BUSINESS

Rick Ross
CEO

Matt Schmidt
PRESIDENT

Jesse Davis
EVP

SALES
Matt O’Brian
DIR. OF BUSINESS DEV.

Alex Crafts
DIR. OF MAJOR ACCOUNTS

Jim Howard
SR ACCOUNT EXECUTIVE

Jim Dyer
ACCOUNT EXECUTIVE

Andrew Barker
ACCOUNT EXECUTIVE

Brian Anderson
ACCOUNT EXECUTIVE

Chris Brumfield
SALES MANAGER

Ana Jones
ACCOUNT MANAGER

Tom Martin
ACCOUNT MANAGER

EDITORIAL
Caitlin Candelmo
DIR. OF CONTENT & COMMUNITY

Matt Werner
PUBLICATIONS COORDINATOR

Michael Tharrington
CONTENT & COMMUNITY
MANAGER

Kara Phelps
CONTENT & COMMUNITY
MANAGER

Mike Gates
SR. CONTENT COORDINATOR

Sarah Davis
CONTENT COORDINATOR

Tom Smith
RESEARCH ANALYST

Jordan Baker
CONTENT COORDINATOR

Anne Marie Glen
CONTENT COORDINATOR

Special thanks to our
topic experts, Zone
Leaders, trusted DZone
Most Valuable Bloggers,
and dedicated users
for all their help and
feedback in making this
guide a great success.

TABLE OF CONTENTS

Want your solution to be featured in coming guides?
Please contact research@dzone.com for submission information.

Like to contribute content to coming guides?
Please contact research@dzone.com for consideration.

Interested in becoming a DZone Research Partner?
Please contact sales@dzone.com for information.

mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

3

BY MATT WERNER
PUBLICATIONS COORDINATOR, DZONE

While service-oriented architectures have been a fixture

in the software development world for years, the concept

of microservices is much more recent, and has taken the

world by storm. There’s an enormous amount of excite-

ment around these architectures on DZone and beyond,

but when writing this guide, DZone wanted to know how

many people were actually using them, and have they

really helped developers with their lives? To find out, we

surveyed 605 DZone readers, and have shared the re-

sults in our first ever Guide to Microservices.

WHY MICROSERVICES?
DATA

Of those who are using microservices, 81% want to

make easily scalable applications, 71% want to enable

faster deployments, 50% want to have teams focused on

particular pieces of an application, and 42% want an easy

way to find where an application is failing.

IMPLICATIONS

81% of respondents who use microservices say their

lives are easier as a result, implying that moving to a

microservices architecture for their applications led

them to achieve most of their goals. In contrast, only five

respondents (about 1%) tried microservices and decided

not to use them.

RECOMMENDATIONS

The majority of microservices users say that they are

worth the investment and helped them accomplish their

goals. If an organization is developing a new application,

using a microservices architecture may be the best way

to create additional value and future-proof software.

Before developing microservices, determine if they fit your

application’s use case. Does it need to be easily scalable?

Does it require several different components that would be

better to separate into services?

NO LACK OF TOOLS, BUT LACK OF USE
DATA

58% of respondents do not use a service discovery tool,

74% do not use a platform to manage their microservices,

and 72% do not use a distributed tracing tool. 58% of users

do not use a service discovery tool, and 22% do not secure

their services.

IMPLICATIONS

Many developers have yet to use tools that might make

microservices easier to manage beyond tools like

containers and frameworks to build them, such as Java

EE, Spring Boot, and MicroProfile. This is likely due to

the recent abundance of options and popularity of the

technology.

RECOMMENDATIONS

47% cited monitoring as a chief concern, but tools that

assist with monitoring microservices, such as service

discovery or management platforms, are not being used.

Investigate tools like service meshes and API gateways

that make microservices management easier.

THREE OF A PERFECT PAIR
DATA

67% of respondents are currently using DevOps processes

(similar to results we’ve seen in our 2017 DevOps and

Containers guides). 34% use containers in development,

12% use them in production, and 19% use them in both

stages. Those who use microservices in either prod or dev

are more likely to use DevOps or Continuous Delivery, and

those who use microservices in prod are more likely to use

containers in prod, as well.

IMPLICATIONS

Developers using microservices are also likely to use

technologies that lend themselves to building distributed

applications like containers, or are likely to have

experience creating cultural and technical change using

DevOps methodologies to further decrease time-to-market.

RECOMMENDATIONS

Those using DevOps or Continuous Delivery methodologies

may find that microservices and containers, while

requiring a lot of training and setup, may help teams

deploy code faster than before. It is probably easier to

start experimenting with a new application or product,

and leave the refactoring of legacy apps for later once an

organization can evaluate how effective microservices are

for themselves.

Executive
Summary

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4

ARE YOU CURRENTLY USING A MICROSERVICES
ARCHITECTURE FOR ANY OF YOUR APPLICATIONS?

BY G . RYAN SPAIN
PRODUCTION COORDINATOR, DZONE

DEMOGRAPHICS
605 software professionals completed DZone’s 2017
Microservices survey. Respondent demographics are
as follows:

•	 39% of respondents identify as developers or
engineers, 17% identify as developer team leads,
and 15% identify as software architects.

•	 The average respondent has 13 years of experience as
an IT professional. 51% of respondents have 10 years
of experience or more; 17% have 20 years or more.

•	 40% of respondents work at companies
headquartered in Europe; 28% work in companies
headquartered in North America.

•	 18% of respondents work at organizations
with more than 10,000 employees; 20% work at
organizations between 1,000 and 10,000 employees;
and 25% work at organizations between 100 and
1,000 employees.

•	 79% develop web applications or services; 49%
develop enterprise business apps; and 24% develop
native mobile applications.

THE HYPE
DZone’s 2017 Microservices survey saw more than half of

respondents claiming to be using microservices now: 27%

of respondents said they use microservices in development

environments, and 26% said they are using microservices

in at least some of their applications in a production

environment. Another 36% of respondents have not used

microservices in any of their applications yet, but are

interested in trying a microservices architecture. Only 10% of

respondents said they have no interest in experimenting with

microservices at all, and less than 1% of respondents said

they have tried switching to microservices architecture in the

past, but decided it wasn’t for them.

Of the 53% of respondents who currently use microservices

in one capacity or another, 81% said that using microservices

architectures has made their job easier. And of all survey

respondents, 75% said they believe that the excitement

surrounding microservices in the current developer landscape is

warranted–though interestingly, this sentiment is held slightly

more amongst respondents interested but not currently using

microservices (80%) than in the subset of respondents using

microservices in production (76%) or in development (71%).

Regardless, it seems that a large majority of devs are preparing

(or have already prepared) to escape the monolith and see what

it’s like on the microservices bandwagon.

TOOLS, FRAMEWORKS, PROTOCOLS
By far, most respondents (81%) said that one of the best

languages for designing microservices is Java (considering the

general bias of DZone readers towards Java, this is unsurprising).

Other favored languages for microservices were Node.js (35%),

Python (29%), and JavaScript (27%). Most respondents also said

they use a framework to help build their microservices, with the

majority using either Spring Boot (32%), Java EE (11%), or both

(17%). Regarding protocols for microservice communication,

HTTP was the go-to choice, with 82% of respondents using it,

Key Research
Findings

36

1

26

No, but we’re
considering

them

We’ve tried them and
decided not to use

them

Yes, in
production

26No, and we’re
not considering
them

27 Yes, in development

MICROSERVICES AND CONTAINER USAGE:
ARE YOU CURRENTLY USING A MICROSERVICES
ARCHITECTURE FOR ANY OF YOUR APPLICATIONS?

7

21 25 31 24

29 14 9

20%0% 40% 60% 80% 100%

NOT CONSIDERING CONTAINERS

CONSIDERING USING CONTAINERS

USING CONTAINERS IN PRODUCTION

USING CONTAINERS IN DEVELOPMENT

�� ������������������� �������������������������������� ������������������

KEY

70 20 7 3

47

22 52 19 7

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

5

MICROSERVICES AND CD/DEVOPS PROACTICES:
ARE YOU OR YOUR TEAM CURRENTLY DOING
CONTINUOUS DELIVERY OR DEVOPS PROCESSES?

but Apache Kafka (21%) and RabbitMQ (19%) had some traction

as microservices communication protocols. Respondents

mostly said they handled security for their microservices

applications with OAuth2 (44%), JSON Web Tokens (43%), and

user authentication (32%).

Other tools around microservices were used more sparingly. 74%

of respondents said they did not use a platform for managing

microservices in their application, and the supplied answer

choices were unpopular (Linkerd was the most popular choice at

5%), while write-in choices were scattered. 58% of respondents

said they do not use a service discovery tool, while 19% said they

use Apache Zookeeper and 17% said they use Eureka. 72% said

they don’t use distributed tracing tools, with Zipkin (10%) coming

in as the most popular over OpenTracing (8%).

MICROSERVICES AND OTHER PRACTICES
“Microservices” is a term you hear a lot these days if you’re

keeping an eye on developer-related content. And as we saw

earlier, it seems like many developers support microservices

architectures beyond considering “microservices” a mere

buzzword. The actual use of microservices fits well with

other current software development trends, and we saw this

reflected in our survey results. For example, respondents who

said they use microservices in production were more likely to

say they use Continuous Delivery or DevOps processes (81%)

than those using microservices in dev environments (75%),

those merely interested in trying microservices (56%), and

those uninterested in microservices completely (45%).

Likewise, the use of container technologies also correlates with

the use of microservices technologies. Respondents who said

they use microservices in dev environments were most likely

to use containers in dev environments (71%), and those using

microservices in production environments were most likely to

use containers in production environments (55%), while those

interested in microservices are most likely to not use container

technologies (47%), as are those uninterested in exploring

microservices (70%).

BENEFITS AND CHALLENGES
While a majority of respondents are on board with

microservices one way or another, and most of these

developers believe microservices make development

easier and that the excitement surrounding microservices

architechtures are indeed warranted, we still haven’t looked at

what benefits microservices can provide, and what challenges

can be expected in implementing microservices. Regarding

benefits, respondents using microservices now largely focused

on these architecture’s ability to make applications easily

scalable (81%) and to enable faster deployments when only one

part of an application needs to be altered (72%). Other common

benefits seen were an improvement of software quality by

allowing teams to focus their efforts on individual services in

a larger application (50%), an improvement of software quality

by narrowing failure sources to isolated application parts

(42%), and flexibility regarding languages, frameworks, and

tools for different pieces of a large application.

Of course, developing in a microservices architecture

isn’t without its challenges. When building microservices

applications from scratch, respondents found that the

biggest difficulties lied in monitoring an array of different

services (47%), changing organizational culture to be open

to trying microservices architectures (39%), and ensuring

that services, as well as the entire application, are secure.

The challenges involved with refactoring legacy applications

to a microservices architecture included finding where to

break up existing monolith components and tight coupling in

existing software (each 51%, as these issues themselves are

tightly coupled, as it were), and finding the time to invest in

refactoring monolithic legacy applications.

DO YOU FEEL THAT TOOLS AND FRAMEWORKS HAVE
PROVIDED SUFFICIENT BEST PRACTICES FOR WORKING
WITH MICROSERVICES?

No 42 Yes58

55

0% 10% 20% 30% 40% 50% 60% 70% 90% 100%80%

NOT CONSIDERING MICROSERVICES

�� ���KEY

USING MICROSERVICES IN DEVELOPMENT

USING MICROSERVICES IN PRODUCTION

45

44 56

75

19 81

CONSIDERING USING MICROSERVICES

25

Join us
April 18-20 in Boston for
Cloud Foundry Summit.

Use promo code DZONE to be entered to win a Fitbit Surge.
Must register before January 11, 2018. Winner will be notified within 7 days.

YOUR ENTERPRISE-READY,
CLOUD-NATIVE TOOLBOX

Run apps in any language or framework on the clouds of your choice

cloudfoundry.org/why-cloud-foundry

Developers report significant
time savings after moving to
Cloud Foundry

46% LESS THANone week
development time

25% LESS THAN

24 hours
development time

SPONSORED OP IN ION

https://cloudfoundry.org/why-cloud-foundry/
https://cloudfoundry.org/event/nasummit2018/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

7

Microservices add a layer of complexity to application

development — we can agree on that. But they also enable

choice, flexibility, and independence far more than developing

within a monolithic architecture. Microservices enable small

teams to work nimbly on a particular function apart from the

larger team. You can iterate, release, and manage that function

independently, giving you concentrated control.

If you use microservices to make your teams move faster

and ship code more frequently, the path from writing code to

production should be as quick as possible. Platforms play a big

part in this, coupled with a Continuous Integration tool, which

takes responsibility for testing the code, approving it for release,

compiling, and publishing it.

Platforms like Cloud Foundry Application Runtime have evolved

to support the operational complexity of microservices. It’s

necessary to have a platform like Cloud Foundry in place when

you choose microservices to offset operational complexity. Both

the Cloud Foundry Application Runtime and the Cloud Foundry

Container Runtime manage the health of microservices. What

does this mean? Your platform will automatically scale up

your app when there’s demand, watch for unhealthy instances,

describe services talking to each other, accept code being offered

by Continuous Integration pipelines, and more.

You don’t need to use a microservices architecture to get value

out of Cloud Foundry — you can certainly run monolithic

applications inside it too, and it will get the same benefits.

But if you choose a microservices architecture, you will need a

platform like Cloud Foundry to avoid operational complexity and

focus on shipping great software.

Cloud Foundry
Overcomes Operational
Complexity for
Microservices

Cloud Foundry

Insurance giant Liberty Mutual knew it needed to make a radical change. CIO Mojgan

Lefebvre explained, “We knew we had to become a software company that sells

insurance to survive in today’s competitive world.” After adopting Cloud Foundry, the

team went from hypotheticals to standing up a minimum viable product (MVP) in just 28

days. Embracing agile methodologies and taking a cloud-native approach by deploying

Cloud Foundry, the team created a fully functional portal that was ready within six

months and provided:

•• 40% strike rate against 20% for industry on-average

•• Referral time of only three minutes – more than 3x less than competitor products

•• 200 quotes and 60 policies within one month of operation

Cloud Foundry’s flexibility, agility, and scalability enabled Liberty Mutual to move closer

to its commitment to digital transformation.

STRENGTHS

CASE STUDY

• 	 Polyglot and multi-cloud

• 	 Run apps at scale

• 	 Simplify the development lifecycle

and container management

CATEGORY
Platform-as-a-Service (PaaS) or

“cloud application platform”

NEW RELEASES
Continuous

OPEN SOURCE
Yes

NOTABLE USERS

• 	 Allstate

• 	 American Airlines

• 	 Cloud.gov

• 	 Ford

• 	 The Home Depot

WEBSITE cloudfoundry.org BLOG cloudfoundry.org/blogTWITTER @cloudfoundry

Cloud Foundry gives you the right tool for the right job with two complementary open source
technologies for app developers and operators.

WRITTEN BY CHIP CHILDERS
CTO, CLOUD FOUNDRY FOUNDATION

It’s necessary to have a platform like Cloud Foundry

in place when you choose microservices to offset

operational complexity.

SPONSORED OP IN ION

http://www.cloudfoundry.org
http://www.cloudfoundry.org
http://www.cloudfoundry.org
https://www.cloudfoundry.org/blog/
https://www.cloudfoundry.org/blog/
https://www.diamanti.com/blog/
https://www.cloudfoundry.org/blog/
https://twitter.com/cloudfoundry
https://twitter.com/cloudfoundry
https://twitter.com/cloudfoundry

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

8

As mobile and data-driven applications increasingly
dominate, users are demanding real-time access
to everything everywhere. System resilience and
responsiveness are no longer “nice to have;” they’re
essential business requirements. Businesses increasingly
need to trade up from static, centralized architectures
in favor of flexible, distributed, and elastic systems. But
where to start and which architecture approach to use
is still a little blurry, and the microservices hype is only
slowly settling while the software industry explores
various architectures and implementation styles.

For a decade or more, enterprise development teams have built

their Java EE projects inside large, monolithic application server

containers without much regard to the individual lifecycle of

their module or component. Hooking into startup and shutdown

events was simple, as accessing other components was just an

injected instance away. It was comparably easy to map objects

into single relational databases or connect to other systems via

messaging. One of the greatest advantages of this architecture was

transactionality, which was synchronous, easy to implement, and

simple to visualize and monitor. By keeping strong modularity and

component separation a first-class priority, it was manageable to

implement the largest systems that still power our world. Working

with compartmentalization and introducing modules belongs to

the core skills of architects. Our industry has learned how to couple

services and build them around organizational capabilities. The

new part in microservices-based architectures is the way truly

independent services are distributed and connected back together.

Building an individual service is easy. Building a system out of many

is the real challenge, because it introduces us to the problem space

of distributed systems. This is the major difference from classical,

centralized infrastructures.

THERE ISN’T JUST ONE WAY OF DOING
MICROSERVICES
There are many ways to implement a microservices-based archi-

tecture on or around the Java Virtual Machine (JVM). The pyramid

in Figure 1 was introduced in my first book. It categorizes some

technologies into layers, which can help identify the level of isola-

tion that is needed for a microservices-based system. Starting at the

virtualization infrastructure with virtual machines and containers,

as they are means of isolating applications from hardware, we go

all the way up the stack to something that I summarize under the

name “application services.” This category contains specific mi-

croservices frameworks aimed at providing microservices support

across the complete software development lifecycle.

�����

����
����

�����������
�

�
	����
���
	������

�����
����������

�����

�����������������������������

�����������

��

��������������������������

������������
��	����

������

�����
��
	�

��	���� �����	���

���� ���
�

�� ��	����

������ �����
­���

��	�����

���

Figure 1: Pyramid of modern enterprise java development (Source: Modern
Java EE Design Pattern, Eisele)

The three frameworks in the application services and infrastructure

categories are all based on the principles of the Reactive Manifesto.

It defines traits that lead to large systems that are composed

of smaller ones, which are more flexible, loosely-coupled, and

scalable. As they are essentially message-driven and distributed,

these frameworks fit the requirements of today’s microservices

architectures. While Lagom offers an opinionated approach on close

guardrails that only support microservices architectures, Play and

Akka allow you to take advantage of the reactive traits to build a

microservices-style system but doesn’t limit you to this approach.

MICROSERVICES WITH AKKA
Akka is a toolkit and runtime for building highly concurrent,

distributed, and resilient message-driven applications on the JVM.

Akka “actors” are one of the tools in the Akka toolkit that allow you

to write concurrent code without having to think about low-level

threads and locks. Other tools include Akka Streams and Akka

HTTP. Although Akka is written in Scala, there is a Java API, too.

Microservices on the

JVM with Actors

BY MARKUS EISELE
DIRECTOR OF DEVELOPER ADVOCACY, LIGHTBEND

Building an individual service is easy.

Building a system out of many is the

real challenge.

The applicability of actors to the chal-

lenges of modern computing systems and

microservices-based systems has been

recognized and proven to be effective.

Designing a system with the assump-

tion that messages can be lost in the

network is the safest way to build a

microservices-based architecture.

The actor model provides a higher level

of abstraction for writing concurrent

and distributed systems.

01

02

03

04

Q U I C K V I E W

http://www.oreilly.com/programming/free/modern-java-ee-design-patterns.csp
http://www.reactivemanifesto.org/
https://www.lagomframework.com/
https://playframework.com/
http://akka.io/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

9

Actors were invented decades ago by Carl Hewitt. But, relatively

recently, their applicability to the challenges of modern computing

systems has been recognized and proven to be effective. The

actor model provides an abstraction that allows you to think

about your code in terms of communication, not unlike people

in a large organization. Systems based on the actor model using

Akka can be designed with incredible resilience. Using supervisor

hierarchies means that the parental chain of components is

responsible for detecting and correcting failures, leaving clients

to be concerned only about what service they require. Unlike

code written in Java that throws exceptions, clients of actor-based

services never concern themselves with dealing with failures

from the actor from which they are requesting a service. Instead,

clients only must understand the request-response contract that

they have with a given service, and possibly retry requests if no

response is given in some time frame. When people talk about

microservices, they focus on the “micro” part, saying that a service

should be small. I want to emphasize that the important thing

to consider when splitting a system into services is to find the

right boundaries between services, aligning them with bounded

contexts, business capabilities, and isolation requirements. As a

result, a microservices-based system can achieve its scalability and

resilience requirements, making it easy to deploy and manage.

The best way to understand something is to look at an example.

The Akka documentation contains an extensive walkthrough

of a simplistic IoT management application that allows users to

query sensor data. It does not expose any external API to keep

things simpler, only focuses on the design of the application, and

uses an actor-based API for devices to report their data back to the

management part. You can find a high-level architecture diagram

in Figure 2.

�������������� ���������������

����������
�

������

������

������

����������
�

������

������

������

������

�����

�����	

Figure 2: IoT sample application architecture (Source: Akka documentation)

Actors are organized into a strict tree, where the lifecycle of every

child is tied to the parent, and where parents are responsible for

deciding the fate of failed children. All you need to do is to rewrite

your architecture diagram so that it contains nested boxes into

a tree, as shown in Figure 3. In simple terms, every component

manages the lifecycle of the subcomponents. No subcomponent

can outlive the parent component. This is exactly how the actor

hierarchy works.

Furthermore, it is desirable that a component handles the failure

of its subcomponents. A “contained-in” relationship of components

is mapped to the “children-of” relationship of actors. If you look

at microservice architectures, you would have expected that the

top-level components are also the top-level actors. That is indeed

possible, but not recommended. As we don’t have to wire the

individual services back together via external protocols and the

Akka framework also manages the actor lifecycle, we can create

a single top-level actor in the actor system and model the main

services as children of this actor. The actor architecture is built on

the same traits that a microservice architecture should rely on,

which are isolation, autonomy, single responsibility, exclusive state,

asynchronous communication, explicit communication protocols,

and distribution and location transparency.

IoTSupervisor

DashboardManager

UserDashboards

Device(s)

DeviceGroup(s)

DeviceManager

...

...

...

Figure 3: An Actor representation of the IoT architecture.

You find the details about how to implement the IoTSupervisor

and DeviceManager classes in the official Akka tutorial. Until now,

I only looked at the complete system at large. But there is also the

individual actor that represents a device. His simple task will be to

collect temperature measurements and report the last measured

data back on request. When working with objects, you usually

design APIs as interfaces, which are basically collections of abstract

methods to be filled out by the actual implementation. In the world

of actors, the counterparts of interfaces are protocols. The protocol

in an actor-based application is the message for the devices.

function counter(state: AppState = 0, action: AppAction): public
static final class ReadTemperature {
 long requestId;

 public ReadTemperature(long requestId) {
 this.requestId = requestId;
 }
}

public static final class RespondTemperature {
 long requestId;
 Optional<Double> value;

 public RespondTemperature(long requestId, Optional<Double>
 value) {
 this.requestId = requestId;
 this.value = value;
 }
}

(Code 1: message protocol for the device actor)

I am skipping a lot of background on message ordering and delivery

guarantees. Designing a system with the assumption that messages

can be lost in the network is the safest way to build a microservices-

based architecture. This can be done, for example, by implementing

a “re-send” functionality if a message gets lost. And this is the

reason why the message also contains a requestId. It will now be

the responsibility of the querying actor to match requests to actors.

A first rough sketch of the Device Actor is below.

class Device extends AbstractActor {
//…
Optional<Double> lastTemperatureReading = Optional.empty();

 @Override
 public void preStart() {
 log.info(“Device actor {}-{} started”, groupId, deviceId);
 }
 @Override
 public void postStop() {

Code continued on next page

https://en.wikipedia.org/wiki/Carl_Hewitt#Actor_model
http://doc.akka.io/docs/akka/current/java/guide/tutorial_1.html#structure-of-an-actorref-and-paths-of-actors
http://doc.akka.io/docs/akka/current/java/guide/tutorial_1.html
http://doc.akka.io/docs/akka/current/java/guide/tutorial_2.html#message-ordering-delivery-guarantees
http://doc.akka.io/docs/akka/current/java/guide/tutorial_2.html#message-ordering-delivery-guarantees

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 0

 log.info(“Device actor {}-{} stopped”, groupId, deviceId);
 }

 @Override
// react to received messages of ReadTemperature
 public Receive createReceive() {
 return receiveBuilder()
 .match(ReadTemperature.class, r -> {
 getSender().tell(new RespondTemperature(r.
 requestId, lastTemperatureReading), getSelf());
 })
 .build();
 }
}

(Code 2: the device actor)

The current temperature is initially set to Optional.empty(), and

simply reported back when queried. A simple test for the device is

shown below.

@Test
public void testReplyWithEmptyReadingIfNoTemperatureIsKnown() {
 TestKit probe = new TestKit(system);
 ActorRef deviceActor = system.actorOf(Device.props(“group”,
“device”));
 deviceActor.tell(new Device.ReadTemperature(42L), probe.
getRef());
 Device.RespondTemperature response = probe.
expectMsgClass(Device.RespondTemperature.class);
 assertEquals(42L, response.requestId);
 assertEquals(Optional.empty(), response.value);
}

(Code 3: Testing the device actor)

The complete example if the IoT System is contained in the Akka

documentation.

WHERE TO GET STARTED
Most of today’s enterprise software was built years ago and still

undergoes regular maintenance to adopt the latest regulations

or new business requirements. Unless there is a completely new

business case or significant internal restructuring, the need to

re-construct a piece of software from scratch is rarely given.

If this is the case, it is commonly referred to as “greenfield”

development, and you are free to select the base framework of

your choice. In a “brownfield” scenario, you only want to apply the

new architecture to a certain area of an existing application. Both

approaches offer risks and challenges and there are advocates for

both. The common ground for both scenarios is your knowledge

of the business domain. Especially in long-running and existing

enterprise projects, this might be the critical path. They tend to be

sparse on documentation, and it is even more important to have

access to developers who are working in this domain and have

firsthand knowledge.

The first step is an initial assessment to identify which parts of

an existing application can take advantage of a microservices

architecture. There are various ways to do this initial assessment.

I suggest thinking in service characteristics. You want to identify

either core or process services first. While core services are

components modeled after nouns or entities, the process services

already contain complex business or flow logic.

SELECTIVE IMPROVEMENTS
The most risk-free migration approach is to only add selective im-

provements. By scraping out the identified parts into one or

more services and adding the necessary glue to the original appli-

cation, you’re able to scale out specific areas of your application in

multiple steps.

THE STRANGLER PATTERN
First coined by Martin Fowler as the Strangler Application, the

extraction candidates are move into a separate system which

adheres to a microservices architecture, and the existing parts

of the applications remain untouched. A load balancer or proxy

decides which requests need to reach the original application and

which go to the new parts. There are some synchronization issues

between the two stacks. Most importantly, the existing application

can’t be allowed to change the microservices’ databases.

BIG BANG: REFACTOR AN EXISTING SYSTEM
In very rare cases, complete refactoring of the original application

might be the right way to go. It’s rare because enterprise applications

will need ongoing maintenance during the complete refactoring.

What’s more, there won’t be enough time to make a complete stop for

a couple of weeks—or even months, depending on the size of the ap-

plication—to rebuild it on a new stack. This is the least recommended

approach because it carries a comparably high risk of failure.

WHEN NOT TO USE MICROSERVICES
Microservices are the right choice if you have a system that is too

complex to be handled as a monolith. And this is exactly what makes

this architectural style a valid choice for enterprise applications.

As Martin Fowler states in his article about “Microservice Premium,”

the main point is to not even consider using a microservices

architecture unless you have a system that’s too large and complex

to be built as a simple monolith. But it is also true that today,

multicore processors, cloud computing, and mobile devices are the

norm, which means that all-new systems are distributed systems

right from the start. And this also results in a completely different

and more challenging world to operate in. The logical step now is to

switch thinking from collaboration between objects in one system

to a collaboration of individually scaling systems of microservices.

SUMMARY
The actor model provides a higher level of abstraction for writing

concurrent and distributed systems, which shields the developer

from explicit locking and thread management. It provides the core

functionality of reactive systems, defined in the Reactive Manifesto

as responsive, resilient, elastic, and message-driven. Akka is an

actor-based framework that is easy to implement with full Java 8

Lambda support. Actors enable developers to design and implement

systems in ways that help focus more on the core functionality

and less on the plumbing. Actor-based systems are the perfect

foundation for quickly evolving microservices architectures.

Markus Eisele leads the developer advocate team at Lightbend, Inc.

He has been working with Java EE servers from different vendors for

more than 14 years, and gives presentations on his favorite topics at

leading international Java conferences. He is a Java Champion, former

Java EE Expert Group member, and founder of JavaLand. He is excited to

educate developers about how microservices architectures can integrate and

complement existing platforms. He is also the author of “Modern Java EE

Design Patterns” and “Developing Reactive Microservices” by O’Reilly. You

can follow more frequent updates on Twitter @myfear.





http://doc.akka.io/docs/akka/current/java/guide/tutorial_2.html
http://doc.akka.io/docs/akka/current/java/guide/tutorial_2.html
https://www.martinfowler.com/bliki/StranglerApplication.html
https://martinfowler.com/bliki/MicroservicePremium.html
http://www.oreilly.com/programming/free/modern-java-ee-design-patterns.csp
http://www.oreilly.com/programming/free/modern-java-ee-design-patterns.csp
http://www.oreilly.com/programming/free/developing-reactive-microservices.csp
https://twitter.com/myfear
https://twitter.com/myfear
https://www.linkedin.com/in/markuseisele/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DEV FOR HIREHiring Devs

https://jobs.dzone.com/?utm_source=Microservice%20Guide&utm_medium=Full%20Page%20Ad&utm_campaign=Q4%2017

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 2

As more organizations implement microservices,

the practices of microservice architecture

become more mature. Whereas much of the

early microservices literature focused on

companies decomposing a monolithic web

application into microservices, larger and more

diverse organizations are now tackling how to

migrate their existing software ecosystems into

domains of services in order to improve their

software delivery speed and scalability. This

problem space is significantly more complex than

breaking down the single monolith, and comes

with higher order challenges.

Modularization is fundamental to dealing with the

complexity of distributed software systems. This is both

the reason microservice architecture is gaining popularity,

and an important reminder of how to approach it. Finding

the right boundaries between services is understandably

one of the main focus areas for organizations adopting

microservices in order to reduce coordination between

teams, and there is a growing body of information on

techniques to draw those boundaries. This technology-

agnostic design work deals with the essential complexity of

the software system, helping to improve its evolvability and

sustainability over time. Once the boundaries are drawn,

there is still design work that needs to be done.

THE MICROSERVICE DESIGN CANVAS
The microservices movement has been driven by

developers, is closely aligned with the rise of Agile

methods and DevOps, and has been motivated by a desire

for faster software delivery. Consequently, developers

often start coding quickly and rely on emergent design

to guide their work, which can result in sub-optimal

service disposition over the long haul. On the other hand,

an overly-involved service design process can bog down

development efforts and undermine the intended benefits

of microservice architecture. How can appropriate design

thinking be injected into the process in a streamlined way?

With a hat tip to Simon Brown’s “just enough up front

design” concept, the Microservice Design Canvas intends

to capture the essential service attributes that can help

guide development of the service itself as well as its

consuming applications.

������������� �������������

�����
������������
��	� ������������

�
�
������������ �������������

�����������

���
��	��������

�����������
���
��	��������

�
�
�

�����������
���
��	��������

�����������
���
��	��������

������� ��������

� ��
���­�����
���� � ��
���­����
����

Figure 1 - The Microservice Design Canvas

In addition to the name and description of the service, the

canvas includes the following sections:

Streamlined
Microservice
Design in Practice
BY MATT MCLARTY & IRAKLI NADAREISHVILI
VP API ACADEMY, CA & SENIOR DIRECTOR OF TECHNOLOGY, CAPITAL ONE

Design thinking is fundamental
for a sustainable microservice
architecture.

Event Storming is an effective,
collaborative approach to
identify bounded contexts for
microservices.

The Microservice Design
Canvas is a useful tool for
designing service characteristics
without over-burdening the
development lifecycle.

01

02

03

Q U I C K V I E W

http://www.freshblurbs.com/blog/2016/09/27/microservices-coordination-removal.html
http://www.freshblurbs.com/blog/2016/09/27/microservices-coordination-removal.html
http://www.apiacademy.co/designing-a-system-of-microservices/
http://blog.christianposta.com/microservices/the-hardest-part-about-microservices-data/
https://www.infoq.com/articles/Microservices-Architectural-Fitness
http://www.apiacademy.co/visualizing-microservice-architecture/
https://www.infoworld.com/article/3075880/application-development/microservice-architecture-is-agile-software-architecture.html
https://www.infoworld.com/article/3075880/application-development/microservice-architecture-is-agile-software-architecture.html
http://www.codingthearchitecture.com/presentations/sa2011-just-enough-up-front-design
http://www.codingthearchitecture.com/presentations/sa2011-just-enough-up-front-design
http://www.apiacademy.co/the-microservice-design-canvas/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 3

SECTION DESCRIPTION

Consumer Tasks
An enumeration of the anticipated consumers of the
service along with the tasks they need to perform
that require the service

Interface

A list of interactions that consumers are expected
have with the service, broken down by interaction
type (Query, Command, Event Subscription, Event
Publication)

Qualities
The fundamental non-functional attributes of the
service, such as specific security, availability, reliability,
scalability, and evolvability requirements

Logic/Rules
A select list of processing logic that will be required
to satisfy the Interface and Qualities sections, not an
exhaustive list of the service’s functionality

Data
A select list of data elements required to support the
Interface and Qualities sections

Dependencies
The external services upon which this service
depends (with the understanding that service depen-
dencies should be minimized)

Ideally, a service designer can complete sections in the

table’s order and capture the essence of the service using

the canvas. Here is an example of a completed canvas for

a Transaction Search Service:

�������������
�������������������������� �����������������������������������
������������������
��	������

��������������������������������	������
�����������������������������������
�����
��������������	��
����������������������������
������

������	������

����������������������� ��	��
������

����������� �������������

����������������
��������������������

��������������		

� ­��­�

���������������������
������������������
������

���
�����	������
�������������������
��������������������

�����������������������������
������������������
������

������������
�����������	�
�����������������������

����
�������������������
��������������������

��������������������
�

�������
���������������

�������������������

����	���������������

�������������������������
����������������������
���������

�����������
������������
�����

�������������
�����
���������
����
������	���	���������

��������
��������������������

­�­���� �����������
���

������������
���

����������������

­�­���� ����������

������������������
������������������
�������������		
���������������������
������������������
������

Figure 2 - A sample microservice design canvas for “Transaction Search”

MICROSERVICES AT CAPITAL ONE
Capital One has been an early adopter of microservice

architecture, with several hundred now running in

production across the company. Capital One’s technology

is large and heterogeneous, not all of which is built using

microservices. The initial rise of microservices adoption

happened organically, by different teams experimenting with

and adopting its concepts as they saw fit in their daily work.

In 2017, the Capital One executive team declared maturation

of microservices capabilities an important priority, and a

team was put together to provide a microservices adoption

strategy, implementation guidelines, and training workshops

for development teams.

To align their microservices efforts across the organization,

Capital One first needed to identify a common goal. When

analyzing the success of the organic microservices efforts,

the Capital One microservices team recognized that the

power of the new architecture was that it allowed developers

to move fast without compromising the safety and quality of

their solutions. Irakli Nadareishvili, one of the leaders of the

team, explains:

For the longest time, there has been a belief in software

engineering that you have to compromise between

speed and safety: either you go fast or you build with

high quality. Such a compromise makes intuitive sense.

Complex systems are built by many teams, working on

different parts of an application. Every now and then

those teams need to coordinate their work with others,

and at that point you have one of two choices: you either

ignore coordination need and keep going fast, which may

break some things along the way, or you acknowledge

the need to coordinate and slow down. But what if we

had a system architected in a way that minimized the

need for coordination? Then we wouldn’t need to choose

between speed and safety as often. It turns out you

can have such a design if you have autonomous teams

working on small batches of isolated work. For us, that is

the essence of microservice architecture.

DESIGNING MICROSERVICES AT CAPITAL ONE
Many organizations get stuck when trying to find the

size for the microservices. In Capital One’s analysis

of microservice design, they found that the optimal

microservice size varies over time, as illustrated by

microservice pioneers like Netflix:

“When analyzing the success of the organic

microservices efforts, the Capital One

microservices team recognized that the power

of the new architecture was that it allowed

developers to move fast without compromising

the safety and quality of their solutions.”

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 4

At Capital One, development teams start with coarse-

grained design and split microservices when they find

need to eliminate emerging instances of coordination.

Teams are not expected to get service boundaries “right”

out of the gate. Instead, boundaries evolve over time to

allow autonomous, high-performance teams to develop

systems quickly and safely.

When examining how to design greenfield or brownfield

systems of microservices, the Capital One microservices

team used Domain Driven Design (DDD) as a starting

point. They found the concept of bounded contexts to be

extremely useful for representing autonomous capabilities

in a complex system. Overall, however, they felt that

applying DDD in depth across the organization would

require expertise and experience that most software teams

were not equipped with, and trying to make it work would

be costly and difficult to implement consistently.

Capital One found a viable shortcut to DDD in Alberto

Brandolini’s Event Storming methodology. This new

approach that is rapidly gaining popularity in the software

industry allows teams to explore a complex domain—

including the identification of bounded contexts—in just a

handful of 4-hour sessions. In addition to its work products,

Capital One has found Event Storming to be a collaborative

and inclusive exercise that helps quickly develop a shared

understanding of a product between engineering, product

teams, design teams, as well as other key stakeholders.

THE MICROSERVICE DESIGN CANVAS AT
CAPITAL ONE
One issue the Capital One team encountered with

Event Storming is that, while the process is very useful,

its final artifact—a wall full of sticky notes—is difficult

to digitize or document. Since they wanted something

more than just a list of bounded contexts and hotspots

as a takeaway, they decided to codify the resulting

microservice designs using a variant of the Microservices

Design Canvas. Team member James Higginbotham re-

ordered the boxes on the canvas to align more closely

with the Business Model Canvas, resulting in

the following:

����
������������������������
����������������������

��������������������
�������

��������������������
��������������������������
���	

��������������������������
������������������������

�������
��������
����
��������������

�		����
�����������

�������
����������

�����

���������������������
�������

���
����������

���������
���������
������
�����
��������������

�����
������������������������
���������������������
�� ���������������������

����	������ ���������

­����������������������
��� ��������
���
������������������������������������

��������������������������
���
�������������������������
���

������������

Figure 3 - A Sample Microservice Design Canvas for “Payments
Management Service” using the Capital One variant (information
purely for demonstration purposes)

So far, the Capital One team has found the canvas to

be a useful way of documenting the design of their

microservices. Importantly, they are able to use the

canvas in a non-intrusive way that helps them reduce

coordination between teams in order to improve their

overall delivery speed without compromising the safety

and stability of their systems.

DESIGN THINKING IN MICROSERVICE ARCHITECTURE
Just as Capital One recognized that microservice

boundaries evolve over time, the structure of the

Microservice Design Canvas will also change as it is

applied and adapted by individuals and organizations. Its

value should be measured by how effectively it meets its

goal: to provide a simple tool for capturing just enough

design thinking at the right time in order to help deal

with the complexity of distributed software ecosystems.

Experimentation and iteration are hallmarks of the

microservices way, so please let the authors know about

your own experiences working with the canvas and the

other tools discussed in this article.

Irakli Nadareishvili is currently leading microservices
transformation efforts as the Senior Director of Technology at
Capital One. Irakli is a co-author of Microservice Architecture
(O’Reilly 2016), and was formerly co-founder and CTO of ReferWell,
a NY-based health technology startup. In the past he has also held
technology leadership roles at CA Technologies and NPR.





Matt McLarty is an experienced software architect who leads
the API Academy for CA Technologies. He works closely with
organizations on designing and implementing innovative,
enterprise-grade API and microservices solutions. Matt has worked
extensively in the field of integration and real-time transaction
processing for software vendors and clients alike. Matt recently co-
authored the O’Reilly book “Microservice Architecture” with other
members of the API Academy team.





http://eventstorming.com/
https://twitter.com/launchany
https://strategyzer.com/canvas/business-model-canvas
https://twitter.com/inadarei
https://www.linkedin.com/in/ACoAAAApN4EBiVf_lUbee0HrQQzP0orYPTakrGc/?lipi=urn%3Ali%3Apage%3Ad_flagship3_search_srp_top%3Bg7bDfU4nSrGxUSfYHCimPQ%3D%3D&licu=urn%3Ali%3Acontrol%3Ad_flagship3_search_srp_top-search_srp_result&lici=LGI4cbL3Q%2BCjQ6lkKR8eZQ%3D%3D
https://twitter.com/MattMcLartyBC
https://www.linkedin.com/in/ACoAAACI0pMBHLXr-jzzXcAvMGROCrrSOyh--h0/?lipi=urn%3Ali%3Apage%3Ad_flagship3_search_srp_top%3B1UEDF0znRJmvtxLC6gEudw%3D%3D&licu=urn%3Ali%3Acontrol%3Ad_flagship3_search_srp_top-search_srp_result&lici=gY9cP%2BKdSmmSX86ushwiew%3D%3D

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 5

Moving to containerized microservices is not an

easy transition for developers that have been

building applications using more traditional

methods. There are a lot of new concepts and

details developers need to consider and become

familiar with when they design a distributed

application, which is what a microservice

application is. Throw Docker and Kubernetes

into the mix and it becomes clear why many

developers struggle to adapt to this new world.

Developers want to focus on the development

of the logic, not on the code necessary to

handle the execution environment where the

microservice will be deployed. APIs have always

been a productive way to connect services, and

this is still true for microservices on Kubernetes

(K8s). In this article, we will lay out why you can

benefit from an API-first approach for building

microservices applications on Kubernetes. Before

we can dive into the how let’s have a quick review

on what API-first means and what one commonly

refers to services in K8s.

WHAT DOES API-FIRST MEAN?
This previous DZone article describes what API-first

means: you first start designing and implementing an

API that can be consumed by other microservices before

you actually start implementing the actual microservice

itself. Along with the API design itself, you typically

provide mocks and documentation for an API. Those

artifacts are then used to facilitate discussions with

other teams that will be consumers of the microservice

that your team is planning to build. In other words, the

approach allows you to validate your API design before

investing too much in writing the actual microservice.

However, an API-first approach is not just useful

during the development phase. Once a microservice

has been built, other teams who want to consume

the microservice will benefit from the documentation

and mocking capabilities. The good news is that there

are plenty of tools available that support an API-first

approach. The most common specifications to support

an API-first approach are OpenAPI and API Blueprint.

You can then use tools like Swagger or Apiary to design

your API, generate mocks, documentation, and even

client libraries.

All of this becomes particularly useful for applications

that require independence and loose coupling, such as

An API-First Approach
for Microservices on
Kubernetes
BY BORIS SCHOLL & CLAUDIO CALDATO
VP PRODUCT DEVELOPMENT AND SENIOR DIR. OF PRODUCT STRATEGY, ORACLE CLOUD

Microservices adoption is hard.
Developers need to learn new
patterns and new technologies
such as Kubernetes and Docker.

A Kubernetes services creates a
persistent IP address and DNS
name entry that points to the
actual microservice code that you
develop.

Besides other advantages, an
API-first approach allows you to
up-level the discussion for most
of your developers, so that they
do not need to understand the
inner workings of K8s right away.

01

02

03

Q U I C K V I E W

“[API-first design] becomes particularly

useful for applications that require

independence and loose coupling, such as

microservices applications, as it helps teams

be more productive when it comes to

consuming services built by other teams.”

https://dzone.com/articles/an-api-first-development-approach-1
https://github.com/OAI/OpenAPI-Specification
https://apiblueprint.org/
https://swagger.io/
http://apiary.io/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 6

microservices applications, as it helps teams be more

productive when it comes to consuming services built

by other teams. But, how does this approach translate

to a modern microservice architecture that relies on

an orchestrator, such as Kubernetes, to handle the

deployment and execution of each microservice? Before

explaining this approach, it is worthwhile to recap what

K8s services are.

WHAT ARE SERVICES IN K8S?
As mentioned earlier, a lot of developers are a bit

overwhelmed with all the new concepts they need to

learn. For developers who are new to K8s, the concept of

a K8s service is very confusing as it does not technically

relate to the microservice’s code itself. Below is an

example of a K8s service:

apiVersion: v1
kind: Service
metadata:
 name: githubstats
 labels:
 app: githubstats
spec:
 ports:
 - port: 9000
 name: http
 selector:
 app: githubstats

As you can see, a K8s service has nothing to do with the

microservice you develop. In fact, it is just an endpoint

with a port number that provides information on how to

access your microservice inside a pod.

Under the cover, a K8s service creates a persistent

IP address and DNS name entry so that the targeted

microservice can always be reached.

K8s uses label selectors to know which pod the service

needs to point to, in this example app: githubstats. The

microservice you develop is typically packaged inside a

container image and deployed to K8s. The example

below shows the container image repo/githubstats:0.0.1

as part of a deployment with the label app: githubstats.

apiVersion: apps/v1beta2 # for versions before 1.8.0 use
apps/v1beta1
kind: Deployment
metadata:
 name: githubstats
spec:
 replicas: 3
 selector:
 matchLabels:
 app: githubstats
 template:
 metadata:
 labels:
 app: githubstats
 spec:
 containers:
 - name: githubstats
 image: repo/githubstats:0.0.1
 ports:
 - containerPort: 9000

The real advantage of using a K8s service is that they

provide a steady endpoint to access the microservice

itself, no matter where the scheduler places it inside the

cluster. It does not take a lot to see that by just looking

at K8s services developers do not get the information

they need in order to consume a microservice. Let’s say

the githubstats microservice, shown in the previous

example, is developed by team A. Now another team,

team B, is building a microservice, call it UI service, that

is supposed to consume the githubstats microservice.

The only information team B gets is the githubstats

microservice name and the endpoint information. What

is completely missing is information on the microservice

itself, such as what methods one can call.

WHY YOU SHOULD USE AN API-FIRST APPROACH
ON K8S
As mentioned in the beginning the big advantage of an

API-first approach is that you always start with the API

design, create mock services, documentation and client

libraries. From a K8s perspective an API-first approach

allows you to up level the discussion for most of your

developers, so that they do not need to understand the

inner working of K8s right away. To make this approach

useful on K8s you need to somehow bind an API with

K8s services. The rest of this article focuses on how you

can approach this.

THE API-FIRST WORKFLOW
DESIGN
The first step of the process involves creating a “formal”

description of the APIs. There are various format and

tools that can be used. One, for instance, is Oracle’s

Apiary. The Apiary website offers an environment where

What is missing to achieve a real “API-first”

approach in the context of microservice

architectures is to include the logic that makes

it possible for the generated code to discover,

at runtime, where the service is running.

http://apiary.io/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 7

a team of developers can design and document APIs as

shown in Figure 1.

FIGURE 1: APIARY UI

Most of the time these tools are being used during

“design time” of the overall workflow, where they are

creating the APIs with some additional documentation.

As microservices applications are highly dynamic in

nature, it makes sense to also transfer the API-first part

into the “runtime” part of the process when APIs are

actually going to be used.

BIND
To accomplish that, you need to create a “bind”

relationship that makes a K8s service more than just a

hostname and TCP Port, as it is currently. By binding

APIs to a K8s service, developers can get important

information on the service right away without having to

go through the extra hoops of finding the documentation

for the APIs and write the code to process the request/

response based on the schema defined in the APIs. This

binding information can be kept in a simple data store

with an UI on top of it as shown in Figure 2.

FIGURE 2: SIMPLE UI TO SHOW WHICH APIS ARE BOUND TO A
K8S SERVICE

CONSUME
The last part of an API-first approach is how to consume

the service. Ideally, developers would like to avoid

having to implement parsing/marshalling of the

response and add the code that can handle the HTTP

calls. A more productive way is to provide a client

library for a service, at least for the most common

languages. In some more advanced organizations, client

libraries can be generated as part of the CI (Continuous

Integration) process. There are tools such as swagger–

codgen that can be used to generate clients based on the

specification and make it part of your CI process, or even

include the client generation in your custom binding UI.

What is missing to achieve a real “API-first” approach in

the context of microservice architectures is to include

the logic that makes it possible for the generated code

to discover, at runtime, where the service is running.

Having the ability to determine where the service is

running at the time it is needed (when a service is

making a call to a remote service) makes the API-First

approach a better solution than existing best practices,

where some aspects of the discovery phase of the

process is hardcoded when the service is deployed.

CONCLUSION
This article laid out how you can combine an API-first

approach with K8s. You can make an API-first approach

part of your existing environment if you are willing to

put a little effort into the “binding” and code generation

experience. The advantage is not only that developers

can focus on writing code, while only a few need to

understand the inner workings of K8s, but also that you

fulfill some of the governance requirements you need to

have in place for successful microservices projects, such

as proper documentation and correct versions for APIs.

Claudio Caldato is a Senior Director of Product Strategy in
the Oracle Cloud Team where he is working on the Grand Unified
Theory of Cloud-Native Development that will empower developers
to build the next generation of cloud-native applications. Before
Joining Oracle, he worked on the Azure Hyperscale and IoT Teams. He was
one of the founding members of the team that pioneered OOS at Microsoft.



Boris Scholl leads engineering for the new container native mi-
croservices platform at Oracle. He has spent the last seven years
of his career focusing on architectural and implementation patterns
for large-scale distributed cloud applications, cloud developer tool-
ing, and DevOps. Boris is a frequent speaker at events, and author of
various articles and books on cloud development and microservices.
His publications include the book Microservices with Docker on Microsoft
Azure, released in June 2016 and a blog series about microservices.





You can make an API-first approach

part of your existing environment if you

are willing to put a little effort into the

“binding” and code generation experience.

http://apiary.io/
http://apiary.io/
https://www.linkedin.com/in/claudiocaldato/
https://twitter.com/bmscholl
https://www.linkedin.com/in/bscholl/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 8

SPONSORED OP IN ION

https://www.twistlock.com/?utm_medium=Content-Syndication&utm_campaign=DzoneMicroservicesQ117&utm_source=advertisement&utm_content=FPA

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

1 9

The increasing use of container-based microservice deployments

highlights the need for new approaches to securing them. In

order to work effectively, teams who develop services require

lightweight infrastructure and unobtrusive security.

Traditional service oriented architectures can encounter many

challenges, such as latency, scaling, high resource consumption

with virtual machines, and lack of resiliency to recover from

failures. The past few years have seen a transition from siloed

development and IT departments to DevOps organizations.

Along with that transition, we’ve also seen a migration from

traditional SOA models to container and microservices-based

Continuous Integration and Continuous Delivery (CI/CD)

production environments.

Security tools must be completely automated, built into the

CI/CD workflow, and both detect vulnerabilities at build

time and protect the container environment at runtime.

DevOps teams containerize large applications by functionally

decomposing them into services. The microservices are

deployed as containers onto a cluster, and are automatically

scaled to meet demand. The cluster spans multiple hosts, and is

also scaled to meet demand.

Developer container security solutions could use each container’s

origin image to profile how the container should interact with

its environment. A security tool could monitor the fairly limited

types of interactions microservices have, and use that as a

baseline to detect unusual patterns. These two strategies are

possible because containers are minimalistic, the images they

run are declarative, and deployed containers are predictable.

WRITTEN BY JOHN MORELLO
CHIEF TECHNOLOGY OFFICER, TWISTLOCK

Providing Security
to Microservices

Twistlock Container Cybersecurity Platform

ClearDATA provides secure, managed services for healthcare

on AWS. ClearDATA customers must comply with significant

regulatory requirements, have huge amounts of sensitive

data to manage, and customers demanding better data

collaboration.

In order to help their clients deliver solutions faster, ClearDA-

TA wanted to deliver a new set of product and service offer-

ings to allow health organizations to run Docker containers

using AWS’ EC2 Container Services (ECS).

Using Twistlock in their environment has enabled

ClearDATA to monitor and enforce compliance require-

ments, check for vulnerabilities from development through

production, and automate runtime defense that scales

within the ECS environment.

STRENGTHS

CASE STUDY

• 	 Runtime Defense

Automatically prevent next gen attacks against containers and

cloud native apps

• 	 Vulnerability Management

Detect and prevent vulnerabilities before they make it to production

• 	 Compliance

Extend regulatory and corporate compliance into your container

environment

• 	 Cloud Native Application Firewall

Automatically protect your apps in a ‘software defined’ manner

• 	 Continuous Integration

Integrate with any CI tools to leverage automated security

throughout the SDLC

CATEGORY
Container and

Cloud Native

Cybersecurity

NEW RELEASES
6x year

OPEN SOURCE
No

NOTABLE CUSTOMERS

• 	 ClearDATA

WEBSITE twistlock.com BLOG twistlock.com/blogTWITTER @twistlockteam

Twistlock is the leading cloud native cybersecurity platform for the modern enterprise

• 	 Booz | Allen | Hamilton • 	 AppsFlyer • 	 Aetna

The current wave of container-based

microservice deployments is creating the need

for new approaches to cloud security.

SPONSORED OP IN ION

https://www.twistlock.com/platform/continuous-integration-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/runtime-defense/
https://www.twistlock.com/2017/02/01/intent-based-security/
https://www.twistlock.com/
https://www.twistlock.com/
https://www.twistlock.com/blog/
https://www.twistlock.com/blog/
https://www.diamanti.com/blog/
https://www.twistlock.com/blog/
https://twitter.com/twistlockteam
https://twitter.com/twistlockteam
https://twitter.com/twistlockteam

Stage One (S H A P E C R E AT O R)

53% of developers are currently using Microservices in both

dev and prod in equal numbers. 36% are considering using them.

Less than 1% of survey respondents have tried using Microservices

and decided against using them.

Stage Two
The most popular reason to adopt microservices is to create

easily scalable apps (81%), followed by enabling faster deployments

(71%) and improving quality by letting developers focus on specific

pieces of an app (50%).

Shape Creator

Smile Station

Hat Depot

Arms & Legs

Microservices are simultaneously a new and old concept. They were born out of SOA architectures,

but with the intended purpose of being used to build distributed applications across a

network. While on the surface this seems like a simple change to a well-established

practice, it has created a tidal wave of interest, excitement, discusion, and inevitable

disillusionment from developers across the web. For DZone's first ever Guide to

Microservices, we decided to walk down the modular architecture assembly

line and ask 605 DZone Readers whether they’re using microservices or

not, and what they think of them so far.

(S M I L E S TAT I O N)

Stage Three (H AT D E P O T)

Of developers who use microservices, 81% have reported

that their jobs are easier as a result.

Stage Four
Regardless of whether they use microservices or not, 75%

of DZone members believe the excitement around microservices is

warranted, though those that are interested but not using them

are more likely to be excited than those who are actually

using them.

(A R M S & L E G S)

C O P Y R I G H T D Z O N E . C O M 2 0 1 7

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

2 2

Microservices architectures are unique because

they can be extremely flexible over time and

impact a project’s organization at any time. This

can be very challenging for companies, as it can

force them to question their organizational model,

which may not have necessarily moved much in

most companies. Perhaps the first good question

to ask yourself when you start using this kind of

architecture is: “what is your organization capable

of?” In my opinion, this is a prerequisite to know

what difficulties will be encountered, and to start

arming yourself in the early stages.

But let’s first come back to the link between architectures

and microservices. When it comes to organizing teams and

microservices, the famous Conway law is often mentioned.

This law, which is becoming more and more widely accepted,

has not always been approved of in the past. The main flaw

in the attainment of the absolute truth of this law is that

it is more a sociological law than a purely scientific law.

Indeed, it has always been demonstrated in an empirical

way, based on examples and not on pure scientific logic. It

is difficult to demonstrate sociological results in general,

because these demonstrations are largely based on intangible

considerations and on concepts, and can only be verified by

multiplying the examples to infinity.

But let us get to the facts and quote this law:

“Organizations which design systems... are constrained to

produce designs which are copies of the communication

structure of these organizations.”

From this law, we can draw some simple reflections:

•• If I want a specific architecture, I need an organization

aligned with my architecture.

•• On the other hand, if I have to change my architecture

often, I have to be able to modify my organization just

as often.

These two assertions, which echo the principle of inverse

conway maneuver, have far-reaching consequences. They

underpin an organization’s ability to adapt, which would

ignore careerist tendencies, resistance to change, ultra-

specialization of skills, and so on. They can also lead to

philosophical reflections on the primacy of the machine over

the human, but I am already digressing.

The corollary of all this is that the first question to be asked

when we want to make a microservices architecture is: “How

adaptable is the organization to this type of architecture?”

Of course, it’s tempting to think about Netflix and Amazon,

but is your company ready? It is important to take this into

account in order to quickly detect the brakes and “tricks” to

circumvent the constraints.

One of the tricks to quickly ramp up is feature teams. Feature

teams bring together several different skills to create a

feature. But this can quickly become insufficient, because as

your architecture explodes into microservices, coordination

needs will arise.

One other trick is the open source governance model. Open

source projects, because of their decentralized structure,

make it possible to create highly decoupled software, which

is what we want in microservices architectures. It may

therefore be advisable to work in this way with other teams,

with a small team having the code, and one or more extended

teams being able to push changes in the code.

Microservices and
Team Organization

BY THOMAS JARDINET
SENIOR CONSULTANT, ASTRAKHAN CONSULTING

Microservices architectures
require regular changes that can
impact organizations.

Some tricks can help to solve
microservices organization
challenges, but may not be
enough to solve them all.

Microservices architectures
require a high coordination
of knowledge and skills, and
require organizations that allow
this coordination.

New management methods have
emerged that align architectural
and organizational needs.

01

02

03

04

Q U I C K V I E W

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

2 3

But what about the acceptance of this logic and

organizational changes in a company? Are these tricks

sufficient to instill coordination, skills, and knowledge

throughout your company? Decentralized organizations

build decoupled code, but technical or functional skills and

knowledge shouldn’t be decoupled to the extreme, either.

It’s like if you rob Peter to pay Paul, but here you rob shared

knowledge to build decoupled architectures.

The real stalemate is more cultural than anything else, and

a number of management styles that have emerged in recent

years can help unblock the situation.

A fairly good example of what can be done to go further is the

Spotify framework (although we should limit ourselves to meta-

frameworks, because it is mostly a state of mind). Spotify uses

the concepts of feature teams and governance with an open

source approach, but complements these tools with a matrix

model of agility at scale. Matrix organizations have the magic

to ensure that you always get to know someone who knows the

person who has the knowledge or skill.

So, when I studied the organizations of teams using

microservices, I thought that something was missing.

New management methods have become popular recently

and could have an interesting influence, especially in

organizations seeking to implement microservices.

Indeed, we touched on the subject of corporate culture,

organization, and resistance to change. The first type of

management that comes directly to my mind is holacracy.

Holacracy is a fractal organization divided into autonomous

and independent entities that are themselves linked to higher

entities. These same entities are represented in the form of

circles that can overlap with each other, and which have the

particularity of being self-organizing while being managed by

the upper circle. Each circle is thus very responsive to change

in its nature and composition. The gains observed by this

type of management are the involvement, cooperation, and

simplicity of the links between people.

We could imagine, for example, that the elementary circles

would be the microservices development teams, that the

upper circles would be made up of architects and product

owners, and that the top circle would be the client business

lines of your application. This would give rise to product

owners and architects who could coordinate the business

needs, while ensuring that the best practices instigated by

architects are implemented.

I say “we could imagine” because it is up to you to decide your

needs and your solutions according to the desired architecture.

One of the driving forces behind this circle organization

is Domain-Driven Design, often used in microservices

projects. Indeed, this way of building applications typically

brings developers, software architects, and experts in

the field around the same table. All can potentially come

from different circles or overlapped circles. It is therefore

interesting to set up this type of organization in order to

improve the transmission of knowledge and the time it takes

to set up the architecture.

Contrary to what we might think, this type of management

is relatively compatible with a traditional hierarchical

organization. Indeed, even if the hierarchy is flattened, it still

persists, and it can be circumscribed to IT project teams, in

case your CxOs see this with bad eyes.

��������������������������������� �������������������

�������������������

����������

�

�

�

�

� �

�

���

�

�
�

�

�

��

�

�

�

�

�

�

�

In case a holacracy cannot take hold in your organization,

you can seek inspiration from sociacracy (also called

Dynamic Governance). Sociacracy is not a mode of

organization like holacracy, but more of a mode of

governance without a centralized power structure, also

operating under the principle of circles. These circles may

also have overlapping boundaries, and are made up of the

group’s constituent elements, as well as delegates from the

group and a group leader. Unlike holacracy, sociacracy aims

to manage fewer operational subjects to focus on problems

or strategic questions. It is thus a mode of governance that

can perfectly be superimposed on any organization, and can

be an intermediate step to a more disruptive organization

such as a holacracy.

As we can see, other management styles exist, and can

provide solutions to the extremely changing nature of

microservices architectures. I am convinced that studying

the impact of these architectures will lead companies

to rethink their organizational models, to the delight of

employees and customers alike. There is still the question

of support for change and corporate culture. My opinion is

that the corporate culture must always be respected but

also reformed, because it will ultimately be the driving force

behind the evolution of your organizations.

Thomas Jardinet: As an IT architecture consultant with thirteen

years of experience, I accompany my clients in defining their

architectures, whether functional, application or technical, by studying

with them the best path. I also accompany them in the organizational

side, and above all I seek with them intellectual and human exchange.

I am also a supporter of flattened organisations, as I think it greatly

improve productivity, robustness, and resilience of companies.





https://twitter.com/ThomasJardinet
https://www.linkedin.com/in/thomasjardinet/

Stan Has Two Hobbies:
Automation and AI
Any tool trying to monitor dynamic, containerized
microservice applications must have AI. The environments
are simply too complex to manually manage (or even
configure the monitoring tool).

AI requires comprehensive automatic visibility into the full technical
stack, coupled with application modeling to deliver automatic
root cause determination.

Here are six fundamental skills Stan possesses around Automated
Visibility and AI to help manage the performance
of dynamic applications.

AUTOMATED VISIBILITY

To apply an AI approach to performance management, the core

model and data set must be up-to-date and impeccable, providing

real-time visibility and an accurate picture of your application’s

structure and dependencies — all with no human configuration.

AUTOMATIC, CONTINUOUS
DISCOVERY & MAPPING

AI requires precise data. For all discovered components, Instana

collects the industry’s most accurate monitoring data (streamed

at 1 second granularity) and every request in a Trace. The data is

the source for AI machine training and the basis for the deep

microservice visibility.

PRECISE HIGH
FIDELITY VISIBILITY

Instana is built to operate in the modern world. With zero

configuration, Instana aligns with the infrastructure, clouds,

containers, orchestrators, middleware and languages to

accurately model and visualize dynamic microservice

applications — wherever they are running.

CLOUD, CONTAINER
& MICROSERVICE NATIVE

The core technology at the heart of Instana is the internal

data model, called the Dynamic Graph. The Graph models all

physical and logical components, the underlying technologies,

dependencies and configuration. The Graph also understands

logical components like traces, applications, services,

clusters and tablespaces.

FULL STACK APPLICATION
DATA MODEL

Instana aligns alerts with business impacts and can predict

impending service outages — using multiple AI methods to

understand and predict application behavior. Predictive

algorithms are applied to four derived KPIs (Transaction Rate,

Error Rate, Latency and Saturation), leveraging the Dynamic

Graph model to understand context.

REAL-TIME AI-DRIVEN INCIDENT
MONITORING & PREDICTION

Instana’s AI-assisted troubleshooting leverages full visibility,

the Dynamic Graph and AI-driven Incident management. Instana

automatically identifies the most likely trigger of an Incident.

Reports aggregate metrics, changes, traces and probable

root cause on one screen. And predictive analysis identifies

performance problems before they happen

AI-POWERED PROBLEM RESOLUTION
AND TROUBLESHOOTING ASSISTANCE

ARTIFICIAL INTELLIGENCE

SPONSORED OP IN ION

https://www.instana.com/library/six-pillars-modern-dynamic-apm/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

2 5

Agile development, CI/CD, and the use of containers create

constant application change in code, architecture, and even

which systems are running.

This constant change, especially in microservices applications,

makes Continuous Discovery a must-have feature for in order

for effective monitoring tools to:

•	 Discover and map the microservices that make up the

application

•	 Automatically monitor the health of each microservice on its

own and as part of the app

Configuring agents is a key obstacle to achieving continuous

discovery. To be specific, agent configuration has always been

difficult, but dynamic applications make any configuration

work obsolete almost as soon as it’s complete.

The key to making continuous discovery work within

monitoring tools is automation.

Automating agent configuration requires a change in the way

agents are built and deployed, especially the way agents collect

and transmit information through technology Sensors, such as:

•	 Configuration data

•	 Events

Agents should automatically recognize every component and

deploy the proper monitoring sensors, automatically collect

the right data and provide a real-time health score.

This goes beyond code. Every technology component needs its

own expert monitoring. So far at Instana, we’ve expanded that

list to 9 languages and almost 70 unique technologies.

Why is this essential for Continuous Delivery?

1.	 Speed: Nobody has time to configure (and reconfigure) tools

with the rate of change.

2.	 Real-time Mapping: Microservices applications are constantly

changing so data flow and interactions can’t be known in

advance. Application maps must be built in real time.

3.	 Instant Feedback: Results from changes (including

deployments) should be known in seconds. A delay of even

a few minutes could be devastating.

You’ve created an agile development process. You’re investing

in containers and microservices. Don’t let your monitoring

tools prevent you from achieving your ultimate goals of

continuous delivery.

Continuous Discovery:

The Key to Continuous

Delivery

Instana APM for Microservice Applications

In just 2 years, Fintech company ClearScore had grown beyond the capabilities

of its Java application. They migrated to microservices hosted in Docker

containers, but their APM tool failed to match the efficiency and agility they

valued. Simply maintaining the monitoring system was like a full-time job. The

tool lacked native support for microservices and containers, or Scala.

ClearScore chose Instana’s microservices-native APM. Instana delivered more

detailed, context-aware insights while eliminating tool configuration by

DevOps, it also identified and fixed problems quicker.

The team loves that Instana’s automated visibliity and artificial intelligence do-

ing everything from monitoring setup and threshold setting to troubleshooting.

STRENGTHS

NOTABLE CUSTOMERS

CASE STUDY

• 	 Full-stack application mapping and visibility of

performance

• 	 Supporting 80+ technologies: middleware, database,

orchestration, containers, and 9 languages

• 	 Predictive service incident monitoring and

automatic root-cause analysis

• 	 AI-assisted troubleshooting

• 	 Audi

• 	 ClearScore

• 	 Douglas

• 	 Conrad

• 	 Follett

CATEGORY
Application Performance

Management

NEW RELEASES
V17.2 (Major release 2 or 3

times / year)

OPEN SOURCE
No

WEBSITE instana.com BLOG instana.com/blogTWITTER @InstanaHQ

AI-Powered APM for Microservice Applications

•	 Traces

•	 Metrics

SPONSORED OP IN ION

https://instana.com
https://instana.com
https://instana.com/blog
https://instana.com/blog
https://www.diamanti.com/blog/
https://instana.com/blog
https://twitter.com/InstanaHQ
https://twitter.com/InstanaHQ
https://twitter.com/InstanaHQ

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

2 6

One of the most important aspects of developing

microservices rather than a monolithic application

is an inter-service communication. With a

monolithic application, running on single process

invokes between components are realized on

language-level method calls. If you are following

the MVC design pattern during development, you

usually have model classes that map relational

databases to an object model. Then, you create

components which expose methods that help

to perform standard operations on database

tables like create, read, update, and delete. The

components most commonly known as DAO or

repository objects should not be directly called

from a controller, but through an additional layer

of components which can also add some portion

of business logic if needed.

Usually when I’m talking with others about migrating from

a monolith to a microservices-based application, they see

the biggest challenge just in changing their communication

mechanism. If you’ve ever looked back on working on a

typical monolithic application with a database backend,

you probably realized how important it was to properly

design relations between tables and then map them into

object models. In microservices-based architecture, it’s

important to divide this often very complex structure into

independently developed and deployed services, which

are also forming a mesh with many communication links.

Often the division is not as obvious as it would seem, and

not every component which encapsulates logic related to a

table becomes a separated microservice.

Decisions related to such a division require knowledge

about the business aspects of a system, but communication

standards can be easily defined, and they are unchangeable

no matter which approach to architecture we decide to

implement. If we are talking about communication styles, it

is possible to classify them in two axes. The first step is to

define whether a protocol is synchronous or asynchronous.

•• Synchronous – For web application communication,

the HTTP protocol has been the standard for many

years, and that is no different for microservices.

It is a synchronous, stateless protocol, which does

have its drawbacks. However, they do not have a

negative impact on its popularity. In synchronous

communication, the client sends a request and waits

for a response from the service. Interestingly, using that

protocol, the client can communicate asynchronously

with a server, which means that a thread is not blocked,

and the response will reach a callback eventually. An

example of such a library, which provides the most

common pattern for synchronous REST communication,

is Spring Cloud Netflix. For asynchronous callback,

there are frameworks like Vert.x or Node.js platform.

•• Asynchronous - The key point here is that the client

should not have blocked a thread while waiting for

a response. In most cases, such communication is

Communicating
Between Microservices

BY PIOTR MIŃKOWSKI
IT ARCHITECT, PLAY

Explore the differences in
communication between
monolith/SOA systems
and microservices-based
architecture.

Learn the difference
between synchronous and
asynchronous communication.

Follow the most common
patterns for microservices:
use a load balancer, circuit
breaker, and have the ability
to fall back.

01

02

03

Q U I C K V I E W

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

2 7

realized with messaging brokers. The message producer

usually does not wait for a response. It just waits for

acknowledgement that the message has been received

by the broker. The most popular protocol for this type of

communication is AMQP (Advanced Message Queuing

Protocol), which is supported by many operating

systems and cloud providers. An asynchronous

messaging system may be implemented in a one-to-one

(queue) or one-to-many (topic) mode. The most popular

message brokers are RabbitMQ and Apache Kafka. An

interesting framework which provides mechanisms for

building message-driven microservices based on those

brokers is Spring Cloud Stream.

Most think that building microservices is based on the

same principle as REST with a JSON web service. Of course,

this is the most common method, but as you can see it is

not the only one. Not only that, in some articles, you might

read that synchronous communication is an anti-pattern,

especially when there are many services in a calling route.

The other frequent comparison we might read about

compares microservices to SOA architecture. In SOA,

the most common communication protocol is SOAP. There

have been a great deal of discussions as to whether SOAP

is better than REST or vice versa. As we all know, they each

have advantages and drawbacks, but REST is lightweight

and independent from the type of language, so it has won

the competition for modern applications, and is slowly

taking over the enterprise sector. Honestly, I don’t have

anything against microservices based on SOAP if there is a

good reason for it.

Let’s look back at the criteria of division to different types

of communication. I have already mentioned that we

can classify them into synchronous vs. asynchronous,

the latter of which defines whether the communication

has a single receiver or multiple receivers. In one-to-one

communication, each client request is processed by exactly

one service instance, while each request can be processed

by many different services. It is worth it to point out here

that one message is received by different services, but

usually it should not be received by different instances

of a single service. Microservices frameworks usually

implement a consumer grouping mechanism whereby

different instances of a single application have been placed

in a competing consumer relationship in which only one

instance is expected to handle an incoming message.

For one-to-one synchronous services, the same can be

achieved with a load-balancing mechanism performed

on the client side. Each service has information about the

location addresses of all instances that are calling services.

This information can be taken from a service discovery

server or may be provided manually in configuration

properties. Each service has a built-in routing client that

can choose one instance of a target service, using the right

algorithm, and send a request there. These are the most

popular load balancing methods:

•• Round Robin - The simplest and most common

way. Requests are distributed across all the instances

sequentially.

•• Least Connections - A request goes to the instance that

is processing the least number of active connections at

the current time.

•• Weighted Round Robin - This algorithm assigns

a weight to each instance in the pool, and new

connections are forwarded in proportion to the

assigned weight.

•• IP Hash – This method generates a unique hash key

from the source IP address and determines which

instance receives the request.

Here’s a figure that illustrates different types of

communication used for microservices-based architecture,

assuming the existence of multiple instances of each service:

������
���

�������

��������� ��������
 ���������

��������� ��������
 ���������

�����
���
�����

��� �����
���

�����
���

����	�����

������
���

�������

���������

���������

�����
��� �����

���

����
	����
�����

������
���

�������

��������� ��������
 ���������

��������� ��������
 ���������

�����
��� �����

���

��
���

�������

�������

�
���	�����

����������

�����

�����

�����

��
���

�������

��������������

������������

�����

��������

��������

���������

���������

In more complex architectures, there can be cases where

those three communication types are mixed with each

other. Then, some microservices are built on the basis of

synchronous interaction, some on one-to-one messaging,

and others on a publish/subscribe model.

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

2 8

There’s been a lot of talk recently about reactive

microservices, so I think it is worth it to devote a few words

to it. It is based on the Reactive Programming paradigm,

oriented around data flows and the propagation of change.

Such microservices are non-blocking, asynchronous, event-

driven, and require a small number of threads to scale.

Their greatest advantage is excellent performance with a

little resource consumption. The most popular frameworks

for building reactive microservices are Lagom and Vert.x.

Let’s get back to synchronous request/response

communication. It is very important to prepare systems

in case of partial failure, especially for a microservices-

based architecture, where there are many applications

running in separated processes. A single request from the

client point of view might be forwarded through many

different services. It’s possible that one of those services

is down because of a failure, maintenance, or just might

be overloaded, which causes an extremely slow response

to client requests coming into the system. There are

several best practices for dealing with failures and errors.

The first recommends that we should always set network

connect and read timeouts to avoid waiting too long for

the response. The second approach is about limiting the

number of accepted requests if a service fails or responses

take too long. In this case, there is no sense in sending

additional requests by the client.

The last two patterns are closely connected to each

other. I’m thinking about the circuit breaker pattern and

fallback. The major assumption of this approach relies

on monitoring successful and failed requests. If too

many requests fail or services take too long to respond,

the configured circuit breaker is tripped and all further

requests are rejected. On the other hand, fallback provides

some portion of logic which has to be performed if request

fails or circuit breaker had been tripped. In some cases it

could be useful, especially when data returned by a service

is not critical for the client or does not change frequently

and may be taken from the cache. The most popular

implementation of the described patterns is available in

Netflix Hystrix, which is used by many Java frameworks,

providing components for microservices like Spring Cloud

or Apache Camel.

Implementation of a circuit breaker with Spring Cloud

Netflix is quite simple. In the main class it can be enabled

with one annotation:

@SpringBootApplication
@EnableFeignClients
@EnableCircuitBreaker
public class Application {
	 public static void main(String[] args) {
		 SpringApplication.run(Application.class, args);
	 }	
}

To communicate with another microservice we can use the

Feign REST client, which handles fallback. Here, we return

an empty list:

@FeignClient(value = “account-service”, fallback =
AccountFallback.class)
public interface AccountClient {
 @RequestMapping(method = RequestMethod.GET, value =
 “/accounts/customer/{customerId}”)
 List<Account> getAccounts(@PathVariable(“customerId”)
 Integer customerId);
}

@Component
public class AccountFallback implements AccountClient {
	 @Override
	 public List<Account> getAccounts(Integer customerId) {
		 List<Account> acc = new ArrayList<Account>();
		 return acc;
	 }
}

Hystrix default settings may be overridden with

configuration properties. The property visible below sets

the time after which the caller will receive a timeout while

waiting for response:

hystrix.command.default.execution.isolation.thread.
timeoutInMilliseconds=500

Piotr Mińkowski has more than 10 years of experience

working as a developer and architect in the finance and

telecom sectors, specializing in Java and its associated tools

and frameworks. He works at Play, a mobile operator in Poland,

where he is responsible for IT systems architecture. Here, he

helps the organization migrate from monoliths to microservices-based

architectures, as well as set up a CI/CD environment. In his free time,

he publishes articles on Piotr’s TechBlog, where he demonstrates the

newest technologies and frameworks in the programming world.





It is very important to prepare systems

in case of partial failure, especially for a

microservices-based architecture, where

there are many applications running in

separated processes.

https://piotrminkowski.wordpress.com/
https://twitter.com/piotr_minkowski
https://www.linkedin.com/in/piotrminkowski/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH2 9

M I C R O S E R V I C E S I N J AVA
BY JOSHUA LONG

This Refcard turns concepts into code and lets you jump on the design and

runtime scalability train right away – complete with working Java snippets that

run the twelve-factor gamut from config to service registration and discovery

to load balancing, gateways, circuit breakers, cluster coordination, and security.

S P R I N G B O O T A N D M I C R O S E R V I C E S
BY NEIL STEVENSON

This Refcard will show you how to incorporate Spring Boot and Hazelcast IMDG

into a microservices platform, how to enhance the benefits of the microservices

landscape, and how to alleviate the drawbacks of utilizing this method.

R E A C T I V E M I C R O S E R V I C E S W I T H L A G O M A N D J AVA
BY MARKUS EISELE

Using this open-source framework, you can build Microservices as reactive

systems that are elastic and resilient from within.

E X P L O R I N G T H E U N C H A R T E D T E R R I T O R Y O F M I C R O S E R V I C E S
In this webinar, four experts – including Gene Kim – answer questions like

“What are the promised benefits of microservices?” and “What can go wrong

as we transform the organization and architecture to microservices?”

B U I L D I N G M I C R O S E R V I C E S : D E S I G N I N G F I N E - G R A I N E D S Y S T E M S
BY SAM NEWMAN

In this book, learn oprtions for integrating a service with the rest of your

system, how to deploy individual microservices through continuous

integration, and more.

MICROSERVICES AT NE TFLIX SCALE: PRINCIPLES, TRADEOFFS, AND
LES SONS LE ARNED
In this recorded talk from Netflix’s Ruslan Meshenberg, learn about the

adoption of microservices in a large organization, how to do microservices ops

at scale, and more.

M I C R O S E R V I C E S T R A N S I T I O N
Learn about an engineer’s experiences transitioning

from a monolith to microservices and how she

recommends making it easier.

M A N U FA C T U R I N G A N D M I C R O S E R V I C E S
Microservices at large can be different than

microservices at a smaller company. Learn about

using microservices infrastructure and technology

on a mass customization platform.

M I C R O S E R V I C E S , D I S T R I B U T E D T E A M S , A N D
C O N F E R E N C E S
Learn about the challenges of running a distributed

team and preventing developer burnout in the

process of migrating to microservices.

I N T E G R AT I O N DZONE.COM/INTEGRATION

The Integration Zone focuses on communication architectures, message brokers,

enterprise applications, ESBs, integration protocols, web services, service-oriented

architecture (SOA), message-oriented middleware (MOM), and API management.

C L O U D DZONE.COM/CLOUD

The Cloud Zone covers the host of providers and utilities that make cloud com-

puting possible and push the limits (and savings) with which we can deploy, store,

and host applications in a flexible, elastic manner. The Cloud Zone focuses on

PaaS, infrastructures, security, scalability, and hosting servers.

J AVA DZONE.COM/JAVA

The largest, most active Java developer community on the web. With news and

tutorials on Java tools, performance tricks, and new standards and strategies that

keep your skills razor-sharp.

@ I N A D A R E I
Irakli Nadareishvili

@ S A N E E P D I N E S H
Sandeep Dinesh

@ T H O H E L L E R
Thorsten Heller

@ H J H A R N I S
Harrison Harnisch

@ Z I O B R A N D O
Alberto Brandolini

@ T E D E P S T E I N
Ted Epstein

@ T E T I A N A _ F T V
Tetiana Fydorenchyk

@ M Y F E A R
Markus Eisele

@ S A M N E W M A N
Sam Newman

@ M A R T I N F O W L E R
Martin Fowler

TOP #MICROSERVICES T WIT TER ACCOUNTS

TOP MICROSERVICES REFCARDZ

BEST MICROSERVICES ZONES

TOP MICROSERVICES RESOURCES

TOP MICROSERVICES PODCA STS

I N T O M I C R O S E R V I C E SDIVING DEEPER

https://dzone.com/enterprise-integration-training-tools-news
https://dzone.com/cloud-computing-tutorials-tools-news
https://dzone.com/java-jdk-development-tutorials-tools-news
http://www.twitter.com/inadarei
http://www.twitter.com/SaneepDinesh
http://www.twitter.com/ThoHeller
http://www.twitter.com/
https://www.twitter.com/hjharnis
http://www.twitter.com/ziobrando
http://www.twitter.com/tedepstein
http://www.twitter.com/tetiana_ftv
http://www.twitter.com/myfear
http://www.twitter.com/samnewman
http://www.twitter.com/martinfowler
https://dzone.com/java-jdk-development-tutorials-tools-news
https://dzone.com/cloud-computing-tutorials-tools-news
https://dzone.com/enterprise-integration-training-tools-news
https://dzone.com/refcardz/learn-microservices-in-java
https://xebialabs.com/community/webinars/exploring-the-uncharted-territory-of-microservices/
http://shop.oreilly.com/product/0636920033158.do
https://www.youtube.com/watch?v=57UK46qfBLY
https://dzone.com/refcardz/getting-started-with-spring-boot-and-microservices
https://dzone.com/refcardz/reactive-microservices-with-lagom-and-java
https://softwareengineeringdaily.com/2017/05/22/microservices-transition-with-cassandra-shum/
https://softwareengineeringdaily.com/2016/06/21/manufacturing-microservices-cimpresss-jim/
https://softwareengineeringdaily.com/2016/03/27/microservices-distributed-teams/

SPONSORED OP IN ION

https://www.lagomframework.com/?utm_source=dzone&utm_medium=full-page-ad&utm_campaign=WEB-PAGE-lagom-framework-home&utm_term=none&utm_content=guide-modern-java

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

3 1

Today’s enterprise applications are deployed to everything from

mobile devices to cloud-based clusters running thousands of

multi-core processors. Users have come to expect millisecond

response times and close to 100% uptime. And “user” means

both humans and machines. Traditional architectures, tools

and products simply won’t cut it anymore. To paraphrase Henry

Ford’s classic quote: We can’t make the horse any faster, we need

cars for where we are going.

While many organizations move away from the monolith and

adopt a microservices-based architecture, they mostly do

little more than creating microlith instances communicating

synchronously with each other. The problem with a single

instance is that it cannot be scalable or available. A single

monolithic thing, whatever it might be (a human or a software

process), can’t be scaled out, and can’t stay available if it crashes.

But it is also true that as soon as we exit the boundary

of the single service instance we enter a wild ocean of

non-determinism—the world of distributed microservice

architectures.

The challenge of building and deploying a microservices-based

architecture boils down to all the surrounding requirements

needed to make a production deployment successful. For example:

Built using technologies proven in production by some of the

most admired brands in the world, Lagom is the culmination

of years of enterprise usage and community contributions

to Akka and Play Framework. Going far beyond the developer

workstation, Lagom combines a familiar, highly iterative code

environment using your existing IDE, DI, and build tools, with

additional features like service orchestration, monitoring,

and advanced self-healing to support resilient, scalable

production deployments.

WRITTEN BY MARKUS EISELE
DIRECTOR OF DEVELOPER ADVOCACY, LIGHTBEND, INC.

The Evolution of
Scalable Microservices
From building microliths to designing reactive

microsystems

“Java finally gets microservices tools.” -Infoworld.com

CASE STUDY
Hootsuite is the world’s most widely used social media platform

with more than 10 million users, and 744 of the Fortune

1000. Amidst incredible growth, Hootsuite was challenged by

diminishing returns of engineering pouring time into scaling

their legacy PHP and MySQL stack, which was suffering from

performance and scalability issues. Hootsuite decomposed their

legacy monolith into microservices with Lightbend technologies,

creating a faster and leaner platform with asynchronous, message-

driven communication among clusters. Hootsuite’s new system

handles orders of magnitude more requests per second than the

previous stack, and is so resource efficient that they were able to

reduce Amazon Web Services infrastructure costs by 80%.

STRENGTHS

NOTABLE CUSTOMERS

• 	 Powered by proven tools: Play Framework, Akka

Streams, Akka Cluster, and Akka Persistence.

• 	 Instantly visible code updates, with support for Maven

and existing dev tools.

• 	 Message-driven and asynchronous, with supervision

and streaming capabilities.

• 	 Persistence made simple, with native event-sourcing/

CQRS for data management.

• 	 Deploy to prod with a single command, including

service discovery and self-healing.

• 	 Verizon

• 	 Walmart

• 	 Samsung

• 	 Hootsuite

• 	 UniCredit Group

• 	 Zalando

CATEGORY
Microservices
Framework

NEW RELEASES
Multiple times per
year

OPEN SOURCE
Yes

WEBSITE www.lagomframework.com BLOG lagomframework.com/blogTWITTER @lagom

Lagom Framework By Lightbend

• 	 Service discovery

• 	 Coordination

• 	 Security

• 	 Replication

• 	 Data consistency

• 	 Deployment orchestration

• 	 Resilience (i.e. failover)

• 	 Integration with other

systems

SPONSORED OP IN ION

http://www.Infoworld.com
https://www.lagomframework.com/?utm_source=dzone&utm_medium=link&utm_campaign=WEB-PAGE-lagom-framework-home&utm_term=none&utm_content=guide-modern-java
https://www.lagomframework.com/?utm_source=dzone&utm_medium=link&utm_campaign=WEB-PAGE-lagom-framework-home&utm_term=none&utm_content=guide-modern-java
https://www.lagomframework.com/blog/?utm_source=dzone&utm_medium=link&utm_campaign=WEB-PAGE-lagom-framework-blog&utm_term=none&utm_content=guide-modern-java
https://www.lagomframework.com/blog/?utm_source=dzone&utm_medium=link&utm_campaign=WEB-PAGE-lagom-framework-blog&utm_term=none&utm_content=guide-modern-java
https://twitter.com/lagom

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

3 2

Useful applications collect, munge, and present

data to its users. Data becomes the lifeblood of

an application, so to speak. As developers of an

application with a single database, we are afforded

many helpful abstractions: atomic transactions,

tunable concurrency, indexes, materialized views,

and more. This “single database view” of the world

simplifies things for our application developers. As

soon as we add more databases to our application

(single application with multiple backends/

databases), we have to deal with data challenges

within the application.

For example, if our application’s main database

is a MySQL database with all of the transactional

workloads going through it, we may decide that

for a particularly sensitive area of our application,

we want to use something like Oracle, which may

have better support for encryption of data at rest.

Now, our application will have to make multiple

data calls (two different databases), process

queries across both databases and the joining of

data inside our application code, and also figure

out how best to handle atomicity challenges

on updates (i.e. distributed transactions, self-

managed eventual consistency, triggers, or non-

transactional datastores).

Now, let’s imagine that we want to move to a

microservices architecture. I’m sure you’ve heard the

claim that each microservice should have its own

database or datastore. What happens to our data?

As we start to break functionality into separate services,

we’ll quickly confront these challenges. There are two

main things to understand here. First, as Pat Helland

reminds us, data on the inside of our service must

be treated differently than data outside our service.

Data inside of a service can still take advantage of

the conveniences and abstractions afforded to us by

the database that we decide to use (atomicity, query

planning, concurrent controls, etc.). When services

communicate with each other and send data outside a

service boundary, we’re inherently dealing with stale

data. Said a different way, as soon as data leaves a

service, there is no guarantee it’s the most recent version

of that data.

The second thing to understand: Since the data on

the outside of our services cannot come with recency

guarantees (it’s stale), there is a component of time to

this equation. Microservices involved in this system will

“eventually” see the updates of other services and must

factor this into their application design. Some would

describe this as an “eventually consistent” system.

How can we design around these two factors? To wit, are

there design principles, patterns, and practices that take

data on the inside/outside and time into account when

building a system?

Domain-driven design fits this mindset quite well, and

What to Consider
When Dealing With
Microservices Data

BY CHRISTIAN POSTA
CHIEF ARCHITECT CLOUD APPLICATIONS, RED HAT

As we introduce new data
sources, we may have to deal
with data concerns within the
application.

Splitting out our data involves
more than just splitting tables in
a database.

The boundaries between
our services suggest a time
component to dealing with data.

Systems may be “eventual
consistent” for inter-boundary
data communication.

01

02

03

04

Q U I C K V I E W

http://cidrdb.org/cidr2005/papers/P12.pdf

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

3 3

forces us to think more about how the business operates,

the language it uses to describe their complexity, the

natural transactional boundaries that the business sees,

and how best to model this in software. This encourages

us to think more closely about the natural transaction

boundaries (non-technology speaking) that exist in the

domain, draw a boundary around those (i.e. the bounded

context), and map the interactions between these

boundaries (i.e. context mapping). For example, if we

take a naive, purely technological approach to a solution,

without regard for the business or domain, we may end

up building services around “User,” “Account,” “Order,”

etc., each with its own database. Now, any time we need

to refer to a User, Account, or Order, we need to consult

with these respective services and these “services” end

up being very hollow or anemic CRUD services doing

little more than data access. Is that what a service is?

What if we spent a little more effort to understand how

the business thinks of these concepts? What is a User?

What is an Order? What is a “thing?”

In my talks, I like to illustrate this complexity with a very

simple example (borrowed from William Kent) by asking

a question: What is a “book?” How would we describe

what a “book” is for a fictitious online bookstore? A book

has pages, a cover, and an author. I’ve written a book.

So, would there be one entry in the system for the book

I wrote? I have about 20 or so copies of that book next to

my desk, and infinite copies as e-books online. Is each

one of those a “book?” Is the e-book not a book until

someone downloads it? Some books are so big they have

to get broken down into smaller volumes. Is the whole

thing a book? Or just the individual volumes? Which

is it? In our online book store, what a book is depends

on the domain. A book may be represented and treated

differently in the order/checkout part of the system than

in the recommendation engine. For ordering/checkout,

we do care about each individual physical/electronic

book. For the recommendation engine, we may just

care about metadata, how it relates to other metadata,

and its possible relevance. So maybe the services

we have are the ordering/checkout service, catalog

search, and recommendations. Each service will have

an understanding of “book” that makes sense for it to

provide a service.

Identifying these nuances in the domain and drawing

boundaries around them allows us to focus on the inside

vs. outside of the data. If we make changes to a book, or

an order, or an account within the bounded context, we

expect that to be aligned to a transactional boundary and

be strictly consistent. When we make a change to the

Order, it is consistent with any read/writes afterward.

But, as we see with the book example, these concepts

may be shared across multiple services, though their

representation may be slightly (or dramatically) different.

But how do we communicate changes about this data

that might be similar?

DDD theory isn’t very opinionated about how the

data is shared. The discussion in the DDD community

revolves around interaction relationships like “customer/

supplier,” “conformist,” “anti-corruption,” etc. Even so,

a lot of practical implementations of these ideas end up

going down the route of an event-driven architecture,

raising events when interesting things happen within

a bounded context and letting other bounded contexts

interpret that event. An “event” here is announcing a

fact that something happened (in the past — note the

relationship to time and inherent staleness) in which

other parts of the system may also be interested. For

example, in our Checkout bounded context, if we

successfully process an Order, we can store that within

our own transactional boundary and then raise an event

named “CheckoutPurchaseCompleted” with a reference

to the book ID that was purchased. Other systems

interested in this fact, maybe the Search service, can

capture that event and make some decisions based on it;

maybe it decreases its locally stored count of a particular

book’s inventory and uses this as a factor of whether to

display in search results. This way, the Search service

doesn’t have to continuously call an Inventory or Book

Availability service every time it has a search result that

includes a particular book.

By taking an event-driven approach combined with

DDD, we make Pat Helland’s “data on the inside vs.

data on the outside” a core part of the design — which

encourages us to think more closely about the “time”

aspects of distributed systems. If we can comfortably

live in this environment, we can achieve the holy grail

of autonomous microservices, which then allows us to

make changes quicker and independently from the rest

of the system.

Christian Posta (@christianposta) is a Chief Architect of cloud
applications at Red Hat and well known in the community for
being an author (Microservices for Java Developers, O’Reilly 2016),
frequent blogger, speaker, open-source enthusiast, and committer
on various open-source projects. Christian has spent time at
web-scale companies and now helps companies create and deploy
large-scale, resilient, distributed architectures — many of what we now
call microservices. He enjoys mentoring, training and leading teams to be
successful with distributed systems concepts, microservices, DevOps, and
cloud-native application design.





https://twitter.com/christianposta
https://twitter.com/christianposta
https://www.linkedin.com/in/ceposta/

SPONSORED OP IN ION

http://macaw.io?DZone.com
https://www.macaw.io/download
https://www.macaw.io/blog/
http://www.twitter.com/macawbuzz

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

3 5

Emerging technologies such as cloud, DevOps, microservices,

containers, Big Data, and serverless computing offer the promise of

a scalable, agile, and lean IT environment. As much as enterprises

like to embrace these emerging technologies to build new systems,

they are often required to maintain and evolve legacy systems to

support existing customers and business processes. To effectively

address this practical dichotomous problem, enterprises need a

platform that can modernize legacy applications as well as enable

new application development with emerging technologies. For

optimal results, enterprises should achieve both objectives through

one common architectural plane and platform.

Modernizing Traditional Applications (MTA): The status quo of the

current approach involves systematically rewriting existing code to

newer technologies. However, this approach is fraught with risks,

can be costly, and can lead to prolonged or failed projects. Macaw

takes a distinctive approach: instead of disruptive forklifting,

Macaw employs a streamlined process at the desired pace and

choice of transforming legacy (Java/J2EE, .NET, etc.) applications

to cloud ready architectures. Specifically, Macaw discovers and

maps existing application dependencies, and provides a toolset to

containerize and operate components of the application that are

ready to be transformed to a microservices model. This process

iterates until the whole application is modernized.

Building highly scalable and distributed cloud native applications:

Macaw makes it easy to develop and implement 12-factor cloud

native applications with microservices and containers. Macaw

provides several built-in key architectural components and essen-

tial services such as a database, messaging, registry, API gateway,

identity management, container orchestration, and Kubernetes

integration. Macaw addresses the challenges of managing distrib-

uted applications using monitoring, real-time message correlation,

governance, and performance monitoring capabilities.

Accelerate Modern

Enterprise Application

Journey with Macaw

Macaw

Challenge: One of the leading Telecom Enterprises was using a legacy

monitoring solution. Customers frequently complained about a sluggish portal,

scalability issues, and empty charts/reports. Supporting new devices/

technologies took a long time.

Solution: Developed next generation hybrid IT monitoring solution using Macaw

Platform. This solution leverages many built-in Macaw microservices and

container capabilities, and is highly responsive and scalable. The customer was

able to seamlessly integrate with legacy enterprise systems as well.

Benefits: Achieved 40% customer growth in less than 6 months. Cut down

customer onboarding time from 6 weeks to 1 week. Added support for new devices

in a couple of weeks — which used to take months with the legacy solution.

STRENGTHS

CASE STUDY

• 	 One stop microservices platform: develop, deploy,

run, and manage

• 	 Out-of-the-box support for federated Kubernetes

clusters and AWS serverless Lambda integrations

• 	 Can support both green-field and brown-field

applications

• 	 Designed and architected to address DevOps and

Containerization needs

• 	 Built-in microservices monitoring, debugging, and

operations capabilities

CATEGORY
Modern Applications

Development and

Runtime Platform

NEWEST RELEASE
Currently 0.9.5

OPEN SOURCE
No

NOTABLE CUSTOMERS

WEBSITE macaw.io BLOG macaw.io/blogTWITTER @macawbuzz

Macaw fulfills the promise of one modern application platform that will bring traditional enterprise applications and modern
applications into the new paradigm of highly scalable, containerized, distributed, and microservices-based cloud ready architectures.

• 	 AT&T

• 	 Monsanto

• 	 GDT

• 	 Sysco Foods

• 	 First National Bank

• 	 Oracle

WRITTEN BY SATYAN RAJU
CDO, MACAW SOFTWARE INC.

“We were able to quickly re-architect our multi-tiered J2EE application

by using Integrated Macaw Microservices and Kubernetes Container

Environment” - SENIOR ARCHITECT, LARGE TELECOM PROVIDER

“We replaced existing monolithic Monitoring tool with next generation

Hybrid IT Monitoring solution, built with Macaw platform. Now, our solution

is very responsive, highly scalable, and able to support new devices/

technologies quickly” - DIRECTOR OF OPERATIONS, LEADING MSP

SPONSORED OP IN ION

http://macaw.io
http://macaw.io
http://macaw.io
http://macaw.io/blog
http://macaw.io/blog
https://www.diamanti.com/blog/
http://macaw.io/blog
https://twitter.com/macawbuzz
https://twitter.com/macawbuzz
https://twitter.com/macawbuzz

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

3 6

A reactive microservices architecture is an

architectural style that strives to provide the

highest levels of responsiveness, resiliency,

and elasticity, and accomplish this by adopting

strong decoupling, isolation, non-blocking,

event-driven architecture, and asynchronous

messaging, among other techniques.

TRADITIONAL PERSISTENCE IS A POTENTIAL
BOTTLENECK FOR REACTIVE SYSTEMS
Reactive architecture uses Domain Driven Design (DDD)

or similar design patterns to accomplish isolation and

create separate and isolated entities with aggregate

routes and bounded contexts to create well-rounded and

independent microservices.

By persisting such separated entities as part of business

transactions using traditional persistence methods

within the conventional CRUD realm, such as Two Phase

Commit or 2PC, and adhering to the ACID concept, we

are creating significant blocking bottlenecks that can

potentially limit the capabilities and promise of reactive

systems. Traditional persistence is not a good fit for

reactive systems. We need a persistence approach that can

promote minimal blocking and create decoupling between

the business services and the persistence layer.

REACTIVE PERSISTENCE CQRS AND EVENT
SOURCING
Reactive persistence uses Command Query Responsibility

Segregation (CQRS) and event sourcing to accomplish this

asynchronous and decoupled interaction.

The CQRS will provide the decoupling between the read

and write channels, allow greater freedom, and provide

responsiveness for the persistence operations.

Event sourcing focuses on appending the various

states of an entity or domain to an event journal using

event persistence commands while you can have event

subscribers and processors attached to the journal

responding to the appended events and working on

building the entity or object state in the query database or

persistence store.

Event sourcing and CQRS will provide better write

performance as it will only perform append operations

instead of a full domain object update,, and will improve

scalability as we have decoupled and separated the Write

and Read processes. Also, event sourcing provides better

audit control and a ripe environment for analytics.

To drive the point closer, we can follow an order

management example or use case. Using event sourcing,

we can append different order states to the journal while

we append similar events to other domains associated

with an order, such as payments or inventory. The event

subscribers and processors will construct the domain state

in the query store using those fragmented events received

from the event producers.

TECHNOLOGIES
DDD, CQRS, and event sourcing are not new design

Reactive Persistence

for Reactive Systems

BY MARK MAKARY
CTO, LOGIC KEEPERS

Traditional persistence is
not a good fit for reactive
microservices architectures.

Reactive Persistence should
utilize DDD, CQRS, and event
sourcing design patterns.

Out-of-the-box solutions like
Lagom and Kafka can help build
reactive systems.

01

02

03

Q U I C K V I E W

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

3 7

patterns. However, recent advances in network and

persistence technologies allowed the open source

community to build and implement those design patterns,

providing robust and enterprise grade, highly available,

scalable, and distributed reactive persistence technologies.

Below are two out-of-the-box technologies that fully or

partially support CQRS and event sourcing.

LAGOM PERSISTENCE
Lagom is a reactive framework built on top of the Akka

Toolkit and Play framework technologies. The framework

is created and supported by Lightbend.

Lagom Persistence is a CQRS and event sourcing

implementation, and can easily provide direct mapping to

the business domains by deriving and attaching the core

Lagom persistence classes and utilities.

APACHE KAFKA
Kafka is another revolutionary technology, it’s a high

performance and high scalability distributed data

streaming platform.

Kafka is a clustered and distributed pub/sub asynchronous

messaging platform and event store at the same time. As

highlighted in Figure 1, we can use Kafka as the event

store and separate the front-end services supplying

domain events through commands (producers) from the

backend services that subscribe to those

events and construct the domain state in the query

database store.

�������������������

��������

��

��

�	���

��

��

�	���

��������

�����

�������������������������� ��������������������������

����� �����

REACTIVE PERSISTENCE CONSIDERATION
When using CQRS and event sourcing, we have some

important aspects to consider, some of the most important

ones are described further below.

EVENTUAL CONSISTENCY
Reactive persistence is using eventual consistency

rather than strong consistency. For instance, using the

order management example we used earlier, the order

status (created, submitted, completed, etc.) might not be

consistent with the event store’s latest event for some

time, and the business logic needs to compensate for and

accommodate eventual consistency.

ENTITY TRACKING
Using the order management example, all the events are

stateless and immutable; so how can we keep track of the

order? The system or the services must keep the order’s

unique id in the exchanged messages, and the events

must be able to identify and construct or reconstruct the

specific order.

ORDER OF EVENTS
In a distributed system, the order of events is of significant

importance, as constructing the correct domain state

will directly depend on the correct order of events. For

instance, if the event processor processes the “order

submitted” event after the “order completed” event, the

wrong order state will be represented in the order table.

CONCLUSION
Currently, we have a variety of technologies and

techniques used in designing and implementing reactive

persistence. Those different approaches can fit different

use cases; each have their own advantages and trade-offs.

It’s up to the architects to determine the best

fit. However, the good news is that we are not bound

to traditional persistence anymore, and we have

many options where we can easily build and utilize

reactive persistence.

Mark Makary is the founder, President, and CTO of Logic
Keepers — is an entrepreneur, enabler, and IT industry veteran
who is empowering others to solve difficult real-life problems and
providing innovative solutions utilizing cloud architecture and open
source technologies. Mark is a thought leader and author, focusing
on reactive architecture and programming, emerging technologies,
distributed computing, API management, B2B integration, and
information security.





DDD, CQRS, and event sourcing are not new

design patterns. However, recent advances in

network and persistence technologies allowed the

open source community to build and implement

those design patterns, providing robust and

enterprise grade, highly available, scalable, and

distributed reactive persistence technologies.

https://twitter.com/makarylogic
https://www.linkedin.com/in/mark-makary-12677/

SPONSORED OP IN ION

Stay secure.
Modernize apps.
Be strategically open.

Create the microservices your customer needs on
a secure platform that automates the DevOps pipeline.

Use tools and languages your team already knows.
Leverage AI and analytics.

www.ibm.com/cloud/adopt-cloud

https://bs.serving-sys.com/serving/adServer.bs?cn=trd&mc=click&pli=23388114&PluID=0&ord=[timestamp]

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

3 9

SPONSORED OP IN ION

Operating since 2008 with a maximum of 200 employees

forces UBank to attract new business through non-

traditional methods. As Australia’s leading digital-only

bank, UBank’s online home loan application process

disrupted retail banking by delivering a simpler, better

and smarter customer experience.

Recognizing the need to deliver value to customers

faster, we began adopting a cloud native development

model. By first engaging with the IBM Watson and

Cloud Adoption team and then visiting the IBM Cloud

Garage, we created a Facebook plugin referral app for

home loans. In working on that first minimum viable

product (MVP) and leveraging the Garage Method, we

transformed our agile product teams into full DevOps

teams focused on the business functions of what

we wanted to create for our customers. Rather than

waterfall project deadlines, planned outcomes in

customer experience drove our delivery.

For our next MVP, using Watson Conversation, our teams

transferred the knowledge of call center staff and FAQs

into an Artificial Intelligence (AI) driven chat application,

RoboChat, which searches information based on natural

language user requests. RoboChat uses an orchestration

microservice built as a Node.js runtime to connect with

the microservice we built in Watson Conversation itself.

As needed, based on verbal cues, RoboChat transfers

a customer session to one of our live Advisors for

additional help. In such cases, as part of the DevOps

cycle, relevant teams review details of the RoboChat

session — stored in a Cloudant database — to determine

how to further improve the Watson Conversation

microservice, expanding the scope of questions

RoboChat can automatically answer in the future.

Our teams delivered RoboChat — concept to

production — in eight weeks, resulting in a dramatically

new and improved customer experience. With just

two MVPs, in addition to improving our customers’

experience in applying for a loan, we also established

and improved our DevOps process to achieve

consistently rapid delivery. Continuing to operate

within this cloud native model lets us try different ideas

in quick succession as we evolve apps into the next

valuable customer experience.

What excites me most is the autonomy we’re giving

to our product teams. New feature ideas are being

put into production without the burden of waiting for

multiple teams to sequentially coordinate. With each

DevOps team responsible for a different microservice,

and with the microservices capable of interacting

through APIs, innovating customer experience can be

driven from as many directions as we have business

needs and teams.

We’re excited about continuing to leverage AI

capabilities and a microservices architecture to innovate

beyond the boundaries of banking.

Small bank.
Big outcomes.

“...as part of the DevOps cycle, relevant

teams review details of the RoboChat

session — stored in a Cloudant database —

to determine how to further improve the

Watson Conversation microservice...”

With each DevOps team responsible for

a different microservice, and with the

microservices capable of interacting through

APIs, innovating customer experience can be

driven from as many directions as we have

business needs and teams.

WRITTEN BY JEREMY HUBBARD
HEAD OF DIGITAL AND TECHNOLOGY AT UBANK ON
BEHALF OF IBM

Stay secure.
Modernize apps.
Be strategically open.

Create the microservices your customer needs on
a secure platform that automates the DevOps pipeline.

Use tools and languages your team already knows.
Leverage AI and analytics.

www.ibm.com/cloud/adopt-cloud

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 0

To gather insights on the state of microservices today, we spoke

with 19 executives who are familiar with the current state of

microservices architecture. Here’s who we spoke to:

MATT MCLARTY VICE PRESIDENT, API ACADEMY, CA TECHNOLOGIES

BRIAN DAWSON DEVOPS EVANGELIST, CLOUDBEES

LUCAS VOGEL FOUNDER, ENDPOINT SYSTEMS

THOMAS BUTT CTO, CARDCASH

ALI HODROJ V.P. PRODUCTS AND STRATEGY, GIGASPACES

JOB VAN DER VOORT VP PRODUCT, GITLAB

KEVIN SUTTER MICROPROFILE AND JAVA EE ARCHITECT, IBM

SANDEEP SINGH KOHLI DIRECTOR OF MARKETING, MULESOFT

KARL MCGUINNESS SENIOR DIRECTOR OF IDENTITY, OKTA

ROSS SMITH CHIEF ARCHITECT, PITSS AMERICA

MIKE LAFLEUR DIRECTOR OF SOLUTION ARCHITECTURE, PROVENIR

GIANNI FIORE CTO, REBRANDLY

PETER YARED CTO, SAPHO

SHA MA V.P. SOFTWARE ENGINEERING, SENDGRID

KESHAV VASUDEVAN PRODUCT MKTG. MGR., SWAGGER/SWAGGERHUB, SMARTBEAR

CHRIS MCFADDEN V.P. ENGINEERING AND OPERATIONS, SPARKPOST

CHRISTIAN BEEDGEN CO-FOUNDER AND CTO, SUMO LOGIC

TODD MILLECAM CEO, SWYM SYSTEMS, INC.

TIM JARRET SENIOR DIRECTOR OF PRODUCT MARKETING, VERACODE

KEY FINDINGS
 01 The most important elements of microservices are speed,

decentralization, and size. The ability to decouple and deliver

application functionality faster, with greater stability and agile

methodologies is a tremendous benefit to the organization and

its end users. The speed of new feature development, ongoing

maintenance, and the day-to-day work of deployment and

testing is very rewarding to everyone involved.

Microservices address the architectural bottleneck with

decentralization and the isolation of responsibility and faults,

as well as autonomous, local data sources. Breaking code into

smaller pieces results in shipping less code more often, with

smaller feedback loops. This results in components that are

easier to manage, maintain, refactor, and control.

Microservices and DevOps go hand-in-hand. There’s a reciprocal

relationship. To deliver microservices as a core part of your

architecture you need the components of DevOps: agile

development methodologies, CI, and CD. Likewise, decoupled

apps are difficult to deliver without DevOps. Implementing

DevOps helps to deliver decoupled apps faster.

 02 The most frequently mentioned languages for developing

microservices were Java and Node.js. There were more than

35 different languages, frameworks, and tools mentioned that

demonstrate the multitude of ways developers, engineers, and

architects are building microservices architectures.

 03 Microservices have improved SDLC best practices, speed,

agility, flexibility, and alignment of the software with the

business. Microservices are the embodiment of software

development best practices: simple code, easy to maintain, easy

to train other developers, good habits like encapsulation, isolation

of complexity, autonomous development teams, breaking down

silos between applications. They are also symbiotic with DevOps

with more frequent deployments, automated testing, zero

downtime deployment, and easier rollback.

Executive Insights on

the Current and Future

State of Microservices

BY TOM SMITH
RESEARCH ANALYST, DZONE

The ability to decouple and
deliver application functional-
ity faster, with greater stability
through agile development
methodologies is a tremendous
benefit to organizations.

Microservices and DevOps go
hand-in-hand. There’s a recip-
rocal relationship between the
two. Microservices architecture
will not work without a DevOps
methodology.

Microservices have improved
SDLC best practices; speed,
agility, flexibility, and the
alignment of software with the
business.

01

02

03

Q U I C K V I E W

http://www.ca.com/
https://attivonetworks.com/
http://www.cloudbees.com/
http://www.endpointsystems.com/
https://www.cardcash.com/
http://www.gigaspaces.com/
http://www.gitlab.com/
http://www.ibm.com/
http://www.mulesoft.com/
http://www.okta.com/
https://keepersecurity.com/
https://pitss.com/
http://www.provenir.com/
http://www.rebrandly.com/
http://www.sapho.com/
http://www.sendgrid.com/
http://www.smartbear.com/
http://www.sparkpost.com/
http://www.sumologic.com/
http://swym.it/
http://www.veracode.com/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 1

Tom Smith is a Research Analyst at DZone who excels at gathering

insights from analytics—both quantitative and qualitative—to drive business

results. His passion is sharing information of value to help people succeed.

In his spare time, you can find him either eating at Chipotle or working out

at the gym.





Legacy enterprises with monolithic apps become more agile in

order to enable digital transformation. Microservices provide

faster speed to market and realization of value with cloud

scaling. This supports an agile approach to development.

Smaller components allow for meaningful changes with leaner

teams, resulting in faster responsiveness to the market.

Lastly, microservices align to business objectives and full-stack

teams are aligned to customer value. Deployment is aligned

with operations and teams are more collaborative because

microservices are inherently more collaborative.

 04 The most frequently mentioned security techniques for

microservices were using APIs and API access controls and

gateways. You need to put together standards for access control

in the API architecture with certificates and tokens. Require an

API gateway key or login. API gateways provide many great out-

of-the-box management services in addition to security. APIs

are an effective way to build governance into the microservices

architecture. SLAs can be managed through API gateways

that act as proxies for the microservices. This ensures there

is a proper balance of governance for IT and flexibility for the

domain teams.

 05 A key “real-world” problem solved by microservices is the

decoupling of monolithic applications so legacy enterprises can

pursue digital transformation. Microservices force you to break

your problems down into buildable pieces. Critical components

that were previously part of a monolithic application can now

be easily extracted and rebuilt in a way that doesn’t interfere

with the rest of development. Decoupling = faster development

= faster time to market = greater revenue (as demonstrated by

Netflix, Google, and Amazon).

Pitney Bowes is making the digital transformation to an

open-commerce cloud that’s accessible by APIs. 130-year-

old Unilever has created a large number of microservices to

support its continued growth, enabling the company to connect

its e-commerce applications to the various legacy systems that

support its core operations across a global portfolio of brands.

They are pairing their microservices architecture with API-led

connectivity time to drastically reduce development time for

new e-commerce applications.

 06 The most common issue affecting the implementation

of microservices is the amount of change required. This is yet

another operational and developmental paradigm shift. You

have to face the initial configuration and driver setup costs to

connect your service to different protocols. The architectural

maturity of an organization is often the greatest hindrance

to adoption and implementation. Clients frequently need

new employees, new process models, and a new hosting

infrastructure to get the most out of a new microservices

architecture. As such, we focus on educating customers on the

options that best fit their situation.

 07 Concerns over microservices are consistent with those

of other new technologies: integration and data challenges,

complexity, and lack of governance or best practices.

Microservices introduce problems integrating with persistent

storage. You need to determine how to provide the right data for

the right context without making every data payload overloaded

with unnecessary attributes and JSON response collections.

Parallel deployments of similar data-providing services drawing

from the same underlying libraries and data sources.

There is no “one size fits all.” There are many languages, tools,

and API gateways. Microservices let you scale but it comes with

its own set of complexities.

Microservices aren’t governed, so the potential roll-out is very

“wild west.” It will take a while to adopt best practices with

patterns and use cases. That’s why it’s important for early

adopters of microservices to share their experience – both good

and bad.

 08 Serverless and functions-as-a-service are clearly the future

of microservices according to our respondents. Acceleration to

the cloud, integration, and greater reuse were also elements of

the future. Greenfield apps will be serverless with event-driven

programming and progressive web apps. The move to on-

demand compute resources and serverless architectures will

grow. Lambda is disruptive and microservices will extrapolate

to serverless with Lambda.

In addition, microservices will drive the adoption of, and

integration into, the cloud. There will be improved integration

with microservices sharing and tying multiple microservices

together. There is also greater potential for reuse. Reuse will

take a different frame of reference from the production of

reusable assets to its consumption.

 09 It seems developers need to keep everything, including

the kitchen sink, in mind when learning microservices. Given

the breadth of answers provided, perhaps the most inclusive

suggestion was to look at the twelve-factor application

methodology, since there are at least a dozen things to keep in

mind and developers would do themselves a huge service to

use the twelve factors as guidance in their implementation. In

addition to the 12 factors, be open to continuous learning given

the breakneck pace at which technology is evolving.

 10 Other issues to be considered early in microservices’

development include: 1) Why aren’t there more competitors

in the space? 2) How will we staff, develop, and maintain a

microservices architecture moving forward? 3) What’s the

real cost of maintaining a microservices infrastructure? 4)

What’s the best way to monitor hundreds of containers with

microservices? 5) Moving to serverless, how do we shift identity

and architecture best practices?

https://twitter.com/ctsmithiii
https://www.linkedin.com/in/ctsmithiii/
https://12factor.net/
https://12factor.net/

SPONSORED OP IN ION

Microservices & Microservice
Architectures
Build your application architecture with microservices
and APIs for agility, scale and security

CA Technologies provides the proven platform for a scalable,
secure microservices solution for the enterprise.

Explore https://www.ca.com/us/why-ca/microservices-architecture.html

https://www.ca.com/us/why-ca/microservices-architecture.html?utm_medium=onlineads_onl-dsp&utm_source=dzone&utm_campaign=microservices_api_acquire&utm_content=na_prodpg1-why-ca-microservices-dzonesp

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 3

Faced with the app economy, many enterprises must rebuild

applications that need to quickly adapt to changing needs;

and the traditional way of rolling out (and supporting) large

applications just isn’t sufficient. Today’s enterprise architects

and VPs of applications are wondering:

•	 How can I deploy and release modern applications in days

or weeks, not months or years – and minimize downtime on

app updates?

•	 How can I leverage multiple development teams on

different language platforms to build those modern

applications?

•	 How can I scale applications as needs change,

while minimizing infrastructure costs to accommodate

that scaling?

These challenges stem from an increased focus on

agility and scale for building modern applications — and

traditional application development methodology cannot

support this environment. CA Technologies has expanded

full lifecycle API management to include microservices —

an integration enabling the best of breed to work together

to provide the platform for modern architectures and

a secure environment for agility and scale. CA enables

enterprises to use best practices and industry – leading

technology to accelerate and make the process of

architecture modernization more practical.

Today’s DevOps and agile-loving enterprises are striving for

fast changes and quick deployments. To these companies,

the microservices architecture is a boon, but not a silver

bullet. Organizations can enable smaller development

teams with more autonomy and agility, and as a result,

the business will notice IT is more in tune with their

changing demands. IT will need to align its API strategy

with the microservices that developers produce. Securing

those microservices should be of the utmost importance;

leveraging API Gateways in this context will benefit IT. And

always remember, that if you’re looking for speed and scale,

safety is equally important — and a strong management

component is a must.

WHY ARE MICROSERVICES SO IMPORTANT?
Every digital enterprise trying to thrive in the digital

economy is aspiring for two things: speed and scale. If

a company’s need to get to market faster is critical, it’s

equally important to be able to scale up appropriately to

support increasing customer demand. But the key mantra

here is: speed and safety at scale. You can only succeed

when you attain speed and scale without losing safety.

Agile and DevOps models support decentralized and

distributed ownership of software assets and promote

faster turnaround of changes and quick deployment.

However, to intelligently break down complex, monolithic

applications into autonomous units, you need a design

strategy, namely, microservices.

By breaking your huge application into microservices, you’re

enabling your development team to be nimbler with updates

and autonomous deployments. This removes dependencies

to create large and complex builds, and it eliminates the need

for over-sophisticated architectures to step up scalability to

meet volume demands.

Accelerate

microservices and API

development with tools

from CA Technologies.

PRODUCT STRENGTHS

• 	 Centralized security enforcement for authentication,

authorization, and threat protection

• 	 Routing and mediation to protected resources across

various protocols

• 	 Service-level management for enforcing business-

level rate limits and quotas

• 	 Service orchestration for reducing service invocations

• 	 Service façades for exposing application-specific

interfaces from monolithic back ends

WEBSITE bit.ly/2AnOPMs BLOG bit.ly/2nCZXz8TWITTER @CAApi

WRITTEN BY BILL OAKES, CISSP

DIR. OF PRODUCT MARKETING FOR API MANAGEMENT, CA TECHNOLOGIES

CA Technologies provides the proven

platform for a scalable, secure microservices

solution for the enterprise.

SPONSORED OP IN ION

http://bit.ly/2AnOPMs
http://bit.ly/2AnOPMs
http://bit.ly/2AnOPMs
http://bit.ly/2nCZXz8
http://bit.ly/2nCZXz8
https://www.diamanti.com/blog/
http://bit.ly/2nCZXz8
https://twitter.com/CAApi
https://twitter.com/CAApi
https://twitter.com/CAApi

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 4

This directory contains platforms, middleware, service meshes, service discovery, and distributed

tracing tools to build and manage applications built with microservices. It provides free trial data

and product category information gathered from vendor websites and project pages. Solutions

are selected for inclusion based on several impartial criteria, including solution maturity, technical

innovativeness, relevance, and data availability

Solutions Directory

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Amazon Web Services Amazon EC2 IaaS Free tier available aws.amazon.com/ec2

Amazon Web Services Amazon API Gateway API gateway Free tier available aws.amazon.com/api-gateway

Amazon Web Services Simple Query Service (SQS) ESB Free tier available aws.amazon.com/sqs

Amazon Web Services
AWS Application Discovery

Service
Service discovery Free tier available aws.amazon.com/application-discovery

Amazon Web Services Amazon ECS Container orchestration Free tier available aws.amazon.com/ecs

Apache Foundation Kafka Distributed streaming platform Open source kafka.apache.org

Apache Foundation Zookeeper Service discovery Open source zookeeper.apache.org

Apache Foundation HTrace Distributed tracing Open source htrace.incubator.apache.org

Apache Foundation ActiveMQ Message queue Open source activemq.apache.org/

Apcera NATS Message-oriented middleware Open source nats.io

Apigee Apigee API gateway, API management Free tier available apigee.com/api-management/#/products

Axway Axway AMPLIFY
API management, API gateway,
API builder

Available by
request

axway.com/en

Buoyant Linkerd Service mesh Open source linkerd.io

CA CA API Management API management, API gateway
Available by

request
ca.com/us/products/api-management.html

Canonical LXD Container management Open source linuxcontainers.org/lxd/

http://aws.amazon.com/ec2
http://aws.amazon.com/api-gateway
http://aws.amazon.com/sqs/
http://aws.amazon.com/application-discovery/
http://aws.amazon.com/ecs
http://kafka.apache.org
http://zookeeper.apache.org
http://htrace.incubator.apache.org/
http://activemq.apache.org/
http://nats.io
http://apigee.com/api-management/#/products
http://axway.com/en
http://ca.com/us/products/api-management.html
http://linuxcontainers.org/lxd/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 5

Solutions Directory
COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Cisco AppDynamics Performance and monitoring tool 15 days appdynamics.com

Cloud Foundry Diego Container runtime system Open source github.com/cloudfoundry/diego-release

Cloud Foundry CF Container Runtime
Container deployment and
management

Open source cloudfoundry.org/container-runtime

Cloud Native Computing
Foundation Envoy Edge and service proxy Open source github.com/envoyproxy/envoy

Cloud Native Computing
Foundation OpenTracing Edge and service proxy Open source opentracing.io/documentation

Cloud Native Computing
Foundation containerd Distributed tracing APIs Open source containerd.io

CoreOS Fleet Container runtime system Open source github.com/coreos/fleet

CoreOS Flannel Container orchestration Open source coreos.com/flannel/docs/latest

CoreOS Etcd Container-defined networking Open source coreos.com/etcd

Docker Docker Container platform Free tier available docker.com/get-docker

Docker Docker Swarm
Container orchestration and
clustering

Open source github.com/docker/swarm

Dropwizard Dropwizard
Web services development
framework

Open source dropwizard.io

Dynatrace Dynatrace Performance and monitoring tool 15 days dynatrace.com

Eclipse Foundation Vert.x
Reactive application
development platform

Open source vertx.io

Elastic Elasticsearch Search and analytics Open source elastic.co/products/elasticsearch

Elastic Kibana
Elastic stack configuration and
management

Open source elastic.co/products/kibana

Fluentd Fluentd Unified logging layer Open source flentd.org

Google Kubernetes Engine Container orchestration $300 credit cloud.google.com/kubernetes-engine

gRPC gRPC Protocol buffers, RPC system Open source grpc.io

HashiCorp Consul
Service discovery, configuration,
and monitoring

Open source consul.io

http://appdynamics.com
http://github.com/cloudfoundry/diego-release
http://cloudfoundry.org/container-runtime/
http://github.com/envoyproxy/envoy
http://opentracing.io/documentation/
http://containerd.io
http://github.com/coreos/fleet
http://coreos.com/flannel/docs/latest
http://coreos.com/etcd/
http://docker.com/get-docker
http://github.com/docker/swarm
http://dropwizard.io
http://dynatrace.com
http://vertx.io
http://elastic.co/products/elasticsearch
http://elastic.co/products/kibana
http://flentd.org
http://cloud.google.com/kubernetes-engine/
http://grpc.io
http://consul.io

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 6

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

IBM IBM API Management API management Free tier available ibm.com/software/products/en/api-connect

IBM IBM Integration Bus ESB 30 days
ibm.com/software/products/en/integration-
bus-advanced

Instana
Instana Infrastructure Quality

Management
Infrastructure monitoring 14 days instana.com/infrastructure-management

Istio Istio Service mesh Open source istio.io

Jaeger Jaeger Distributed tracing Open source github.com/jaegertracing/jaeger

JHipster JHipster
Spring Boot and Angular
application and microservices
development platform

Open source jhipster.tech

Kong Kong
API gateway and microservices
management

Demo available by
request

konghq.com

Kubernetes Kubernetes Container orchestration Open source kubernetes.io

Lightbend Lagom
Microservices development
platform

Open source lightbend.com/lagom-framework

Lightbend Akka Services communication Open source lightbend.com/akka

Lightbend OpsClarity Reactive systems monitoring N/A opsclarity.com

Macaw Software Macaw
Microservices development
platform

Free tier available macaw.io

Mesosphere Marathon Container orchestration Open source mesosphere.github.io/marathon

Micro Focus Artix ESB 30 days microfocus.com/products/corba/artix#

Micrometer Micrometer JVM application monitoring Open source micrometer.io

MicroProfile MicroProfile
Java optimization project for
microservices development

Open source microprofile.io

Microsoft Azure Service Fabric
Microservices development
platform

Free tier available
azure.microsoft.com/en-us/services/service-
fabric

Microsoft Azure API Management API gateway, API management Free tier available
azure.microsoft.com/en-us/services/api-
management

Microsoft Azure Service Bus ESB Free tier available
azure.microsoft.com/en-us/services/service-
bus

Microsoft Azure Container Service Container orchestration Free tier available
azure.microsoft.com/en-us/services/
container-service

http://ibm.com/software/products/en/api-connect
http://ibm.com/software/products/en/integration-bus-advanced
http://ibm.com/software/products/en/integration-bus-advanced
http://instana.com/infrastructure-management
http://istio.io
http://github.com/jaegertracing/jaeger
http://jhipster.tech
http://konghq.com
http://kubernetes.io
http://lightbend.com/lagom-framework
http://lightbend.com/akka
http://opsclarity.com
http://macaw.io
http://mesosphere.github.io/marathon/
http://microfocus.com/products/corba/artix#
http://micrometer.io
http://microprofile.io
http://azure.microsoft.com/en-us/services/service-fabric/
http://azure.microsoft.com/en-us/services/service-fabric/
http://azure.microsoft.com/en-us/services/api-management/
http://azure.microsoft.com/en-us/services/api-management/
http://azure.microsoft.com/en-us/services/service-bus/
http://azure.microsoft.com/en-us/services/service-bus/
http://azure.microsoft.com/en-us/services/container-service/
http://azure.microsoft.com/en-us/services/container-service/

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 7

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Mulesoft Anypoint Platform Integration platform
Available by

request
mulesoft.com

NEC WebOTX ESB ESB Open source
jpn.nec.com/webotx/download/manual/92/
serviceintegration/esb

Netflix Hystrix
Latency and fault tolerance
library

Open source github.com/Netflix/Hystrix

Netflix Eureka Service discovery Open source github.com/Netflix/eureka

Netflix Archaius Configuration managmeent Open source github.com/Netflix/archaius

Netflix Ribbon Load balancing library Open source github.com/Netflix/ribbon

Netflix Zuul
Dynamic routing and service
monitoring

Open source github.com/Netflix/zuul

Netsil Netsil
Distributed application
monitoring

15 days netsil.com

Neuron ESB Neuron ESB ESB 30 days neuronesb.com/

NGINX NGINX Application Platform
Microservices development and
management

30 days nginx.com/products/

NGINX nginmesh Service mesh Open source github.com/nginmesh/nginmesh

OCI Grails Web application framework Open source grails.org

OpenESB OpenESB ESB Open Source open-esb.net

OpenLegacy API Software API Management N/A openlegacy.com

OpenText Corp. GXS Enterprise Gateway ESB N/A
opentext.com/what-we-do/products/
business-network/b2b-integration-services

Oracle Oracle Service Bus ESB Free solution
oracle.com/technetwork/middleware/service-
bus/overview

Oracle Oracle SOA Suite
SOA governance, Integration
PaaS

Free solution
oracle.com/us/products/middleware/soa/
suite/overview

Oracle Java EE Java specifications Free solution
oracle.com/technetwork/java/javaee/
overview

OW2 Middleware
Consortium Petals ESB ESB Open Source petals.ow2.org

Particular Software NServiceBus ESB Open Source particular.net/nservicebus

Pivotal Software, Inc. RabbitMQ Message queue Open source network.pivotal.io/products/pivotal-rabbitmq

http://mulesoft.com
http://jpn.nec.com/webotx/download/manual/92/serviceintegration/esb/index.html
http://jpn.nec.com/webotx/download/manual/92/serviceintegration/esb/index.html
http://github.com/Netflix/Hystrix
http://github.com/Netflix/eureka
http://github.com/Netflix/archaius
http://github.com/Netflix/ribbon
http://github.com/Netflix/zuul
http://netsil.com
http://neuronesb.com/
http://nginx.com/products/
http://github.com/nginmesh/nginmesh
http://grails.org
http://open-esb.net
http://openlegacy.com
http://opentext.com/what-we-do/products/business-network/b2b-integration-services
http://opentext.com/what-we-do/products/business-network/b2b-integration-services
http://oracle.com/technetwork/middleware/service-bus/overview/index-096326.html
http://oracle.com/technetwork/middleware/service-bus/overview/index-096326.html
http://oracle.com/us/products/middleware/soa/suite/overview/index.html
http://oracle.com/us/products/middleware/soa/suite/overview/index.html
http://oracle.com/technetwork/java/javaee/overview/index.html
http://oracle.com/technetwork/java/javaee/overview/index.html
http://petals.ow2.org/
http://particular.net/nservicebus
http://network.pivotal.io/products/pivotal-rabbitmq

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 8

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Pivotal Software, Inc. Spring Cloud Sleuth Distributed tracing Open source cloud.spring.io/spring-cloud-sleuth

Pivotal Software, Inc. Spring Boot
Spring application development
platform

Open source projects.spring.io/spring-boot

Prometheus Prometheus
Spring application development
platform

Open source prometheus.io

Red Hat
Red Hat Enterprise Linux Atomic

Host
Container management Open source

redhat.com/en/resources/enterprise-linux-
atomic-host-datasheet

Red Hat JBoss Fuse ESB Open source
redhat.com/en/technologies/jboss-
middleware/fuse

Red Hat WildFly Swarm Java EE services development Open source wildfly-swarm.io

Rogue Wave Software Akana API Management API management
Demo available by

request
roguewave.com/products/akana/solutions/
api-management

SignalFX SignalFX Monitoring, alerts, and analytics 14 days signalfx.com/products

SimianViz SimianViz Microservices simulation Open source github.com/adrianco/spigo

Sysdig Sysdig Falco
Behavioral activity monitor with
container support

Open source sysdig.com/falco

The Linux Foundation The Linux Foundation Open source project hosting Open source linuxfoundation.org

TIBCO Software Inc. Mashery API management 30 days mashery.com/api-management/saas

Twistlock Twistlock Container security
Available by

request
twistlock.com

Twitter Finagle RPC system Open source twitter.github.io/finagle

Tyk.io Tyk API management Open source github.com/TykTechnologies/tyk

VMWare Photon
Container-optimized operating
system

Open source vmware.github.io/photon

WSO2 WSO2 API management Free solution wso2.com/api-management

X-Trace X-Trace Distributed tracing Open source github.com/rfonseca/X-Trace

Zapier Zapier API management Free tier available zapier.com

Zipkin Zipkin Distributed tracing Open source zipkin.io

http://cloud.spring.io/spring-cloud-sleuth/
http://projects.spring.io/spring-boot/
http://prometheus.io
http://redhat.com/en/resources/enterprise-linux-atomic-host-datasheet
http://redhat.com/en/resources/enterprise-linux-atomic-host-datasheet
http://redhat.com/en/technologies/jboss-middleware/fuse
http://redhat.com/en/technologies/jboss-middleware/fuse
http://wildfly-swarm.io
http://roguewave.com/products/akana/solutions/api-management
http://roguewave.com/products/akana/solutions/api-management
http://signalfx.com/products/
http://github.com/adrianco/spigo
http://sysdig.com/falco
http://linuxfoundation.org
http://mashery.com/api-management/saas
http://twistlock.com
http://twitter.github.io/finagle/
http://github.com/TykTechnologies/tyk
http://vmware.github.io/photon/
http://wso2.com/api-management
http://github.com/rfonseca/X-Trace
http://zapier.com/
http://zipkin.io

DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

DZONE.COM/GUIDES DZONE’S GUIDE TO MICROSERVICES: BREAKING DOWN THE MONOLITH

4 9

APPLICATION PROGRAMMING INTER-

FACE (API)
A software interface that allows users to

configure and interact with other programs,

usually by calling from a list of functions.

CONTAINER

Resource isolation at the OS (rather than

machine) level, usually (in UNIX-based

systems) in user space.Isolated elements

vary by containerization strategy and

often include file system, disk quota, CPU

and memory, I/O rate, root privileges, and

network access. Much lighter-weight than

machine-level virtualization and sufficient

for many isolation requirement sets.

CONTINUOUS DELIVERY

A software engineering approach in which

continuous integration, automated testing,

and automated deployment capabilities

allow software to be developed and de-

ployed rapidly, reliably, and repeatedly with

minimal human intervention.

DISTRIBUTED SYSTEM

Any system or application that operates

across a wide network of services or nodes.

DISTRIBUTED TRACING

A category of tools and practices that

allow developers to analyze the behavior

of a service and troubleshoot problems by

creating services that record information

about requests and operations that are

performed.

DOMAIN-DRIVEN DESIGN

A philosophy for developing software in

which development is focused primarily on

the business logic, the activities and issues

that an application is supposed to perform

or solve.

ENTERPRISE SERVICE BUS (ESB)
A utility that combines a messaging system

with middleware to provide comprehen-

sive communication services for software

applications.

EVENTUAL CONSISTENCY

 A data consistency model used to make

distributed applications highly available by

keeping data in sync and up-to-date across

all services or nodes.

HOLACRACY

A management practice for organizations

that are separated into autonomous and

independent departments based on roles,

which can organize themselves and make

decisions based on their duties. Holacracies

are focused on rapidly iterating.

JAVA VIRTUAL MACHINE (JVM)
Abstracted software that allows a comput-

er to run a Java program.

MESSAGE BROKER

Middleware that translates a message sent

by one piece of software to be read by

another piece of software.

MICROSERVICES ARCHITECTURE

A development method of designing your

applications as modular services that

seamlessly adapt to a highly scalable and

dynamic environment.

ORCHESTRATION

The method to automate the management

and deployment of your applications and

containers.

SERVICE DISCOVERY
The act of finding the network location of a

service instance for further use.

SERVICE MESH
An infrastructure layer focused on ser-

vice-to-service communication, primarily

used for distributed systems and cloud-na-

tive applications.

SOCIOCRACY
A mode of governance without a cen-

tralized power structure, aiming for less

independence between teams to focus on

organization-wide strategy.

WEB SERVICE
 A function that can be accessed over the

web in a standardized way using APIs that

are accessed via HTTP and executed on a

remote system.

G

L

O

S

S

A

R

Y

 Start applying for free

Claim your free post

Take your development
career to the next level.

Is your company hiring developers?

THESE COMPANIES ARE NOW HIRING ON DZONE JOBS:

From DevOps to Cloud Architecture, find great opportunities that

match your technical skills and passions on DZone Jobs.

Post your first job for free and start recruiting for the world's most

experienced developer community with code 'HIREDEVS1'.

https://jobs.dzone.com/?utm_source=javaguide&utm_medium=pdf&utm_campaign=backcover-apply
https://jobs.dzone.com/?utm_source=javaguide&utm_medium=pdf&utm_campaign=backcover-apply

