CHAPTER 22

BRANCH AND BOUND

BIRD’S-EYE VIEW

All good things must come to an end. We are at the last chapter of this book.
Fortunately, most of the concepts used in this chapter have been developed in earlier
ones. Like backtracking, branch and bound searches a solution space that is often
organized as a tree. The common tree organizations are the subset and permutation
trees introduced in Chapter 21. However, unlike backtracking, which searches these
tree organizations in a depth-first manner, branch and bound usually searches these
trees in either a breadth-first or least-cost manner. The applications considered in
this chapter are the same as those of Chapter 21. Consequently, it should be easy
for you to see the similarities and differences between the backtracking and branch-
and-bound methods.

Since the space requirements of branch-and-bound algorithms are often consid-
erably more than those of their backtracking counterparts, backtracking is often
more successful at finding the answer in memory-limited situations.

871

872 Chapter 22 Branch and Bound

22.1 THE METHOD

Branch and bound is another way to systematically search a solution space. It
differs from backtracking primarily in the way an E-node is expanded. Each live
node becomes an E-node exactly once. When a node becomes an E-node, all new
nodes that can be reached using a single move are generated. Generated nodes that
cannot possibly lead to a (optimal) feasible solution are discarded (i.e., the node
dies). The remaining nodes are added to the list of live nodes, and then one node
from this list is selected to become the next E-node. The selected node is extracted
from the list of live nodes and expanded. This expansion process is continued until
either the answer is found or the list of live nodes becomes empty.

There are two common ways to select the next E-node (though other possibities
exist):

e First In, First Out (FIFO)
This scheme extracts nodes from the list of live nodes in the same order as
they are put into it. The live node list behaves as a queue.

e Least Cost or Max Profit
This scheme associates a cost or profit with each node. If we are searching for
a solution with least cost, then the list of live nodes can be set up as a min
heap. The next E-node is the live node with least cost. If we want a solution
with maximum profit, the live node list can be set up as a max heap. The
next E-node is the live node with maximum profit.

Example 22.1 [Ratin a Maze] Consider the rat-in-a-maze instance of Figure 21.3(a)
and the solution space organization of Figure 21.1. In a FIFO branch and bound, we
begin with (1,1) as the E-node and an empty live node list. The maze position (1,1)
is set to 1 to prevent a return to this position. (1,1) is expanded, and its neighbor
nodes (1,2) and (2,1) are added to the queue (i.e., the list of live nodes). Positions
(1,2) and (2,1) are set to 1 in the maze to prevent moving to these positions again.
The maze now is as shown in Figure 22.1(a), and the E-node (1,1) is discarded.

1 10 1 11 11 1

11 1 11 1 11 1

00 0 00 0 1 0 0
(a) (b) ()

Figure 22.1 FIFO branch and bound in a maze

Node (1,2) is removed from the queue and expanded. Its three neighbors (see
the solution space of Figure 21.1) are examined. Only (1,3) represents a feasible
move (the remaining two nodes represent moves to blocked positions), and it is

Section 22.1 The Method 873

added to the queue. This maze position is set to 1, and the status of maze is as
shown in Figure 22.1(b). Node (1,2) is discarded. The next E-node is extracted
from the queue. It is (2,1). When this E-node is expanded, node (3,1) is added to
the queue, maze(3,1) is set to 1, and node (2,1) is discarded. maze is as shown in
Figure 22.1(c), and the queue has the nodes (1,3) and (3,1) on it. (1,3) becomes the
next E-node. Since this E-node does not get us to any new nodes, it is discarded
and (3,1) becomes the new E-node. At this time the queue is empty. Node (3,1)
gets us to node (3,2), which is now added to the queue, and (3,1) is discarded. (3,2)
is the next E-node. Expanding this node, we reach the exit (3,3), and the search
terminates.

A FIFO search of a maze has the desirable property that the path found (if
any) is a shortest path from the entrance to the maze. Observe that the path found
by backtracking may not be a shortest path. Interestingly, we have already seen
the code for a FIFO branch-and-bound search of a maze. The wire-routing code
of Program 10.8 when run with the start position (1,1) and finish position (n,n)
performs a FIFO branch-and-bound search of the maze and determines the shortest
start-to-finish path. [|

Example 22.2 [0/1 Knapsack] We will carry out both a FIFO and a max-profit
branch-and-bound search on the knapsack instance n = 3, w = [20, 15, 15], p = [40,
25, 25], and ¢ = 30. The FIFO version uses a queue to keep track of live nodes, as
these nodes are to be extracted in FIFO order. The max-profit version uses a max
heap, as E-nodes are selected from among the live nodes in decreasing order of profit
earned at the live node or in decreasing order of an estimate of the maximum profit
earned at any leaf in the live node’s subtree. The instance we are using is the same
as that used in Example 21.2; and the solution space tree is that of Figure 21.2.

The FIFO branch-and-bound search begins with the root A as the E-node. At
this time the live node queue is empty. When node A is expanded, nodes B and
C are generated. As both are feasible, they are added to the live node queue, and
node A is discarded. The next E-node is node B. It is expanded to get nodes D and
E. D is infeasible and discarded, while E is added to the queue. Next C becomes the
E-node. When expanded, it leads to nodes F and G. Both are feasible and added to
the queue. The next E-node, E, gets us to J and K. J is infeasible and discarded. K
is a feasible leaf and represents a possible solution to the instance. Its profit value
is 40.

The next E-node is node F. Its children L and M are generated. L represents
a feasible packing with profit value 50, while M represents a feasible packing with
value 15. G is the last node to become the E-node. Its children N and O are both
feasible. The search now terminates because the live node queue is empty. The best
solution found has value 50.

Notice that a FIFO branch and bound working on a solution space tree is very
much like a breadth-first search of the tree with the root as the start vertex. The

874 Chapter 22 Branch and Bound

major difference is that FIFO branch and bound does not search subtrees of infea-
sible nodes.

The max-profit branch-and-bound algorithm begins with node A of the solution
space tree as the initial E-node. The max heap of live nodes is initially empty.
Expanding the initial E-node yields the nodes B and C. Both are feasible and are
inserted into the heap. The profit earned at node B is 40 (as #; = 1 here), while that
earned at C is 0. A is discarded, and B becomes the next E-node, as its profit value
is larger than that of C. When B is expanded, the nodes D and E are generated.
D is infeasible and discarded. E is added to the heap. E becomes the next E-node,
as its profit value is 40, while that of C is 0. When E is expanded, the nodes J
and K are generated. J is infeasible and discarded. K represents a feasible solution.
This solution is recorded as the best found so far, and K discarded. Only one live
node, node C, remains. This live node becomes the new E-node. Nodes F and G
are generated and inserted into the max heap. F has a profit of 25 and becomes
the next E-node. Nodes L and M are generated. Both are discarded, as they are
leaf nodes. The solution corresponding to L is recorded as the best found so far.
Finally, G becomes the E-node, and the nodes N and O generated. Both are leaves
and are discarded. Neither represents a solution that is better than the best found
so far, so no solution update takes place. The heap is empty, and there is no next
E-node. The search terminates with L representing the optimal solution.

As in the case of backtracking, the search for an optimal solution can be speeded
by using a bounding function. This function places an upper bound on the maximum
profit that can possibly be obtained by expanding a particular node. If a node’s
bound isn’t larger than the profit of the best solution found so far, it may be
discarded without expansion. Further, in the case of a max-profit branch and
bound, nodes may be extracted from the max heap in nonincreasing order of the
profit bound, rather than by the actual profit for the node. This strategy to extract
nodes gives preference to live nodes that are likely to lead to good leaves, rather
than to nodes that have already earned large profit. [|

Example 22.3 [Traveling Salesperson] Consider the four-city traveling-salesperson
instance of Figure 21.4. The corresponding solution space organization is the per-
mutation tree of Figure 21.5. A FIFO branch and bound would begin with node B
as the initial E-node and an empty queue of live nodes. When B is expanded, the
nodes C, D, and E are generated. As there is an edge from vertex 1 to each of the
vertices 2, 3, and 4, all three of these nodes are feasible and all three are added to
the queue. The E-node B is discarded, and the next E-node is the first live node on
the queue. Node C is the next E-node. When this node is expanded, nodes F and
G are generated. Both are added to the queue because the graph of Figure 21.4 has
an edge from vertex 2 to both vertex 3 and vertex 4. Next D becomes the E-node,
and then E becomes the E-node. Now the live node queue contains the nodes F
through K.

Section 22.1 The Method 875

The next E-node is F. It is expanded to obtain node L, which is a leaf. A tour
has been found. Its cost is 59. The next E-node, G, gets us to leaf M, which
defines a tour whose cost is 66. When node H becomes the E-node, the leaf N
that represents a tour of cost 25 is reached. The next E-node is I. It represents
the partial tour 1,3,4 whose cost, 26, is more than that of the best tour found so
far. So I is not expanded. Finally, J and K become E-nodes and get expanded.
Following this expansion, the queue is empty, and the algorithm terminates with
node N identifying the best tour.

Instead of searching the solution space tree in a FIFO manner, we could search
in a least-cost manner, using a min heap to store the live nodes. This search also
begins with node B as the E-node and an empty live node list. When B is expanded,
the nodes C, D, and E are generated and added to the min heap. Of the nodes in
the min heap, E has least cost (the partial tour 1,4 has cost 4) and becomes the
new E-node. E is expanded, and the nodes J and K are added to the min heap.
These nodes have a cost of 14 and 24, respectively. The least-cost node in the min
heap is now D. It becomes the E-node, and H and I are generated. The min heap
now contains the nodes C, H, I, J, and K. Of these nodes, H has least cost. H is the
next E-node. It is expanded, and the tour 1,3,2,4,1 of cost 25 is completed. Node J
is the next E-node. When it is expanded, we reach node P, which represents a tour
of cost 25. Nodes K and I are the next two E-nodes. As the cost of T exceeds that
of the best solution found so far, the search terminates; none of the remaining live
nodes can get us to a better solution.

As in the case of the knapsack example (Example 22.2), we can use a bounding
function to reduce the number of nodes generated and expanded. Such a function
will determine a bound on the minimum-cost tour lower than can possibly be ob-
tained by expanding a particular node. If a node’s bound isn’t smaller than the
cost of the best tour found so far, that node may be discarded without expansion.
Further, in the case of a least-cost branch and bound, nodes may be extracted from
the min heap in nondecreasing order of the cost bound.]

As mentioned in the preceding examples, we can use bounding functions to
reduce the number of nodes of the solution space tree that are generated. When
developing a bounding function, we should keep in mind that our primary objective
is to solve the instance using the least amount of time and using no more memory
than is available to us. Solving the problem by generating the least number of nodes
is mot the primary objective. As a result, we need a bounding function that pays
for its computation time by a corresponding reduction in the number of nodes
generated.

Backtracking generally has a memory advantage over branch and bound. The
memory needed by backtracking is O(length of longest path in the solution space
organization), while that needed by branch and bound is O(size of solution space
organization). For a subset space backtracking requires ©(n) memory, while the
branch-and-bound methods considered require O(2") memory. For a permutation
space backtracking requires ©(n) memory, while branch and bound needs O(n!).

876 Chapter 22 Branch and Bound

Although a max-profit or least-cost branch and bound has intuitive appeal over
backtracking and might be expected to examine fewer nodes on many inputs, the
space needs might exceed what is available sooner than the time needs of backtrack-
ing exceed the length of time we are willing to wait for the answer.

EXERCISES

1. In alast-in-first-out (LIFO) branch-and-bound search, the list of live nodes
behaves as a stack. Describe the progress of such a method on the knapsack
instance of Example 22.2. How does LIFO branch and bound differ from
backtracking?

2. Consider the 0/1 knapsack instance withn =4, p =[4, 3,2, 1], w = [1, 2, 3,
4], and ¢ = 6.

(a) Draw the solution space tree for a four-object knapsack instance.

(b) Trace through the working of a FIFO branch-and-bound search, as was
done in Example 22.2.

(c¢) Use the method bound (Program 21.9) to determine the maximum profit
obtainable at any leaf in a subtree. Use this bound together with the
value of the best solution determined so far to decide whether or not to
add a node to the live node list. Which nodes of the solution space tree
are generated by a FIFO branch and bound that uses this mechanism?

(d) Trace through the working of a max-profit branch-and-bound search, as
was done in Example 22.2.

(e) Which nodes of the solution space tree are generated during a max-profit
branch and bound when the bounding function of (c) is used?

22.2 APPLICATIONS

22.2.1 Container Loading
FIFO Branch and Bound

The container-loading problem of Section 21.2.1 essentially requires us to find a
maximum loading of the first ship. This problem is a subset-selection problem,
and the solution space organization is a subset tree. The FIFO branch-and-bound
analog of Program 21.1 is Program 22.1. Like Program 21.1, Program 22.1 finds
only the weight of a maximum loading.

The method maxLoading does a FIFO branch-and-bound search of the solution
space tree using the queue liveNodeQueue to store the weight associated with each
live node. The queue also stores the weight —1 to mark the end of a level of live
nodes. The method addLiveNode is used to add nodes (i.e., their weights) to the

Section 22.2 Applications 877
public static int maxLoading(int [] weight, int capacity)
{
// set class data members
numberOfContainers = weight.length - 1;
maxWeightSoFar = 0;
liveNodeQueue = new ArrayQueue();
liveNodeQueue.put(new Integer(-1)); // end-of-level marker
// initialize for level 1 E-node
int eNodeLevel = 1;
int eNodeWeight = 0;
// search subset space tree
while (true)
{
// check left child of E-node
if (eNodeWeight + weight[eNodeLevel] <= capacity)
// left child
addLiveNode (eNodeWeight + weight[eNodeLevel], eNodeLevel);
// right child is always feasible
addLiveNode (eNodeWeight, eNodeLevel);
// get next E-node
eNodeWeight = ((Integer) liveNodeQueue.remove()).intValue();
if (eNodeWeight == -1)
{// end of level
if (liveNodeQueue.isEmpty()) // no more live nodes
return maxWeightSoFar;
liveNodeQueue.put(new Integer(-1)); // end-of-level marker
// get next E-node
eNodeWeight = ((Integer) liveNodeQueue.remove()).intValue();
eNodelLevel++;
}
}

Program 22.1 FIFO branch-and-bound search for container loading (continues)

878 Chapter 22 Branch and Bound

private static void addLiveNode(int theWeight, int theLevel)
{
if (thelevel == numberOfContainers)
{// feasible leaf
if (theWeight > maxWeightSoFar) // better leaf reached
maxWeightSoFar = theWeight;
}
else // not a leaf
liveNodeQueue.put(new Integer (theWeight));

Program 22.1 FIFO branch-and-bound search for container loading (concluded)

live node queue. This method begins by checking whether the level of the node to
be added equals the number of containers. If so, we are at a leaf. Leaves are not
added to the queue, as these nodes cannot be expanded. Leaves that are reached
define feasible solutions, and each is checked for being better than the best found
so far. The weight of a nonleaf node is added to the queue.

maxLoading begins by initializing eNodeLevel = 1 (current E-node is the root)
and maxWeightSoFar = 0 (value of best loading found so far). At this time no live
nodes are in the queue. A —1 is added to the queue to indicate that we are at the
end of level 1. In the while loop we first see whether the left child of the E-node is
feasible. If so, addLiveNode is invoked. Then the right child is added. (This child
is guaranteed to be feasible.)

When both children of the E-node have been generated, the E-node dies and we
extract the next E-node from the queue. The queue cannot be empty at this time
because it must contain at least the end-of-level marker —1. If we have reached the
end of a level, then we see whether any live nodes from the next level are present.
These nodes are present iff the queue is not empty. When live nodes from the next
level are present, we add an end-of-level marker to the queue and begin to process
the live nodes at the next level.

The time and space requirements of maxLoading are O(2").

An Improvement

We may attempt the refinement used in Program 21.2. In this refinement a right
child was pursued only if the weight associated with it plus (remainingWeight)
exceeds maxWeightSoFar. In Program 22.1 maxWeightSoFar doesn’t get updated
until eNodeLevel equals numberOfContainers. Prior to this time the right-child
test always succeeds, as maxWeightSoFar = 0 and remainingWeight > 0. When
eNodeLevel equals number0fContainers, no more nodes are added to the queue.
So the right-child test is of no use at this time.

Section 22.2 Applications 879

To make the right-child test effective, we need to update maxWeightSoFar ear-
lier. We know that the weight of the best loading is the maximum of the weights
associated with the feasible nodes in the subset tree. Since these associated weights
increase only when a move is made to a left child, we may update maxWeightSoFar
at all such moves. This observation results in the code of Program 22.2. When a
live node is added to the queue, theWeight cannot exceed maxWeightSoFar and
so maxWeightSoFar is not updated. A single statement, inserted directly into
maxLoading, now replaces the method addLiveNode.

Finding the Best Subset

To be able to find the best subset, we need to store paths from the live nodes to
the tree root. Then when we have determined which leaf gives the best loading,
we can traverse the path to the root setting the x values. We need to change
the data type of the elements in the queue of live nodes from Integer to QNode,
where QNode has the instance data members parent (pointer to parent node in the
solution space tree), leftChild (true iff node is the left child of its parent), and
weight (weight of partial loading at this node). The new branch-and-bound code
appears in Program 22.3.

Max-Profit Branch and Bound

In a max-profit branch-and-bound search of the subset tree, the list of live nodes
is a max-priority queue. Each live node x in the queue has an upper weight (or
max profit) associated with it. This upper weight is the weight associated with the
node x plus the weight of the remaining containers. Live nodes become E-nodes in
decreasing order of their upper weight. Notice that if x is a node with upper weight
x.upperWeight, then no node in its subtree has weight more than x.upperWeight.
From this observation and the observation that the weight associated with a leaf
node equals its upper weight, we conclude that when a leaf becomes the E-node in
a max-cost branch and bound, no remaining live node can lead to a leaf with more
weight. Therefore, we may terminate the search for the best loading.

This strategy may be implemented in one of two ways. In the first each live
node resides in the max-priority queue alone. In this case each node must contain
the path from the root of the subset tree to the node. This information is needed to
determine the x values once we have identified the leaf that yields the best loading.
In the second strategy, in addition to placing each live node into the max-priority
queue, the node is entered into a separate tree structure that represents the portion
of the subset tree generated. When the best leaf is identified, the corresponding x
values are determined by following the path from the leaf to the root. We will use
this second implementation method. Exercise 5 explores the first method.

The solution space tree is represented using nodes of the type BBnode. Each
node of this type has the fields parent (pointer to parent node in the solution space
tree) and leftChild (true iff the node is a left child of its parent).

880 Chapter 22 Branch and Bound

public static int maxLoading(int [] weight, int capacity)
{
// set class data members
numberOfContainers = weight.length - 1;
maxWeightSoFar = 0;
liveNodeQueue = new ArrayQueue();
liveNodeQueue.put(new Integer(-1)); // end-of-level marker

// initialize for level 1 E-node

int eNodeLevel = 1;

int eNodeWeight = 0;

int remainingWeight = O;

for (int j = 2; j <= numberOfContainers; j++)
remainingWeight += weight[j];

// search subset space tree
while (true)
{
// check left child of E-node
int leftChildWeight = eNodeWeight + weight[eNodeLevell];
if (leftChildWeight <= capacity)
{// feasible left child
if (leftChildWeight > maxWeightSoFar)
maxWeightSoFar = leftChildWeight;
// add to queue unless leaf
if (eNodeLevel < numberOfContainers)
liveNodeQueue.put (new Integer(leftChildWeight));
}

// check right child

if (eNodeWeight + remainingWeight > maxWeightSoFar
&& eNodeLevel < number0OfContainers)
// right child may lead to better leaf
liveNodeQueue.put(new Integer(eNodeWeight));

// get next E-node
eNodeWeight = ((Integer) liveNodeQueue.remove()).intValue();
if (eNodeWeight == -1)

Program 22.2 Improved version of Program 22.1 (continues)

Section 22.2 Applications 881

{// end of level

if (liveNodeQueue.isEmpty()) // no more live nodes
return maxWeightSoFar;

liveNodeQueue.put(new Integer(-1)); // end-of-level marker
// get next E-node
eNodeWeight = ((Integer) liveNodeQueue.remove()).intValue();
eNodeLevel++;
remainingWeight -= weight [eNodeLevell;

¥

Program 22.2 Improved version of Program 22.1 (concluded)

The max-priority queue may be represented as a max heap. The elements of
this max heap are of type HeapNode where each instance of HeapNode has the fields
liveNode (a pointer to the node p of the solution space tree represented by this heap
node), upperWeight (upper bound on the weight at p), and level (the level of p).
The class HeapNode implements the interface Comparable by using its upperWeight
field.

The method addLiveNode (Program 22.4), which is a member of the class Max-
ProfitLoading, adds a new live node to the subset tree, using a node of type
BBnode, and also inserts a corresponding node into the max heap, using a node of
type HeapNode.

The method maxLoading (Program 22.5) performs a max-profit branch-and-
bound search beginning at the root of the solution space tree. The while loop
generates the left and right children of the current E-node. If the left child is
feasible (i.e., its weight does not exceed the capacity), it is added to the subset tree
and to the max heap as a level eNodeLevel+1 node. The right child of a feasible
node is guaranteed to be feasible and so is always added to the set subtree and
max heap. Following this addition, the next E-node is extracted from the max
heap. If the next E-node is a leaf, it represents the optimal loading. This loading
is determined by following the path from this leaf to the root.

Comment on Implementation

Define maxWeightSoFar to be the maximum weight associated with any of the
feasible nodes generated so far. The priority queue of live nodes may contain several
nodes whose upperWeight value does not exceed maxWeightSoFar. These nodes
cannot possibly lead to the best leaf. Their presence in the priority queue is taking
valuable queue space and also contributing to the time needed to insert/delete.
We should eliminate them. One elimination strategy is to test upperWeight >

882 Chapter 22 Branch and Bound

public static int maxLoading(int [] weight, int capacity,
int [] theBestLoading)
{
// set class data members
number0fContainers = weight.length - 1;
maxWeightSoFar = 0;
liveNodeQueue = new ArrayQueue();
liveNodeQueue.put (null); // end-of-level marker
QNode eNode = null;
bestENodeSoFar = null;
bestLoading = theBestLoading;

// initialize for level 1 E-node

int eNodeLevel = 1;

int eNodeWeight = O0;

int remainingWeight = O;

for (int j = 2; j <= numberOfContainers; j++)
remainingWeight += weight[j];

// search subset space tree
while (true)
{
// check left child of E-node
int leftChildWeight = eNodeWeight + weight[eNodeLevel];
if (leftChildWeight <= capacity)
{// feasible left child
if (leftChildWeight > maxWeightSoFar)
maxWeightSoFar = leftChildWeight;
addLiveNode (leftChildWeight, eNodeLevel, eNode, true);
}
// check right child
if (eNodeWeight + remainingWeight > maxWeightSoFar)
addLiveNode (eNodeWeight, eNodeLevel, eNode, false);

eNode = ((QNode) liveNodeQueue.remove();

if (eNode == null)

{// end of level
if (liveNodeQueue.isEmpty()) break; // no more live nodes
liveNodeQueue.put (null); // end-of-level pointer

Program 22.3 Branch-and-bound code that also computes the best subset (con-
tinues)

Section 22.2 Applications 883

VL]

* ¥ ¥ %

*
pri

{

}

}

eNode = (QNode) liveNodeQueue.remove();
eNodeLevel++;
remainingWeight -= weight[eNodeLevel];
}
eNodeWeight = eNode.weight;
}
// construct bestLoading[] by following path from
// bestENodeSoFar to root, bestLoading[number0fContainers]
// is set by addLiveNode
for (int j = numberOfContainers - 1; j > 0; j--)

{

bestLoading[j]
bestENodeSoFar

(bestENodeSoFar.leftChild) ? 1 : 0;
bestENodeSoFar.parent;

}

return maxWeightSoFar;

add a live node at level thelLevel and having weight theWeight
to liveNodeQueue if not a leaf

if feasible leaf, set bestLoading[numberOfContainers] = 1

iff leftChild is true

@param theParent parent of new node

@param leftChild true iff new node is left child of theParent */
vate static void addLiveNode(int theWeight, int theLevel,

QNode theParent, boolean leftChild)

if (thelevel == numberOfContainers)
{// feasible leaf
if (theWeight == maxWeightSoFar)

{// best leaf so far
bestENodeSoFar = theParent;
bestLoading[number0OfContainers] = (leftChild) 7 1 : 0;
}

return;

// not a leaf, add to queue
QNode b = new QNode(theParent, leftChild, theWeight);
liveNodeQueue.put(b);

Program 22.3 Branch-and-bound code that also computes the best subset (con-
cluded)

884 Chapter 22 Branch and Bound

/** add a new live node to the live node max heap

* also add the live node to the solution space tree

* Q@param theParent is the parent of the new live node

* @param leftChild is true iff the new live node is

*x the left child of theParent */
private static void addLiveNode(int upperWeight, int level,

BBnode theParent, boolean leftChild)

{

// create the new node of the solution space tree

BBnode b = new BBnode(theParent, leftChild);

// create corresponding node for max heap
HeapNode hNode = new HeapNode(b, upperWeight, level);

// put into max heap
liveNodeMaxHeap.put (hNode) ;

Program 22.4 MaxProfitBBLoading.addLiveNode

maxWeightSoFar before inserting a node into the priority queue. However, since
maxWeightSoFar increases as the algorithm progresses, nodes that pass this test at
the time of insertion may fail it later on. A more aggressive strategy is to also apply
the test whenever maxWeightSoFar increases and delete from the priority queue all
nodes with upperWeight < maxWeightSoFar. This strategy requires us to delete
nodes with least upperWeight. Hence we need a priority queue that supports the
operations insert, delete max, and delete min. Such a priority queue is called a
double-ended priority queue. Data structures for double-ended priority queues
appear on the Web site.

22.2.2 0/1 Knapsack Problem

A max-profit branch-and-bound algorithm for the 0/1 knapsack problem may be
developed by using the method profitBound of Program 21.9 to compute for each
live node N an upper profit maxPossibleProfitInSubtree such that no node in
the subtree with root IV has profit value more than maxPossibleProfitInSubtree.

The max-profit branch-and-bound code is similar to Program 22.5. We use
a max heap for the live nodes and construct portions of the solution space tree
as needed. The elements in the max heap are of type HeapNode where HeapNode
has the data members upperProfit (upper bound on profit at any leaf in subtree
with this root), profit (profit of partial solution at this node), weight (weight of

Section 22.2 Applications

885

public static int maxLoading(int [] weight, int capacity,

{

int [] bestLoading)

// set class data member
liveNodeMaxHeap = new MaxHeap();

// initialize for level 1 E-node

int numberOfContainers = weight.length - 1;
BBnode eNode = null;

int eNodelLevel = 1;

int eNodeWeight = 0;

// remainingWeight[j] will be sum of weight[j+1:n]

// default initial value is 0

int [] remainingWeight = new int [numberOfContainers + 1];

for (int j = numberOfContainers - 1; j > 0; j--)
remainingWeight[j] = remainingWeight[j + 1] + weight[j + 1];

// search subset space tree
while (eNodeLevel != numberOfContainers + 1)
{// not at a leaf
// check children of E-node
if (eNodeWeight + weight[eNodeLevel] <= capacity)
// feasible left child
addLiveNode(eNodeWeight + weight[eNodeLevel] +
remainingWeight [eNodeLevel], eNodelLevel + 1,
eNode, true);
// right child is always feasible
addLiveNode (eNodeWeight + remainingWeight [eNodeLevel],
eNodeLevel + 1, eNode, false);

// get next E-node, heap cannot be empty
HeapNode nextENode = (HeapNode) liveNodeMaxHeap.removeMax() ;
eNodelLevel = nextENode.level;
eNode = nextENode.liveNode;
eNodeWeight = nextENode.upperWeight
- remainingWeight [eNodeLevel - 1];

Program 22.5 Max-profit branch and bound for loading problem (continues)

886 Chapter 22 Branch and Bound

// construct bestLoading[] by following path
// from eNode to the root
for (int j = numberOfContainers; j > 0; j—-)
{
bestLoading[j] = (eNode.leftChild) ? 1 : O;
eNode = eNode.parent;

return eNodeWeight;
¥

Program 22.5 Max-profit branch and bound for loading problem (concluded)

partial solution at this node), level (level of this node in the solution space tree),
and liveNode (pointer to corresponding node in solution space tree). Nodes are
extracted from the max heap using their upperProfit value. The nodes in the
solution space tree are of type BBnode where BBNode has the data members parent
(pointer to parent in the tree) and leftChild (true iff node is the left child of its
parent).

The code of Program 22.6 assumes that the knapsack objects have been sorted
into ascending order of density, using the same technique as we used in Pro-
gram 21.7. The method addLiveNode adds a new live node to both the solution
space tree, using a node of type BBnode, and to the max heap, using a node of type
HeapNode. This method is very similar to the corresponding function used for the
loading problem (Program 22.4). Therefore, the code is omitted.

The method maxProfitBBKnapsack performs the max-profit branch-and-bound
search on the subset tree. The while loop is iterated until a leaf becomes the E-
node. Since no node remaining in the max heap has an upper profit that is more
than the profit at this leaf, this leaf defines an optimal packing. This packing is
determined by following the path from the leaf to the root.

The structure of the while loop of maxProfitKnapsack is very similar to that
of the while loop of Program 22.4. First we check the feasiblity of the left child
of the E-node. If this child is feasible, it is added to the subset tree as well as to
the live node list (i.e., the max heap). The right child is added only if its maxPos-
sibleProfitInSubtree value indicates that it might lead us to the best packing.

22.2.3 Max Clique

The solution space tree for the clique problem (Section 21.2.3) is also a subset tree.
Let us use the same max-profit branch-and-bound implementation strategy as we
used for the loading and knapsack problems. The nodes in the portion of the solution
space tree constructed are of type BBnode, while the max-priority queue elements

Section 22.2 Applications

887

private static double maxProfitBBKnapsack()
{
// initialize for level 1 start
BBnode eNode = null;
int eNodelLevel = 1;
double maxProfitSoFar = 0.0;
double maxPossibleProfitInSubtree = profitBound(1);

// search subset space tree
while (eNodeLevel != number0fObjects + 1)
{// not at leaf
// check left child
double weightOfLeftChild = weightOfCurrentPacking
+ weight[eNodeLevel];
if (weightOfLeftChild <= capacity)
{// feasible left child
if (profitFromCurrentPacking + profit[eNodeLevell
> maxProfitSoFar)
maxProfitSoFar = profitFromCurrentPacking
+ profit[eNodeLevel];
addLiveNode (maxPossibleProfitInSubtree,

profitFromCurrentPacking + profit[eNodeLevel],

weight0fCurrentPacking + weight[eNodeLevel],

eNodeLevel + 1, eNode, true);

}

maxPossibleProfitInSubtree = profitBound(eNodeLevel + 1);

// check right child
if (maxPossibleProfitInSubtree >= maxProfitSoFar)
// right child has prospects
addLiveNode (maxPossibleProfitInSubtree,
profitFromCurrentPacking,
weight0fCurrentPacking,
eNodeLevel + 1, eNode, false);

// get next E-node, heap cannot be empty

HeapNode nextENode = (HeapNode) liveNodeMaxHeap.removeMax() ;

eNode = nextENode.liveNode;
weightOfCurrentPacking = nextENode.weight;

Program 22.6 Max-profit branch and bound for the 0/1 knapsack problem (con-

tinues)

888 Chapter 22 Branch and Bound

profitFromCurrentPacking = nextENode.profit;
maxPossibleProfitInSubtree = nextENode.upperProfit;
eNodeLevel = nextENode.level;

}

// construct bestPackingSoFar[] by following path
// from eNode to the root
for (int j = number0fObjects; j > 0; j--)
{
bestPackingSoFar[j] = (eNode.leftChild) 7 1 : 0;
eNode = eNode.parent;

return profitFromCurrentPacking;

Program 22.6 Max-profit branch and bound for the 0/1 knapsack problem (con-
cluded)

are of type HeapNode. This time, HeapNode has the data members cliqueSize
(number of vertices in the clique represented by this node), upperSize (maximum
possible clique size for any leaf in this node’s subtree), level (level of the node in
the solution space tree), and 1iveNode (pointer to coresponding node in the solution
space tree). For upperSize we simply use the value cliqueSize + n - level + 1.
As a result, we can eliminate either the cliqueSize or the level field because from
upperSize and either cliqueSize or level, the other can be computed. When an
element is to be extracted from the max-priority queue, we select an element with
maximum upperSize. In our implementation of HeapNode, we include all three of
the fields cliqueSize, upperSize, and level. The inclusion of these fields makes
it easier to experiment with alternative definitions of upperSize.

The method addCliqueNode adds a live node to the subset tree being con-
structed and also to the max heap. The code is very similar to the code for the
corresponding method for the loading and knapsack problems and is omitted.

Program 22.7 gives the method maxProfitBBMaxClique. This method performs
a max-profit branch-and-bound search of the subset solution space tree. The root
of this tree is the initial E-node. This node is not explicitly represented in the
constructed tree. For this E-node size0fCliqueAtENode is 0 because no vertices
have been selected for inclusion into the clique. The level of the E-node is designated
by the variable eNodeLevel. This initial value of eNodeLevel is 1 because the initial
E-node is the root of the subset tree.

Section 22.2 Applications 889

/** max-profit branch-and-bound code to find a max clique
* Q@param maxClique maxClique[i] set to 1 iff i is in max clique
* Q@return size of max clique */

public int maxProfitBBMaxClique(int [] maxClique)

{

liveNodeMaxHeap = new MaxHeap();

// initialize for level 1 start
BBnode eNode = null;

int eNodelLevel = 1;

int sizeOfCliqueAtENode = 0;
int size0fMaxCliqueSoFar = 0;

// search subset space tree
while (eNodelevel != n + 1)
{// while not at leaf
// see if vertex eNodelLevel is connected to all vertices
// in current clique
boolean connected = true;
BBnode currentNode = eNode;
for (int j = eNodelLevel - 1; j > 0;
currentNode = currentNode.parent, j—-)
if (currentNode.leftChild && !a[eNodeLevel] [j])
{// j is in the clique but no edge between eNodeLevel and j
connected = false;
break;

}

if (connected)
{// left child is feasible
if (size0fCliqueAtENode + 1 > sizeOfMaxCliqueSoFar)
size0fMaxCliqueSoFar = size0fCliqueAtENode + 1;
addLiveNode (size0fCliqueAtENode + n - eNodelLevel + 1,
size0fCliqueAtENode + 1, eNodelLevel + 1, eNode, true);
}

if (sizeDfCliqueAtENode + n - eNodelLevel >= sizeDfMaxCliqueSoFar)
// right child has prospects
addLiveNode (size0fCliqueAtENode + n - eNodelevel,
size0fCliqueAtENode, eNodeLevel + 1, eNode, false);

Program 22.7 Max-profit branch-and-bound max-clique code (continues)

890 Chapter 22 Branch and Bound

// get next E-node, heap cannot be empty

HeapNode nextENode = (HeapNode) liveNodeMaxHeap.removeMax() ;
eNode = nextENode.liveNode;

size0fCliqueAtENode = nextENode.cliqueSize;

eNodeLevel = nextENode.level;

}

// construct maxClique[] by following path from eNode to the root
for (int j =n; j > 0; j--)
{

maxClique[j] = (eNode.leftChild) 7 1 : O;

eNode = eNode.parent;

return sizeOfMaxCliqueSoFar;

Program 22.7 Max-profit branch-and-bound max-clique code (concluded)

In the while loop E-nodes are expanded until a leaf (i.e., a level n+1 node)
becomes the E-node. For a leaf node upperSize = size0fCliqueAtENode. Since
all remaining nodes have an upperSize value < that of the current E-node, they
cannot lead to a larger clique than the clique represented by this E-node. Therefore,
the max clique has been found. The clique itself is constructed by following the path
from the E-node leaf to the root of the constructed subset tree.

To expand a nonleaf E-node, we first consider its left child. At the left child, a
new vertex v is included into the clique being constructed. This inclusion is possible
only if an edge exists between vertex v and each of the vertices already included at
the E-node. To determine the feasiblity of the left child, we follow the path from
the E-node to the root, determining which vertices are included and also verifying
that each included vertex is connected to vertex v by an edge. If the left child is
feasible, we add it to the max-priority queue as well as to the subset tree being
constructed. Next we add the right child provided that its subtree could contain a
leaf that represents a max clique.

Since every graph has a max clique, we do not need to test for an empty heap
when deleting from the max heap. The while loop is exited only when we reach a
feasible leaf.

Section 22.2 Applications 891

22.2.4 Traveling Salesperson

The traveling-salesperson problem was introduced in Section 21.2.4. The solution
space for this problem is a permutation tree. As in the case of max-profit and least-
cost branch-and-bound searches of subset trees, there are two possibilities for the
implementation. In one we use only a priority queue in which each element contains
the path to the root. In the other we maintain the portion of the solution space tree
that is generated and a priority queue of live nodes. In the latter case the priority
queue elements do not contain the path to the root. The implementation in this
section uses the former approach, though the latter could also have been used.

Since we are looking for a least-cost traveling-salesperson route, we will employ
a least-cost branch and bound. The implementation uses a min-priority queue
of live nodes. The nodes in this queue are of type HeapNode. Each node of
this type has the fields partialTour (a permutation of the numbers 1 through
n with partialTour[0] being 1); sizeOfPartialTour (an integer such that the
path from the root of the permutation tree to this node defines the tour prefix
partialTour [0:size0fPartialTour] and the vertices yet to be visited by the
tour are partialTour[sizeOfPartialTour+1:n-1]; also equals number of edges
in partial tour); costDfPartialTour (cost of tour prefix represented by the path
from the solution space tree root to this node); lowerCost (least possible cost of
any leaf in this node’s subtree); and minAdditionalCost (sum of costs of least-cost
outbound edges from vertices partialTour [sizeOfPartialTour:n-1]). Extrac-
tions from the min heap are done by lowerCost value. The branch-and-bound code
appears in Program 22.8.

Program 22.8 begins by creating a min heap that represents the min-priority
queue of live nodes. Next we compute the cost of the cheapest outbound edge
from each vertex in the digraph. If some vertex has no outbound edge, the di-
graph has no tour and we terminate. If each vertex has an outbound edge, a
least-cost branch and bound is initiated. We begin with the child of the root (node
B in Figure 21.5) as the first E-node. At this node the tour prefix constructed is
just the single vertex 1. Therefore, size0fPartialTour = (), partialTour[0] =
1, and partialTour[1:n-1] are the remaining vertices (2, 3, ---, n). The tour
prefix 1 has cost 0, so costOfPartialTour = (. Also, minAdditionalCost =
> i cost0fMinOutEdge[é]. Initially, no tour has been found, so cost0fBestTour-
SoFar is set to null.

The while loop expands E-nodes until we reach one that is a leaf or we run out
of E-nodes to expand. A leaf is detected by noticing that when size0fPartialTour
= n-1, the tour prefix is partialTour [0:n-1]; this prefix includes all n vertices of
the digraph. Hence a live node with sizeO0fPartialTour = n-1 represents a leaf.
By the nature of the algorithm, a leaf has costOfPartialTour and lowerCost
equal to the cost of the tour it represents. Since all remaining live nodes have a
lowerCost value at least as much as that of the first leaf extracted from the min
heap, none of these remaining nodes can lead to a better leaf. Therefore, the search
for an optimal tour may terminate as soon as a leaf becomes the E-node. If we run
out of E-nodes before a leaf is reached, the graph has no tour.

892 Chapter 22 Branch and Bound

/** least-cost branch-and-bound code to find a shortest tour

* Qparam theZero zero weight

*x @param bestTour bestTour[i] set to i’th vertex on shortest tour

*x Qreturn cost of shortest tour */
public Object leastCostBBSalesperson(int bestTour[], Operable theZero)
{

MinHeap liveNodeMinHeap = new MinHeap();

// cost0fMinOutEdge[i] = cost of least-cost edge leaving vertex i
Operable [] cost0fMinOutEdge = new Operable [n + 1];

Operable sumOfMinCostOutEdges = (Operable) theZero.zero();
// use a new copy of zero

for (int i = 1; i <= n; i++)
{// compute cost0fMinOutEdge[i] and sumOfMinCostOutEdges
Operable minCost = null;
for (int j = 1; j <= n; j++)
if (alil[j] != null && (minCost == null ||
minCost.compareTo(al[i]l[j]1) > 0))
minCost = (Operable) al[il[j];

if (minCost == null) return null; // no route
cost0fMinOutEdge[i] = minCost;
sum0fMinCostOutEdges.increment (minCost) ;

}

// initial E-node is tree root
HeapNode eNode = new HeapNode();
eNode.partialTour = new int [n];
for (int 1 = 0; i < mn; i++)
eNode.partialTour[i] = i + 1;

eNode.sizeOfPartialTour = 0; // partial tour is

// partiall[0:0]
eNode.cost0fPartialTour = theZero; // its cost is zero
eNode.minAdditionalCost = sum0OfMinCostOutEdges;
Operable costOfBestTourSoFar = null; // no tour found so far
int [] partialTour = eNode.partialTour; // shorthand for

// eNode.partialTour

Program 22.8 Least-cost branch and bound for traveling salesperson (continues)

Section 22.2 Applications 893

// search permutation tree
while (eNode !'= null && eNode.sizeOfPartialTour < n - 1)

{// not at leaf
partialTour = eNode.partialTour;
if (eNode.sizeOfPartialTour == n - 2)
{// parent of leaf
// complete tour by adding two edges
// see whether new tour is better
if (alpartialTour[n - 2]][partialTour[n - 1]] != null
&& alpartialTour[n - 1]]1[1] != null
&& (cost0fBestTourSoFar == null ||
((Operable) ((Operable) eNode.costOfPartialTour
.add(a[partialTour[n - 2]] [partialTour[n - 1]1]))
.add(a[partialTour[n - 1]]1[1]1))
.compareTo (cost0fBestTourSoFar) < 0))
{// better tour found
cost0fBestTourSoFar = (Operable) (((Operable) eNode
.costOfPartialTour.add(a[partialTour[n - 2]]
[partialTour[n - 111))

.add(a[partialTour[n - 1]11[1]1));
eNode.cost0fPartialTour = cost0fBestTourSoFar;
eNode.lowerCost = costOfBestTourSoFar;
eNode.sizeOfPartialTour++;
liveNodeMinHeap.put (eNode) ;

}

else
{// generate children

for (int i = eNode.sizeOfPartialTour + 1; i < n; i++)

if (alpartialTour[eNode.sizeOfPartialTour]]
[partialTour[i]] != null)

{
// feasible child, bound path cost
Operable costOfPartialTour = (Operable) eNode
.cost0fPartialTour
.add(a[partialTour [eNode.sizeOfPartialTour]]

[partialTour[i]]);

Program 22.8 Least-cost branch and bound for traveling salesperson (continues)

894

Chapter 22 Branch and Bound

Operable minAdditionalCost =

(Operable) eNode.minAdditionalCost.subtract
(cost0fMinOutEdge[partialTour
[eNode.sizeOfPartialTour]]);

Operable leastCostPossible =

(Operable) costOfPartialTour.add(minAdditionalCost);
if (costO0fBestTourSoFar == null ||
leastCostPossible.compareTo(cost0fBestTourSoFar) < 0)
{// subtree may have better leaf, put root in min heap

HeapNode hNode = new HeapNode();
hNode.partialTour = new int [n];
for (int j = 0; j < mn; j++)
hNode.partialTour[j] = partialTour[j];
hNode.partialTour [eNode.sizeOfPartialTour + 1] =
partialTour[i];
hNode.partialTour[i] =
partialTour [eNode.sizeOfPartialTour + 1];
hNode.costOfPartialTour = cost0fPartialTour;
hNode.sizeOfPartialTour = eNode.sizeOfPartialTour
+ 1;
hNode.lowerCost = leastCostPossible;
hNode.minAdditionalCost = minAdditionalCost;

liveNodeMinHeap.put (hNode) ;

}

// get next E-node
eNode = (HeapNode) liveNodeMinHeap.removeMin();

}

if (cost0fBestTourSoFar == null)
return null; // no route

// copy best route into bestTour[1:n]
for (int i = 0; i < nj; i++)

bestTour[i + 1] = partialTour[i];

return cost0fBestTourSoFar;

Program 22.8 Least-cost branch and bound for traveling salesperson (concluded)

Section 22.2 Applications 895

The body of the while loop is split into two cases. The first is for E-nodes with
size0fPartialTour = n-2. At this time the E-node is the parent of a single leaf. If
this leaf defines a feasible tour and if the tour cost is less than that of the best tour
found so far, the leaf is inserted into the min heap. Otherwise, the leaf is discarded,
and we move on to the next E-node.

All other E-nodes fall into the second case handled in the body of the while. Now
we generate each child of the E-node. Since the E-node represents the feasible path
partialTour [0:size0fPartialTour], the feasible children are those for which
(partialTour[s],partialTour[i]) is an edge of the digraph and partialTour [i]
is one of partialTour[sizeOfPartialTour+1:n-1]. For each feasible child, we
compute the cost costOfPartialTour of the prefix (partialTour [0:sizeDfPar-
tialTour], partialTour[i]) by adding the cost of the edge (partialTour[size-
OfPartialTour], partialTour[i]) to eNode.costOfPartialTour. Since every
tour that has this prefix must also contain an edge that leaves each of the remain-
ing vertices, no leaf can have a cost less than costofPartialTour plus the sum of
the costs of the cheapest edge that leaves each of the remaining vertices. We use
this bound as the value of lowerCost of the child generated. We add this new child
to the live node list (i.e., the min heap) if its lowerCost is less than the cost of the
best tour found so far.

If the digraph contains no tour, Program 22.8 returns the value null. Otherwise,
it returns the cost of the optimal tour. The vertex sequence corresponding to this
tour is returned in the array bestTour.

22.2.5 Board Permutation

The solution space for the board-permutation problem (Section 21.2.5) is a per-
mutation tree. We can perform a least-cost branch-and-bound search of this tree
to find a least-density board arrangement. We use a min-priority queue, each ele-
ment of which represents a live node and is of type HeapNode. Each object of type
HeapNode has the fields partial (a board permutation); sizeDfPartial (boards
partial[1l:size0fPartial] are fixed in positions 1 through size0fPartial, re-
spectively); partialDensity (density of the board arrangement partial[l:size-
0fPartiall, including wires going to the right of partial[size0fPartiall); and
boardsInPartialWithNet (boardsInPartialWithNet[j] is the number of boards
in partial[1:size0fPartial] that contain net j). Nodes are removed from the
min heap in ascending order of their partialDensity value. Program 22.9 gives
the branch-and-bound code.

Program 22.9 initializes the E-node to be the tree root. No board has been
placed at this node. Therefore, size0fPartial = 0, partialDensity = 0, boards-
InPartialWithNet[i] = 0 for 1 < i < numberOfBoards, and partial[1:number-
0fBoards is any permutation of the numbers 1 through number0fBoards. The
array boardsWithNet is initialized such that boardsWithNet[i] is the number of
boards that contain net i. The best board permutation found so far is saved in
the array bestPermutationSoFar, and the density is saved in leastDensitySo-

896 Chapter 22 Branch and Bound

/** least-cost branch-and-bound code
* Qparam board 2-D board array
*x Qreturn density of best arrangement */
public static int leastCostBBBoards(int [][] board, int numberQfNets,
int [] bestPermutation)
{
int numberOfBoards = board.length - 1;
MinHeap liveNodeMinHeap = new MinHeap() ;

// initialize first E-node (partialDensity,
// boardsInPartialWithNet, sizeOfPartial, partial)
HeapNode eNode = new HeapNode (0O, new int [numberOfNets + 1],
0, new int [numberOfBoards + 1]);

// set eNode.boardsInPartialWithNet[i] = number of boards
// in partial[1l:s] with net i

// set eNode.partiall[i] = i, initial permutation

// set eNode.boardsWithNet[i] = number of boards with net i
int [] boardsWithNet = new int [numberOfNets + 1];

for (int i = 1; i <= number0fBoards; i++)

{
eNode.partialli] = i;
for (int j = 1; j <= numberOfNets; j++)
boardsWithNet [j] += board[i][j];
}

int leastDensitySoFar = numberOfNets + 1;
int [] bestPermutationSoFar = null;

do
{// expand E-node
if (eNode.sizeOfPartial == numberOfBoards - 1)
{// one child only
int localDensityAtLastBoard = 0;
for (int j = 1; j <= numberOfNets; j++)
localDensityAtLastBoard +=
board[eNode.partial [number0fBoards]] [j];

Program 22.9 Least-cost branch and bound for the board-permutation problem
(continues)

Section 22.2 Applications 897

if (localDensityAtLastBoard < leastDensitySoFar)
{// better permutation
bestPermutationSoFar = eNode.partial;
leastDensitySoFar = Math.max(localDensityAtLastBoard,
eNode.partialDensity);

}
else
{// generate children of E-node
for (int i = eNode.sizeOfPartial + 1;
i <= number0fBoards; i++)

{
HeapNode hNode = new HeapNode(0O, new int
[numberOfNets + 1], 0, new int [numberOfBoards + 1]);
for (int j = 1; j <= number0OfNets; j++)
// acccount for nets in new board
hNode.boardsInPartialWithNet[j] =
eNode .boardsInPartialWithNet [j]
+ board[eNode.partiall[i]][j];
int localDensityAtNewBoard = 0;
for (int j = 1; j <= number0fNets; j++)
if (hNode.boardsInPartialWithNet[j] > 0 &&
boardsWithNet[j] != hNode.boardsInPartialWithNet[j])
localDensityAtNewBoard++;
hNode.partialDensity = Math.max(localDensityAtNewBoard,
eNode.partialDensity) ;
if (hNode.partialDensity < leastDensitySoFar)
{// may lead to better leaf
hNode.sizeOfPartial = eNode.sizeOfPartial + 1;
for (int j = 1; j <= numberOfBoards; j++)
hNode.partial[j] = eNode.partiall[j];
hNode.partial [hNode.sizeOfPartial] = eNode.partiall[il;
hNode.partial[i] = eNode.partial [hNode.sizeOfPartiall;
liveNodeMinHeap.put (hNode) ;
}
}

Program 22.9 Least-cost branch and bound for the board-permutation problem
(continues)

898 Chapter 22 Branch and Bound

// next E-node
eNode = (HeapNode) liveNodeMinHeap.removeMin();
} while (eNode !'= null &&
eNode.partialDensity < leastDensitySoFar);

for (int i = 1; i <= number0fBoards; i++)
bestPermutation[i] = bestPermutationSoFar[i];
return leastDensitySoFar;

Program 22.9 Least-cost branch and bound for the board-permutation problem
(concluded)

Far. A do-while loop examines the E-nodes one at a time. At the end of each
iteration of this loop, the next E-node is selected by extracting, from the min heap
of live nodes, a node with least partialDensity. If this node’s partialDensity
value is > leastDensitySoFar, then none of the remaining live nodes can lead to
board permutations with density less than leastDensitySoFar and the algorithm
terminates.

The do-while loop considers two cases for the E-node. The first arises when
sizeOfPartial = numberOfBoards-1. At this time numberOfBoards-1 boards
have been placed, and the E-node is the parent of a leaf of the solution space tree.
The permutation corresponding to this leaf is partial. Its density is computed,
and leastDensitySoFar and bestPermutationSoFar are updated if necessary.

In the second case the E-node has two or more children. Each child N is
generated, and the density N.partialDensity of the partial permutation (par-
tial[1:size0fPartial+1]) corresponding to the child is computed. The child N is
saved in the min-priority queue only if N.partialDensity < leastDensitySoFar.
Notice that when N.partialDensity > leastDensitySoFar, all leaves in its sub-
tree have density > leastDensitySoFar and do not represent board permutations
better than bestPermutationSoFar.

EXERCISES

3. In the context of Program 22.4, define bestw to be the maximum of the weights
associated with the feasible nodes generated so far. Modify Program 22.4 so
that a new live node is added to the subset tree and max heap iff the live
node’s upperWeight is greater than or equal to bestw. You will also need to
add code to initialize and update bestw.

4. Write a max-profit branch-and-bound code for the loading problem, using only
a max-priority queue. That is, do not maintain the portion of the solution

6.

7.

10.

Section 22.2 Applications 899

space tree generated (as is done in Program 22.4). Each priority queue node
will now contain the path to the tree root.

. Write a max-profit branch-and-bound code for the 0/1 knapsack problem

using only a max-priority queue. That is, do not maintain the portion of
the solution space tree generated. Each priority queue node will now contain
the path to the tree root.

(a) In Program 22.7 right children with upperSize value > bestn are added
to the max heap. Will the program still work correctly if only right
children with upperSize > sizeO0fMaxCliqueSoFar are added? Why?

(b) Does the program add left children with upperSize > size0fMaxClique-
SoFar to the max heap?

(c) Modify the program so that only nodes with upperSize > sizeOfMax-
CliqueSoFar are added to the max heap and to the solution space sub-
tree being constructed.

Consider the subset space tree for the max-clique problem. For any level i
node x of the subset tree, let minDegree (x) be the minimum of the degrees
of the vertices included at x.

(a) Show that no leaf in the subtree with root x can represent a clique of size
more than x.upperSize = minx.size0fCliqueAtENode + n - i + 1,
minDegree(x) + 1.

(b) Rewrite maxProfitBBMaxClique using this definition of x.upperSize.

(c) Compare the run times as well as the number of solution space tree nodes
generated by the two versions of maxProfitBBMaxClique.

. Write a max-profit branch-and-bound code for the max-clique problem, using

only a max-priority queue. That is, do not maintain the portion of the solution
space tree generated. Each priority queue node will now contain the path to
the tree root.

. Modify Program 22.8 so that nodes with sizeOfPartialTour = n-2 are not

entered into the priority queue. Rather, the best permutation found so far is
saved in an array bestPermutationSofar. The algorithm terminates when
the next E-node has lowerCost > costOfBestTourSoFar.

Write a version of Program 22.8 in which we use parent pointers to explicitly
retain the portion of the solution space tree examined by the algorithm (as
in Program 22.6) and the priority queue entries contain the fields lowerCost,
cost0fPartialTour, minAdditionalCost, and liveNode (pointer to corre-
sponding node in solution space tree) only.

O o 0o oood

900

11.

12.

13.
14.

15.

16.

17.

18.

19.
20.
21.
22.
23.
24.
25.

Chapter 22 Branch and Bound

Write a FIFO branch-and-bound code for the board-permutation problem.
Your code must output both the best board arrangement and its density. Use
suitable test data to test the correctness of your code.

Write a FIFO branch-and-bound algorithm to find a board arrangement that
minimizes the length of the longest net (see Exercise 17 in Chapter 21).

Do Exercise 12 using a least-cost branch and bound.

Write a least-cost branch-and-bound algorithm for the vertex-cover problem
of Exercise 18 in Chapter 21.

Write a max-cost branch-and-bound algorithm for the simple max-cut problem
of Exercise 19 in Chapter 21.

Write a least-cost branch-and-bound algorithm for the machine-design prob-
lem of Exercise 20 in Chapter 21.

Write a least-cost branch-and-bound algorithm for the network-design prob-
lem of Exercise 21 in Chapter 21.

Write a FIFO branch-and-bound algorithm for the n-queens-placement prob-
lem of Exercise 22 in Chapter 21.

Do Exercise 23 in Chapter 21 for FIFO branch and bound.
Do Exercise 24 in Chapter 21 for FIFO branch and bound.
Do Exercise 25 in Chapter 21 for FIFO branch and bound.
Do Exercise 23 in Chapter 21 for least-cost branch and bound.
Do Exercise 24 in Chapter 21 for least-cost branch and bound.
Do Exercise 25 in Chapter 21 for least-cost branch and bound.

Do Exercise 25 in Chapter 21 for arbitrary branch and bound. For this exercise
you will need to pass functions to add live nodes and select the next E-node
as parameters.

