
CHAPTER 4 METHODS 1

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Chapter 4 Methods (Main Page)

4.1 Hierarchical boss method/worker method relationship.
4.2 Commonly used Math class methods.
4.3 Using a programmer-defined method.
4.4 Programmer-defined maximum method.
4.5 Allowed promotion for data types.
4.6 The Java API packages.
4.7 Shifted, scaled random integers.
4.8 Rolling a six-sided die 6000 times.
4.9 Program to simulate the game of craps.

4.10 A scoping example.
4.11 Recursive evaluation of 5!.
4.12 Calculating factorials with a recursive method.
4.13 Recursively generating Fibonacci numbers.
4.14 Set of recursive calls to method fibonacci.
4.15 Summary of recursion examples and exercises in the text.
4.16 Using overloaded methods.
4.17 Compiler error messages generated from overloaded methods

with identical parameter lists and different return types.
4.18 Applet methods called automatically during an applet’s execution.

CHAPTER 4 METHODS 2

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

.

Method Description Example

abs(x) absolute value of x
(this method also has versions
for float, int, and long
values)

if x > 0 then abs(x) is x
if x = 0 then abs(x) is 0
if x < 0 then abs(x) is -x

ceil(x) rounds x to the smallest integer
not less than x

ceil(9.2) is 10
ceil(-9.8) is -9

cos(x) trigonometric cosine of x
(x in radians)

cos(0.0) is 1

exp(x) exponential method e
x exp(1.0) is 2.71828

exp(2.0) is 7.38906

floor(x) rounds x to the largest integer
not greater than x

floor(9.2) is 9
floor(-9.8) is -10

log(x) natural logarithm of x (base e) log(2.718282) is 1
log(7.389056) is 2

max(x, y) larger value of x and y
(this method also has versions
for float, int, and long
values)

max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) smaller value of x and y
(this method also has versions
for float, int, and long
values)

min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to power y (x
y
) pow(2, 7) is 128

pow(9, .5) is 3

Fig. 4.2 Commonly used Math class methods.

main

worker1 worker2 worker3

worker4 worker5

Fig. 4.1 Hierarchical boss method/worker method relationship.

CHAPTER 4 METHODS 3

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

.

sin(x) trigonometric sine of x
(x in radians)

sin(0.0) is 0

sqrt(x) square root of x sqrt(900.0) is 30
sqrt(9.0) is 3

tan(x) trigonometric tangent of x
(x in radians)

tan(0.0) is 0

1 // Fig. 4.3: SquareInt.java
2 // A programmer-defined square method
3 import java.awt.Graphics;
4 import java.applet.Applet;
5
6 public class SquareInt extends Applet {
7
8 // output the squared values of 1 through 10
9 public void paint(Graphics g)

10 {
11 int xPosition = 25;
12
13 for (int x = 1; x <= 10; x++) {
14 g.drawString(String.valueOf(square(x)),
15 xPosition, 25);
16 xPosition += 20;
17 }
18 }
19
20 // square method definition
21 public int square(int y)
22 {
23 return y * y;
24 }
25 }

Fig. 4.3 Using a programmer-defined method .

1 // Fig. 4.4: Maximum.java
2 // Finding the maximum of three integers
3 import java.awt.*;

Fig. 4.4 Programmer-defined maximum method (part 1 of 3).

Method Description Example

Fig. 4.2 Commonly used Math class methods.

CHAPTER 4 METHODS 4

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

4 import java.applet.Applet;
5 import java.awt.event.*;
6
7 public class Maximum extends Applet implements ActionListener {
8 Label label1, label2, label3, resultLabel;
9 TextField number1, number2, number3, result;

10 int num1, num2, num3, max;
11
12 // set up labels and text fields
13 public void init()
14 {
15 label1 = new Label("Enter first integer:");
16 number1 = new TextField("0", 10);
17 label2 = new Label("Enter second integer:");
18 number2 = new TextField("0", 10);
19 label3 = new Label("Enter third integer:");
20 number3 = new TextField("0", 10);
21 resultLabel = new Label("Maximum value is:");
22 result = new TextField("0", 10);
23 result.setEditable(false);
24
25 number1.addActionListener(this);
26 number2.addActionListener(this);
27 number3.addActionListener(this);
28
29 add(label1);
30 add(number1);
31 add(label2);
32 add(number2);
33 add(label3);
34 add(number3);
35 add(resultLabel);
36 add(result);
37 }
38
39 // maximum method definition
40 public int maximum(int x, int y, int z)
41 {
42 return Math.max(x, Math.max(y, z));
43 }
44
45 // get the integers and call the maximum method
46 public void actionPerformed(ActionEvent e)
47 {
48 num1 = Integer.parseInt(number1.getText());
49 num2 = Integer.parseInt(number2.getText());
50 num3 = Integer.parseInt(number3.getText());
51 max = maximum(num1, num2, num3);
52 result.setText(Integer.toString(max));
53 }
54 }

Fig. 4.4 Programmer-defined maximum method (part 2 of 3).

CHAPTER 4 METHODS 5

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

.

Type Allowed promotions

double None (there are no primitive types larger than double)

float double

long float or double

int long, float or double

Fig. 4.5 Allowed promotions for primitive data types.

Fig. 4.4 Programmer-defined maximum method (part 3 of 3).

CHAPTER 4 METHODS 6

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

char int, long, float or double

short int, long, float or double

byte short, int, long, float or double

boolean None (boolean values are not considered to be numbers in Java)

Java API package Explanation

java.applet The Java Applet Package.
This package contains the Applet class and several interfaces that enable
the creation of applets, interaction of applets with the browser, and play-
ing audio clips.

java.awt The Java Abstract Windowing Toolkit Package.
This package contains all the classes and interfaces required to create
and manipulate graphical user interfaces (these classes are discussed in
detail in Chapter 10, Basic Graphical User Interface Components and
Chapter 11, Advanced Graphical User Interface Components).

java.awt.
 datatransfer

The Java Data Transfer Package.
This package contains classes and interfaces that enable transfer of data
between a Java program and the computer’s clipboard (a temporary stor-
age area for data).

java.awt.event The Java Abstract Windowing Toolkit Event Package.
This package contains classes and interfaces that enable event handling
for GUI components.

java.awt.image The Java Abstract Windowing Toolkit Image Package.
This package contains classes and interfaces that enable storing and
manipulation of images in a program.

java.awt.peer The Java Abstract Windowing Toolkit Peer Package.
This package contains interfaces that enable Java’s graphical user inter-
face components to interact with their platform-specific versions (i.e., a
button is implemented differently on each computer platform so its peer
is used to actually display and manipulate the button in a platform-spe-
cific manner). Programmers should not use this package directly.

java.beans The Java Beans Package.
This package contains classes and interfaces that enable the programmer
to create reusable software components. Java beans can interact with
non-Java and Java software components.

Fig. 4.6 The Java API packages (part 1 of 3).

Type Allowed promotions

Fig. 4.5 Allowed promotions for primitive data types.

CHAPTER 4 METHODS 7

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

java.io The Java Input/Output Package.
This package contains classes that enable programs to input and output
data (see Chapter 15, Files and Streams).

java.lang The Java Language Package.
This package is automatically imported by the compiler into all pro-
grams. The package contains basic classes and interfaces required by
many Java programs (these classes are discussed throughout the text).

java.lang.
 reflect

The Java Core Reflection Package.
This package contains classes and interfaces that enable a program to
discover the accessible variables and methods of a class dynamically
during the execution of a program.

java.net The Java Networking Package.
This package contains classes that enable programs to communicate via
the Internet or corporate intranets (see Chapter 16, Networking)

java.rmi
java.rmi.dgc
java.rmi.
 registry
java.rmi.server

The Java Remote Method Invocation Packages.
These packages contain classes and interfaces that enable the program-
mer to create distributed Java programs. Using remote method invoca-
tion, a program can call a method of a separate program on the same
computer or on a computer anywhere on the Internet.

java.security
java.security.
 acl
java.security.
 interfaces

The Java Security Packages.
These packages contains classes and interfaces that enable a Java pro-
gram to encrypt data and control the access privileges provided to a Java
program for security purposes.

java.sql The Java Database Connectivity Package.
This package contain classes and interfaces that enable a Java program to
interact with a database.

java.text The Java Text Package.
This package contains classes and interfaces that enable a Java program
to manipulate numbers, dates, characters and strings. This package pro-
vides many of Java’s internationalization capabilities. Internationaliza-
tion enables a Java program to be customized to a specific locale. For
example, an applet may display strings in different languages based on
the World Wide Web browser in which the applet is executing.

java.util The Java Utilities Package.
This package contains utility classes and interfaces such as: date and
time manipulations, random number processing capabilities (Random),
storing and processing large amounts of data, breaking strings into
smaller pieces called tokens (StringTokenizer), and other capabili-
ties (see Chapter 18, Java Utilities Package and Bit Manipulation).

Java API package Explanation

Fig. 4.6 The Java API packages (part 2 of 3).

CHAPTER 4 METHODS 8

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

.

java.util.zip The Java Utilities Zip Package.
This package contains utility classes and interfaces that enable a Java
program to combine Java .class files and other resource files (such as
images and audio) into a single compressed file called a Java archive
(JAR) file. This package also enables a Java program to read JAR files.

1 // Fig. 4.7: RandomInt.java
2 // Shifted, scaled random integers
3 import java.awt.Graphics;
4 import java.applet.Applet;
5
6 public class RandomInt extends Applet {
7 public void paint(Graphics g)
8 {
9 int xPosition = 25;

10 int yPosition = 25;
11 int value;
12
13 for (int i = 1; i <= 20; i++) {
14 value = 1 + (int) (Math.random() * 6);
15 g.drawString(Integer.toString(value),
16 xPosition, yPosition);
17
18 if (i % 5 != 0)
19 xPosition += 40;
20 else {
21 xPosition = 25;
22 yPosition += 15;
23 }
24 }
25 }
26 }

Fig. 4.7 Shifted, scaled random integers .

Java API package Explanation

Fig. 4.6 The Java API packages (part 3 of 3).

CHAPTER 4 METHODS 9

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

1 // Fig. 4.8: RollDie.java
2 // Roll a six-sided die 6000 times
3 import java.awt.Graphics;
4 import java.applet.Applet;
5
6 public class RollDie extends Applet {
7 int frequency1 = 0, frequency2 = 0,
8 frequency3 = 0, frequency4 = 0,
9 frequency5 = 0, frequency6 = 0;

10
11 // summarize results
12 public void start()
13 {
14 for (int roll = 1; roll <= 6000; roll++) {
15 int face = 1 + (int) (Math.random() * 6);
16
17 switch (face) {
18 case 1:
19 ++frequency1;
20 break;
21 case 2:
22 ++frequency2;
23 break;
24 case 3:
25 ++frequency3;
26 break;
27 case 4:
28 ++frequency4;
29 break;
30 case 5:
31 ++frequency5;
32 break;
33 case 6:
34 ++frequency6;
35 break;
36 }
37 }
38 }
39
40 // display results
41 public void paint(Graphics g)
42 {
43 g.drawString("Face", 25, 25);
44 g.drawString("Frequency", 100, 25);
45 g.drawString("1", 25, 40);
46 g.drawString(Integer.toString(frequency1), 100, 40);
47 g.drawString("2", 25, 55);
48 g.drawString(Integer.toString(frequency2), 100, 55);
49 g.drawString("3", 25, 70);
50 g.drawString(Integer.toString(frequency3), 100, 70);
51 g.drawString("4", 25, 85);
52 g.drawString(Integer.toString(frequency4), 100, 85);
53 g.drawString("5", 25, 100);
54 g.drawString(Integer.toString(frequency5),
55 100, 100);
56 g.drawString("6", 25, 115);
57 g.drawString(Integer.toString(frequency6),
58 100, 115);

Fig. 4.8 Rolling a six-sided die 6000 times (part 1 of 2).

CHAPTER 4 METHODS 10

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

1 // Fig. 4.9: Craps.java
2 // Craps
3 import java.awt.*;
4 import java.applet.Applet;
5 import java.awt.event.*;
6
7 public class Craps extends Applet implements ActionListener {
8 // constant variables for status of game
9 final int WON = 0, LOST = 1, CONTINUE = 2;

10
11 // other variables used in program
12 boolean firstRoll = true; // true if first roll
13 int sumOfDice = 0; // sum of the dice
14 int myPoint = 0; // point if no win/loss on first roll
15 int gameStatus = CONTINUE; // game not over yet
16
17 // graphical user interface components
18 Label die1Label, die2Label, sumLabel, pointLabel;
19 TextField firstDie, secondDie, sum, point;
20 Button roll;
21
22 // setup graphical user interface components
23 public void init()
24 {
25 die1Label = new Label("Die 1");
26 add(die1Label);
27 firstDie = new TextField(10);
28 firstDie.setEditable(false);
29 add(firstDie);
30
31 die2Label = new Label("Die 2");
32 add(die2Label);
33 secondDie = new TextField(10);
34 secondDie.setEditable(false);
35 add(secondDie);
36
37 sumLabel = new Label("Sum is");
38 add(sumLabel);
39 sum = new TextField(10);
40 sum.setEditable(false);
41 add(sum);
42
43 pointLabel = new Label("Point is");

59 }
60 }

Fig. 4.8 Rolling a six-sided die 6000 times (part 2 of 2).

CHAPTER 4 METHODS 11

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

44 add(pointLabel);
45 point = new TextField(10);
46 point.setEditable(false);
47 add(point);
48

Fig. 4.9 Program to simulate the game of craps (part 1 of 4).

49 roll = new Button("Roll Dice");
50 roll.addActionListener(this);
51 add(roll);
52 }
53
54 // process one roll of the dice
55 public void play()
56 {
57 if (firstRoll) { // first roll of the dice
58 sumOfDice = rollDice();
59
60 switch (sumOfDice) {
61 case 7: case 11: // win on first roll
62 gameStatus = WON;
63 point.setText(""); // clear point text field
64 break;
65 case 2: case 3: case 12: // lose on first roll
66 gameStatus = LOST;
67 point.setText(""); // clear point text field
68 break;
69 default: // remember point
70 gameStatus = CONTINUE;
71 myPoint = sumOfDice;
72 point.setText(Integer.toString(myPoint));
73 firstRoll = false;
74 break;
75 }
76 }
77 else {
78 sumOfDice = rollDice();
79
80 if (sumOfDice == myPoint) // win by making point
81 gameStatus = WON;
82 else
83 if (sumOfDice == 7) // lose by rolling 7
84 gameStatus = LOST;
85 }
86
87 if (gameStatus == CONTINUE)
88 showStatus("Roll again.");
89 else {
90 if (gameStatus == WON)
91 showStatus("Player wins. " +
92 "Click Roll Dice to play again.");
93 else
94 showStatus("Player loses. " +
95 "Click Roll Dice to play again.");
96
97 firstRoll = true;
98 }
99 }

Fig. 4.9 Program to simulate the game of craps (part 2 of 4).

100

CHAPTER 4 METHODS 12

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

101 // call method play when button is clicked
102 public void actionPerformed(ActionEvent e)
103 {
104 play();
105 }
106
107 // roll the dice
108 int rollDice()
109 {
110 int die1, die2, workSum;
111
112 die1 = 1 + (int) (Math.random() * 6);
113 die2 = 1 + (int) (Math.random() * 6);
114 workSum = die1 + die2;
115
116 firstDie.setText(Integer.toString(die1));
117 secondDie.setText(Integer.toString(die2));
118 sum.setText(Integer.toString(workSum));
119
120 return workSum;
121 }
122 }

Fig. 4.9 Program to simulate the game of craps (part 3 of 4).

CHAPTER 4 METHODS 13

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Fig. 4.9 Program to simulate the game of craps (part 4 of 4).

1 // Fig. 4.10: Scoping.java
2 // A scoping example
3 import java.awt.Graphics;
4 import java.applet.Applet;
5
6 public class Scoping extends Applet {
7 int x = 1; // instance variable
8
9 public void paint(Graphics g)

10 {
11 g.drawString("See command line for output", 25, 25);
12
13 int x = 5; // local variable to paint
14
15 System.out.println("local x in paint is " + x);
16
17 a(); // a has automatic local x
18 b(); // b uses instance variable x
19 a(); // a reinitializes automatic local x
20 b(); // instance variable x retains its value
21
22 System.out.println("\nlocal x in paint is " + x);
23 }
24
25 void a()
26 {
27 int x = 25; // initialized each time a is called
28
29 System.out.println("\nlocal x in a is " + x +
30 " after entering a");
31 ++x;
32 System.out.println("local x in a is " + x +
33 " before exiting a");
34 }
35
36 void b()
37 {
38 System.out.println("\ninstance variable x is " + x +
39 " on entering b");
40 x *= 10;
41 System.out.println("instance variable x is " + x +
42 " on exiting b");
43 }

CHAPTER 4 METHODS 14

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

44 }

Fig. 4.10 A scoping example (part 1 of 2).

Fig. 4.10 A scoping example (part 2 of 2).

local x in paint is 5

local x in a is 25 after entering a
local x in a is 26 before exiting a

instance variable x is 1 on entering b
instance variable x is 10 on exiting b

local x in a is 25 after entering a
local x in a is 26 before exiting a

instance variable x is 10 on entering b
instance variable x is 100 on exiting b

local x in paint is 5

5!

5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

5!

5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

a) Procession of recursive calls. b) Values returned from each recursive call.

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

2! = 2 * 1 = 2 is returned

3! = 3 * 2 = 6 is returned

1 returned

Fig. 4.11 Recursive evaluation of 5!.

CHAPTER 4 METHODS 15

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

1 // Fig. 4.12: FactorialTest.java
2 // Recursive factorial method
3 import java.awt.Graphics;
4 import java.applet.Applet;
5
6 public class FactorialTest extends Applet {
7
8 public void paint(Graphics g)
9 {

10 int yPosition = 25;
11
12 for (long i = 0; i <= 10; i++) {
13 g.drawString(i + "! = " + factorial(i),
14 25, yPosition);
15 yPosition += 15;
16 }
17 }
18
19 // Recursive definition of method factorial
20 public long factorial(long number)
21 {
22 if (number <= 1) // base case
23 return 1;
24 else
25 return number * factorial(number - 1);
26 }
27 }

Fig. 4.12 Calculating factorials with a recursive method.

CHAPTER 4 METHODS 16

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

1 // Fig. 4.13: FibonacciTest.java
2 // Recursive fibonacci method
3 import java.awt.*;
4 import java.applet.Applet;
5 import java.awt.event.*;
6
7 public class FibonacciTest extends Applet
8 implements ActionListener {
9 Label numLabel, resultLabel;

10 TextField num, result;
11

Fig. 4.13 Recursively generating Fibonacci numbers (part 1 of 4).

12 public void init()
13 {
14 numLabel = new Label("Enter an integer and press return");
15 num = new TextField(10);
16 num.addActionListener(this);
17 resultLabel = new Label("Fibonacci value is");
18 result = new TextField(15);
19 result.setEditable(false);
20
21 add(numLabel);
22 add(num);
23 add(resultLabel);
24 add(result);
25 }
26
27 public void actionPerformed(ActionEvent e)
28 {
29 long number, fibonacciValue;
30
31 number = Long.parseLong(num.getText());
32 showStatus("Calculating ...");
33 fibonacciValue = fibonacci(number);
34 showStatus("Done.");
35 result.setText(Long.toString(fibonacciValue));
36 }
37
38 // Recursive definition of method fibonacci
39 long fibonacci(long n)
40 {
41 if (n == 0 || n == 1) // base case
42 return n;
43 else
44 return fibonacci(n - 1) + fibonacci(n - 2);
45 }
46 }

CHAPTER 4 METHODS 17

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Fig. 4.13 Recursively generating Fibonacci numbers (part 2 of 4).

Fig. 4.13 Recursively generating Fibonacci numbers (part 3 of 4).

.

CHAPTER 4 METHODS 18

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

f(3)

f(1)f(2)

f(1) f(0) return 1

return 1 return 0

return +

+return

Fig. 4.14 Set of recursive calls to method fibonacci.

CHAPTER 4 METHODS 19

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Chapter Recursion Examples and Exercises

Chapter 4 Factorial method
Fibonacci method
Greatest common divisor
Sum of two integers
Multiply two integers
Raising an integer to an integer power
Towers of Hanoi
Visualizing recursion

Chapter 5 Sum the elements of an array
Print an array
Print an array backwards
Check if a string is a palindrome
Minimum value in an array
Selection sort
Eight Queens
Linear search
Binary search
Quicksort
Maze traversal

Chapter 8 Printing a string input at the keyboard backwards

Chapter 17 Linked list insert
Linked list delete
Search a linked list
Print a linked list backwards
Binary tree insert
Preorder traversal of a binary tree
Inorder traversal of a binary tree
Postorder traversal of a binary tree

Fig. 4.15 Summary of recursion examples and exercises in the text.

1 // Fig. 4.16: MethodOverload.java
2 // Using overloaded methods
3 import java.awt.Graphics;
4 import java.applet.Applet;
5
6 public class MethodOverload extends Applet {
7 public void paint(Graphics g)
8 {
9 g.drawString("The square of integer 7 is " + square(7),

10 25, 25);
11 g.drawString("The square of double 7.5 is " +
12 square(7.5), 25, 40);
13 }
14
15 int square(int x)
16 {

Fig. 4.16 Using overloaded methods.

CHAPTER 4 METHODS 20

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

1 // Fig. 4.17: MethodOverload.java
2 // Overloaded methods with identical signatures and
3 // different return types.
4 import java.awt.Graphics;
5 import java.applet.Applet;
6
7 public class MethodOverload extends Applet {
8 int square(double x)
9 {

10 return x * x;
11 }
12
13 double square(double y)
14 {
15 return y * y;
16 }
17 }

Fig. 4.17 Compiler error messages generated from overloaded methods with identical parameter lists and
different return types.

17 return x * x;
18 }
19
20 double square(double y)
21 {
22 return y * y;
23 }
24 }

MethodOverload.java:13: Methods can't be redefined with a
 different return type: double square(double) was
 int square(double)
 double square(double y)
 ^
1 error

Fig. 4.16 Using overloaded methods.

CHAPTER 4 METHODS 21

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Method When the method is called and its purpose

public void init() This method is called once by the Appletviewer or browser when
an applet is loaded for execution. It performs initialization of an
applet. Typical actions performed here are initialization of
instance variables and GUI components of the Applet, loading of
sounds to play or images to display (Chapter 14, Multimedia),
and creation of threads (Chapter 13, Multithreading).

public void start() This method is called after the init method completes execu-
tion and every time the user of the browser returns to the HTML
page on which the applet resides (after browsing another HTML
page). This method performs any tasks that must be completed
when the applet is loaded for the first time into the browser and
that must be performed every time the HTML page on which the
applet resides is revisited. Typical actions performed here
include starting an animation (Chapter 14, Multimedia) and
starting other threads of execution (Chapter 13, Multithreading).

public void paint(Graphics g)

This method is called after the init method completes execu-
tion and the start method has started executing to draw on the
applet. It is also called automatically every time the applet needs
to be repainted. For example, if the user of the browser covers
the applet with another open window on the screen then uncov-
ers the applet, the paint method is called. Typical actions per-
formed here involve drawing with the Graphics object g that
is automatically passed to the paint method for you.

public void stop() This method is called when the applet should stop executing—
normally when the user of the browser leaves the HTML page on
which the applet resides. This method performs any tasks that
are required to suspend the applet’s execution. Typical actions
performed here are to stop execution of animations and threads.

public void destroy() This method is called when the applet is being removed from
memory—normally when the user of the browser exits the
browsing session. This method performs any tasks that are
required to destroy resources allocated to the applet. Typical
actions performed here include terminating threads (Chapter 13,
Multithreading).

Fig. 4.18 Applet methods called automatically during an applet’s execution.

