
CHAPTER 2 DEVELOPING JAVA APPLICATIONS 1

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Chapter 2 Developing Java Applications (Main Page)

2.1 Flowcharting Java’s sequence structure.
2.2 Java keywords.
2.3 Flowcharting the single-selection if structure.
2.4 Flowcharting the double-selection if/else structure.
2.5 Flowcharting the while repetition structure.
2.6 Pseudocode algorithm that uses counter-controlled

repetition to solve the class average problem.
2.7 Java program for the class average problem with

counter-controlled repetition.
2.8 Pseudocode algorithm that uses sentinel-controlled

repetition to solve the class average problem.
2.9 Java program for the class average problem with

sentinel-controlled repetition.
2.10 Pseudocode for examination results problem.
2.11 Java program and sample execution for examination results problem.
2.12 Arithmetic assignment operators.
2.13 The increment and decrement operators.
2.14 The difference between preincrementing and postincrementing.
2.15 Precedence of the operators encountered so far in the text.
2.16 The Java primitive data types.
2.17 Some common escape sequences.
2.18 Demonstrating common escape sequences.

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 2

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

.

Java Keywords

abstract boolean break byte case

catch char class continue default

do double else extends false

final finally float for if

implements import instanceof int interface

long native new null package

private protected public return short

static super switch synchro-
nized

this

throw throws transient true try

void volatile while

Keywords that are reserved but not used by Java

const goto

Fig. 2.2 Java keywords.

add grade
to total

add 1 to
counter

total = total + grade;
counter = counter + 1;

Fig. 2.1 Flowcharting Java’s sequence structure.

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 3

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Fig. 2.4 Flowcharting the double-selection if/else structure.

Fig. 2.5 Flowcharting the while repetition structure.

grade >= 60 print "Passed"true

false

Fig. 2.3 Flowcharting the single-selection if structure.

grade >= 60

print "Passed"

true

print "Failed"

false

product <= 1000 product =
2 * product

true

false

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 4

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade

If the letter grade is equal to A
Add grade point value 4 to the total

else if the letter grade is equal to B
Add grade point value 3 to the total

else if the letter grade is equal to C
Add grade point value 2 to the total

else if the letter grade is equal to D
Add grade point value 1 to the total

else if the letter grade is equal to F
Add grade point value 0 to the total

Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 2.6 Pseudocode algorithm that uses counter-controlled repetition to solve the class average problem.

1 // Fig. 2.7: Average.java
2 // Class average program with
3 // counter-controlled repetition
4 import java.io.*;
5
6 public class Average {
7 public static void main(String args[]) throws IOException
8 {
9 int counter, grade, total, average;

10
11 // initialization phase
12 total = 0;
13 counter = 1;
14
15 // processing phase
16 while (counter <= 10) {
17 System.out.print("Enter letter grade: ");
18 grade = System.in.read();
19

Fig. 2.7 Java program for the class-average problem with counter-controlled repetition (part 1 of 2).

20 if (grade == 'A')
21 total = total + 4;
22 else if (grade == 'B')
23 total = total + 3;
24 else if (grade == 'C')
25 total = total + 2;
26 else if (grade == 'D')
27 total = total + 1;
28
29 System.in.skip(2); // skip the newline character
30 counter = counter + 1;
31 }
32

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 5

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

33 // termination phase
34 average = total / 10; // integer division
35 System.out.println("Class average is " + average);
36 }
37 }

Fig. 2.7 Java program for the class-average problem with counter-controlled repetition (part 2 of 2).

Enter letter grade: A
Enter letter grade: A
Enter letter grade: A
Enter letter grade: A
Enter letter grade: A
Enter letter grade: B
Enter letter grade: B
Enter letter grade: C
Enter letter grade: D
Enter letter grade: F
Class average is 2

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 6

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel value

If the letter grade is equal to A
Add grade point value 4 to the total

else if the letter grade is equal to B
Add grade point value 3 to the total

else if the letter grade is equal to C
Add grade point value 2 to the total

else if the letter grade is equal to D
Add grade point value 1 to the total

else if the letter grade is equal to F
Add grade point value 0 to the total

Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Fig. 2.8 Pseudocode algorithm that uses sentinel-controlled repetition to solve the class-average problem.

1 // Fig. 2.9: Average.java
2 // Class average application with
3 // sentinel-controlled repetition.
4 import java.io.*;
5
6 public class Average {
7 public static void main(String args[]) throws IOException
8 {
9 double average; // number with decimal point

10 int counter, grade, total;
11
12 // initialization phase
13 total = 0;
14 counter = 0;
15
16 // processing phase
17 System.out.print("Enter letter grade, Z to end: ");
18 grade = System.in.read();
19
20 while (grade != 'Z') {
21 if (grade == 'A')
22 total = total + 4;
23 else if (grade == 'B')
24 total = total + 3;
25 else if (grade == 'C')
26 total = total + 2;
27 else if (grade == 'D')
28 total = total + 1;

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 7

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

29
30 System.in.skip(2);
31 counter = counter + 1;
32 System.out.print("Enter letter grade, Z to end: ");
33 grade = System.in.read();
34 }

Fig. 2.9 Class-average problem with sentinel-controlled repetition (part 1 of 2).

35
36 // termination phase
37 if (counter != 0) {
38 average = (double) total / counter;
39 System.out.println("Class average is " + average);
40 }
41 else
42 System.out.println("No grades were entered");
43 }
44 }

Fig. 2.9 Class-average problem with sentinel-controlled repetition (part 2 of 2).

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures
If more than eight students passed

Enter letter grade, Z to end: A
Enter letter grade, Z to end: A
Enter letter grade, Z to end: A
Enter letter grade, Z to end: A
Enter letter grade, Z to end: A
Enter letter grade, Z to end: B
Enter letter grade, Z to end: B
Enter letter grade, Z to end: B
Enter letter grade, Z to end: B
Enter letter grade, Z to end: B
Enter letter grade, Z to end: Z
Class average is 3.5

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 8

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Print “Raise tuition”

Fig. 2.10 Pseudocode for examination-results problem.

1 // Fig. 2.11: Analysis.java
2 // Analysis of examination results
3 import java.io.*;
4
5 public class Analysis {
6 public static void main(String args[]) throws IOException
7 {
8 // initializing variables in declarations
9 int passes = 0, failures = 0, student = 1, result;

10
11 // process 10 students; counter-controlled loop
12 while (student <= 10) {
13 System.out.print("Enter result (1=pass,2=fail): ");
14 result = System.in.read();
15
16 if (result == '1') // if/else nested in while
17 passes = passes + 1;
18 else
19 failures = failures + 1;
20
21 student = student + 1;
22 System.in.skip(2);
23 }
24
25 System.out.println("Passed " + passes);
26 System.out.println("Failed " + failures);
27
28 if (passes > 8)
29 System.out.println("Raise tuition ");
30 }
31 }

Fig. 2.11 Java program and sample execution for examination-results problem (part 1 of 2).

Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Passed 6
Failed 4

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 9

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Fig. 2.11 Java program and sample execution for examination-results problem (part 2 of 2).

Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Passed 9
Failed 1
Raise tuition

Assignment
operator

Sample
expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. 2.12 Arithmetic assignment operators.

Operator Called
Sample expres-
sion Explanation

++ preincrement ++a Increment a by 1 then use the new value
of a in the expression in which a resides.

++ postincre-
ment

a++ Use the current value of a in the expres-
sion in which a resides, then increment a
by 1.

-- predecrement --b Decrement b by 1 then use the new value
of b in the expression in which b resides.

-- postdecre-
ment

b-- Use the current value of b in the expres-
sion in which b resides, then decrement b
by 1.

Fig. 2.13 The increment and decrement operators.

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 10

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

1 // Fig. 2.14: Increment.java
2 // Preincrementing and postincrementing
3 import java.awt.Graphics;
4 import java.applet.Applet;
5
6 public class Increment extends Applet {
7 public void paint(Graphics g)
8 {
9 int c;

10
11 c = 5;
12 g.drawString(Integer.toString(c), 25, 25);
13 g.drawString(Integer.toString(c++), // postincrement
14 25, 40);
15 g.drawString(Integer.toString(c), 25, 55);
16

Fig. 2.14 The difference between preincrementing and postincrementing
(part 1 of 2).

17 c = 5;
18 g.drawString(Integer.toString(c), 25, 85);
19 g.drawString(Integer.toString(++c), // preincrement
20 25, 100);
21 g.drawString(Integer.toString(c), 25, 115);
22 }
23 }

Fig. 2.14 The difference between preincrementing and postincrementing
(part 1 of 2).

Operators Associativity Type

() left to right parentheses

++ -- + - (typ
e)

right to left unary

* / % left to right multiplicative

Fig. 2.15 Precedence of the operators encountered so far in the text.

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 11

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

1 // Fig. 2.17: EscapeSequences.java
2 // Demonstrating common escape sequences
3
4 public class EscapeSequences {
5 public static void main(String args[])
6 {
7 System.out.println("Displaying single quotes: " +
8 "\’A\’");

Fig. 2.17 Demonstrating common escape sequences (part 1 of 2).

9 System.out.println("Displaying double quotes: " +
10 "\"string\"");
11 System.out.println("Displaying a backslash: \\");
12 System.out.println("Text separated\t\tby two tabs");
13 System.out.println("Here is double\n\nspaced text");
14 System.out.println("**********\r#####");
15 }
16 }

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Escape Sequence Description

\n Newline. Position the cursor to the beginning of the next line.

\t Horizontal tab. Move the cursor to the next tab stop.

\r Carriage return. Position the cursor to the beginning of the current line;
do not advance to the next line.

\\ Backslash. Used to print a backslash character.

\’ Single quote. Used to print a single-quote character.

\" Double quote. Used to print a double-quote character.

\u#### Unicode character. Used to place any Unicode-character constant in a
Java program. The #### is a hexadecimal representation of the Unicode
value (see Appendix E for information on hexadecimal numbers).

Fig. 2.16 Some common escape sequences.

Operators Associativity Type

Fig. 2.15 Precedence of the operators encountered so far in the text.

CHAPTER 2 DEVELOPING JAVA APPLICATIONS 12

© Copyright 1999 Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which Visual Basic 6 How to Program is the required textbook.

Displaying single quotes: ’A’
Displaying double quotes: "string"
Displaying a backslash: \
Text separated by two tabs
Here is double

spaced text
#####*****

