SQLBase

SQL Language Reference

20-2107-1005

centura

Trademarks

Centura, Centura Ranger, the Centura logo, Centura Web Developer, Gupta, the Gupta
logo, Gupta Powered, the Gupta Powered logo, Fast Facts, Object Nationalizer,
Quest, Quest/Web, QuickObjects, SQL/API, SQLBase, SQLConsole, SQLGateway,
SQLHost, SQLNetwork, SQLRouter, SQLTalk, and Team Object Manager are
trademarks of Centura Software Corporation and may be registered in the United
States of America and/or other countries. SQLWindows is a registered trademark and
TeamWindows, ReportWindows and EditWindows are trademarks exclusively used
and licensed by Centura Software Corporation.

Microsoft, Win32, Windows, Windows NT and Visual Basic are either registered
trademarks or trademarks of Microsoft Corporation in the United States of America
and/or other countries.

Java is a trademark of Sun Microsystems Inc.

All other product or service names mentioned herein are trademarks or registered
trademarks of their respective owners.

Copyright

Copyright] 1997 by Centura Software Corporation. All rights reserved.
SQL Language Reference

20-2107-1005

November 1997

Contents

Preface...................... ..., Xix
1 Introductionto SQL..................... 1-1
Whatis SQL? e 1-2
SQLNhIStory. . ..o 1-2

Whyis SQLused? 1-3
Howyouuse SQL........... 1-3
WhousesSQL? 1-4

Types of SQLcommands. 1-4
Example ofaSQLcommand 1-7

What are SQL objects?. 1-7
Database 1-8

Tables. 1-8
INdexXes. 1-9

ViBWS o 1-9
SYNONYMS. 1-9

Stored commands and procedures. 1-10
External functions. 1-10
THOOErS. . oo 1-10
System catalogtables. 1-11
SQL command processing 1-11
Optimizer 1-12

DML Execution Model. 1-12

2 SQLElements.......................... 2-1
Names. 2-2
Examplesofnames 2-2

SQL Language Reference iii

iv

SQL Language Reference

Typesofnames 2-3

Summary of naming requirements 2-6
Datatypes. 2-7
Nullvalues 2-7
Characterdatatypes. ivi... 2-8
CHAR (or VARCHAR), 2-8
LONG VARCHAR (orLONG) 2-9
Numericdatatypes. 2-9
NUMBER i, 2-10
DECIMAL (orDEC).t 2-10
CUMENCY . . oo e 2-13
INTEGER (Or INT)t 2-13
SMALLINT ... 2-13
DOUBLE PRECISION 2-14
FLOAT .. 2-14
REAL ... 2-14
Date/Time datatypescciuevnnn.. 2-15
DATETIME (or TIMESTAMP). 2-15
DATE .. 2-16
TIME. .. 2-16
Data type conversions.c.o ... 2-16
Data type conversions in assignments. 2-16
Data type conversions in functions. 2-17
Constants 2-17
Stringconstants 2-17
Numericconstants 2-17
Date/Time constants. 2-17
Examplesofconstants 2-18
Systemkeywords 2-18
Using SYSDBTRANSID keyword 2-19
Database sequence objects 2-20
Using SYSDBSequence. 2-20

EXPressions. 2-22

Null values in expressions 2-23
String concatenation operator (||). 2-23
Precedence............ 2-24
Examples of expressions 2-24
Searchconditions 2-24
Nulls and search conditions 2-26
Examples of search conditions. 2-26
Predicates. i, 2-27
Relational predicate 2-27
BETWEEN predicate 2-30
NULL predicate., 2-30
EXISTS predicate. 2-30
LIKE predicate, 2-31
INpredicate 2-31
Functions. i 2-32
Date/Timevalues, 2-33
Entering date/time values. 2-33
Date/time system keywords 2-35
Resolution for time keywords 2-36
Timezones. ... i, 2-37
Date/Time expressions.o.o... 2-37
Examples of date/time expressions 2-38
JOINS . .o 2-38
Typesofjoins.......... 2-40
Numberofjoins. 2-43
Subqueries 2-43
Examples of subqueries 2-44
Bindvariables 2-44
SQL Command Reference............. 3-1
SQL command summary 3-2
ALTER DATABASE e 3-5

SQL Language Reference

Vv

vi

SQL Language Reference

ALTERDBAREA. 3-6

ALTER EXTERNAL FUNCTION. 3-6
ALTER PASSWORD.t 3-8
ALTER STOGROUP. it 3-9
ALTERTABLE 3-10
ALTER TABLE (Error Messages) 3-13
ALTER TABLE (Referential Integrity) 3-15
ALTERTRIGGER. 3-19
AUDITMESSAGE. i 3-20
CHECKDATABASE 3-21
CHECKINDEX i 3-23
CHECKTABLE. 3-23
COMMENTON 3-24
COMMIT .. 3-25
CREATEDATABASEt 3-27
CREATEDBAREA it 3-29
CREATE EXTERNAL FUNCTION 3-30
CREATEINDEX e 3-34
CREATESTOGROUP, 3-40
CREATE SYNONYM 3-41
CREATETABLE. it 3-44
CREATETRIGGER i, 3-51
CREATEVIEW i 3-66
DBATTRIBUTE. e 3-69
DEINSTALL DATABASE, 3-70
DELETE 3-71
DROP DATABASE 3-73
DROPDBAREA i 3-73
DROP EXTERNAL FUNCTION 3-74
DROPINDEX i 3-75
DROP STOGROUP 3-77
DROP SYNONYM. 3-77

DROPTABLE 3-79

DROPTRIGGER 3-80
DROPVIEW e 3-80
GRANT (Database Authority) 3-81
GRANT (Table Privileges). 3-84
GRANTEXECUTEON......... ..., 3-86
INSERT. 3-88
INSTALLDATABASE 3-92
LABEL. .. .o 3-93
LOAD .. 3-95
LOCKDATABASE i 3-101
PROCEDURE: i 3-102
REVOKE (Database Authority) 3-106
REVOKE (Table Privileges) 3-108
REVOKE EXECUTEON. 3-110
ROLLBACK. . ..o 3-111
ROWCOUNT. e 3-113
SAVEPOINT 3-113
SELECT ..ot 3-116
SET DEFAULT STOGROUP 3-123
STARTAUDIT.o 3-124
STOPAUDIT. 3-129
UNLOAD e 3-130
UNLOCK DATABASE. it 3-137
UPDATE e 3-138
UPDATE STATISTICS 3-141
SQL Function Reference............... 4-1
Data type conversions in functions 4-2
Aggregate functions 4-2
String functions 4-2
Date/Time functions 4-3
Math functions. 4-4

SQL Language Reference

Vi

viii

SQL Language Reference

Logical functions, 4-5
Special functions. 4-5
SQLBase function summary 4-6
AVG. . . 4-9
COUNT ..o e 4-10
MAX 4-10
MIN . 4-11
SUM 4-12
@ABS . .. 4-12
@ACOS .. 4-13
@ASIN .. 4-13
@ATAN. . 4-14
@ATANZ. . . 4-14
@CHAR .. 4-15
@CHOOSE. 4-15
@CODE 4-16
@COS. . 4-16
@CTERM 4-16
@DATE. ... 4-17
@DATETOCHAR 4-17
@DATEVALUE 4-18
@DAY . . 4-18
@DECIMAL. 4-19
@DECODE. 4-19
@EXACT. .. 4-20
@EXP .. 4-20
@FACTORIAL ... 4-21
@FIND ... 4-21
@FV . 4-22
@HEX . .. 4-22
@HOUR 4-23

@INT. . 4-24
@ISNA .. 4-24
@LEFT ..o 4-25
@LENGTH 4-25
@LICS. .. 4-26
@LN . . 4-37
@LOG. .. 4-37
@LOWER. 4-38
@MEDIAN. 4-38
@MICROSECONDo 4-39
@MID .. 4-39
@MINUTE. 4-40
@MOD ... 4-40
@MONTH 4-40
@MONTHBEG 4-41
@NOW ..o 4-41
@NULLVALUE 4-41
@Pl. 4-42
@PMT . . 4-43
@PROPER 4-43
@PV . 4-44
@QUARTER. 4-44
@QUARTERBEG 4-45
@RATE. . . 4-45
@REPEAT ... 4-46
@REPLACE 4-46
@RIGHT . .. 4-47
@ROUND 4-47
@SCAN. . . 4-48
@SDV . . 4-48
@SECONDo 4-49

SQL Language Reference

iX

X

SQL Language Reference

@SLN .. 4-50
@SORT. . 4-50
@STRING. ... 4-51
@SUBSTRING 4-51
@SYD . . 4-52
@TAN . . 4-53
@TERM ... 4-53
@TIME ... 4-54
@TIMEVALUE 4-54
@TRIM .. 4-55
@UPPER 4-55
@VALUE. 4-55
@WEEKBEG 4-56
@WEEKDAY. . .. 4-56
@YEAR. .. 4-57
@YEARBEG. 4-57
@YEARNO 4-58
@LEFT ..o 4-58
@LENGTH 4-59
@LICS. .. 4-59
@LN . . 4-70
@LOG. ..o 4-70
@LOWER 4-71
@MEDIAN. 4-71
@MICROSECONDo 4-72
@MID .. 4-72
@MINUTE. 4-73
@MOD ... 4-73
@MONTH 4-73
@MONTHBEG 4-74
@NOW ..o 4-74

@Pl. 4-75
@PMT . 4-76
@PROPER 4-76
@PV . 4-77
@QUARTER. 4-77
@QUARTERBEG 4-78
@RATE. . . o 4-78
@REPEAT ... 4-79
@REPLACE 4-79
@RIGHT . .. 4-80
@ROUND 4-80
@SCAN. .. 4-81
@SDV . .o 4-81
@SECOND 4-82
@SIN. .. 4-82
@SLN .. 4-83
@SORT. . 4-83
@STRING. ... 4-84
@SUBSTRING 4-84
@SYD .. 4-85
@TAN . . 4-86
@TERM ... 4-86
@TIME ... 4-87
@TIMEVALUE 4-87
@TRIM .. 4-88
@UPPER 4-88
@VALUE. 4-88
@WEEKBEG 4-89
@WEEKDAY. . .. 4-89
@YEAR. . . 4-90
@YEARBEG. 4-90

SQL Language Reference Xi

Xii

SQL Language Reference

@YEARNO 4-91

SQL Reserved Words.................. 5-1
SQLReservedWords. it 5-2
Referential Integrity..................... 6-1
About referential integrity 6-2
Sample service database 6-2
The benefits of referential integrity 6-2
Components 6-3
Primary key. i 6-3
Foreignkey....... i 6-7
Parentand childtables.................... 6-11
Parentand childrows. 6-12
Self-referencing tablesandrows 6-12
Delete-connected tables. 6-13

How to create tables with referential constraints. . . . 6-15

Using the CREATE TABLE statement 6-15
Using the ALTER TABLE statement. 6-16
Creating a primary index. 6-16
Reporting referential integrity 6-16
Implications for SQLBase operations 6-18
INSERT. 6-18
UPDATE. ... e 6-18
DELETE 6-19
DROP 6-20
SELECT . ..o 6-21
Cycles of dependenttables. 6-21
INSERT implications. 6-23
DELETE implications 6-23
Delete-connected table restrictions 6-27
SQLTalk commands and referential integrity 6-30
Customizing SQLBase error messages 6-30
Editing the error messages. 6-31

Primary key error messages. 6-32

Foreign key errormessages. 6-32
Service databasetables, 6-33
Procedures and Triggers............... 7-1
Whatisaprocedure? 7-2

Why use procedures?. 7-2

How stored procedures are different from

stored commands 7-3
Formatofaprocedure......................... 7-4

Name 7-4

Parameters. 7-5

Localvariables 7-6

ACtiONS 7-7
Data types supported in procedures. 7-9

Boolean................. 7-10

Date/Time., 7-10

Number. 7-10

SglHandle 7-11

StiNG ..o 7-11

Long String oo 7-11

WindowHandle. 7-12

FileHandle............. 7-12
System constants supported in procedures 7-12
Using SAL statements. 7-13

Break 7-13

Call ... 7-14

If, Else,and Else If 7-14

LOOp . . 7-15

On <procedure state>. 7-15

Return. 7-24

Set . 7-25

Trace. . ..o 7-25

SQL Language Reference Xiii

Xiv

SQL Language Reference

While. 7-28
Comments, 7-28
Operators 7-29
Continuation lines and concatenation. 7-29
How to generate, store, execute and drop
Procedures 7-30
Generating aprocedure 7-30
Storingaprocedure 7-36
Executingaprocedure 7-37
Dropping aprocedure. 7-38
Debugging a procedure 7-38
SECUNtY. . o o 7-39
SAL functionality in SQLBase 7-39
Related SQLTalk commands 7-41
Using SQL/API functions with procedures 7-41
Using procedures with Centura Team Developer
applications 7-43
Default for Result Sets in Stored Procedures. . . 7-43
Calling a SQLBase Procedure 7-43
Errorhandling 7-45
Procedure examples. 7-48
Example 1 - Procedure IF/Else statement 7-48
Example 2- Using SQL handles and ON
statements., 7-49
Example 3-Doingafetch 7-50
Example 4 - Calling a stored procedure from
within another procedure 7-51
THGQerS. . e 7-54
Whatisatrigger?o .. 7-54
Error handling intriggers 7-56
External Functions 8-1
What is an External Function? 8-2

Why use external functions?. 8-2
SECUMtY. . .o 8-4
How to declare external functions. 8-4
Functionname 8-5
Library. ... 8-6
Parameters and return datatypes 8-6
ExternalName 8-7
Callstyle 8-9
ExecutionMode 8-9
Using external datatypes 8-10
Parameters and External Data types 8-10
Providing external datatypes............... 8-10
Numeric and boolean data types 8-11
String datatype. 8-12
Date/Time datatypes 8-14
Other external datatypes.................. 8-15
Calling External Functions 8-17
Building a 16-bitDLL 8-18
Pre-loading DLLS 8-18
Specifying external functions within stored
procedures. 8-19
Specifying external functions for export to
the DLL ... 8-20
Calling SAL functions as external functions 8-20
Developing external functions. 8-20
Choosing an Execution Mode for Win32 8-20
Executing in separate process 8-21
Testing and debugging external functions 8-24
Modifying external function definitions 8-24
Alter external function. 8-24
Drop external function. 8-24
ErrorHandling. 8-25
Exception Handling. 8-25

SQL Language Reference

XV

System Catalog tables for external functions 8-26

SQLBase-supplied scriptsand DLLS 8-26
Scripts and DLLs for 32-bit systems.......... 8-26
Scripts and DLLs for 16-bit systems.......... 8-27

External function example. 8-27

A SAL Functions........................ A-1

SqlClearimmediate A-2

SqIClose A-2

SqglCommit. A-3

SqglConnect A-4

SqglDisconnect. A-5

SqgiDropStoredCmd. A-5

SOIErOr. . . A-6

SglEXecute A-6

SOIEXIStS . . .o A-7

SqglFetchNext. A-7

SqlFetchPrevious, A-8

SqglFetchRow. A-9

SqlGetErrorPosition L A-10

SqlGetErrorText ... A-11

SqglGetModifiedRows. A-11

SqlGetParameter A-12

SqlGetParameterAll A-15

SqglGetResultSetCount A-16

SqglGetRollbackFlag A-17

Sqgllmmediate A-17

Sqlopen e A-18

SqglPrepare A-19

SqlPrepareAndExecute. A-20

SqlRetrieve A-21

SqlSetlsolationLevel A-21

SqlSetLockTimeout. A-22

SqlSetParameter. A-23

SqlSetParameterAll. A-23
SqglSetResultSet A-24
SqlStore A-25
Glossary............................. Glossary-1
Index Index-1

SQL Language Reference XVii

Preface

This manual is a reference guide for the SQL commands supported in SQLBase. You
can use the SQL commands documented in this manual with the following Centura
products:

* SQLTalk
e Team Developer
« SQL/API

¢ SQLGateways and SQLRouters
* SQLConsole
Consult the manual for the specific product you are using for more information.

SQL Language Reference XiX

Preface

Who should read this manual
This manual is intended for:

e Application Developers

Application developers build client applications that access databases using
Centura frontend products like SQLTalk, Team Developer, and the SQL/
API.

» Database Administrators (DBAS)

Database Administrators perform day-to-day operation and maintenance of
the database. They design the database, create database objects, load data,
control access, perform backup and recovery, and monitor performance.

« End Users
End users use SQL to query and change data.

This manual assumes you have:

« Knowledge of relational databases and SQL.

Note: This manual is not intended to be a SQL tutorial.

Summary of chapters
This manual is organized in the chapters in the table below. There is also a glossary

and index.
1 Introduction to SQL Shows the SQL command categories and features.
SQL Elements Explains the concepts needed to use SQL.
3 SQL Command Describes each SQL command. Arranged alphabetically.
Reference
4 SQL Function Reference Lists SQL reserved words.
5 SQL Reserved Words Lists SQL reserved words.
6 Referential Integrity Describes SQLBase’s implementation of referential integrity.
7 Procedures and Triggers Describes SQLBase’s implementation of procedures and
triggers.
8 Optimizing SQL Describes how to optimize SQL statements for SQLBase
Statements performance.
Appendix A Provides the description, syntax, and examples for SAL
functions supported by SQLBase procedures.

XX SQL Language Reference

Syntax diagrams

Syntax diagrams

This manual uses syntax diagrams to show how to enter commands.

The syntax for the CREATE INDEX command is used here as an example.

»P»— CREATE L J L J INDEX index name —
UNIQUE CLUSTERED HASHED
P»— ON table name — (1 column name |) >
kASC ﬁ
DESC

T T
PCTFREE integer constant SIZE integer constant ROWS ——

Read the syntax diagram from left to right and top to bottom.

The line with the command name (CREATE) is the main line of the command.
Mandatory keywords and arguments (such as INDEX ott&bid: name appear on
the main line or a continuation of the main line.

This example diagram could generate the commands shown in these examples:
CREATE UNIQUE INDEX EMP_IDX ON EMP (EMPNO);
CREATE INDEX ORDER_IDX ON ORDERS (ORDERNO, ORDERDATE);

Note that example statements in this manual can appear in bold to distinguish user
entries from a system response:

ROWCOUNT EMP;
5 ROWS IN TABLE

SQL Language Reference XXi

Preface

XXii

The following table shows the syntax diagram symbols used in this manual.

Symbol Description
»» A double arrow pointing right means the
start of a command.
> A single arrow pointing right means a
continuation line of a command.
o The double arrow pointing left means th

end of a command.

L UNIQUE J

Optional clauses and keywords (such a|

UNIQUE) hang off the main or continua

tion lines.

ASC
DESC

—E table name T
view name

If there is an optional item with alternate
choices, the choices are in a vertical list.

In this example, ASC and DESC are alt
nate non-mandatory options. ASC is
underlined, which means it is the defau
and can be omitted.

If an item is mandatory, the first alterna;
tive is on the main line (this example is
from the UPDATE command).

)

D

or-

t

- (i column name J—) —

When you can repeat arguments of the
same type (such as a list of column
names), an arrow pointing downward is
suspended above the argument. A delin
iter or operator on this line shows what
separates each argument (such as com
separating column names).

mas

SQL Language Reference

Syntax diagrams

Notation conventions
The table below show the notation conventions that this manual uses.

Notation Explanation
You A developer who reads this manual
User The end-user of applications that you write
bold type Menu items, push buttons, and field names. Things that you select.
Keyboard keys that you press.
Courier 9 Builder or C language code example
SQL.INI Program names and file names
MAPDLL.EXE
Precaution Warning:
Vital Important:
information
Supplemental Note:
information
Alt+1 A plus sign between key names means to press and hold down the first
key while you press the second key
TRUE These are numeric boolean constants defined internally in Builder
FALSE Constant Value Meaning
TRUE 1 Successful, on, set
FALSE 0 Unsuccessful, off, clear

SQL Language Reference XXiii

Preface

Other helpful resources
Centura Books OnlineThe Centura document suite is available online. This
% document collection lets you perform full-text indexed searches across the entire
document suite, navigate the table of contents using the expandable/collapsible
browser, or print any chapter. Open the collection by selecting the Centura Books
Online icon from théStart menu or by double-clicking on the launcher icon in the
program group.

Centura Online Help. This is an extensive context-sensitive online help system. The
online help offers a quick way to find information on topics including menu items,
functions, messages, and objects.

World Wide WebCentura Software’s World Wide Web site contains information
about Centura Software Corporation’s partners, products, sales, support, training, and
users. The URL is http://www.centurasoft.com.

To access Centura technical services on the Web, go to http:/www.centurasoft.com/
support. This section of our Web site is a valuable resource for customers with
technical support issues, and addresses a variety of topics and services, including
technical support case status, commonly asked questions, access to Centura’s Online
Newsgroups, links to Shareware tools, product bulletins, white papers, and
downloadable product updates.

For information on training, including course descriptions, class schedules, and
Certified Training Partners, go to http://www.centurasoft.com/training.

Send comments to...

Anyone reading this manual can contribute to it. If you have any comments or
suggestions, please send them to:

Technical Publications Department
Centura Software Corporation

975 Island Drive

Redwood Shores, CA 94065

or send email, with comments or suggestions to:

techpubs@centurasoft.com

XXiV SQL Language Reference

Chapter 1
Introduction to SQL

This chapter introduces SQL and its implementation in SQLBase.

SQL Language Reference 1-1

Chapter

1

Introduction to SQL

What is SQL?

SQL (Structured Query Language) is a complete set of commands that lets you access
a relational database. SQL is pronounseguelor ess-que-ell

SQL is the standard interface for many relational databases. It has a simple command
structure for data definition, access, and manipulation.

SQL was intended to be used with programming languages, so standard SQL does
not have commands for interactive screen dialogue, or for more than very crude
report formatting.

SQL is set-oriented. You can perform a command on a group of data rows or on one
row.

SQL is non-procedural. When you use SQL you spedifgtyou want done, ndtow

to do it. To access data you need only to name a table and the columns; you do not
have to describe an access method. For example, a single command can update
multiple rows in a database without specifying the row's location, storage format, and
access format.

SQL has several layers of increasing complexity and capability. End users with little
computer experience can use SQL's basic features while programmers can use the
advanced features they need.

SQL history

SQL began with a paper published in 1970 by E.F. Codd, a mathematician working at
the IBM Research Laboratory in San Jose, California. In this paper, “A Relational
Model of Data for Large Shared Data BankSbhnmunications of the ACMol. 13,

No. 6, June 1970) Codd formulated the principles of a relational system for managing
a database and described a relational algebra for organizing the data into tables.

Four years later, another important paper followed: “SEQUEL: A Structured English
Query Language”Rroceedings of the 1974 ACM SIGMOD Workshop on Data
Description, Access and Contréllay 1974) by D.D. Chamberlin and R.F. Boyce.

Both its authors were (like Codd) researchers at IBM's San Jose Research Laboratory.
Their paper defined a language (the ancestor of SQL) designed to meet the
requirements of Codd's relational algebra.

Two years after that, Chamberlin and others developed a version of the language,
SEQUEL/2, and shortly after that IBM built a prototype system called System R that
implemented most of its features. Around 1980 the name changed to SQL. Note that
today SQL is often pronounced “sequel.”

Both the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) have committees dedicated to establishing

1-2 SQL Language Reference

What is SQL?

and reviewing SQL standards. The most recent standard released for SQL is known as
SQL-92.

Why is SQL used?

SQL's features make it the most widely-used language for relational databases. Here
are a few reasons:

Acceptance

The American National Standards Institute (ANSI) has approved SQL. The
International Standards Organization (ISO) and the U.S. Department of
Defense also support SQL. A version of SQL is available on most computers.

Power

SQL is powerful. SQL is a complete database language, so you can use it for
data definition, data control, and transaction management. SQL commands
are simple to use in their basic form, but they have the flexibility to do
complex operations.

Ease of use

People can easily access and manipulate data without becoming involved
with the physical organization and storage complexities of that data.

How you use SQL

You can use SQL in two different ways:

Interactively through an interface program.

Embedded in a programming language such as C or SAL (Centura’s Scalable
Application Language), or in a client application such as a report writer or an
application generator.

SQL is not a programming language or even an interactive language. To use SQL, you
work through an interface that is part of a proprietary SQL implementation.

You execute SQL commands through a program that provides the interface to the
database server and handles things that SQL was not designed to handle. For example,
Centura’'s SQLTalk product handles communications (through a communications
library) with the database server when you give SQL commands.

Application end users access the database through business application programs,
without the need for prior database knowledge.

SQL Language Reference 1-3

Chapter

1

Introduction to SQL

Who uses SQL?

End users

End users issue SQL commands to retrieve, insert, update, or delete data either
through an interactive command interface or a client application.

Application developers

Developers write programs containing SQL commands to allow end users to access
SQLBase data without having to know how the data is accessed. The developers need
to know how to write SQL commands and embed them within a program written in

C, COBOL, or SAL (Centura’s Scalable Application Language).

DBAs

Database administrators (DBAs) use SQL commands to define the database, secure
data from unauthorized access, and change data definitions as needed. They use SQL
commands to query and report on the database.

Types of SQL commands

With SQL you can:
» Create tables in the database.
e Store data.
* Retrieve data.
« Change data and change the structure of underlying tables.
» Combine and calculate data.
* Provide security.
The SQL commands are grouped into these categories.

Data definition commands (DDL)
These commands create database objects such as tables or views.

CREATE DATABASE

CREATE DBAREA

CREATE EXTERNAL FUNCTION
CREATE INDEX

CREATE STOGROUP

CREATE SYNONYM

CREATE TABLE

CREATE TRIGGER

CREATE VIEW

PROCEDURE

1-4 sSQL Language Reference

What is SQL?

SQL DROP commands exist for most of these objects, which allow the object to be
deleted.

Data manipulation commands (DML)

These commands add, update, or delete data.

DELETE
INSERT
UPDATE

Data query commands (DQL)
The SELECT command retrieves data.

SQL lets you build complex queries with relational operators (such as >, <, =, >=, or
<>) that enable you to express a search condition. A query can use a join to pull data
from different tables and correlate it by matching on a common row that is in all the
tables.

The input to one query can be the output of another query. A nested query is called a
subselect

Queries can be nested within INSERT, UPDATE, and DELETE commands to specify
the scope of the operation.
Transaction control commands

These commands ensure data integrity when changing data. They ensure that a
logically-related sequence of actions that accomplish a particular result in an
application (a logical unit of work) are either performed or cancelled in their entirety.

COMMIT
ROLLBACK
SAVEPOINT
Data administration commands
These commands help you analyze system performance and operations.

AUDIT MESSAGE
START AUDIT
STOP AUDIT

SQL Language Reference 1-5

Chapter 1 Introduction to SQL

Data control commands

In addition to the data definition language (DDL) commands that allow you to create
and maintain database objects, the following data control commands include the
following maintenance tasks:

» Assigning users to databases and tables.
« Altering database object definitions
» Maintaining databases and partitions

ALTER DATABASE
ALTER DBAREA
ALTER EXTERNAL FUNCTION
ALTER PASSWORD
ALTER STOGROUP
ALTER TABLE

ALTER TRIGGER
CHECK DATABASE
CHECK INDEX

CHECK TABLE
COMMENT ON
DBATTRIBUTE
DEINSTALL DATABASE
GRANT

GRANT EXECUTE ON
INSTALL DATABASE
LABEL

LOAD

LOCK DATABASE
REVOKE

REVOKE EXECUTE ON
ROWCOUNT

SET DEFAULT STOGROUP
UNLOAD

UNLOCK DATABASE
UPDATE STATISTICS

1-6 SQL Language Reference

What are SQL objects?

Example of a SQL command

The following example shows a SQL query both in conversational English and actual

SQL syntax.
English Give me a list of everyone who works at the Albany location Wwho
has the same job as someone who works at the Utica location.
SQL SELECT LNAME, FNAME, EMPNO
FROM EMP WHERE LOC = ‘ALBANY’
AND JOB IN

(SELECT JOB FROM EMP
WHERE LOC = ‘UTICA);

Some other examples of SQL commands are:

SELECT LNAME FROM EMP;
CREATE TABLE FRIENDS (NAME CHAR(15));
SELECT * FROM EMP, EMPSAL

WHERE EMP.EMPNO = EMPSAL.EMPNO;
ALTER TABLE FRIENDS RENAME TABLE FOLKS;
DROP TABLE FOLKS;

What are SQL objects?

With SQL, you can create and use the following SQL objects that allow you to
organize and maintain your data:

» Databases

* Tables

e Columns

* Indexes

* Views

e Synonyms

e Stored commands
e Stored procedures
» External functions

» Triggers

SQL Language Reference 1-7

Chapter 1

Introduction to SQL

Database

Tables

A databasés a set of SQL objects. When you define a database you give a name to
an eventual collection of tables and associated indexes.

A single database can contain all the data associated with one application or with a
group of related applications. Collecting data into one database lets you start or stop
access to all the data in one operation and grant authorization for access to all the data
as a unit.

A database contains one or mtables Each table has a name and contains a specific
number ofcolumns(vertical) and unordere@ws (horizontal). Each column in a row
is related in some way to the other columns in the same row.

Column
CUST_NO CONTACT CREDIT
46372986 E. Smith $3000.00
12162344 R. Vince $1500.00
98121735 G. Handle $580.00
Row | 55421888 B. Harty $2000.00 |
89923942 S. Jones $550.00

Each column has a name and a data type. Each column contains a data value at the
intersection of a row and a column.

In theory, no row in a table should be a duplicate of any other row. For instance, if you
define a table of sales orders, the columns might be ORDER_DATE,
CUSTOMER_ID, PRODUCT_CODE, and QUANTITY.

If a customer orders 10 widgets one day and then orders another 10 widgets on the
same day, there would be 2 duplicate rows in the table. You could either store the time
when the order was placed, or have a unique sequence number (such as an invoice
number) to identify each order. In each case there will be a column or combination of
columns which is different for each order, and so uniquely identifies it.

A join retrieves rows from more than one table. This operation is called a join
because the rows retrieved from the different tables are joined on one or more
columns that appear in two or more of the tables.

A table can have primary keywhich is a column or a group of columns whose value
uniquely identifies each row. Columns of other tables mayptségn keyswhose
values must be equal to values of the primary key of the first table. The rule that a

1-8 SQL Language Reference

What are SQL objects?

Indexes

Views

Synonyms

value of a foreign key must appear as a value of some specific table is called a
referential constraint

SQLBase uses SQL commands to add new columns to an existing table or make an
existing column wider. The change takes effect imnmediately and no database
reorganization is needed.

An indexis an ordered set of pointers to the data in a table, stored separately from the
table. Each index is based on the values of data in one or more columns of a table.

Users accessing a table need not be aware that SQLBase is using an index. SQLBase
decides whether to use an index to access a table.

An index provides two benefits:

* Improves performance.Access to data is faster.

« Ensures uniquenessA table with a unique index cannot have two rows with
the same values in the column or columns that form the index key.

A viewis an alternate way of representing data that exists in one or more tables. A
view can include all or some of the columns from one or rhase tablesYou can
also base a view on other views or on a combination of views and tables.

A view looks like a table and you can use it as though it were a table. You can use a
view name in a SQL command as though it were a table name. You cannot do some
operations through a view, but you do not need to know that an apparent table is
actually a view.

A table has a storage representation, but a view does not. When you store a view,
SQLBase stores the definition of the view in the system catalog, but SQLBase does
not store any data for the view itself because the data already exists in the base table
or tables.

A view lets different users view the same data in different ways. This allows
programmers, database administrators, and end users to see the data as it suits their
needs.

A synonymis another name for a table, view, or external function. When you access a
table, view, or external function created by another user (once you have been granted
the privilege), you must fully-qualify the table name by prefixing it with the owner's
name, unless a synonym for the table or view is available. If one is available, you can
refer to the user’s table or view without having to fully qualify the name.

SQL Language Reference 1-9

Chapter 1

Introduction to SQL

Stored commands and procedures

A stored commanis a compiled query, data manipulation command, or procedure
that is stored for later execution. SQLBase stores the command’s or procedure’s
execution plan as well, so subsequent execution is very fast.

A SQLBase procedure is a set of Scalable Application Language (SAL) and SQL
statements that is assigned a name, compiled, and optionally stored in a SQLBase
database. Procedures reduce network traffic and simplify your applications since they
are stored and processed on the server. They also provide more flexible security,
allowing end users access to data which they otherwise have no privilege to access.

SQLBase procedures can be static or dyna§tatic proceduremust be stored (at

which time they are parsed and precompiled) before they are exdoyteamic
procedurescontain dynamic embedded SQL statements, which are parsed and
compiled at execution time. For this reason, they do not have to be stored before they
are executed.

SQLBase also provides preconstructed procedures as useful tools to help you
maintain your database. S&éppendix Bof theDatabase Administrator’'s Guider a
description of SQLBase-supplied procedures.

External functions

Triggers

An external functions a user-defined function that resides in an “external” DLL
(Dynamic Link Library) that is invoked within a SQLBase stored procedure.

SQLBase accepts external functions in a language of your choice as C, C++, etc. The
SQLBase server converts data types of parameters that are declared in stored
procedures into their external representation.

Using external functions enhances the power of the SQLBase server, allowing you to
achieve maximum flexibility and performance with minimal programming effort. It
extends the functionality of stored procedures with no impact on the application or
the server. When external functions are called, they are dynamically plugged in and
behave like built-in functions. For details, r€@ldapter 8 External Functions

A trigger activates a stored or inline procedure that SQLBase automatically executes
when a user attempts to change the data in a table. You create one or more triggers on
a table, with each trigger defined to activate on a specific command (an INSERT,
UPDATE, or DELETE). You can also define triggers on stored procedures.

Triggers allow actions to occur based on the value of a row before or after
modification. Triggers can prevent users from making incorrect or inconsistent data
changes that can jeopardize database integrity. They can also be used to implement

1-10 SQL Language Reference

System catalog tables

referential integrity constraints. For details on referential integrity, Céegbter 6
Referential Integrity

For details on the trigger execution order before a single data manipulation statement
is executed, read the SectibML Execution Modeht the end of this chapter.

System catalog tables

For each database, there isygtem catalothat contains tables created and
maintained by SQLBase. These tables contain information about the tables, views,
columns, indexes, synonyms, external functions, and security privileges for the
database. The system catalog is sometimes catlathalictionary

When you create, change, or drop a database object, SQLBase changes rows in the
system catalog tables that describe the object and tell how it is related to other objects.

A system catalog contains the name, size, type, and valid values of each column
stored in a table. A system catalog also holds information about the tables and views
that exist in the database and how they are accessed. A user can query the data
dictionary tables just like any other table.

Read théDatabase Administrator's Guider information on the system catalog
tables.

SQL command processing

There are four basic phases of SQL command processing:
1. Parse:
» Check that the command is formulated correctly.
» Break the statement into components for the optimizer.
» Verify names of columns and tables in the system catalog.
2. Optimize:
* Replace view column names and table names with real names.
» Gather statistics on data storage from the system catalog.
» ldentify possible access paths.
e Calculate the cost of each alternate path.
e Choose the best path.
For details on the SQLBase Optimizer, read the following section.

3. Generate execution code:

* Produce an application plan for execution.

SQL Language Reference 1-11

Chapter 1 Introduction to SQL

4. Execute the command.

For details on the execution model of any DML statement, Dd4ld Execution
Modelon pagel-12

Optimizer

In SQLBase, you specify the data you want through a SQL command and SQLBase
determines how the data will be accessed by usinggtimizer SQLBase chooses

an access path based upon the available indexes, catalog statistics, and the
composition of the SQL command.

There are several basic choices:
* Index access without reading the data table.
If all the needed data is in an index, this is the most efficient access.

» Index access in addition to reading the data table.

In this situation, the qualifier of the command is matched against an index
and only qualified rows are read from the table. There are cases where
SQLBase uses an index although data in the index does not match the data
specified in the qualifier of the command.

* Table scan.
All pages and rows will be read.

There are many variations of the options listed. If a query involves several tables,
processing can be complex and involve internal sorting and creation of intermediate
result tables which are transparent to the user.

DML Execution Model

SQLBase performs a number of validation checks before executing data manipulation
statements (INSERT, UPDATE, or DELETE). Following is the execution order for
data validation, trigger execution, and integrity constraint checking for a single DML
statement:

1. Check for number of bind data.

2. Validate values if they are part of the statement (that is, not bound). This includes
null value checking, data type checking (such as numeric), etc.

Perform security checks.
4. |If atrigger is defined, execute BEFORE statement trigger.
Loop for each row affected by the SQL statement.

For each row, perform the following actions this order

1-12 SQL Language Reference

SQL command processing

» Validate values if they are bound in. This includes null value checks, data
type checking, and size checking (for example, character string too long).

Note that size checking is performed even for values that are not bound.
e Fire BEFORE ROW trigger.
» Perform checks for duplicate values.
» Perform referential integrity checks on invoking DML.
* Execute INSERT/UPDATE/DELETE.
» Fire AFTER ROW trigger.
6. Execute AFTER statement trigger.

Note: A trigger itself can cause DML to be executed, which will apply to the steps shown in this
model.

SQL Language Reference 1-13

Chapter 2
SQL Elements

This chapter describes the following SQL elements:

e Names

e Datatypes

« Constants

e System keywords

« Database sequence objects
e Functions

e Expressions

¢ Predicates

e Search conditions

e Bind variables

SQL Language Reference 2-1

Chapter 2 SQL Elements

Names

A name is called aidentifierin SQL. User names, table names, column names, and
index names are examples of identifiers.

An identifier can be aordinary identifieror adelimited identifier

* Anordinary identifier begins with a letter or one of the special characters (#,
@ or $). The rest of the name can include letters, numeric digits, underscore
(1) and special characters. An exception is a database identifier, which can
only start with an alphabetic character, and contain only alphanumeric
characters.

» Adelimited identifier can contaiany character including special characters
such as blanks and periods. Also, a delimited identifier can start with a digit.
A delimited identifier is case-sensitive.

Delimited identifiers must be enclosed in double quotes:
"7.g identifier"

SQL reserved words can be used as identifiers if they are delimited, but this
is not recommended.

If a delimited identifier contains double quotes, then two consecutive double
guotes (") are used to represent one double quote ().

Names aréong or shortidentifiers, or identifiergjualified by other identifiers. The
maximum length of a long identifier is 18 characters. The maximum length of a short
identifier is 8 characters.

Names of database objects (such as a table or column) are generally case-insensitive.
Identifiers such as passwords or user names are usually case-sensitive. Read the
following section,Types of namesn page2-3, which describes the different

SQLBase identifiers; a name is case-insensitive unless stated otherwise.

Note: Even though a name may be case-insensitive, it is stored in upper-case in the system
catalog. For example, a query on the SYSADM.SYSTABLES table must specify the table name
in uppercase, unless you enclose it in single quotes, even though you created it in lower case.

Examples of names

2-2

Examples of names are:

CHECKS
AMOUNT _OF $
:CHKNUM
$500

SQL Language Reference

Names

"NAME & NO."
#CUSTOMER
3

Types of names
The following objects have names:
* Authorization ID
e Columns
* Commands
» Correlations
» Databases
» External functions
* Indexes
» Passwords
* Bind Variables
* Commands
e Stored Procedures
e Synonyms

* Tables
» Triggers
* Views

Authorization ID (user name)

This is a short identifier that designates a user. Authorization ID is also saded
namein this manual. The system keyword USER contains the user name.

An authorization ID is an implicit part of all database object names. To nhame a
database object explicitly, add the authorization ID and a period to the beginning of
the identifier. For example, the table name CUST created by user JOE has the explicit
name JOE.CUST. The implicit name CUST is used most often.

A user name is case-sensitive.

Examples of authorization IDs are JOE and USER1.

SQL Language Reference 2-3

Chapter

2

SQL Elements

Column name

This is a qualified or unqualified long identifier that names a column of a table or
view.

column name — <<

— table name

— view name

correlation name

The qualified form is preceded by a table name, a view name, or correlation name and
a period (.).

Examples of column names are EMPNO and EMPLOYEES.EMPNO.

Correlation name
This is a long identifier that designates a table or view within a command.

Examples of correlation names are X and TEMP.

Database name
This is a short identifier that designates a database.

Database names can only contain alphanumeric characters (A-Z, a-z, 0-9), and must
start with a letter.

Do not specify an extension for a database name. For exatapie,xyis invalid.
SQLBase automatically assigns a database name extensiltnts §QLBase will
store a database called DEMO in a file namiecho.dbs

Examples of database names are DEMO and COMPANY.

External function name

This is an unqualified ordinary long identifier (maximum 64 characters) that names
an external function. An example is MyFunc().

A function name must start with an alpha upper or lowercase letter. It cannot be the
same as procedure, or a name used in any of the SQLBase aggregate functions.

2-4 SQL Language Reference

Names

Index name

This is a qualified or unqualified long identifier that names an index.

L J index name —— <4<
authorization 1D

The qualified form is preceded by an authorization ID and a period.

An unqualified index name is implicitly qualified by the authorization ID of the user
who gave the command.

Examples are EMPX and JOE.EMPX.

Password

This is a short identifier that is a password for an authorization ID. It is case-sensitive.

Examples are PWD1 and X2381.

Procedure name

This is a qualified or unqualified long ordinary identifier that names a procedure. An
example is JOE.PROC.

A procedure name can be different from the name under which it is stored. However,
a procedure name cannot be the same name as an external function name.

Bind variable name

Bind variable names in a SQL command must always be ordinary identifiers or digits
preceded by a colon (;).

Command name

This is a long identifier that designates a user-defined command. An example is
QUERY1.

Synonym name

This is a long identifier that designates a table or view. A synonym can be used
wherever a table name or view name can be used to refer to a table or view.

An example of a synonym is EASY.

Table name
This is a qualified or unqualified long identifier that names a table.

SQL Language Reference 2-5

Chapter 2 SQL Elements

> > L J table name ———— <<
authorization 1D
An unqualified table name is implicitly qualified by the authorization ID of the user
who created the table.
The qualified form is preceded by an authorization ID and a period.
Examples are EMP and JOE.EMP.
Trigger name
This is a qualified or unqualified long ordinary identifier that names a trigger. An
example is JOB_UPDT.
View name
This is a qualified or unqualified long identifier that designates a view.
> view name — —— 4«4

L authorization 1D J

An unqualified view name is implicitly qualified by the authorization 1D of the user
who gave the command.

The qualified form is preceded by an authorization ID and a period.

Examples of view names are MYEMP and DEPT10.MYEMP.

Summary of naming requirements

The following table lists the naming requirements for any type of name.

Type of Identifier M‘L"‘;‘:;fhm Qualifiable?
Authorization 1D 8 No
Bind Variable 18 N/A
Column 18 Yes
Command 18 Yes

2-6 SQL Language Reference

Data types

Type of Identifier M‘L"‘;‘:g;‘hm Qualifiable?
Correlation 18 No
Database 8 No
External function 64 No
Index 18 Yes
Password 8 No
Procedure 18 Yes
Synonym 18 No
Table 18 Yes
Trigger 18 Yes
View 18 Yes

Data types
The general data types that SQLBase uses to store data are:

* Character
* Numeric
* Date and time
The data type determines the following information:
e The value and length of the data as stored in the database.
» The display format when the data is displayed.
The data type for a column is specified in the CREATE TABLE command.

Null values

A null valueindicates the absence of data. Any data type can contain a null value. A

null value has no storage.
Null is notequivalent to zero or to blank; it is the samermeown A value of null is

notgreater than, less than, or equivalent to any other value, including another value of

null. To retrieve a field on a null match, the NULL predicate must be used.

NULL is equal to NULL when you insert two of them into a uniquely constrained

column.

SQL Language Reference 2-7

Chapter

2

SQL Elements

Empty strings have a null value.

Read the sectioigearch conditionsn page-24to understand more about how nulls
are treated.

Character data types

A character string is a sequence of letters, digits, or special characters. All character
data is stored in SQLBase as variable-length strings.

For DB2 SQL compatibility, SQLBase allows several alternative keywords to declare
the same data type.

An empty string has a null value.
All character data types can store binary data.

Character data is stored as case-sensitive. To search for case-insensitive data, you can
issue a SELECT statement with the @UPPER or @LOWER functions. For example,
the following query returns only upper-case SMITHS:

SELECT LNAME FROM EMP
WHERE @UPPER(LNAME) = 'SMITH?;

CHAR (or VARCHAR)

A lengthmustbe specified for this data type. The length determines the maximum
length of the string. The length cannot exceed 254 bytes.

You can use CHAR columns in comparison operations with other characters or
numbers and, and also in most functions and expressions. Wild-card search operators
can be used in the LIKE predicate for character-only comparisons.

This data type is defined in the system catalog as CHAR and VARCHAR.
Examples:

CHAR (11)
VARCHAR(25)
CHAR(10)

2-8 SQL Language Reference

Numeric data types

LONG VARCHAR (or LONG)

This data type stores strings of any length. The difference between a CHAR
(VARCHAR) and a LONG (LONG VARCHAR) data type is that a LONG type can
store strings longer than 254 bytes, and is not specified with a length attribute.

Both text and binary data can be stored in LONG VARCHARSs. However, only
character data can be retrieved through SQLTalk.

LONG VARCHAR columns can be stored, retrieved, or modified, but cannot be used
in a comparison operation in a WHERE clause. LONG VARCHAR columns cannot
be used in expressions or in most functions.

You can use LONG VARCHAR as a BLOBS equivalent.

You can store a bitmap file as a LONG field. SQLBase stores the entire file in the field
with no compression, which means that all of the file’s data is present in the database
file. If the bitmap file is large, you can store it outside the database file to save space.
To do this, store only the file name in the database, and use a program to access the
bitmap file through its stored file name.

A LONG datatype is stored as a linked list of pages. Since it is variable length, no
space is pre-allocated. This means that if no data is entered, no pages are allocated,
and if data is entered, only enough pages to hold the long are allocated. However,
there is a minimum allocated space of one page for non-null values. Space is allocated

by page.
Example:
LONG VARCHAR

Numeric data types

SQLBase allows these numeric data types:

Exact Data Types Approximate Data Types
DECIMAL (or DEC) DOUBLE PRECISION
INTEGER (or INT) SMALLINT NUMBER
FLOAT
REAL

SQLBase uses its own internal representation of numbers describeGQLtheP]
Reference ManuabData is cast on input and output to conform to the restrictions of
the data type.

SQL Language Reference 2-9

Chapter 2 SQL Elements

Precision and scale are maintained internally by SQLBase:

» Precisionrefers to the total number of allowable digits
» Scalerefers to the number of digits to the right of the decimal point.

Numbers with up to 15 decimal digits of precision can be stored in the exact data
types. Numbers in the range of 1.0e-99 to 1.0e+99 can be stored in the approximate
data types.

SQLBase supports integer arithmetic. For example:
INTEGER / INTEGER = INTEGER

Number columns can be used in any comparison operations with other numbers and
can occur in all functions and expressions.

NUMBER

NUMBER is a superset of all the other numeric data types and supports the widest
range of precision and scale (up to the maximum allowed by SQLBase numeric
types). The NUMBER data type supports up to 22 precision digits.

Example:
NUMBER

Use NUMBER in either of the following situations:
e You do not need to control precision or whole numbers.

* You do need SQLBase to automatically give you the largest precision
available.

DECIMAL (or DEC)

This data type is associated with a particular scale and precision. Scale is the number
of fractional digits and precision the total number of digits. If precision and scale are
not specified, SQLBase uses a default precision and scale of 5,0.

Use the DECIMAL data type when you need to control precision and scale, such as in
currency.

The position of the decimal point is determined by the precision and the scale of the
number. The scale, which is the number of digits in the fractional part of the number,
cannot be negative or greater than the precision. The maximum precision is 15 digits.

This data type can store a maximum of 15 digits. The valid range is:
-999999999999999 to +999999999999999

2-10 SQL Language Reference

Numeric data types

Another way to express the range is to say that the value candyen, where the
absolute value af is the largest number that can be represented with the applicable
precision and scale.

The DEC notation is compatible with DB2.
Following are some DECIMAL examples:

DECIMAL (8,2)

DECIMAL (5,0) (same as INTEGER precision)
DECIMAL

DEC

SQLBase truncates input values to the precision of the column definition. For
example:

» Entering 29.994 in a DECIMAL(10,2) stores 29.99.
» Entering 29.995 in a DECIMAL(10,2) also stores 29.99.
SQLBase truncates decimals as DB2 does with 2 exceptions:

» Floating point numbers that are used as bind variables.

» For positive numbers that contain more than 21 digits and negative numbers
that contain than 19 digits, SQLBase rounds up the last digit.

Calculating precision for addition/subtraction

For two numbers A and B with precision and scale of (p1,s1) and (p2,s2) respectively,
the following rules calculate the precision and scale for subtraction and division.

Precision

Precision of result (A+B) or The minimum value of either the maximum
(A-B) precision of SQLBase (15) or the following
equation:

max(pl-sl, p2-s2) + max(sl, s2) +1

Scale

Scale of result (A+B) or (A-
B)

The maximum value of the two scales s1 and s2.

SQL Language Reference 2-11

Chapter 2 SQL Elements

Calculating precision for division

For division, the following rules calculate the precision and scale of the result.

Precision
Precision of = Maximum precision
result of SQLBase (15)

Scale
Scale = Maximum - Precision + Scaleof - Scale of
of precision of first firstinput second
result input number input

number number

For example, if you have the following two columns:

D1 DECIMAL (10,2)
D2 DECIMAL (10,2)

and you divide D1 by D2, you get the following precision and scale:

precision= 15
scale= 15-10+2-2=5

Some functions change the maximum precision. For example, SUM changes the
maximum precision to 15. Therefore, this equation:

SUM(D1)/SUM(D2)
results in the following precision and scale:

precision=15
scale=15-15+2-2=0

Calculating for multiplication

For two numbers A and B with precision and scale of (p1,s1) and (p2,s2) respectively,
the following rules calculate the precision and scale.

Precision

Precision of product The minimum value of either the maximum precision of
(A*B) SQLBase (15) or the sum of the precisions (pl + p2)

Scale:

Scale of product The minimum value of either the maximum precision of
(A*B) SQLBase (15) or the sum of the scales (sl + s2)

2-12 SQL Language Reference

Numeric data types

For example, if you have the following two columns:

D1 DECIMAL (10,2)
D2 DECIMAL (10,2)

and you multiply D1 by D2, then you get the following precision and scale:

precision = min(15, 20) = 15
scale= min (15, 4) =4

Some functions change the maximum precision. For example, the SUM function uses
the following rule:

precision = min(15, max(pl-sl, p2-s2) + max(sl, s2) + 1)
scale = max(sl,s2)

So, for the following sum:
SUM(D1)*SUM(D2)
you get the following precision and scale:
precision=min(15, max (8, 8) + max (2,2)+ 1)=min (15, 11)=11
scale= max(2,2) =2
Currency

SQLBase does not have a specific CURRENCY data type, so you can use DECIMAL
instead. A suggested setting is DECIMAL (15,2).

INTEGER (or INT)

This data type has no fractional digits. Digits to the right of the decimal point are
truncated.

An INTEGER can have up to 10 digits of precision:
-2147483648 to +2147483647

The INT notation is compatible with DB2.

Examples:

INTEGER
INT

SMALLINT

This data type has no fractional digits. Digits to the right of the decimal point are
truncated. Use this number type when you need whole numbers.

A SMALLINT can have up to 5 digits of precision:
-32768 to +32767

SQL Language Reference 2-13

Chapter 2 SQL Elements

SQLBase does not store a SMALLINT value relative to the size of a 16- or 32-bit
integer, but approximates it with the same number of digits. C programmers should
check for overflow.

Example:
SMALLINT

DOUBLE PRECISION

This data type specifies a column containing double-precision floating point
numbers.

Example:
DOUBLE PRECISION

FLOAT

This data type stores numbers of any precision and scale.
A FLOAT column can also specify a precision:
FLOAT (precision)

If the specified precision is between 1 to 21 inclusive, the format is single-precision
floating point. If the precision is between 22 and 53 inclusive, the format is double-
precision floating point.

Note: Although, SQLBase allows you specify a precision up to 53, the actual maximum
supported precision is 22.

If the precision is omitted, double-precision is assumed.
Examples:

FLOAT
FLOAT (20)
FLOAT (53)

REAL

This data type specifies a column containing single-precision floating point numbers.
Example:
REAL

2-14 SQL Language Reference

Date/Time data types

Date/Time data types

SQLBase supports these data types for date and time data:
+ DATETIME (or TIMESTAMP)
« DATE
« TIME

You can use date columns in comparison operations with other dates. You can also use
dates in some functions and expressions. The supported range of dates is 01-jan-0000
through 31-dec-9999.

Internally, SQLBase stores all date and time data in its own floating point format. The
internal floating point value is available through an application program API call.

This format interprets a date or time as a number with the form:
DAY.TIME

DAY is a whole number that represents the number of days since December 30, 1899.
December 30, 1899 is 0, December 31, 1899 is 1, and so forth.

TIME is the fractional part of the number. Zero represents 12:00 AM.

March 1, 1900 12:00:00 PM is represented by the floating point value 61.5 and March
1, 1900 12:00:00 AM is 61.0.

Anywhere a date/time string can be used in a SQL command, a corresponding
floating point number can also be used.

SQLTalk and SQLBase provide extensive support for date/time values. Read the
sectionDate/Time valuesn page2-33for more information.

DATETIME (or TIMESTAMP)

This data type is used for columns which contain data that represents both the date
and time portions of the internal number.

You can input DATETIME data using any of the allowable date and time formats
listed for the DATE and TIME data types.

When a part of an input date/time string is omitted, SQLBase supplies the default of
0, which converts to December 30, 1899 (date part) 12:00:00 AM (time part).

TIMESTAMP can be used instead of DATETIME for DB2 compatibility.
Examples:

DATETIME
TIMESTAMP

SQL Language Reference 2-15

Chapter 2

SQL Elements

DATE

TIME

The time portion of DATETIME has resolution to the second and microsecond. The
time portion of TIMESTAMP has resolution to the microsecond.

This data type stores a date value. The time portion of the internal number is 0. On
output, only the date portion of the internal number is retrieved.

Example:
DATE

This data type stores a time value. The date portion of the internal number is 0. On
output, only the time portion of the internal number is retrieved.

Example:
TIME

TIME has resolution to the second.

Data type conversions

This section describes how SQLBase converts data types.

Data type conversions in assignments

SQLBase is flexible in the data types it accepts for assignment operations:

Source Data Target Data
Comment

Type Type

Character Numeric Source value must form a valid numeric value (oply
digits and standard numeric editing characters).

Numeric Character Single quotes are not needed.
Date/Time Numeric
Numeric Date/Time
Date/Time Character Single quotes are not needed.
Character Date/Time Source value must form a valid date/time value.

2-16 SQL Language Reference

Constants

Data type conversions in functions

Usually, functions accept any data type as an argument if the value conforms to the
operation that function performs. SQLBase will automatically convert the value to the
required data type.

For example, in functions that perform arithmetic operations, arguments can be
character data types if the value forms a valid numeric value (only digits and standard
numeric editing characters).

For date/time functions, an argument can be a character or numeric data type if the
value forms a valid date/time value.

Constants

A constant (also called a literal) specifies a single value. Constants are classified as:

e String constants.
* Numeric constants.
+ Date and time constants.

String constants

A string is a sequence of characters. A string constant must be enclesegldn
guotes (apostrophes) when used in a SQL command.

To include a single quote in a string constant, use two adjacent single quotes.

Numeric constants
A numeric constant refers to a single numeric value.

A numeric constant is specified with digits. The value can include a leading plus or
minus sign and a decimal point.

A numeric constant can be entered in E notation.

Date/Time constants

Date and time values can be used as constants. Read the Bat¢éidime valuesn
page2-33for more information.

SQL Language Reference 2-17

Chapter 2 SQL Elements

Examples of constants

Constant .
Type Example Explanation
Character '‘CHICAGO' Character string must be enclosed in single quotes.
String
'DON"T' To include a quote character as part of a character
string, use two consecutive single quotes.
" Two consecutive single quotes with no intervening
character represents a null value.
'1492' If digits are enclosed in quotes, it is assumed to be a
character string and not a number.
Numeric 2580 Digits not enclosed in quotes are assumed to bg
numeric values.
1249.57 Numeric constant with decimal point.
-1249 Leading plus or minus signs may be used on
numerics.
4.00E+7 E-notation can be used to express numeric values.
Date/time 10-27-94 Date/time constants do not need to be quoted.
27-Oct-1994

System keywords

Certain keywords have values that can be used in some commands in place of column
names or constants. These special keywords are:

NULL The absence of a valueNULL can be used as a
constant in a select list or in a search condition. For
example:

SELECT LNAME FROM EMP
WHERE DEPTNO IS NULL,;

ROWID The internal address of a rowROWID can be used
instead of a column name in a select list or in a search
condition.

SELECT ROWID FROM EMP
WHERE HIREDATE > 01-JAN-1994;

2-18 SQL Language Reference

System keywords

USER The authorization ID of the current user. USER
can be specified instead of a constant in a select list or in
a search condition.
CREATE VIEW MYTABLES AS
SELECT * FROM SYSADM.SYSTABLES
WHERE CREATOR = USER;

SYSDBTRANSID The current transaction ID of the SQL command.
SYSDBTRANSID can be specified instead of a constant
or column name. Read the following section Using
SYSDBTRANSID keywordor more details.

SQLBase also provides these keywords:

» date/time keywords, such as:

SYSDATETIME
SYSDATE
SYSTIME
SYSTIMEZONE

Read the SectioDate/Time valuesn page2-33for more information.

» database sequence object keywords:

CURRVAL
NEXTVAL

Read the sectioDatabase sequence objects on page ®20nore
information

Using SYSDBTRANSID keyword

SYSDBTRANSID is an unsigned 4-byte numeric value representing the current
transaction ID under which the SQL command was executed. Like other system
keywords, you can specify SYSDBTRANSID in a SQL expression in place of a
constant or column name. The current transaction ID, which is the value returned by
SYSDBTRANSID, remains the same throughout the life of the transaction.

For example, assume you want to “capture” and store the transaction ID associated
with the following UPDATE statement:

UPDATE EMPLOYEES SET SALARY = 100000 WHERE NAME = ‘JOHN’;
The following INSERT statement inserts the UPDATE's transaction ID into a table
called MYHISTORYTABLE:

INSERT INTO MYHISTORYTABLE
(transid,time,changed_by,employee_name,new_salary)

SQL Language Reference 2-19

Chapter 2 SQL Elements

SELECT SYSDBTRANSID, SYSTIME, USER, NAME, SALARY FROM EMPLOYEES
WHERE NAME = "JOHN’;

Although SYSDBTRANSID never decreases, you may not necessarily see sequential
transaction IDs for sequential transactions. For instance, if you get a transaction ID of
20004 for one transaction, you may get an ID of 20010 for the next transaction,
instead of 20005. This depends on the nature of the transaction; often times SQLBase
has to do several internal transactions for each user transaction. The internal
transactions also get their own transaction IDs. All IDs are unique.

Database sequence objects

SYSDBSequence is the name of the Database Sequence Object provided in
SQLBase. A Database Sequence Object is an object inherently built into the
SQLBase database that can be accessed by any database user for generating
sequential numeric values. You can use sequences for automatically generating
primary key values. When used as a primary key in a table, the generated sequence
numbers also provide a useful way of ordering the rows in the entry sequence order.

Using SYSDBSequence

SYSDBSequence is a permanent persistent object in SQLBase. It is created when a
SQLBase database is created and remains as part of the database until the database is
dropped. It is persistent through reorganization of databases and can be migrated
using the LOAD and UNLOAD database commands.

Initial value of the SYSDBSequence is 0 at the time of database creation and
increases by 1 with no practical upper limit.

To access SYSDBSequence object values in SQL statements, use these pseudo
columns:

* NEXTVAL: Obtains the next available sequence number
« CURRVAL: Obtains the sequence number last retrieved.

These pseudo columns let you obtain the current and incremented next value of the
SYSDBSequence object as you would for regular table columns in some DML
statements. Since the sequence number are generated independent of tables, they can
be used across multiple tables or in general DML statement.

Although SYSDBSequence number never decrease, you may not necessarily see
sequential numbers for sequential transactions. For instance, if you get a sequence
number of 1000 for one transaction, you may get a number of 1005 for the next
sequence, instead of 1001. This occurs since NEXTVAL is used by all transactions.
Sequence numbers are always unique and ascending but not necessarily sequential.

2-20 SQL Language Reference

Database sequence objects

You must qualify CURRVAL and NEXTVAL with the database sequence name
SYSDBSequence. For example:

SYSDBSequence.CURRVAL
or

SYSDBSequence.NEXTVAL

You can use SYSDBSequence by accessing its value with CURRVAL and NEXTVAL
pseudo columns in these places:

e« SELECT list of a SELECT statement
* VALUES clause of an INSERT statement
e SET clause of an UPDATE statement

The following semantic rules apply for the usage of sequence numbers. Note that all
of the following semantics rules apply for the single execution of a SQL statement.

» Firstreference to NEXTVAL returns the sequence’s initial value. Subsequent
references to NEXTVAL increment the sequence value by 1 and returns the
new value.

» Any reference to CURRVAL always returns the sequence’s current value.
Before you use CURRVAL for the sequence in your transaction session, you
must first increment the sequence with NEXTVAL otherwise an “un-
initialized currval” error will be returned.

* Once a NEXTVAL is generated, it can be accessed in the same transaction
session till the next NEXTVAL is requested from that transaction session.

« One transaction session can never see the sequence number generated by
another transaction session. Once a sequence number is generated by one
transaction, that transaction can continue to access that value by using the
CURRVAL, regardless of whether the sequence is incremented by another
transaction.

* You can only increment the SYSDBSequence once in a single SQL
statement.

* |f a statement contains more than one reference to NEXTVAL for
SYSDBSequence, SQLBase increments the sequence value once and returns
the same value for all occurrences of NEXTVAL in that statement.

» If a statement contains references to both CURRVAL and NEXTVAL,
SQLBase increments the sequence once and returns the same value for both
CURRVAL and NEXTVAL, regardless of their order within the statement.

e Two transactions can concurrently increment the sequence; the sequence
number each transaction sees may have gaps because sequence numbers can
be generated by the other transactions.

SQL Language Reference 2-21

Chapter 2 SQL Elements

Examples

This example increments the SYSDBSequence and uses its value for a new employee
inserted into the employee table:

INSERT INTO emp
VALUES (SYSDBSequence.nextval, ‘John’, SYSDATE);
The following example adds a new order with the next order number to the master
order table and then adds suborders with this number to the detail order table.

INSERT INTO master_order(orderno, customer, orderdate)
VALUES (SYSDBSequence.nextval, ‘John’, SYSDATE);

INSERT INTO detail_order(orderno, part, quantity)
VALUES (SYSDBSequence.currval, ‘HUBCAFP’, 1);

INSERT INTO detail_order(orderno, part, quantity)
VALUES (SYSDBSequence.currval, ‘'SPARKPLUG’, 4);

INSERT INTO detail_order(orderno, part, quantity)
VALUES (SYSDBSequence.currval, ‘ MUFFLER’, 1);

Expressions

An expression is:

* Anitem that yields a single value.

e A combination of items and operators that yield a single value.
An itemcan be any of the following:

e A column name.

¢ A constant.

* A bind variable.

* The result of a function.

* A system keyword.

* Another expression.

2-22 SQL Language Reference

Expressions

The form of an expression is:

> constant <«

— column name

— function

E (expression)———

bind variable

— system keyword

If you do not use arithmetic operators, the result of an expression is the specified
value of the term. For example, the result of 1+1 is 2; the result of the expression
AMT (where AMT is a column name) is the value of the column.

Null values in expressions
If any item in an expression contains a null value, then the result of evaluating the
expression is nullunknownor false).
String concatenation operator (||)
This operator (||) concatenates two or more strings:
string || string
The result is a single string.

For example, if the column PLACE contains the value "PALO ALTQO", then the
following example returns the string "was born in PALO ALTO".

"was born in '|| PLACE
The following example prefixes everyone’s name with “Mr.”:

SELECT 'Mr. '||LNAME FROM EMP;

SQL Language Reference 2-23

Chapter 2 SQL Elements

Precedence

The following precedence rules are used in evaluating arithmetic expressions:

Expressions in parentheses are evaluated first.

The unary operators (+ and -) are applied before multiplication and division.
Multiplication and division are applied before addition and subtraction.
Operators at the same precedence level are applied from left to right.

Examples of expressions

The following table lists some sample expressions:

AMOUNT * TAX Column arithmetic.

(CHECKS.AMOUNT * 10) - PAST_DUE Nested arithmetic with
columns.

HIREDATE + 90 Column and constant
arithmetic.

SAL + MAX(BONUS) Function with column
arithmetic.

SAL +:1 Bind variable with column
arithmetic.

SYSDATETIME + 4 Date/time system keywor(
arithmetic.

Search conditions

A search condition in a WHERE clause qualifies the scope of a query by specifying

the particular conditions that must be met. The WHERE clause can be used in these
SQL commands:

SELECT
DELETE
UPDATE

A search condition contains one or mpredicatesconnected by the logical
(Boolean) operators OR, AND, and NOT.

2-24 SQL Language Reference

Search conditions

[AND —]
i L or —
»>

predicate
L NOT J

The types of predicates that can be used in a search condition are discussed in section
Predicates on page 2-27

The specified logical operators are applied to each predicate and the results combined
according to the following rules:

« Boolean expressions within parentheses are evaluated first.

* When the order of evaluation is not specified by parentheses, then NOT is
applied before AND.

* AND is applied before OR.

e Operators at the same precedence level are applied from left to right.

A search condition specifies a condition thatug, falsg or unknownabout a given
row or group. NOT (true) means false, NOT (false) means true and NOT (unknown) is
unknown (false). AND and OR are shown in the following truth table.

Assume P and Q are predicates. The first two columns show the conditions of the
individual predicates P and Q. The next two columns show the condition when P and
Q are evaluated together with the AND operator and the OR operator. If an item in an

expression in a search condition is null, then the search condition is evaluated as
unknown (false).

P Q P and Q PorQ

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False
False Unknown False Unknown
Unknown True Unknown True

SQL Language Reference 2-25

2 SQL Elements

P Q P and Q PorQ
Unknown False False Unknown
Unknown Unknown Unknown Unknown

Using indexes with the OR predicate

SQLBase will use indexes with the OR predicate in the following situations:
« WHEREcolumnIN (literal constant¥
* WHEREcolumnIN (literal constanty AND (boolean expression
WHEREcolumn operator constanQR column operator constant2

WHERE olumn operator constanfR column operator constant2 AND
(boolean expressign

Nulls and search conditions

If a search condition specifies a column that might contain a null value for one or
more rows, be aware that such a romasretrieved, becausenull value is neither

less than, equal to, nor greater than the value specified in the condition. The value of
a null isunknown(false).

To select values from rows that contain null values, use the NULL predicate
(explained later in this chapter):

WHEREcolumn name 1S NULL

SQLBase does not distinguish between a NULL and zero length string on input.
Consider the following command that inserts a zero-length string:

INSERT INTO X VALUES (*);

The following command returns not only the null rows, but also the row with the
zero-length string:

SELECT X FROM X WHERE X IS NULL;

Examples of search conditions
This returns rows for employees who are in department 2500.
SELECT * FROM EMP WHERE DEPTNO = 2500;

This returns rows for employees who are in department 2500 and were hired Feb. 1,
1994, or returns rows for employees who are programmers.

SELECT * FROM EMP WHERE (DEPTNO = 2500
AND HIREDATE = '01-FEB-1994") OR JOB = 'Programmer’;

2-26 SQL Language Reference

Predicates

The following WHERE clauses are equivalent.

SELECT * FROM EMP WHERE NOT

(JOB = 'Programmer' OR HIREDATE = '01-FEB-1994");
SELECT * FROM EMP WHERE

JOB !="Programmer' AND HIREDATE ! = '01-FEB-1994";

Predicates

A predicate in a WHERE or HAVING clause specifies a search condition that is true,
false, or unknown with respect to a given row or group of rows in a table.

Predicates use operators, expressions, and constants to specify the condition to be
evaluated.

These types of predicates are described in this section:

+ Relational

» BETWEEN
* NULL

« EXISTS
 LIKE

* IN

Relational predicate

o (subselect
> tANY/SOME—

— > — ALL
e

— < —
— >= —1

<= —J

»Pp—— expression = ‘ expression <<
)

There are two types of relational predicates:

e Comparisorrelational predicate
* Quantifiedrelational predicate

SQL Language Reference 2-27

Chapter 2 SQL Elements

Comparison Relational Predicate

A comparison relational predicate compares a value to another value based on
standard relational operators. The basic form of a comparison predicate is two
expressions connected by a relational operator:

A>B

coll !'=col2

The following are examples of comparison predicates:

SELECT * FROM EMP WHERE EMPNO = '50642’;
SELECT * FROM EMP WHERE HIREDATE <= '1-Jan-1994’,

Note: If you omit the keyword ALL or ANY (or SOME which can be used in place of ANY),
the comparison relational predicate must return one row, or this error message is displayed:
“Subselect resulted in multiple rows.”

For example, if you have a table GRADES that contains a column RANK with the values 1, 2,
and 3, the following statemeis notallowed since no rows are returned:

X >= (SELECT RANK FROM GRADES WHERE RANK >= 4)

Quantified relational predicate

A guantified relational predicate compares the first expression valuotieetionof
values which result from a subselect command.

A SELECT command that is used in a predicate is calkdaelecor subqueryA
subselect is a SELECT command that appears in a WHERE clause of a SQL
command.

You can use the NOT operator in place of the symbol (!). For example, NOT (a=b) is
the same as al=b.

You cannot use an ORDER BY clause in a subselect. Also, you cannot use a LONG
VARCHAR column in a subselect.

ANY/SOME. You can use the ANY keyword as a test with one of the comparison
operators. SQLBase also allows the SOME keyword as a alternate for ANY; they are
interchangeable.

The ANY test compares a single test value to a column of data values produced by the
subquery. SQLBase compares the test value to each value in the column individually.
If any of the comparisons is TRUE, the entire ANY test is TRUE.

2-28 SQL Language Reference

Predicates

The following table lists the rules describing results of the ANY test when the test
value is compared to the column of subquery results:

Comparison Test Value ANY search value
TRUE for at least one of the data values in the column TRUE
FALSE for every data value in the column FALSE

Not TRUE for any data value in the column, but is NULL for oneNULL
or more of the data values.

Subquery produces empty column of query results. FALSE

Be careful when using the ANY keyword, since it involves an entire set of
comparisons, not just one. Consider the following syntax:

WHERE X < ANY (SELECT Y)

It's easy to read this line as “where X is less than any select Y”. However, you should
read the line as “where, for some Y, X is less than Y”.

ALL. Like the ANY keyword, the ALL keyword is a quantified relational test used

with the comparison operators. It compares a single test value to each data value in a
column, one at a time. If all of the individual comparisons are TRUE, the entire ALL
test is TRUE.

Examples of subqueries. Here are some examples of subselects and subqueries.
SALARY is not equal to the average salary:

SELECT * FROM EMPSAL WHERE SALARY != (SELECT
AVG(SALARY) FROM EMPSAL);

SELECT * FROM EMPSAL WHERE SALARY <> (SELECT
AVG(SALARY) FROM EMPSAL);

SALARY is greater than the average salary:

SELECT * FROM EMPSAL WHERE
SALARY > (SELECT AVG(SALARY) FROM EMPSAL);

SALARY is less than the average salary:

SELECT * FROM EMPSAL WHERE
SALARY < (SELECT AVG(SALARY) FROM EMPSAL);

SALARY is greater than or equal to any salary:

SELECT * FROM EMPSAL WHERE
SALARY >= ANY(SELECT SALARY FROM EMPSAL);

SQL Language Reference 2-29

Chapter 2 SQL Elements

BETWEEN predicate

The BETWEEN predicate compares a value with a range of values. The BETWEEN
predicate is inclusive.

»Pp—— expression —m— BETWEEN expression AND expression —<4<¢
NOT

The following line shows a BETWEEN example:

SELECT * FROM EMPSAL WHERE
SALARY BETWEEN 30000 AND 60000;

NULL predicate

The NULL predicate tests for null values.

»P»— column name 1S ﬁ NULL <<
NOT

The following line shows a NULL example:

SELECT * FROM EMP WHERE DEPTNO IS NULL;

EXISTS predicate

The EXISTS predicate tests for the existence of certain rows in a table.

»> I] EXISTS (subselect) <<
NOT

This example retrieves all the rows from the EMP table if a salary matches the value
stored in bind variable :1.

SELECT * FROM EMP WHERE EXISTS (SELECT * FROM EMPSAL
WHERE SALARY= :1)
\
70000
/

2-30 SQL Language Reference

Predicates

LIKE predicate

The LIKE predicate searches for strings that match a specified pattern. The LIKE
predicate can only be used with CHAR or VARCHAR data types.

»»— column name —m— LIKE USER <<
NOT program variable —

string constant ——

The underscore () and the percent (%) are the pattern-matching characters:

Matchesany single character.

% Matcheszero or more characters

The backslash (\) is the escape character for percent (%), underscore (), and itself.
The following examples show examples of LIKE predicates.
True for any name with the string 'son' anywhere in it.
SELECT * FROM EMP WHERE LNAME LIKE '%son%';
True for any 2-character job code beginning with ‘M.
SELECT * FROM EMP WHERE JOB LIKE 'M_};
Returns all rows where the value in the JOB column is 'A24%'.
SELECT * FROM EMP WHERE JOB LIKE 'A24\%';
Returns all rows where the value in the JOB column begins with 'A24%'

SELECT * FROM EMP WHERE JOB LIKE 'A24\%%';

IN predicate

The IN predicate compares a value to a collection of values. The collection of values
can be either listed in the command or the result of a subselect.

If there is only one item in the list of values, parentheses are not required.

SQL Language Reference 2-31

Chapter 2

SQL Elements

»P»— expression

LNOTJ)

(subselect)

— (

bind variable
— constant

USER ——

L— expression

The following examples show IN predicates.

SEL

SEL

SEL

SEL

Functions

A function returns a value that is derived by applying the function to its arguments.

SQLBase has many functions that manipulate strings, dates and numbers. Functions

ECT * FROM EMP

WHERE DEPTNO IN (2500,2600,2700);

ECT * FROM EMP

WHERE EMPNO NOT IN (SELECT EMPNO FROM EMPSAL WHERE

SALARY< 40000);
ECT * FROM EMP

WHERE @LEFT (LNAME,

ECT * FROM EMP

1) IN (3, 'M', 'D);

WHERE LNAME NOT IN (:1,:2,’"Jones’)

\
Johnson, Smith
/

are classified as:

Aggregate functions
String functions

Date and time functions
Logical functions
Special functions

Math functions

Finance functions

The functions are described@hapter 4 SQL Function Reference

2-32 SQL Language Reference

Date/Time values

Date/Time values

This section describes SQL date and time values, including SQLBase year 2000
(Y2K) support.

Entering date/time values

Although SQLBase stores dates and times in its own internal format, it accepts all
conventional date and time input formats, including ISO, European, and Japanese
Industrial Time.

Input for a date or time column is a string that contains date or time information. The
input string has a date portion and/or a time portion, depending on whether the date/
time is a DATE, a TIME or a DATETIME.

A forward slash (/), hyphen (-) or period (.) are used as the delimiter for the parts of a
date, as shown in the diagram on the next page. You must be consistent within a single
command. A colon (:) or a period (.) are both accepted as the delimiter for times. Case
is ignored by SQLBase when entering months. Either a space or a hyphen can
separate the date portion from the time portion.

Letter combinations used in the formats below have the following meanings.

Yy Or yyyy Year
(read the next section, Year and century
values for details)

mm (entered with numbers, for example, Q1Month

mon (spelled out, for exampli@n)

dd Day

hh Hours

mi Minutes

Ss Seconds
999999 Microseconds

Year and century values
SQLBase accepts date/time values in either of the following string formats:

» 4-digit stringyyyy, which represents a 2-digit century value and a 2-digit year;
for example, 1996.

« 2-digit stringyy, whichrepresents a 2-digit year; for example, 96.

SQL Language Reference 2-33

Chapter 2 SQL Elements

By default, SQLBase always stores 2-digit century values as the current century. To
change the default setting, you can specify 1 (one) as the value for the SQLBase
keywordcenturydefaultmodi the server section of SQL.INI. When set to 1,
SQLBase applies the algorithm reflected in the following table to determine whether

the year is in the current, previous, or, next century.

When last 2-digits of
current year are:

When 2-digit entry is 0-49

When 2-digit entry is 50-99

0-49 The input date is in the The input date is in the
current century previous century
50-99 The input date is in thext | The input date is in the
century current century
Examples:

* Assume the current year is 1996:
If 05 is entered, the computed date is 2005
If 89 is entered, the computed date is 1989
e Assume current year is 2014:

If 05 is entered, the computed date is 2005
If 34 is entered, the computed date is 2034
If 97 is entered, the computed date is 1997

* Assume current year is 2065:

If 05 is entered, the computed date is 2105
If 70 is entered, the computed date is 2070

Note: Enabling the 2-digit century is a SQLBase feature and has no impact on connectivity
routers. If you are using a Centura developed application or a SQL/API application against a
non-SQLBase database, read the database documentation for information on how it determines
year/century values.

2-34 SQL Language Reference

Date/Time values

Date/time input formats

Valid input formats for date/time values are:

»»
— dd.mm.yyyy —

—— dd-mon-yy ——
— dd-mon-yyyy —
—— dd/monlyy ——
— dd/mon/lyyyy —
— mm-dd-yy ——
— mm-dd-yyyy —
— mm/ddlyy ——
— mm/ddlyyyy —
— yyyy-mm-dd —

00:00:00 — tAM j
-hh ————— PM

hh:mi
- hh:mi:ss
hh:mi:ss:999999 —

A
A

A time string can contain an AM or PM designation. The default is AM. SQLBase
recognizes military time (24 hour clock) on input if the AM/PM parameter is omitted.

Some examples of date/time input strings are:

12-JAN-94
12/jan/1994 12:15
01-12-94 12
01/12/94 12:15:20

Date/time system keywords

Certain system keywords return a date/time values. These system keywords can be
used in expressions to specify an interval of a specified type.

The keyword values for SYSDATETIME, SYSDATE, SYSTIME, and
SYSTIMEZONE are set at the beginning of execution of a command.

The following table lists system keywords and their meaning. An asterisk (*) means

that the keyword is DB2 compatible.

System Keyword

Meaning

SYSDATETIME
CURRENT TIMESTAMP *
CURRENT DATETIME *

Current date and time.

SQL Language Reference 2-35

2 SQL Elements

System Keyword

Meaning

SYSDATE
CURRENT DATE *

Current date.

SYSTIME
CURRENT TIME *

Current time.

SYSTIMEZONE
CURRENT TIMEZONE *

Timezone interval in days. For example,
SYSTIMEZONE=.025 means 6 hours.

MICROSECONDIS]

Time in microseconds.

SECOND[S] Time in seconds.
MINUTE[S] Time in minutes.
HOUR[S] Time in hours.
DAY[S] Time in days.
MONTHIS] Time in months.
YEAR[S] Time in years.

Resolution for time keywords

The table below show the resolution in seconds for the time keywords.

Time Keyword

Resolution

CURRENT TIME
CURRENT DATETIME

Seconds
(hh:mm:ss)

SYSDATE
TIMESYSTIME
CURRENT TIMESTAMP

Microseconds
(hh:mm:ss:999999)

SECOND[S]

Seconds

(ss)

MICROSECONDS

Microseconds
(55:999999)

The following command shows an example of a date/time system keyword:
INSERT INTO CALLS (DATE) VALUES (SYSDATETIME)

2-36 SQL Language Reference

Date/Time values

Time zones

The keyword SYSTIMEZONE returns the time zone for the system as a time interval
in days. For example, if SYSTIMEZONE returns 0.25, the time interval is 6 hours.

The time interval is the difference between local time and Greenwich Mean Time:

TIMEZONE interval = LOCAL TIME - GMT
This interval is set with thmezonekeyword insql.ini. The default value is 0
(Greenwich Mean Time).

For instance, GMT is 5 hours later than EST (Eastern Standard Time). If the time was
5:00 A.M. EST, then

TIMEZONE interval=5-10=-5
TIMEZONE= -5

To get the current time in GMT, use the following expression:
(SYSTIME - SYSTIMEZONE)

Date/Time expressions
Addition or subtraction operators can be applied to dates. The results are as follows:
e Date + Number (of days) is DATETIME.
» Date - Number (of days) is DATETIME.
» Date - Date is a number (of days).

Note that if you add or subtract a non-date/time value to or from DATE, the result is a
DATETIME. To make the result a DATE, use an expression like this:

Date + Number DAYS
whereNumberis a numeric value.

The system keywords that represent time intervals (such as MONTH or
MICROSECOND) can be added to or subtracted from other date and time quantities
to get new date and time quantities.

For example, the following expression yields a new DATETIME value.
SYSDATETIME + 3 MINUTES

If you do not specify the type of interval, the number is assumed to be DAYS. The
following example adds one day to the current date.

SYSDATE +1
You could also use the expression:

SYSDATE + 1 DAY

SQL Language Reference 2-37

Chapter 2 SQL Elements

Only a constant can precede a date/time keyword.

Microseconds, seconds, minutes, hours, and days behave like numbers. MONTH and
YEAR intervals however, are special cases since they do not have a fixed value in
terms of the number of days in the month or year. February has 28 or 29 days, March

has 30; a year can be 365 or 366 days.

Use the following rules for MONTH and YEAR intervals:
* MONTH and YEAR intervals can only be added to or subtracted from a

DATE or a DATETIME quantity.

Valid: (SYSDATE + 3 DAYS) + 1 YEAR
Invalid:SYSDATE + (3 DAYS + 1 YEAR)

* When MONTHSs are added, the month number (and if necessary the year
number) is incremented. If the day represents a day beyond the last valid day

for the month and year, it is adjusted to be a valid date.

* SQLBase ignores fractional parts of MONTHs and YEARSs. For example,
SQLBase would ignore the fraction part .5 of MONTHS in the following

command:

SELECT DISTINCT SYSDATETIME, SYSDATETIME + 1.5

MONTHS FROM SYSTABLES

Examples of date/time expressions

The following table lists some sample date/time expressions and their results:

Date/Time Expression Result
31-Jan-1993 + 1 MONTH 28-Feb-1993
20-Jan-1993 + 1 MONTH 20-Feb-1993
31-Jan-1993 + 1 MONTH - 1 MONTH 28-Jan-1993

Joins

A join pulls data from different tables and compares it by matching on a common row

that is in all the tables.

You cannot perform an operation with the CURRENT OF clause on a result set that

you formed with a join.

The following example demonstrates a join.

2-38 SQL Language Reference

Joins

Example:
The primary key for a table is a value that has a match in another table.
For example, the following CUSTOMER table contains these columns:
name and address. Also, each customer has a unique identifying
number.
CUSTNO NAME ADDRESS
1 ABC INC. 13 A St.
2 XYZ INC. 1B St.
3 Al INC. 12 C St.
There is another table called ORDERS that contains the order number,
order date, and sales rep for each order. The table also includes a key
that contains the customer number. This is the same number that is in
the CUSTOMER table.
CUSTNO ORDERNO ORDERDATE SALES REP
3001 01-JUL-94 Jill
3002 03-JUL-94 Jill
3003 06-JUL-94 Tom
3004 06-JUL-94 Tom
3005 07-JUL-94 Jill

You canjoin customer information with order information without
unnecessary data repetition.

The following SQL command uses these tables to find the name and
order numbers of the sales made by Tom.

SELECT NAME, ORDERNO FROM
CUSTOMER, ORDERS WHERE
CUSTOMER.CUSTNO = ORDERS.CUSTNO
AND SALES REP = ‘Tom’;

SQL Language Reference 2-39

Chapter 2 SQL Elements

This produces the following result:

NAME ORDERNO
ABC Inc. 3003
XYZ Inc. 3004

Types of joins
SQLBase supports the following types of joins:
e Equijoins
e OQuter joins
» Self joins
* Non-equijoins
Equijoin
The following query matches customer names and order numbers. Two tables are
used: CUSTOMER and ORDERS.

SELECT NAME, ORDERNO FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTNO = ORDERS.CUSTNO;

Each result row contains the customer name and an order number. If customer
number 1 made three orders, three rows would result. The single customer row
containing the customer's name and number would be "joined" to each of the three
order rows.

The ORDERS rows are related to the CUSTOMER using the key column, CUSTNO,
which appears in both the CUSTOMER table and the ORDERS table.

This type of search condition, which specifies a relationship between two tables
based on aequality is called an equijoin.
Cartesian product

Specifying a join condition as a relational predicate in the search condition is
necessary to avoid a Cartesian product. A Cartesian product is the set of all possible
rows resulting from a join of more than one table. For example, suppose we specified
the previous query as follows:

SELECT NAME, ORDERNO FROM CUSTOMER, ORDERS;

The result would be the product of the number of rows in the customer table and the
number of rows in the orders table. If CUSTOMER had 100 rows, and ORDERS had

2-40 SQL Language Reference

Joins

500 rows, the Cartesian product would be every possible combination, or 50,000
rows, which is probably not the desired result.

The correct way to get each customer and order listed (a set of 500 rows) is with an
equijoin, as follows:

SELECT NAME, ORDERNO FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTNO = ORDERS.CUSTNO;

Outer join

In the previous example of the equijoin, the search condition specified a join on
customers and orders. What happens if customer NEWACCOUNT has not yet made
an order? The above query does not retrieve that customer.

An outer join produces a result that joins each row of one table with either a matching
row or a null row of another table. The result includiéshe rows of one table
regardless of whether they have a match with any of the rows of the table to which
they are being joined.

Outer join semanticsln the WHERE clause, add a plus sign (+) to the join column of
the table that mightot have rows to satisfy the join condition.

SQLBase supports an outer join on only one table per SELECT statement, and it must
be aone-wayouter join. You cannot add the plus sign (+) to both sides of the join
condition. You can, however, specify an outer join on more than one column of the
same table, like this example:

SELECT tl.coll, t2.coll, t1.col2, t2.col2
FROM t1, t2

WHERE t1.coll = t2.coll (+)

AND tl.col2 = t2.col2 (+);

The next example lists customer names and their order numbers, including customers
who have made no orders.

SELECT CUSTOMER.CUSTNO, NAME FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTNO = ORDERS.CUSTNO(+);

When SQLBase sees the plus sign (+) after ORDERS.CUSTNO, it temporarily adds
an extra row containing all null values to the ORDERS table. SQLBase then joins this
null row to rows in the CUSTOMER table which do not have matching orders.
Therefore, all customer numbers are retrieved.

SQLBase adheres to both the ANSI and industry standard implementation of an outer
join. According to the ANSI standard, the correct semantics of an outer join must
display all the rows of one table that meet the specified constraints on that table,
regardless of the constraints on the other table.

SQL Language Reference 2-41

Chapter 2 SQL Elements

Oracle Outer Join If you need to use the Oracle-style outer join result, you can
specify theoracleouterjoinkeyword in the relevant server section of ysgk.inifile.
For example, if you are using the SQLBase Server for Windows NT, specify
oracleouterjoinin the [dbntsrv] section:

[dbntsrv]

oracleouterjoin=1

The following example shows how the two standards differ in output. These examples
use the following tables and SELECT statement:

Table A (aint) Table B (b int)

1 1
2 2
3 3
4
5
SELECT a, b

FROM A, B

WHERE A.a = B.b (+)
AND B.b IS NULL;

The ANSI standard gives the following result:

Self join

A self join lets you join a table to itself, as though it was two separate tables. To do
this, the self-join table is given a correlation name. The example below finds all dates
on which more than one order was placed:

SELECT A.ORDERNO, A.ORDERDATE
FROM ORDERS A, ORDERS B
WHERE A.ORDERDATE = B.ORDERDATE
AND A.ORDERDATE <> B.ORDERNO;

2-42 SQL Language Reference

Subqueries

The ORDERS table is treated as two tables, using the correlation names A and B. An
order date is retrieved from correlation table A. Then this order date is used as a
search condition for table B.

This same information can be retrieved using a subquery. Read the following section
Subquerie®n page?-43for more information.

Non-equijoin

A non-equijoin joins tables to one another based on comparisons other than equality.
Any of the relational operators can be used, (such as >, <, =, BETWEEN, or LIKE).

The following example specifies a join using the BETWEEN operator.

SELECT NAME, ORDERNO, ORDERDATE
FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTNO = ORDERS.CUSTNO
AND ORDERDATE BETWEEN 01-JUL-94 AND 30-SEP-94;

Number of joins

SQLBase allows you to join 10 tables in a select statement. However, think carefully
before you join this many tables. With each table added in a JOIN, the time needed to
process the statement increases. Having 10 tables in a join can slow the database
performance considerably.

A carefully designed database model should rarely need to join 10 tables in a
statement. Instead of using this many tables, reconsider your database design.

Subqueries

SQL is recursive. The input to one query can be the output of another query. A query
can be nested within another SQL command to define the scope of a command. This
nested query is calledsabquery

A subquery is a search condition that is a nested SELECT command (also called a
subselect). The subquery specifies a result table from one or more tables or views, in
the same manner as any other SELECT. Each result row of the subselect is used as a
basis for qualifying a candidate result row in the outer select.

You cannot use an ORDER BY clause in a subquery. Also, you cannot use a LONG
VARCHAR in a subquery.

SQL Language Reference 2-43

Chapter 2 SQL Elements

Examples of subqueries

For example, find all the orders that were placed on the same day as the order from
customer number 2.

SELECT ORDERNO, ORDERDATE FROM ORDERS
WHERE ORDERDATE = (SELECT ORDERDATE FROM ORDERS
WHERE CUSTNO = 2);

First, the order date of customer number 2 is retrieved and this value is used to
complete the search condition of the main or outer query. In this example, the
subquery was executed once to retrieve a single value used by the main query. In the
following SELECT command, called a correlated subquery, the subquery is executed
once for each candidate row in the main query.

For example, find all employees whose salary is larger than the average salary of
other employees.

SELECT * FROM EMPSAL WHERE
SALARY (SELECT AVG (SALARY) FROM EMPSAL);

Bind variables

A bind variable refers to a data value associated with a SQL command. Bind variables
associate (bind) a syntactic location in a SQL command with a data value that is to be
used in that command.

Bind variables can be used wherever a data value is allowed:
* WHERE clause.
* VALUES clause in an INSERT command.
e SET clause of in UPDATE command.
Bind variable names start with a colon (:). The name can be:
e The name of a variable that is declared in a program (such as :ARGL1).

e A number that refers to the relative position among the data items associated
with the SQL command (such as :1, :2, :3).

Read the manual for the client application that you are using (such as the Centura’s
SQL/API, SQLTalk, or Team Developer) for the details on how to use bind variables.

2-44 sQL Language Reference

Chapter 3

SQL Command
Reference

This chapter contains the syntax, description, and examples of each SQL command.
This chapter is organized alphabetically by command name.

SQL Language Reference 31

Chapter

3 SQL Command Reference

SQL command summary

3-2

Command

Function

ALTER DATABASE

Changes storage group or log for
database.

ALTER DBAREA

Changes the size of a database area.

ALTER EXTERNAL FUNCTION

Changes an external function definition.

ALTER PASSWORD

Changes a password.

ALTER STOGROUP

Adds or drops a database area from 4|
storage group.

ALTER TABLE

Changes the description of a table.

ALTER TABLE (error messages)

Makes error messages specific to a
particular referential integrity violation.

ALTER TABLE (referential
integrity)

Adds or drops primary and foreign keys.

ALTER TRIGGER

Enables and disables triggers defined pn
tables.

AUDIT MESSAGE

Writes a message string to an audit file.

CHECK DATABASE

Checks database for integrity.

CHECK INDEX Checks specified index for integrity.
CHECK TABLE Checks specified table for integrity.
COMMENT ON Replaces or adds a comment to the
description of a table, view, column, or
external function in the system catalog.
COMMIT Ends a logical unit of work and commitg

database changes made by it.

CREATE DATABASE

Physically creates a database.

CREATE DBAREA

Creates a database area.

CREATE EXTERNAL FUNCTION

Creates an external function.

CREATE INDEX

Creates an index on a table.

CREATE STOGROUP

Creates a storage group.

SQL Language Reference

SQL command summary

Command Function
CREATE SYNONYM Defines an alternate name for a table,
view, or external function.
CREATE TABLE Defines a table.

CREATE TRIGGER

Creates a trigger.

CREATE VIEW

Defines a view of one or more tables o
views.

DBATTRIBUTE

Sets database-specific attributes

DEINSTALL DATABASE

Takes a database off the network, making

it unavailable to users.

DELETE

Deletes one or more rows from a table

DROP DATABASE

Physically deletes a database.

DROP DBAREA

Physically deletes a database area.

DROP EXTERNAL FUNCTION

Deletes an external function.

DROP INDEX

Removes an index.

DROP STOGROUP

Deletes a storage group.

DROP SYNONYM

Deletes a synonym.

DROP TABLE

Physically deletes table from the
database.

DROP TRIGGER

Deletes a trigger.

DROP VIEW

Deletes a view.

GRANT (database authority)

Grants database authority or privileges.

GRANT (table privileges)

Grants one or more specified privilege
for a table or view.

n

GRANT EXECUTE ON

Grants execute privilege on stored
procedures and external functions to
other users.

INSERT

Inserts one or more rows into an existing
table.

INSTALL DATABASE

Puts a database on the network, making
accessible to users.

SQL Language Reference

it

3-3

3 SQL Command Reference

Command Function
LABEL Adds or changes labels in catalog
descriptions
LOAD Loads one or more tables into a database.

LOCK DATABASE

Places an exclusive lock on the databa

preventing connections from other users.

5e,

PROCEDURE:

Creates a procedure.

REVOKE

Revokes database authority or privileges.

REVOKE EXECUTE ON

Revokes a user’s execute privilege on
stored procedure or external function.

ROLLBACK Terminates a logical unit of work and
backs out database changes made dur
the last transaction.

ROWCOUNT Counts the number of rows in a table.

SAVEPOINT Assigns a checkpoint within a
transaction.

SELECT Queries tables or views.

SET DEFAULT STOGROUP

Specifies the default storage group.

START AUDIT Starts a database audit.
STOP AUDIT Stops a database audit.
UNLOAD Unloads a database to an external file.

UNLOCK DATABASE

Releases the exclusive lock on the
database from the LOCK DATABASE
command.

UPDATE

Updates the values of columns in a tab
or view.

UPDATE STATISTICS

Updates the statistics for an index in a|
table.

SQL Language Reference

le

ALTER DATABASE

ALTER DATABASE

»P»— ALTER DATABASE database name —[STOGROUP j stogroup name —4<4
LOG

This command changes the storage group for a database or its log files. ALTER
DATABASE only affects future allocations of space. Existing databases or log files
are not moved or affected.

Clauses
database name
The name of the database to be changed.

STOGROUP
Changes the storage group for a database.

LOG
Changes the storage group for the database's log files.

stogroup name

The name of the storage group to be changed. A storage group is a list of database
areas, which are similar to files or a partition.

Example
ALTER DATABASE ACCTPAY STOGROUP ACCTDEPT;

See also

CREATE DATABASE
CREATE STOGROUP
DELETE STOGROUP

SQL Language Reference 3-5

Chapter 3 SQL Command Reference

ALTER DBAREA

»P— ALTER DBAREA dbarea name —— SIZE megabytes <<

This command changes the size of a database area. When increasing the size of a
database area, available space is checked at the time of the operation.

Clauses
dbarea name
The name of the database area to be changed.
SIZE megabytes
The size of the database area in megabytes.
Example
ALTER DBAREA ACCT1 SIZE 10;
See also

ALTER DATABASE
CREATE DBAREA
DROP DBAREA

ALTER EXTERNAL FUNCTION

»P»— ALTER EXTERNAL FUNCTION function name

v

»———— LIBRARY library-name <<

— EXTERNAL NAME — external-name

- CALLSTYLE ﬂCAL/STDCAj
CDECL
—EXECUTE IN —I'iPARATE PROCESS;I*
SAME THREAD

3-6 SQL Language Reference

ALTER EXTERNAL FUNCTION

Clauses

Use this command to alter an external function. You must have DBA authority to
execute this command.

This command allows you to alter those properties of an external function that do not
invalidate dependent objects. Those properties are library name, external name,
callstyle, and execution mode.

Each clause in this command is optional, but you must at least specify one clause.

function name

Specify the name of the external function that you want to alter. This is the name that
refers to the function within SQLBase.

LIBRARY library-name

Specify the dynamic linked library (DLL) name if you want to change the existing
library name where the function resides. You must provide a fully qualified path name
for the file, or else be sure the PATH environment variable is set to point to the
location of the file in your operating system.

Specify the library name as a string with up to 254 characters. You can include special
characters in the string. If the library name contains spaces, you must delimit the
name in single quotes (for example, ‘lib name’).

EXTERNAL external-name

Specify this clause if you want to change the external name or provide an external
name for the function. An external name lets you create a function name that
references the function in a DLL by another name. Thus, the function has a calling
name that is separate from the name used to reference the same function in the DLL.

Specify the external name as a string with up to 254 characters. You can include
special characters in the string. The external name is case-sensitive and must be
identical to the exported function name in the DLL.

Note that if you do not supply an external name, the function name is the same name
that is used in the DLL.
CALLSTYLE

Specify this clause if you want to change the compiler style that is required to invoke
the external function. For details, re@Hapter 9 External Functions

Note: Be sure to specify the correct callstyle for your platform. An incorrect callstyle can result
in server failure.

SQL Language Reference 3-7

Chapter 3 SQL Command Reference

PASCAL/STDCALL

PASCAL applies only to 16-bit platforms and is the call style for Windows API calls.
STDCALL applies only to 32-bit platforms and is the call style for all 32-bit
Windows API calls.

CDECL
This is the default compiler callstyle and applies to both 16-bit and 32-bit platforms.

EXECUTE IN

Specify this clause only if you are using a 32-bit platform and want to change the
execution mode to SAME THREAD or SEPARATE PROCESS.

For details on execution mode, re@ldapter 9 External Functions

Examples
CREATE EXTERNAL FUNCTION MYFUNC
LIBRARY TEST.DLL;
ALTER EXTERNAL FUNCTION MYFUNC
LIBRARY MYFUNC.DLL;
See also

CREATE EXTERNAL FUNCTION
DROP EXTERNAL FUNCTION

ALTER PASSWORD

»P»— ALTER PASSWORD old password ——— TO new password ————————— €<%

This command changes your password.

The password is stored in the system catalog and can be read by a user with
SYSADM or DBA privileges. Note that passwords are encrypted when transmitted
across a network.

Clauses

old password

Your current password.

TO new password

The new password you wish to implement.
3-8 SQL Language Reference

ALTER STOGROUP

Examples

ALTER PASSWORD OLDSTUFF TO NEWSTUFF;
See also

GRANT

REVOKE

ALTER STOGROUP

P»P»— ALTER STOGROUP stogroup name L ADD J dbarea name —<4<€¢

DROP

This command changes the storage group for a database area. The command only
affects future allocations of space. Existing databases or log files are not moved or
affected.

Clauses
stogroup name
A storage group is a list of database areas.

ADD dbarea name
Adds a database area to the storage group.

DROP dbarea name
Drops a database area from the storage group.

Example
ALTER STOGROUP ACCTDEPT ADD ACCT4;
ALTER STOGROUP ACCTDEPT DROP ACCT4;

See also
CREATE STOGROUP
DROP STOGROUP

SQL Language Reference 3-9

Chapter 3

SQL Command Reference

ALTER TABLE

»

»—— DROP _v column name | <<

— ADD i column name - data type ‘
L (size) Jk

- RENAME {co/umn name — new name |
TABLE — new name 4

L MODIFY* column name {

ALTER TABLE table name |

NOT NULL
NOT NULL WITH DEFAULT -

data type (Iength)J NULL
- NOT NULL
NOT NULL WITH DEFAULT

Clauses

3-10

Use this command to perform the following functions:
* Add, drop, or modify a column.
* Rename a column or table.

Views that reference dropped or renamed columns or tables are automatically
dropped. Views that reference modified columns are also dropped.

Precompiled commands that reference dropped or renamed columns or tables are not
dropped. Such precompiled commands could become invalid and return an error if
executed.

You must have the ALTER privilege on the table to execute this command.

You cannot alter tables that have triggers defined on them. If you need to do this, you
must drop the triggers, alter the table, and then create the triggers for the table.

Like all DDL commands, this command locks system tables while executing.

ADD

This adds a column to a table. Columns are defined the same way as in the CREATE
TABLE command. Read the sectibata typeson page2-7 for more information.

Adding a column does not effect existing views or precompiled commands.

SQL Language Reference

ALTER TABLE

You can add columns to user tables or to system catalog tables. However, if you add
columns to system catalog tables, they are not maintained by SQLBase. For example,
UNLOAD will ignore any user-defined columns in a system catalog table.

ADD is the default clause if no clause is specified.

DROP
This removes a column from a table. If the column has data, the data is lost.

You cannot drop any of the following:
* Anindexed column.
* A column belonging to a primary or foreign key.
« System defined columns in the system catalog.
MODIFY
This changes the attributes for a column.

You can increase the length of a character column, but you cannot decrease the length.
You specify the data type when you increase the length of a character column.

You cannotchange the data type of a column.
You cannotchange the length of a numeric column.

NULL
This removes a NOT NULL attribute for a column.

NOT NULL
This adds a NOT NULL attribute to a column that currently accepts nulls.

If the column contains NULL values, you cannot redefine the column as NOT NULL.
You cannot modify system-defined columns in the system catalog.

NOT NULL WITH DEFAULT

This clause prevents a column from containing null values and allows a default value
other than the null value. The default value used depends on the data type of the
column, as follows:

Data Type Default Value
Numeric 0 (zero)
Date/Time Current date/time
Character Blank

SQL Language Reference 3-11

Chapter 3

SQL Command Reference

Examples

The NOT NULL WITH DEFAULT clause causes an INSERT to use the above
defaults. SQLBase puts a 'D' in the NULLS columns of the SYSCOLUMNS table
and treats it like a NOT NULL field.

The ALTER TABLE commandioes notllow the addition of a column defined as
NOT NULL if rows of data already exist. The ALTER TABLE commatwksallow

a new column defined as NOT NULL WITH DEFAULT to be added if no rows of
data exist for the specified table.

To add columns defined as NOT NULL or NOT NULL WITH DEFAULT when rows
of data already exist, do the following steps:

1. Add the column with ALTER TABLE, but daotspecify a NOT NULL or NOT
NULL WITH DEFAULT clause.

2. Update the values in the new column to some value other than NULL.

3. Change the column to NOT NULL or NOT NULL WITH DEFAULT with the
ALTER TABLE command.

The NOT NULL WITH DEFAULT clause is compatible with DB2.

RENAME

This renames a table or column. System catalog tables and system-defined columns
in the system catalog cannot be renamed.

Add a new column called JOB that contains a maximum of 20 characters to the EMP
table:

ALTER TABLE EMP ADD JOB VARCHAR(15);

Increase the size of the column JOB to 40 characters and make it a NOT NULL
column:

ALTER TABLE EMP
MODIFY JOB VARCHAR(40) NOT NULL;

Drop the columns JOB and HIREDATE.
ALTER TABLE EMP DROP JOB, HIREDATE;
Change the name of EMP to EMPLOYEE.
ALTER TABLE EMP RENAME TABLE EMPLOYEE;
Add the NOT NULL attribute to the HIREDATE column:
ALTER TABLE EMP MODIFY HIREDATE NOT NULL;
Now drop the NOT NULL attribute:
ALTER TABLE EMP MODIFY HIREDATE NULL;

3-12 SQL Language Reference

ALTER TABLE (Error Messages)

See also

Drop the primary key:
ALTER TABLE EMP DROP PRIMARY KEY;

CREATE TABLE
DROP TABLE

ALTER TABLE (Error Messages)

»P»— ALTER TABLE table name ADD USERERROR error number —
—f DROP
MODIFY
»— FOR ‘DELETE_PARENT" ——— OF PRIMARY KEY <<
- ‘UPDATE_PARENT' — —[J

FOREIGN KEY key name
- INSERT_DEPENDENT’ —

‘UPDATE_DEPENDENT’ —

Clauses

To make error messages specific to a particular violation of referential integrity, you
can edit theerror.sglfile and use ALTER TABLE statements. For more information,
readChapter 6, Referential Integrity

ADD

This adds a specific error message for referential integrity. You must include an error
number from therror.sqlfile.

DROP

This deletes a specific error message. Do not enter the user error number for a DROP
command.

MODIFY
This modifies the error message number for referential integrity.

USERERROR error number

This specifies the error number in tgor.sqlfile. You can modify thesrror.sqlfile
to add an appropriate error message.

'DELETE_PARENT'

This specifies that a deletion failed because there were dependent rows in the
dependent table.

SQL Language Reference 3-13

Chapter 3 SQL Command Reference

'UPDATE_PARENT'

This specifies that an update failed because there were dependent rows in the
dependent table (dependent on the values to be updated).

INSERT_DEPENDENT'

This specifies that an insertion failed because there was no parent row in the parent
table.

'UPDATE_DEPENDENT'

This specifies that an update failed because there was no parent row in the parent
table for the new set of values.

Example
A user may attempt to delete the employee number of an employee who still works
for the company. You can avoid this problem by editingetiner.sql file:

20000 xxx xxx Employee number cannot be deleted while employee
still works for this company.

Then, use the ALTER TABLE statement to add the new error message:

ALTER TABLE EMP ADD USERERROR 20000 FOR 'DELETE_PARENT’ OF
PRIMARY KEY;

If a user now attempts to delete the employee number, the new error message
appears:

DELETE FROM EMP where EMPNO = 1234;

Error: Employee number cannot be deleted while employee still
works for this company.

See also
CREATE TABLE

3-14 SQL Language Reference

ALTER TABLE (Referential Integrity)

ALTER TABLE (Referential Integrity)

»P»— ALTER TABLE table name >

> PRIMARY KEY —— (gmn name L) <<

DRO

i column 1) -REFERENCES parent

FOREIGN‘ﬁ(
brop’ Y foreignl @M€ ffa%ee ON RESTRICT
key DELETE| ~rscADE
name
SET NULL
When you use ALTER TABLE with referential constraints, you can add or drop
primary and foreign keys. For more information, r€mpter 6, Referential
Integrity.
Clauses
(ADD)/DROP

You do not specify ADD since it is the default, but you must specify DROP if this is
your intention.

Before dropping the primary key, consider the effect this will have on the application
programs. The programs must then enforce referential constraints without the primary
key.

PRIMARY KEY

In a database with referential integrity, this adds or drops the primary key of the table.
If you drop the primary key, the table continues to exist with a unique index on the
same list of columns (if the table has a unique index). The relationship between the
tables is dropped if the table has a dependent.

To drop the primary key, you must have the ALTER privilege on both the parent and
dependent tables.

The following rules apply to primary keys:

« If atable has a primary key, you must also create a unique index on the
primary key columns to make the table complete. See the CREATE INDEX
command for more information.

SQL Language Reference 3-15

Chapter

3 SQL Command Reference

3-16

» The primary key format must obey the following rules:
« Cannot contain more than 16 columns.

e Sum of the column length attributes cannot be greater than 255 bytes.
e Cannot contain LONG or LONG VARCHAR columns.

* Youcannot use an UPDATE WHERE CURRENT clause with a primary key
column.

* In a self-referencing row, you cannot update the primary key value. If a row
is aself-referencing rowits foreign key value is the same as its primary key
value.

* The values of the primary key must be unique; no two rows of a table can
have the same key values.

« Atable can have only one primary key.

* The primary key can be made up of one or more columns in a table. This is
called a composite primary key. Separate the columns with a comma.

» Each column in the primary key must be classified with the NOT NULL
constraint. However, you should not use the NOT NULL WITH DEFAULT
option unless the primary key column(s) has a data type of TIMESTAMP or
DATETIME.

e Anupdateable view defined on a table with a primary key must include all
columns of the primary key. Although this is only required if you use the
view in an INSERT statement, the resulting unique identification of rows is
also useful if the view is used for updating, deleting, or selecting.

If you try to insert a row into a view that does not contain values for all of the
primary key columns, the following message appears:

NOT ENOUGH NON-NULL VALUES

This message appears because all the primary key columns are defined as
NOT NULL (since a primary key cannot contain NULL values).

FOREIGN KEY

This adds or drops a foreign key to an existing table. The values in the foreign and
primary keys must conform with referential integrity. Otherwise, the command is
rejected. To drop a foreign key, you must have the ALTER privilege on both the
parent and dependent tables.

Before you drop a foreign key, consider carefully the effect this will have on
application programs. Dropping a foreign key drops the corresponding referential
relationship and delete rule. Without the foreign key, programs must enforce these
constraints.

SQL Language Reference

ALTER TABLE (Referential Integrity)

The following rules apply to foreign keys:

* Matching columns. A foreign key must contain the same number of
columns as the primary key. The data types of the foreign key columns must
match those of the primary key on a one-to-one basis, and the matching
columns must be in the same order.

However, the foreign key can have different column names and default
values. It can also have NULL attributes. If an index is defined on the foreign
key columns, the index columns can be in ascending or descending order,
which may be different from the order of the primary key index.

e Using primary key columns. A column can belong to both a primary and
foreign key.

» Foreign keys per table. A table can have any number of foreign keys.

* Number of foreign keys. A column can belong to more than one foreign
key.

e Number of columns. A foreign key cannot contain more than 16 columns.

» Parent table. A foreign key can only reference a primary key in its parent
table. This parent table must reside in the same database as the foreign key.

* NULL values. A foreign key column value can be NULL. A foreign key
value is NULL if any column in the foreign key is NULL.

e Privileges. You must grant ALTER authority on a table to all users who
need to define that table as the parent of a foreign key.

» System catalog table. The foreign key cannot reference a system catalog
table.

* Views. A foreign key cannot reference a view.

» Self-referencing row. In a self-referencing row, the foreign key value can
only be updated if it references a valid primary key value. If a rovsédfa
referencing rowits foreign key value is the same as its primary key value.

foreign key name

You can assign a name to the foreign key to identify it. This name is called a
constraint name. If you do not specify a name yourself, SQLBase generates a
constraint name from the name of the first foreign key column.

A foreign key constraint name can have up to 18 characters. This means that if the
first foreign key column name is more than 18 characters, you must assign a
constraint name yourself that does violate this limit. Otherwise, SQLBase will not
create the foreign key.

SQL Language Reference ~ 3-17

Chapter 3 SQL Command Reference

If there are multiple foreign keys referencing the same table, each foreign key must
have a unique name. This ensures that every referential constraint is uniquely
identified by a table name/constraint name combination.

REFERENCES

This identifies the parent table in a relationship and defines the necessary constraints.
The REFERENCES clause must accompany the FOREIGN KEY clause.

ON DELETE

This specifies the DELETE rules for the table.

The DELETE rules are optional.

The default is RESTRICT.

DELETE rules are only used to define a foreign key.

CASCADE

This deletes the selected rows first, and then deletes the dependent rows, honoring the
delete rules of their dependents.

RESTRICT

This specifies that a row can be deleted if no other row depends on it. If a dependent
row exists in the relationship, the delete will fail.

SET NULL

This specifies that for any delete performed on the primary key, matching values in
the foreign key are set to null.

Examples
Add a foreign key to the EMPSAL table:

ALTER TABLE EMPSAL
FOREIGN KEY (EMPNO) REFERENCES EMP
ON DELETE RESTRICT;

Add a primary key to the EMPLOYEE table:
ALTER TABLE EMP
PRIMARY KEY (EMPNO);

See also
CREATE TABLE

3-18 SQL Language Reference

ALTER TRIGGER

ALTER TRIGGER

PP ALTER TRIGGER trigger name —E ENABLE J <<

DISABLE

Clauses

This command enables or disables triggers defined on tables. To execute the ALTER
TRIGGER command, you must be the owner of the table, or have SYSADM or DBA
authority.

A database trigger has a status of either enabled or disabled. If a trigger is enabled,
SQLBase fires the trigger when an activating DML statement is issued. If disabled,
SQLBase does not fire the trigger when an activating DML statement is issued. When
you create a trigger with the CREATE TRIGGER command, SQLBase enables it
automatically.

The ALTER TRIGGER does not change the definition of an existing trigger. It
updates the status of the existing trigger. To redefine a trigger, you must drop the
trigger with the DROP TRIGGER command, and then create it with the CREATE
TRIGGER command.

You may need to disable triggers on tables for the following reasons:

» To bypass errors in which a trigger refers to an object that is unavailable.

* Toload a large database without firing triggers so the load can proceed
quickly.

* To reload a database.

Warning: Do NOT disable triggers on replicate tables.SQLBase replication uses a trigger-
based mechanism to capture changes to replicate tables; therefore, if you disable triggers on
replicate tables, the RSA cannot track changes made to them.

As an alternative to using this command, SQLBase provides a stored procedure that
lets you easily disable or enable all triggers defined on a table. For more information,
readTriggerson pager-54.

trigger name
The name of the trigger to be enabled or disabled.

SQL Language Reference 3-19

Chapter 3 SQL Command Reference

You can provide a fully-qualified trigger name by prefixing the creator’s name. If you
omit the creator’s name, the current user is assumed to be the creator.

ENABLE

Enables the trigger.

DISABLE

Disables the trigger.
Example

ALTER TRIGGER JOB_UPDT DISABLE;
See also

CREATE TRIGGER
DROP TRIGGER

AUDIT MESSAGE

»P»—— AUDIT MESSAGE — 'message string B]
TO auditname

Use this command to write a message in all or specified audit files. This command
requires either a cursor or server handle.

In the audit file, a message follows this record layout:
998,datetime,database,username,clientname,audit message
Clauses

message string

This is the message to be included in the audit file. It can be no longer than 254
characters, and must be enclosed in single quotes.

TO auditname

This is the name of the audit created with START AUDIT. SQLBase writes the
message to the audit file associated with this audit identifier.

This clause is optional. If you do not enter an audit name, the message is written to all
active audits.

3-20 SQL Language Reference

CHECK DATABASE

Examples
The following example is issued from a SQL script that you can run from SQLTalk:

AUDIT MESSAGE 'Start SQL script’;

CHECK DATABASE

»P»— CHECK DATABASE T]
SYSTEM ONLY

This command performs integrity checks on the entire database. Integrity checking
consists of the following:

« Checking the integrity of the system and group free space data structures

« Checking the system data and allocation structures

» Verifying the table row count against the actual number of rows

e Cross-checking each index against its base table

» Checking the integrity of each row and index page

» Ensuring that each page is part of an allocated structure or is on a free page list

This command reads and places a shared lock on every page of the database. For this
reason, you should run CHECK DATABASE only when there are no concurrent
updates being performed.

If your database is very large, this can be a time-consuming operation. A CHECK
DATABASE command is equivalent to the following command sequence:

CHECK DATABASE SYSTEM ONLY;

CHECK INDEX <each user index>;

CHECK TABLE <each user table> WITHOUT INDEXES;
or:

CHECK DATABASE SYSTEM ONLY;
CHECK TABLE <each user table>;

Clauses
SYSTEM ONLY

Verify only system-defined tables and indexes; ignore user-created tables and
indexes.

Integrity checking consists of:

SQL Language Reference 3-21

Chapter 3 SQL Command Reference

» Checking the integrity of the table free space data structures
« Checking the system data and allocation structures

Example
CHECK DATABASE;

See also
REORGANIZE

3-22 SQL Language Reference

CHECK INDEX

CHECK INDEX

»P»—— CHECK INDEX index name <<

Use this command to perform an integrity check on a specific index. Integrity
checking consists of:

e Checking the integrity of index pages
» Cross-checking each index against its base table

You must specify the index namea@seator.indexnamef you omit thecreator
portion of the name, it defaults to your username.

If SQLBase finds an integrity violation, it stops the integrity check and reports an
error to the user. If the problem occurred on a user-defined object, SQLBase identifies
the name of the object. If the problem occurred on a system-defined object, SQLBase
provides either a description of the object or the name of the object.

Read the SET ERRORLEVEL documentation in 8L Talk Command Reference
for an explanation of the error message detail that SQLBase displays.

Examples
CHECK INDEX EMP_IDX;

CHECK TABLE

»P»—— CHECK TABLE table name <<

L WITHOUT INDEXES J

Use this command to perform an integrity check on a specific table. Indexes
associated with the table are also checked.

You can specify a view hame instead of a table name. In this case, SQLBase does not
check the row data pages or any user-defined indexes of the underlying table or
tables. Only system indexes related to the view are checked.

You must specify the table or view namecesator.tablenamef you omit thecreator
portion of the name, it defaults to your username.

SQL Language Reference ~ 3-23

Chapter 3

SQL Command Reference

Clauses

Examples

Integrity checking consists of:

» Verifying the table row count against the actual number of rows
e Cross-checking each index against its base table
» Checking the integrity of each row and index page

If SQLBase finds an integrity violation, it stops the integrity check and reports an
error to the user. If the problem occurred on a user-defined object, SQLBase
identifies the name of the object. If the problem occurred on a system-defined object,
SQLBase provides either a description of the object or the name of the object.

Read the SET ERRORLEVEL documentation in 8@l Talk Command Reference
for an explanation of the error message detail that SQLBase displays.

WITHOUT INDEXES
Prevent SQLBase from verifying any indexes associated with the specified table.

CHECK TABLE EMP;
CHECK TABLE EMP WITHOUT INDEXES,;

COMMENT ON

»»— COMMENT ON >
P TABLE —|: table name IS ‘string constant’ —<4<4
view name

—COLUMN T table-name.column-name

EXTERNAL FUNCTION — function-name

view-name.column-name

This command places a comment in the REMARKS column of the following tables:
SYSTABLES, SYSCOLUMNS, or SYSEXTFUN. A comment can be added for a
table, view, column, or external function.

You must have ALTER privileges on the table to use this command.

In SQLTalk, the REMARKS column is not displayed on the screen unless you enter
the command COLUMN 4 WIDTH 20.

3-24 SQL Language Reference

COMMIT

Clauses

Examples

See also

The COMMENT ON command is like the LABEL ON command. The difference is
that the REMARKS columns (maintained by COMMENT ON) is 254 characters long
while the LABEL column (maintained by LABEL ON) is 30 characters long.

TABLE table name or view name
This specifies the name of a table to which to add a comment.

COLUMN table name.column name or view name.column name
This specifies the name of a column to which to add a comment.

TABLE table name or view name
This specifies the name of a table to which to add a comment.

EXTERNAL FUNCTION function name
This specifies the name of an external function to which to add a comment.

IS 'string-constant '

The comment cannot be longer than 254 characters (maximum length of a
VARCHAR column). The comment must be enclosesinglequotes.

COMMENT ON TABLE EMP
IS 'CONTAINS EMPLOYEE PERSONAL INFORMATION;

COMMENT ON COLUMN EMP.JOB
IS 'CONTAINS JOB TITLE FOR EMPLOYEE;

COMMENT ON EXTERNAL FUNCTION MYFUNC
IS 'CONTAINS MYFUNC INFORMATION,

LABEL ON

COMMIT

»p—— COMMIT
L WORK J

L]
TRANSACTION <id> FORCE

This command ends the current transaction (logical unit of work). A transaction has
one or more SQL commands that must either all be executed or none at all.

SQL Language Reference 3-25

Chapter 3

SQL Command Reference

Clauses

Examples

See also

This command commits all changes made to the database since either the last
COMMIT or ROLLBACK, or the initial user connection, if there were no commands
issued. This command commits the work for all cursors that the SQLTalk session or
application has connected to the database.

Connecting to a database causes an implicit commit of a transaction. After
establishing this connection to the database, SQLBase issues a COMMIT to establish
the starting point of the first transaction in the logging system. However, subsequent
connections to other cursors are not specifically database connections, and do not
cause SQLBase to issue a COMMIT or activate any transaction control devices. Also,
they do not alter the flow of the current transaction and destroy compiled commands.

The COMMIT operation applies to all SQL commands including data definition
commands (CREATE, DROP, ALTER) and data control commands (GRANT,
UPDATE, DELETE).

Locks are always released after a COMMIT except when cursor-context preservation
is on.

Any user with CONNECT authority can execute this command.

WORK

This is a noise word that can be coded, but it has no effect. It is provided for DB2
compatibility.

TRANSACTION <ID> FORCE

This clause forces a manual COMMIT of an in-doubt distributed transaction.
Generally, the automatic recovery feature of the commit server daemon will resolve
all transactions; you should only force a COMMIT as a last resort. The <ID> value is
the transaction’s global ID in the SYSPARTTRANS table.

Only COMMIT a transaction that has a status of COMMITTING.

COMMIT; (signals end of transaction and start of new one)
<SQL Command ...>

<SQL Command ...>

<SQL Command ...>

COMMIT; (commits previous three SQL commands)

ROLLBACK
SAVEPOINT

3-26 SQL Language Reference

CREATE DATABASE

CREATE DATABASE

»P»— CREATE DATABASE database name k <«

IN stogroup name

LOG TO stogroup name —

This command physically creates and installs a database. If you are not using a single
engine SQLBase product, SQLBase creates the database on the server specified by
the last SET SERVER command, and installs the database on the network.

About new databases

Clauses

SQLBase creates a new database in the first directory abdirepath or in the
current directory ifibdir is not specified. SQLBase also adds the dbname keyword to
sql.ini.

In SQLBase, a database contains a database file placed in a subdirectory. The
database file must have the extensilys for exampledemo.dbsThe name of the
subdirectory must be the same as the database file name without the extension, for
example\demo

Usually the database sub-directory is placed irctrguradirectory. This is the
default, but you can change to any location usingltitér keyword in SQL.INI.

SQLBase expects the name of ttibsfile to be exactly the same as the name of the
subdirectory.

Note: The above rulesnly apply to non-partitioned databases.

database name

The name of the new database to be created. The maximum length of the database
name is 8 characters. Unlike other ordinary identifiers, you cannot use special
characters in a database name, and the first letter must be alphabetic.

Do not specify an extension for a database name, swdnmasxyz SQLBase
automatically assigns a database name extensialh®SQLBase will store a
database calledemoin a file namedlemo.dbsThese rules do not affect partitioned
databases.

Do not specify the nammainfor your database, since this is used to store control
information for partitioned databases. Also, do not specify the name of an existing
server for your database.

SQL Language Reference ~ 3-27

Chapter 3

SQL Command Reference

Examples

See also

If a database file with the same name already exists (and the PAUSE option is turned
ON), SQLTalk prompts you with the message:

Database file already exists. Overwrite it (Y/N)?
This lets you decide if you really want to remove the existing database.

IN stogroup name

You can specify a storage group for the database and a separate storage group for the
log. If you do not specify a storage group, the default storage group in the main
database is used if one exists. If eithemttaén database does not exist or you do not
specify a default storage group, the database is created and allocated like an ordinary
single-file database.

LOG TO stogroup name

You can place the log file on a disk separate from the database for better performance
and integrity. If you specify a database storage group, but not one for the log, the log
file space is allocated using the database storage group.

CREATE DATABASE SAMPLE;

CREATE DATABASE ACCTPAY IN ACCTDEPT
LOG TO ACCTDEPT

CREATE DBAREA
CREATE STOGROUP
DROP DATABASE
INSTALL DATABASE
SET SERVER

3-28 SQL Language Reference

CREATE DBAREA

CREATE DBAREA

»P»— CREATE DBAREA dbarea name

»— AS [Jfilename[] / [Jraw device []

v

L SIZE megabytes J

Clauses

Example

This command physically creates a database area of a specified size either on the
server or in a raw partition. Commands or characters enclosed in brackets ([]) are
optional.

The default size for a database area is 1 megabyte. The maximum size is limited by
available disk space. If you are creating a database area on a raw device, you do not
need to specify the size.

An error message appears if the file already exists or the disk space is already being
used for another database area. An error also appears if a file of the specified size
cannot be created or if the actual size of the raw device is smaller than the specified
size of the area.

This command requires either an existi®gnturadirectory or a valid setting for the
DBDIR parameter.

dbarea name

The name of the new database area that you create. The maximum length of the
database area name is 18 characters.

AS filename/raw device

Allows you to create a database area in a specified filename or raw device. If the
filing system in use allows embedded blanks, you must use single quotes around the
filename or raw device.

SIZE megabytes

Allows you to specify the size of the database area in megabytes. Do not attempt to
create a database area which is larger than the actual amount of free disk space
available on the specified device.

CREATE DBAREA ACCT1 AS PAYROLL SIZE 5;

SQL Language Reference ~ 3-29

Chapter 3 SQL Command Reference

See also
ALTER DBAREA
DROP DBAREA
DROP DATABASE
INSTALL DATABASE

CREATE EXTERNAL FUNCTION

»P»— CREATE EXTERNAL FUNCTION function name

)L)
PARAMETERS — (+ ‘

external type

}|— RETURNS (

L |

external type

»— LIBRARY —— library-name

- EXTERNAL NAME — external-name —

— CALLSTYLE 4[PASCAL/STDCALL —

CDECL

1 EXECUTE IN SEPARATE PROCESS —

—L SAME THREAD

3-30 SQL Language Reference

CREATE EXTERNAL FUNCTION

Clauses

Use this command to create an external function, a user-defined function that resides
in an “external” DLL (Dynamic Link Library) invoked within a SQLBase stored
procedure.

DBA authority is required to create external functions.

If a user is grantedxecute with creator privilegeson a procedure that calls external
functions, then the user does not need execute privileges on any external function
invoked within the procedure. Only the CREATOR of the procedure needs to have
execute privileges on the external function.

If the user is granteeixecute with grantee privilege®n a stored procedure, the user
must also have execute privileges on the external functions invoked within the
procedure. For details on setting up security for external functions, sBattizase
Administrator's Guide

Read Chapter External Functiongor more information on creating external
functions.

function name

Specifies the name of the function. This is the name that refers to the function within
SQLBase. Function names are similar to other database object names, except they can
be up 64 characters in length.

Unless specified within double quotes, a function name must start with an alpha (a -
z) character. By default, the characters are uppercased.

You must specify a function name in double quotes if the name contains special
characters or starts with a non-alpha character.

Note that if you enclose the name in double quotes, the case of the name is preserved.
Please note the following restrictions:

* Function names cannot be the same as procedure names and vice versa.

* Functions names cannot be the same name used in any of the SQLBase
aggregate functions (for example, min, max, avg, etc., or any functions
beginning with the@ symbol, such as @ASIN, @ATAN, @CHAR, etc.)

e Function names cannot begin w8QL.

« If the external name is not used in the function definition, then the function
name must match the exported name in the DLL.

« Ifthe external name is used in the function definition, then the external name
must match the exported name in the DLL.

SQL Language Reference 3-31

Chapter

3

SQL Command Reference

3-32

PARAMETERS

Specify this clause if you want to define input parameters to the external function. If
there are no parameters for the external function, omit the PARAMETERS clause, or
provide empty parenthesé¥in the declaration.

The data type for parameters tells SQLBase the format (both size and pass by
reference value) to use when passing data to the external function.

The external type typically corresponds to a standard Microsoft data type. For details,
read Chapter External Functions

To specify an external data type with more than one input parameter, separate each
entry by a comma. For example:

PARAMETERS (int, Ipint, boolean)

ceny

RETURNS

Specify this clause if you want to define return values to the external function. If
there is no return type from the external function, omit the RETURNS clause, or
provide empty parenthesé¥in the declaration.

The external data type tells SQLBase the format (both size and pass by value) to use
when returning a value to an external function. The external type typically
corresponds to a standard Microsoft data type. For details, read Chdptearal
Functions

LIBRARY library-name

Specify the dynamic linked library (DLL) name where the function resides. You must
provide a fully qualified path name for the file, or else be sure the PATH environment
variable is set to point to the location of the file in your operating system.

Specify the library name as a string with up to 254 characters. You can include
special characters in the string. If the library name contains spaces, you must delimit
the name in single quotes (for example, ‘lib name’).

EXTERNAL external-name

Specify this clause if you want to provide an external name for the function. An
external name lets you create a function name that references the function in a DLL
by another name. Thus, the function has a calling name that is separate from the name
used to reference the same function in the DLL.

Specify the eternal name as a string with up to 254 characters. You can include
special characters in the string. The external name is case-sensitive and must be
identical to the exported function name in the DLL.

SQL Language Reference

CREATE EXTERNAL FUNCTION

Examples

See also

Note that if you do not supply an external name, the function name is the same name
that is used in the DLL.

CALLSTYLE

Specify this clause if you want to change the compiler style that is required to invoke
the external function. For details, read Chaptéh@ernal Functions

Note: Be sure to specify the correct callstyle for your platform. An incorrect callstyle can result
in server failure.

PASCAL/STDCALL

PASCAL applies only to 16-bit platforms and is the callstyle for Windows API calls.
STDCALL applies only to 32-bit platforms and is the callstyle for all 32-bit Windows
API calls.

CDECL
This is the default compiler callstyle and applies to both 16-bit and 32-bit platforms.

EXECUTE IN

Specify this clause only if you are using a 32-bit platform and want to change the
execution mode to SAME THREAD or SEPARATE PROCESS.

For details on execution mode, read Chapt&x®rnal Functions

CREATE EXTERNAL FUNCTION MYFUNC
PARAMETERS (int, Ipint)
RETURNS ()
LIBRARY myfunc.dll
EXECUTE IN SAME THREAD;

ALTER EXTERNAL FUNCTION
DROP EXTERNAL FUNCTION

SQL Language Reference ~ 3-33

Chapter 3

SQL Command Reference

CREATE INDEX

»P»— CREATE

»— ON table name — (* column name k |) »
ASC i‘

L JL J INDEX index name ———p
UNIQUE CLUSTERED HASHED

DESC

»
L PCTFREE integer constant J LSIZE integer value{ ROWS

BUCKETS ——

Index size

This command creates an index on one or more columns of a table. Indexes optimize
data retrieval since the data can be found without scanning an entire table. Indexes
can also force unique data values in a column.

If an index is created on an empty table, the statistics reflect that the index is empty
and SQLBase does not use the index in the queries. Therefore, be sure to always run
UPDATE STATISTICS after the table is populated so the statistics accurately reflect
the data. (You can create indexes at any time. When an index is created, statistics are
gathered regarding the index and its associated values.)

There is no limit on the number of indexes per table.
You cannot update the key of a clustered hash index.
Like all DDL commands, this command locks system tables while executing.

If you create a table with a primary key with CREATE TABLE, you must create a
unique index on the primary key’s columns.

The maximum number of columns in an index cannot exceed 16. If this limit is
reached, SQLBase issues an error message.

3-34 SQL Language Reference

CREATE INDEX

The maximum size of an index key is:

6 + number of + sum of <= 255
columns in lengths of all
index columns in
index

Note that SQLBase issues an error message if an index key size has a length greater
than 255.

The length of each column depends on its data type. For example, a CHAR(10)
column is 10 bytes; any numeric column is 12 bytes; and any date/time column is 12
bytes.

Consider the following columns:

LASTNAME CHAR20)
FIRSTNAME ~ CHAR(20)
M CHAR(1)

Create the concatenated index:

LASTNAME CHAR(20)
FIRSTNAME ~ CHAR(20)

Ml CHAR(1)
41

The following calculation shows the size of the index key:
6 + 3 + 41 = 50

Since this length is less than 255, it is valid.
As another example, consider the index on the following single column:
LARGECHAR(249)

The index is 249. Adding the number of columns and the sum of their lengths results
in the following sum:

6 + 1 + 249 = 256

This length is not allowed, since 256 > 255.

You must have the INDEX privilege on the table to execute this command.

SQL Language Reference 3-35

Chapter 3 SQL Command Reference

Functions in Indexes
An index can be created for one or more column values resulting from applying a
function to the column. Functions for an index cannot be nested. Not all functions can
be used to create an index.

Indexes created in this manner are used when the respective function is used in the
WHERE clause. For functions which have arguments in addition to the table column
(such as @SUBSTRING), all arguments must agree exactly between the CREATE
INDEX and WHERE clause invocations in order for the index to be used.

A case-insensitive index results from applying the @UPPER or @LOWER function

to the column in the CREATE INDEX command. When you query a column

containing names that were entered using mixed case, and use the respective function
in the WHERE clause to constrain the query, the rows returned include those in upper
and lower case.

The following functions are allowed in CREATE INDEX.

@CHAR @QUARTER
@CODE @QUARTERBEG
@DATEVALUE @RIGHT
@DAY @SECOND
@HOUR @STRING
@LEFT @SUBSTRING
@LENGTH @TIMEVALUE
@LICS @TRIM
@LOWER @UPPER
@MICROSECOND @VALUE
@MID @WEEKBEG
@MINUTE @WEEKDAY
@MONTH @YEAR
@MONTHBEG @YEARBEG
@PROPER @YEARNUM

3-36 SQL Language Reference

CREATE INDEX

Clauses

index name

Each index name is a long identifier prefixed by an implicit qualifier which is the
authorization-id of the index creator. The index name (including the qualifier) must
be unique within a database.

table name
View namescannotbe used in the creation of an index.

UNIQUE

This keyword enforces unique key values within the table. It specifies that no
combination of indexed columns in the table can be identical. If this uniqueness
property is violated during index creation, or during an insert or update, an error is
returned.

CLUSTERED HASHED

This clause stores the data rows in locations based on the key hash value (clustering).
A clustered hashed index speeds random access to rows in a table. If a table has a
unique key that identifies each row, declaring a clustered hashed index on that key
usually allows rows to be accessed with 1 disk read.

SQLBase uses a clustered hash index when both of the following situations are true:

» All of the key columns are in the WHERE clause
e The columns only use the equals (=) condition, such as C1=10.
If this clause is not specified Batree (non-clusteredpdex is created.

The table can grow or shrink, but clustered hashed indexes are intended for tables
which are static or where an upper bound for the size of the table can be specified. A
clustered hashed index can be specified for a non-unique key, but access only
improves if there are relatively few rows for each key value.

Only one clustered hashed key can be created for a table, and it cannot be updated.

A CREATE INDEX command that specifies a clustered hashed index must be given
after the CREATE TABLE command ahéforeany data is added to the table.

You cannot drop and then recreate a clustered hashed index on an empty table if rows
existed previously but were then deleted. You must first drop and then recreate the
table before you recreate the index.

ASC
DESC

This specifies whether the index is in ascending or descending order. ASC is the
default order. This clause is only relevant for B-tree indexes.

SQL Language Reference ~ 3-37

Chapter

3

SQL Command Reference

3-38

PCTFREE integer constant

The PCTFREE (percent free) clause specifies how much free space to allocate in
each index entry when the index is initially built. After the index is built, key

insertions and deletions can make the actual free space vary between 0% and 50%. If
not specified, the default free space is 10%.

The PCTFREE keyword is followed by a number (between 0 and 99 inclusive) that
specifies the percentage of free space to be left in each index entry when the index is
first built.

Normal values are 0-50%. Specifying 90-99% makes a binary index tree (2 entries
per page) which results in the maximum height B-tree. This degrades retrieval
performance.

This clause is ignored for a CLUSTERED HASHED index.

SIZE integer constant

Specify this clause in conjunction with either ROWS or BUCKETS. This controls the
"expected" size of the index and is specified as a number of rows or buckets. If the
size is too small, overflow pages are used and performance degrades. If the size is too
large, overflow pages are not used, but disk space is wasted. This clause is only
relevant for clustered hashed indexes.

You must specify this clause if you specify the CLUSTERED HASHED clause.

ROWS

Use this clause in conjunction with the Sliteger valueclause to specify the

number of rows to store a clustered hashed index. If you use SIZE..ROWS instead of
SIZE...BUCKETS, SQLBase calculates the actual number of primary buckets and
round up to the nearest prime number for the hash based on the number of rows
specified, the size of the row from the sum of all declared column widths, and the
SQLBase page size.

BUCKETS

Use this clause in conjunction with the Sliteger valueclause to directly specify

the number of primary bucket pages to store clustered hashed index and data.
SQLBase allocates primary buckets in SQLBase pages to store the clustered hashed
index and its data. The primary buckets are the direct entries into the hash table, and
require only one /O for access. SQLBase will round up the specified BUCKETS
value to the nearest prime number to obtain better hash distribution.

The number of pages for the primary buckets is stored in the
SYSADM.SYSINDEXES.PRIMPAGECOUNT column. However, when you specify
the clustered hashed index in buckets, the SYSADM.SYSINDEXES.IXSIZE column
containing the number of ROWS can be null.

SQL Language Reference

CREATE INDEX

Examples

See also

Create an index named HIRE_IDX using the HIREDATE column.
CREATE INDEX HIRE_IDX ON EMP (HIREDATE);
Create a concatenated index composed of LNAME and FNAME.

CREATE INDEX NAME_IDX ON EMP (LNAME, FNAME);
Create a descending index on the EMP_IDX column of the EMP table. Disallow
duplicate part numbers.

CREATE UNIQUE INDEX EMP_IDX ON EMP (EMPNO DESC);
This example illustrates the creation and use of a case insensitive index.
CREATE INDEX LN_IDX ON EMP (@UPPER(LNAME));

In the above example, an upper case index is created for LNAME. This index is used
when the @UPPER function is specified in the WHERE clause of a SELECT, thereby
using case insensitive sort order and using the index. The following example
illustrates this.

SELECT LNAME FROM EMP WHERE
@UPPER(LNAME) = 'JONES' ORDER BY 1;

NAME

JONES
Jones
jones

3 Rows Selected
Create an index on the first 3 characters of a column.

CREATE INDEX CODE_IDX ON EMP
(@LEFT(DEPTNO, 3));

The select command that uses this index must agree with the definition of
CODE_IDX.

Get all the rows for people in the ‘250’ division.

SELECT * FROM EMP WHERE
@LEFT(DEPTNO,3) = '250";

CREATE TABLE

SQL Language Reference ~ 3-39

Chapter 3 SQL Command Reference

CREATE STOGROUP

»P»— CREATE STOGROUP stogroup name
»— USING L dbarea-name <<

This command creates a storage group. If the volumes containing the database areas
are not mounted, an error occurs when you try to create a database.

Clauses
stogroup name
This names the storage group that you create. The maximum length of the storage
group name is 18 characters.
USING dbarea name
This is a list of database areas. Database areas must already exist.
Example
CREATE STOGROUP ACCTDEPT USING ACCT1, ACCTZ2;
See also

ALTER STOGROUP
DROP STOGROUP

3-40 SQL Language Reference

CREATE SYNONYM

CREATE SYNONYM

»- FOR

»P»— CREATE SYNONYM synonym-name »
_ PUBLIC J

object name ———— <4<
TABLE

— EXTERNAL FUNCTION —

COMMAND

PROCEDURE

This command defines an alternate name for a table, view, external function, stored
command, or stored procedure. Alternate names let you reference another user's
tables, views, external functions, stored commands, or stored procedures without
having to use the qualified namauth-id.table-name or auth-id.external function-
namsg.

You can create synonyms for a table, view, external function, stored command, or
stored procedure, if you own the given object. If you own an external function, you
can also grant/revoke execute privileges on that function. If execute authority is
granted on a synonym for a function, the base name is inserted into the
SYSOBJAUTH table.

Synonyms for tables are stored in the SYSADM.SYSSYNONYMS system catalog
table. Synonyms for external functions, stored commands, and stored procedures are
stored in the SYSADM.SYSOBJSYN system catalog table.

Synonyms used in a command can only be executed by the creator of the synonym.

If you create a local synonym with the same name as a PUBLIC synonym, the local
definition overrides the public definition.

When an external function, stored command, or stored procedure is invoked,
SQLBase looks for the function in this order of precedence:

» functions owned by the creator of the invoking object
* private synonyms

SQL Language Reference 3-41

Chapter 3

SQL Command Reference

Clauses

* public synonyms

PUBLIC

This allows you to access the table, external function, stored command, or stored
procedure through the synonym without fully qualifying the object name with the
authorization-id of the owner.

You must own the table, external function, stored command, or stored procedure or
be a DBA or SYSADM to create a PUBLIC synonym.

You must have the appropriate privileges on the underlying table, external function,
stored command, or stored procedure to access it through a PUBLIC synonym.

synonym name

The synonym is named in the same manner as a table, view, external function, stored
command, or stored procedure. It must not be the same as any other synonym, table,
view, external function, stored command, or stored procedure that you own. The
same rules for naming tables, views, external functions, stored command, or stored
procedure also apply to synonyms.

You can create synonyms for tables called “TABLE”, “EXTERNAL”,
“COMMAND?”, or “PROCEDURE.”

Note: The called name of an external function can be the synonym name for the function rather
than the actual function name. The SYSDEPENDENCIES catalog maintains dependencies
between a stored procedure and the called name of an external function.

object name

The name of an object type can be a table, view, external function, stored command,
or stored procedure. The table-name can name an existing view or table in the
database. The view-name must name an existing view or table in the database. The
external function name, stored command name, or stored procedure name must name,
respectively, an existing external function, stored command, or stored procedure in
the database.

TABLE
If the object type is omitted, the default is TABLE.

EXTERNAL FUNCTION

You must specify EXTERNAL FUNCTION after the FOR keyword when creating a
synonym for an external function.

3-42 SQL Language Reference

CREATE SYNONYM

Examples

See also

COMMAND

You must specify COMMAND after the FOR keyword when creating a synonym for
a stored command.

PROCEDURE

You must specify PROCEDURE after the FOR keyword when creating a synonym
for a stored procedure.

CREATE PUBLIC SYNONYM SN2 FOR EXTERNAL FUNCTION MYFUNC;
CREATE SYNONYM SN2 FOR EXTERNAL FUNCTION MYFUNC,;

Note that in the following examples, since no object type is included, the object type
defaults to TABLE.

CREATE SYNONYM ES FOR USER1.EMPSAL,;
CREATE SYNONYM ES FOR EMPSAL,;
CREATE PUBLIC SYNONYM ES FOR SYSADM.EMPSAL,;

CREATE TABLE

CREATE EXTERNAL FUNCTION
GRANT EXECUTE ON

REVOKE EXECUTE ON

SQL Language Reference ~ 3-43

Chapter

3

SQL Command Reference

CREATE TABLE

»-

‘)'>_ CREATE TABLE table name

P (— column name ~ — data type
L NOT NULL J

NOT NULL WITH DEFAULT

~ PRIMARY KEY

KEY

FOREIGN .[—], (ﬂlmn) — REFERENCES — parent

—»

A\

column name |)

(

name table

key name name \'ON RESTRICT —]
DELETE
CASCADE —|

SET NULL —

_>

IN

|— database name. J

IN DATABASE database name

tablespace name — LPCTFREE integer constant A

3-44

This command creates a table with the specified columns. You can define a maximum
of 253 columns for each table. You must have RESOURCE, SYSADM, or DBA
authority to execute this command.

When you use CREATE TABLE with referential constraints, you should define a
foreign key with the same specifications as the primary key of the parent table. A
referential constraint defines the rules for a relationship between the primary key of a
parent table and a foreign key of a dependent table. A referential constraint requires
that for each row in a dependent table, the value of the foreign key must appear as the
primary key of a row in the parent table.

You must designate the parent table name when you define the foreign key. This
parent table must have a primary key and a primary index. You can also specify the
delete rule of the referential constraint. The default rule is RESTRICT.

Like all DDL commands, this command locks system tables while executing.

SQL Language Reference

CREATE TABLE

Clauses

table name
A fully-qualified SQL table name has the form:

authorization-id. table-name

The authorization-id is a qualifier denoting the creator of the table. The combined
authorization-id.table name must form a unique name which does not identify any
existing table, view, or synonym in the database.

When you create a table, if you do not specify the authorization-id, your default
authorization-id is automatically prefixed to the table name.

column name

A column name must begin with a letter (A through Z and the special characters #, @
and $) and must not exceed 18 characters.

A fully-qualified column name has the form:
table namecolumn name

You can use the unqualified column name when you define the table, and it must be a
long identifier (18 characters maximum). Each column name must be unique within a
table.

data type

A column can be one of the following data types. These data types are described in
the sectiorData typeson page?-7.

CHAR (length)
VARCHAR (length)
DECIMAL [(precision, scale)]
FLOAT

INTEGER

LONG VARCHAR
NUMBER
SMALLINT

DATE

DATETIME

TIME
TIMESTAMP

Columns defined as CHAR or VARCHAR require a length attribute.

Columns defined as DECIMAL have a default size attribute of 5,0; any other
precision and scale must be declared in parentheses.

SQL Language Reference 3-45

Chapter

3 SQL Command Reference

3-46

SQLBase does not allocate the full space for a row when it is inserted with null

columns. An application that inserts a row with uninitialized columns and later writes
values to those columns will expand the row with extent pages. To avoid the extent
pages, the application should write blank-filled columns on the first INSERT of each

row.

PRIMARY KEY
This creates the primary key for the table. The following rules apply to primary keys:

If a table has a primary key, you must also create a unique index on the
primary key columns to make the table complete. See the CREATE INDEX
command for more information.

The primary key format must obey the following rules:

e Cannot contain more than 16 columns.

e Sum of the column length attributes cannot be greater than 255 bytes.
e Cannot contain LONG or LONG VARCHAR columns.

You cannot use an UPDATE WHERE CURRENT clause with a primary key
column.

In a self-referencing row, you cannot update the primary key value. If a row
is aself-referencing rowits foreign key value is the same as its primary key
value.

The values of the primary key must be unique; no two rows of a table can
have the same key values.

A table can have only one primary key.

The primary key can be made up of one or more columns in a table. This is
called a composite primary key. Separate the columns with a comma.

Each column in the primary key must be classified with the NOT NULL
constraint. However, you should not use the NOT NULL WITH DEFAULT
option unless the primary key column(s) has a data type of TIMESTAMP or
DATETIME.

An updateable view defined on a table with a primary key must include all
columns of the primary key. Although this is only required if you use the
view in an INSERT statement, the resulting unique identification of rows is
also useful if the view is used for updating, deleting, or selecting.

If you try to insert a row into a view that does not contain values for all of the
primary key columns, the following message appears:

NOT ENOUGH NON-NULL VALUES

This message appears because all the primary key columns are defined as
NOT NULL (since a primary key cannot contain NULL values).

SQL Language Reference

CREATE TABLE

If you decide later to change the order of the primary key columns, you must use the
following steps:

1. Run ALTER TABLE (referential integrity) and drop the primary key.
Drop the primary index with DROP INDEX.

2
3. Recreate a unique index on the new primary key columns with CREATE INDEX.
4

Run ALTER TABLE (referential integrity) again to re-add the primary key with
the new column order.
FOREIGN KEY

This specifies the foreign key for a table. Every value in a foreign key must match
some value in the primary key from which the foreign key column originates.

The parent table must have a unique index on the primary key.

The following rules apply to foreign keys:

Matching columns. A foreign key must contain the same number of
columns as the primary key. The data types of the foreign key columns must
match those of the primary key on a one-to-one basis, and the matching
columns must be in the same order.

However, the foreign key can have different column names and default
values. It can also have NULL attributes. If an index is defined on the foreign
key columns, the index columns can be in ascending or descending order,
which may be different from the order of the primary key index.

Using primary key columns. A column can belong to both a primary and
foreign key.

Foreign keys per table. A table can have any number of foreign keys.

Number of foreign keys. A column can belong to more than one foreign
key.

Number of columns. A foreign key cannot contain more than 16 columns.

Parent table. A foreign key can only reference a primary key in its parent
table. This parent table must reside in the same database as the foreign key.

NULL values. A foreign key column value can be NULL. A foreign key
value is NULL if any column in the foreign key is NULL.

Privileges. You must grant ALTER authority on a table to all users who
need to define that table as the parent of a foreign key.

System catalog table. The foreign key cannot reference a system catalog
table.

Views. A foreign key cannot reference a view.

SQL Language Reference 3-47

Chapter

3

SQL Command Reference

3-48

» Self-referencing row. In a self-referencing row, the foreign key value can
only be updated if it references a valid primary key value. If a rovsétfa
referencing rowjts foreign key value is the same as its primary key value.

key name

You can assign a nhame to the foreign key to identify it. This name is called a
constraint name. If you do not specify a name yourself, SQLBASE generates a
constraint name from the name of the first foreign key column.

A foreign key constraint name can have up to 18 characters. This means that if the
first foreign key column name is more than 18 characters, you must assign a
constraint name yourself that does violate this limit. Otherwise, SQLBase will not
create the foreign key.

If there are multiple foreign keys referencing the same table, each foreign key must
have a unique name. This ensures that every referential constraint is uniquely
identified by a table name/constraint name combination.

REFERENCES
This identifies the parent table in a relationship and defines the necessary constraints.
The REFERENCES clause must accompany the FOREIGN KEY clause.

NOT NULL

If you declare a column NOT NULL, it requires data to be present in the column
every time a row is added to the table. If omitted, the column can contain null values,
and its default value is the null value.

NOT NULL WITH DEFAULT

The NOT NULL WITH DEFAULT clause prevents a column from containing null
values and allows a default value other than the null value.

The default value used depends on the data type of the column, as follows:

Data Type Default Value
Numeric 0 (zero)
Date/Time Current date/time
Character One blank

The NOT NULL WITH DEFAULT clause causes the INSERT to insert the above
defaults. If the column is not specified in the INSERT command, SQLBase puts a 'D’
in the NULLS columns of the SYSCOLUMNS table and treats it like a NOT NULL
field.

The NOT NULL WITH DEFAULT clause is compatible with DB2.

SQL Language Reference

CREATE TABLE

Examples

IN DATABASE database name

IN [database name] tablespace name

SQLBase accepts these clauses but ignores them. The IN clauses are compatible with
DB2.

ON DELETE

This specifies the DELETE rules for the table.

The DELETE rules are optional.
The default is RESTRICT.
DELETE rules are only used to define a foreign key.

CASCADE

This deletes the selected rows first, and then deletes the dependent rows, honoring the
delete rules of their dependents.

RESTRICT
This specifies that a row can be deleted if no other row depends on it. If a dependent
row exists in the relationship, the delete will fail.

SET NULL

This specifies that for any delete performed on the primary key, matching values in
the foreign key are set to null.

PCTFREE integer constant

This sets the free space left in each table row when it is first filled. The default free
space is 10 percent.

If you plan to expand rows later by adding more columns or increasing the width of
existing columns, this feature leaves space for expansion so that extension pages are
not needed.

Also, for small, heavily-accessed tables where page locking can cause contention, the
PCTFREE option can force fewer rows to be assigned to each page which reduces
contention.

The PCTFREE value must be between 0 and 99.

Create a table EMP for storing employee data and EMPSAL for keeping a salary
history.
CREATE TABLE EMP

(EMPNO INTEGER NOT NULL,
LNAME VARCHAR(15),
FNAME CHAR(10),

SQL Language Reference ~ 3-49

Chapter 3 SQL Command Reference

DEPTNO SMALLINT,
HIREDATE DATE,
JOB VARCHAR (15));

CREATE TABLE EMPSAL

(EMPNO INTEGER NOT NULL,
SALARY DECIMAL(5,9,2),
REVIEW LONGVARCHAR;

Create a table that allows the foreign key EMPNO in the EMPSAL table to reference
EMPNO in the EMP table, with a DELETE CASCADE rule.

CREATE TABLE EMP
(EMPNO INT NOT NULL,
LNAME VARCHAR(15),
FNAME CHAR(10),
DEPTNO SMALLINT,
HIREDATE DATE,

JOB VARCHAR (15)
PRIMARY KEY (EMPNO));

CREATE UNIQUE INDEX EMP_IDX ON EMP (EMPNO);

CREATE TABLE EMPSAL (EMPNO INTEGER, SALARY DECIMAL (9,2),
REVIEW LONG VARCHAR,
FOREIGN KEY (EMPNO) REFERENCES EMP
ON DELETE CASCADE);

See also
ALTER TABLE
CREATE INDEX
DELETE
UPDATE

3-50 SQL Language Reference

CREATE TRIGGER

CREATE TRIGGER

»P»- CREATE TRIGGER trigger name —E BEFOREJ >
AFTER
UPDATE { u ON table name L J)
OF i trigger column name ORDER -sequence
number
DELETE
INSERT
> L ‘ >
REFERENCING — OLD old values
[As] table name —L NEW new values
[AS] table name
NEW —m— new values
As) table name |—o|_D T old values J
AS table name
»—— (EXECUTE stored procedure name - (L J)) >»
parameters
INLINE - (L J) — procedure text)
parameters
<<

T

FOR EACH —[STATEMENT]

ROW

This command creates a trigger on a table. You cannot define a trigger on a view even
if the view is based on a single table.You must be the owner of the table, or a user
with SYSADM or DBA authority, to create a trigger on the table. For a general
description of triggers and their use, r&thpter 7, Procedures and Triggers

SQL Language Reference 3-51

Chapter 3 SQL Command Reference

You can define up to sixteen triggers for each combination of table, event (INSERT,
UPDATE, DELETE), time (BEFORE and AFTER), and frequency (FOR EACH
ROW and FOR EACH STATEMENT).For details, read the section “BEFORE and
AFTER” underClauseson page3-57.

Because triggers can be activatedaby user’s attempt to INSERT, UPDATE, or

DELETE data, no privileges are required to execute them. When a trigger is
activated, the action statements are executed on behalf of the table owner, not the user
who activates the trigger. However, to create a trigger which uses a stored procedure,
one of the following conditions must be true:

* You have SYSADM or DBA authority.
e You own the table and the stored procedure,
or

* You own the table and have been granted execute authority for the stored
procedure.

If you have either SYSADM or DBA authority and create a table for another user,
SQLBase assumes that unqualified names specified in your TRIGGER statement
belong to the user. For example, assume you execute the following command as
SYSADM:

CREATE TRIGGER A.TRIG BEFORE UPDATE on EMP...

Since table EMP is unqualified, SQLBase assumes that the qualified table name is
A.EMP, not SYSADM.EMP.

Triggers do not need a commit from the invoking transaction in order to fire; DML
statements by themselves cause triggers to fire.

If a procedure returns a non-zero value to a trigger, the trigger causes its invoking
DML command to fail with the error message associated with the return code in
error.sgl For example, if you have an INSERT trigger that calls a procedure, and the
procedure returns 906 to the trigger, the INSERT command invoking the trigger will
fail with error code 906 (Invalid table name). However, any commands in the
transaction prior to the (failed) invoking DML statement are not rolled back.

Note: Triggered SQL statements are a part of the invoking transaction. If the invoking DML
statement fails due to either the trigger or another error generated outside the trigger, all SQL
statements within the trigger are rolled back along with the failed invoking DML command.

It is the responsibility of the invoking transaction to commit or rollback any DML
statements executed within the trigger’s procedure. However, this becomes irrelevant
if the DML command invoking the trigger fails as a result of the associated trigger. In

3-52 SQL Language Reference

CREATE TRIGGER

this situation, any DML statements executed within that trigger’s procedure are
automatically rolled back.

In certain situations, SQLBase allows you to drop a table that has a dependent trigger
or stored procedure defined on it. SQLBase does not issue a warning, but instead,
during execution, issues a runtime error that the table does not exist. For example,
assume you create two tables, A and B. You then create an update trigger (TRIG_A)
on table A that calls a stored procedure (SP_A) to insert data into table B.

If you attempt to drop table B, SQLBase accepts your DROP TABLE command
without warning you that TRIG-A is a dependent object of table B. If you go on to
update table A, the trigger issues a runtime error that table B does not exist. SQLBase
rolls back the command and does not permit you to update table A until you recreate
table B or drop the trigger. Note that similar behavior in this example occurs if you
drop stored procedure SP_A.

SQLBase also issues an error when you attempt to load triggers or static procedures
that reference dropped or altered objects. To prevent the error:

* Recreate any referenced object that you drop, or

» Restore any referenced object you changed back to its original state (known
by the procedure or trigger).

Following are restrictions to note when creating triggers:

* You cannot alter a table that has a trigger defined on it.
* You cannot create a trigger on a system catalog table.

« If aa DML statement updates a row that causes a trigger to be fired, you
cannot update the same row again within that trigger.

In the following example a trigger updates a row that was just inserted by a
DML statement and causes SQLBase to generate an error:

CREATE TABLE EMP (c1 int);

CREATE TRIGGER TRIG1 after insert on EMP
(EXECUTE inline (EMP.rowid)
PROCEDURE P1

string: Rowldentifier

Action
call Sgllmmediate('update EMP set \
(cl =cl + 5 where EMP.rowid =: Rowldentifier"))

for each row;

If you use a trigger to perform such actions like the one in the previous
example, SQLBase returns error 848 (“Row being processed for a DELETE/

SQL Language Reference 3-53

Chapter

3 SQL Command Reference

UPDATE was modified by triggered actions”) when the invoking DML is
executed.

For restrictions on setting default/derived column values when using receive
parameters in triggered stored procedures, Usahy receive parameters on
page 3-55

Triggers and Procedures

3-54

Triggers can call stored procedures and cause SQLBase to execute other triggers. You
can nest triggers up to 8 levels deep. If a trigger gets into an infinite loop, SQLBase
detects this recursive action when the 8-level nesting maximum is reached and
returns an error to the user. For example, you could activate a trigger by attempting to
insert into the table T1 and the trigger could call a stored procedure which also
attempts to insert into T1, recursively activating the trigger.

If a set of nested triggers fails at any time, SQLBase rolls back the command which
originally activated the triggers.

By defining a trigger to a procedure, you can set default or derived column values in
INSERT and UPDATE operations. When you create the trigger for this purpose using
the CREATE TRIGGER command, the trigger must comply with these rules:

* The trigger must be executed BEFORE the INSERT or UPDATE operation.

You can modify column values only with a BEFORE...ROW trigger.
Because the column value must be set before the INSERT or UPDATE
operation, using the AFTER...ROW trigger to set column values is
meaningless. Note also that the DELETE operation does not apply to
modifying column values.

e Foran UPDATE operation, the REFERENCING clause must contain a NEW
column value for modification.

Note that it is meaningless to modify the OLD column value. For an INSERT
operation, all values are new by default.

» The trigger must be specified with the FOR EACH ROW clause.

Column values cannot be passed to triggers that are specified with the FOR
EACH STATEMENT clause. Note that you must change the default which
is FOR EACH STATEMENT.

* You must pass the column you want to modify as a receive parameter to the
procedure that is triggered. See examples in section that follows.

Note when using procedure logic, the column value may be modified under
some conditions, or left the same under other conditions.

SQL Language Reference

CREATE TRIGGER

Using receive parameters

When you set default/derived column values when using receive parameters in
triggered stored procedures, note these restrictions:

* Only columns can be used for receive parameters.

» Delete triggers cannot use receive parameters.

« After triggers cannot use receive parameters.

e Old column values cannot be passed as receive parameters.
In this example, a trigger modifies a column value from null to five.

CREATE TABLE t1 (c1 int);

CREATE TRIGGER tgl before insert on t1
(EXECUTE inline (c1)
PROCEDURE p1 static
parameters
receive number : n
actions
setn =5)
for each row;

insert into t1 values (null);

This next example applies the same rule as the first example when setting a column
with derived values. In the example, column c3 is set to the sum of the other two
columns.

CREATE TRIGGER tgl before insert on t1

(EXECUTE inline (c1, c2, c3)
PROCEDURE p1 static
parameters

number : cl

number : c2

receive number: c3
actions

setc3 =cl + c2)
for each row;

General restrictions

Following are general restrictions when creating triggers with stored or inline
procedures:

e You cannot use dynamic stored procedures with triggers.

e Atrigger cannot call a non-stored procedure. You must always store static
procedures with the STORE command.

SQL Language Reference 3-55

Chapter

3

SQL Command Reference

* You cannot pass SQL @ functions as parameters to procedures that are
referenced by triggers.

e You cannot pass expressions and constants as receive parameters to triggered
procedures. Only columns can be passed as receive parameters to modify
their values.

» Itis recommended that you not define a trigger to a procedure that modifies
any table referenced in a DML statement with a subselect or WHERE clause.
For example:

DELETE FROM T1 WHERE C1 > 3

In the example, note that a triggered procedure cannot modify Table T1 since
it is referenced by the WHERE clause. The actions of the trigger can cause
the subselect or WHERE clause of the invoking DML statement to return
unpredictable results.

Triggers and Referential Integrity

3-56

Triggers are useful for implementing referential integrity constraints that are not
supported by standard declarative SQLBase referential integrity (described in
Chapter 6, Referential IntegrityFor example, you can use triggers to implement an
UPDATE CASCADE or UPDATE SET NULL constraint.

You can also use triggers to enforce DELETE constraints instead of implementing
SQLBase declarative referential integrity DELETE constraints. For example, you can
specify a delete rule for each parent/dependent relationship. This delete rule tells
SQLBase what to do when a user tries to delete a row of the parent table.

Be aware, however, that SQLBase does not perform cycle or conflict checks if you
use triggers to enforce referential integrity rules instead of using the SQLBase
declarative referential integrity feature. Also be aware, that if you want to implement
UPDATE CASCADE using triggers, you must remove the referential integrity
constraints you have defined since the UPDATE statement is not allowed.

The following actions summarize the order of operation for referential integrity
checks:

1. BEFORE STATEMENT trigger

2. Referential integrity check to see if a particular DML is allowed
3. BEFORE ROW trigger
4

Referential integrity operation (delete cascade, set null or restrict) that is required.
For example, in a delete cascade referential integrity, the dependent rows are
deleted, or in a update set null referential integrity, the dependent rows will be set
null.

5. DML (update, delete)

SQL Language Reference

CREATE TRIGGER

Clauses

6. AFTER ROW trigger
7. AFTER STATEMENT trigger

This matrix describes what triggers can be created on a table with the following
declarative referential integrity rules:

Declarative RI INSERT DELETE UPDATE
Constraint Type TRIGGER TRIGGER TRIGGER
On Delete Cascade Yes No Yes
On Delete Restrict Yes Yes Yes
On Delete Set Null Yes Yes *No

* This is “NO” only if the column list referenced in the trigger definition contains a
column which is all or a part of the foreign key for that table.

trigger name
The name of the trigger. This can contain up to 18 characters.

BEFORE or AFTER

Specify whether to execute the trigger before or after the data modification (the
invoking DML statement). In some circumstances, the BEFORE and AFTER clauses
are interchangeable. However, there are some situations where you should use one
clause instead of the other:

» Using the BEFORE clause is more efficient than the AFTER clause when
performing data validation such as domain constraint and referential integrity
checking.

 The AFTER clause can provide additional processing of table rows which do
not yet exist but become available from the invoking DML statement.
Conversely, it can also confirm data deletion after the invoking DELETE
statement.

You can define up to sixteen triggers for each combination of table, event (INSERT,
UPDATE, DELETE), time (BEFORE and AFTER), and frequency (FOR EACH
ROW and FOR EACH STATEMENT). For example, you can define sixteen triggers
for each BEFORE EACH STATEMENT, BEFORE EACH ROW, AFTER EACH
ROW, and AFTER EACH STATEMENT, providing a total of 64 triggers. In addition,
if you provide INSERT, UPDATE, and DELETE triggers to these combinations, you
can have a total maximum of 192 triggers.

The following example shows triggeyibrO1 defined BEFORE INSERT ON tahig
FOR EACH ROW. You can define 15 more CREATE TRIGGER statements with the

SQL Language Reference ~ 3-57

Chapter

3 SQL Command Reference

3-58

same combination. You can define for example trigtgebs02 throughtgibrl5 with
inline procedure®ibr02 throughPibr15.

CREATE TRIGGER tgibro1 BEFORE INSERT ON t1
(EXECUTE INLINE()
PROCEDURE Pibr01 STATIC

LOCAL VARIABLES

NUMBER nl1
NUMBER n2
ACTIONS

ON PROCEDURE EXECUTE
setn2 =11101
call SQLImmediate('insert into t2 values (:n2) ")

)
FOR EACH ROW

Note that if more than one trigger is created on the same combination of table, event,
time, and frequency, be sure to use the ORDER clause. If you do not use the ORDER
clause, SQLBase randomly assigns a firing order for the set of triggers.

The BEFORE and AFTER clauses have different implications and advantages for
each DML operation. Here are some examples:

UPDATE BEFORE Can be used to verify that updated data adheres to integrity
constraint rules before performing an UPDATE. If you use
the REFERENCING NEW A®ew values tablename
clause of the CREATE TRIGGER command with the
BEFORE UPDATE clause, then the updated values are
accessible to the triggered SQL statements.

In the trigger, you can set default column values or derived
column values before performing an UPDATE. The column
to be modified must be passed as a receive parameter to the
triggered procedure. Read the secflsiggers and
Proceduresn page3-54

AFTER Can be used to perform operations on data just updated. For
example, you can compile new projected regional sales
figures after updating the address of one of your large
distributors following a recent move.

If you use the REFERENCING OLD Adld values
tablenameclause of the CREATE TRIGGER command
with the AFTER UPDATE clause, then the values that
existed prior to the invoking update are accessible to the
triggered SQL statements.

SQL Language Reference

CREATE TRIGGER

INSERT BEFORE Can be used to verify that inserted data adheres to integrity
constraint rules before performing an INSERT. Column
values passed as parameters are visible to the triggered SQL
statements but the inserted rows are not.

In the trigger, you can set default column values or derived
column values before performing an INSERT. The column

to be modified must be passed as a receive parameter to the
triggered procedure. Read the secfloiggers and
Proceduresn page3-54

AFTER Can be used to perform operations on the data just inserted.
For example, after inserting a customer’s order, you can
calculate the total price of all the items ordered to see
whether it exceeds the customer’s credit limit.

Both column values passed as parameters and inserted rows
are visible to the triggered SQL statements.

DELETE BEFORE Can be used to perform operations based on the soon-to-be-
deleted data. Both column values passed as parameters and
deleted rows are visible to the triggered SQL statements.

AFTER Can be used to confirm the deletion of data. Column values
passed as parameters are visible to the triggered SQL
statements, but the deleted rows are not.

Commits and autocommits from the invoking transaction of INSERT, UPDATE, and
DELETE statements on tables which have triggers oaftertrigger-related
processing.

INSERT
Specify that the trigger is to be activated by an INSERT on the table.

Loading data is considered inserting.

DELETE
Specify that the trigger is to be activated by a DELETE on the table.

UPDATE
Specify that the trigger is to be activated by an UPDATE on the table.
You cannot reference the same column by more than one update trigger.

SQLBase allows you to recursively update the same table, and does not prevent you
from recursively updating the same row.

If multiple update triggers are defined on a table, you can use the ORDER clause to
specify the firing order for the set of triggers. If you do not specify the ORDER

clause, SQLBase decides a random order in which to execute them. Be sure to use the
ORDER clause when you create triggers that depend on a particular execution order.

SQL Language Reference 3-59

Chapter

3

SQL Command Reference

3-60

SQLBase does not detect situations where the actions of different triggers cause the
same data to be updated. For example, assume two update triggers on different
columns, Coll and Col2, of the table Tbl1. When you attempt to UPDATE all the
columns of Tbl1, the two triggers are activated. Both triggers call stored procedures
which update the same column, Col3 of a second table, Thl2. The first trigger updates
Tbl2.Col3 to 10 and the second trigger updates Thl2.Col3 to 20.

Likewise, SQLBase does not detect situations where the result of an UPDATE which
activates a trigger conflicts with the actions of the trigger itself. For example,
consider the following SQL statement:

UPDATE t1 SET c1 = 10 WHERE ¢3 = 5;

If the trigger activated by this UPDATE then calls a procedure that contains the SQL
statement:

UPDATE t1 SET c1 =7 WHERE c1 = 10;
the result of the UPDATE which activated the trigger is overwritten.

Note: This example can lead to recursive trigger execution and should be avoided.

OF trigger column name
Activates the trigger when a user attempts to update the specified columns.

Each column can appear in at most one BEFORE and one AFTER trigger.

If you do not specify one or more column names, SQLBase assumes all of the table’s
columns.

ORDER sequence number

Use this clause in conjunction with a sequence number to specify the order you want
a given set of triggers to be fired. The order for each set is specified in ascending
order. For example, a BEFORE row action trigger with the number 0 is the first
trigger to be fired for the row BEFORE the action; the trigger with the order number
of 999 is the last to be fired.

If you omit the order clause for a trigger, SQLBase randomly assigns the trigger a
sequence number (400 through 599) that does not conflict with any existing sequence
number assignments. From that number on, the ordering remains valid.

You can define a maximum of 16 triggers for each combination of table, event, time,
and frequency. In the case of UPDATE triggers, the limit is applied without regard to
the column list specification. If you define more than one trigger for the same time,
event and frequency, you must specify a different order number for each trigger.

Valid values for the ORDER clause sequence number are 0 through 399 and 600
through 999.

SQL Language Reference

CREATE TRIGGER

REFERENCING

Use this clause only when defining a trigger on an UPDATE operation. The
REFERENCING clause provides you with a way to reference both the old column
values and the new updated column values by aliasing the table on which the
UPDATE operation takes place.

You cannot specify both a REFERENCING clause and a FOR EACH STATEMENT
clause in the trigger definition. Because there may be multiple rows or no rows that
meet the criteria, there is no one single value for SQLBase to use.

If you specify neither the old values table name nor the new values table name,
SQLBase decides the values by trigger action time depending on whether you
specified that the trigger should execute before or after the data modification. If you
specified that the trigger should exeché&foredata modification, SQLBase assumes
old values. If you specified that the trigger should exeafite data modification,
SQLBase assumes new values.

OLD AS old values table name NEW AS new values table name

This is a subclause of the REFERENCING clause. It allows you with to reference the
values of columns both before and after an UPDATE operation. It produces a set of
old and new values which can be passed to an inline or stored procedure which
contains logic used to evaluate these parameter values. An example is domain
constraint checking.

Use the OLD AS clause to alias the table’s column values as they eafoeethe
UPDATE. Use the NEW AS clause to alias the table’s column values as they exist
afterthe UPDATE.

You cannot use the same name fordlevalues table namand thenew values table
name

NEW AS new values table name OLD AS old values table name

This is a subclause of the REFERENCING clause. It provides you with the means to
reference the values of columns both before and after an UPDATE operation.

Use the NEW AS clause to alias the table’s column valfiesthe UPDATE. Use the
OLD AS clause to alias the table’s column values as they eXisfetethe UPDATE.

You cannot use the same name forritbes values table nanand theold values table
name

(EXECUTE...)
This command executes a stored or inline procedure. The procedure must be static.

SQL Language Reference 3-61

Chapter

3

SQL Command Reference

3-62

stored procedure (parameters)
INLINE (parameters) procedure text

A stored procedure is a previously-compiled and named set of SQL statements that
can contain flow control language. Re@lapter 7, Procedures and Triggdos

detailed information on stored procedures. The procedure requires parenthesis to
indicate a parameter set, even if the parameter set is empty.

Bind variables cannot be passed as parameters.

Columns of LONG VARCHAR data type are not supported. This means that you
cannot pass a LONG VARCHAR column as a parameter to a procedure. You can only
pass column names (of the table associated with the trigger) and constants. You can
pass rowids as parameters. You cannot pass aggregate functions or non-aggregate
functions (those that begin with an “@").

Instead of specifying a stored procedure name, you can also type in an inline
procedure here. If the procedure expects input, you can pass parameter values in the
(parameterspart of the command line.

If the procedure returns a non-zero return code, the trigger nullifies its invoking
INSERT, UPDATE, or DELETE command, and the command fails with the error
message associated with that return code.

An ON PROCEDURE FETCH statement is executed only if it contains receive
parameters.

When a procedure is called by a trigger, SQLBase returns a runtime error if the stored
procedure contains any of these commands:

COMMIT
ROLLBACK
SAVEPOINT
SET ISOLATION

FOR EACH STATEMENT or ROW

Specify whether the stored procedure should be executed on a
per-row or per-statement basis. FOR EACH STATEMENT is the default.

A trigger defined with a FOR EACH ROW clause is activated only when the
WHERE clause of an INSERT, UPDATE, or DELETE statement evaluates to TRUE
and one or more rows qualify.

A trigger defined with a FOR EACH STATEMENT clause is always activated
whenever a user attempts to INSERT, UPDATE, or DELETE a row of the table (even
if no rows qualify for the operation’s WHERE clause).

SQL Language Reference

CREATE TRIGGER

Examples

For example, assume you define the following trigger:

CREATE TRIGGER trg_update

AFTER UPDATE ON t1 REFERENCING OLD AS oldt1
NEW AS newtl (EXECUTE sp1l (oldtl.c1, oldtl.c2, newtl.cl,
newtl.c2)) FOR EACH ROW;

If you attempt to update the table and no rows meet the conditions specified in the
UPDATE statement’s WHERE clause, SQLBase du#&xecute spl.

Now assume that you defined the trigger with a FOR EACH STATEMENT clause,
and the trigger called a procedure sp2 that inserts an aggregate total into a table called
SUMMARY:

CREATE TRIGGER trg_update AFTER UPDATE ON t1 (EXECUTE sp2())
FOR EACH STATEMENT;

If you attempt to update the table t1 and no rows meet the conditions specified in the
UPDATE statement’s WHERE clause, SQLBase still executes sp2.

You cannot specify both a REFERENCING clause and a FOR EACH STATEMENT
clause in the trigger definition. Because there may be multiple rows or no rows that
meet the criteria, there is no one single value that SQLBase can use for the evaluation.

You cannot pass column names as parameters to stored or inline procedures called by
a trigger with a FOR EACH STATEMENT clause.

INSERT statements with multiple bind value rows are treated as multiple insert
statements. This is important to remember when you use the FOR EACH
STATEMENT clause. For example, FOR EACH STATEMENT clause considers the
following INSERT statements as three INSERT statements:

Insert into T1 values (:1)

S W N

These trigger examples use the following tables EMP and JOB:

CREATE TABLE EMP (EMP_NO integer,
EMP_NAME varchar(18), EMP_SALARY decimal(8,2),
EMP_JOB_NO integer);

CREATE TABLE JOB (JOB_NO integer,
JOB_DESC varchar(18), JOB_MIN_SALARY decimal(8,2),
JOB_MAX_SALARY decimal(8,2));

INSERT INTO JOB values (:1,:2,:3,:4)

SQL Language Reference 3-63

Chapter 3 SQL Command Reference

\

102,Programmer, 40000,55000
103,Junior Programmer,30000,45000
/

The triggers call a stored procedure SALARY_RULE?2 which validates a salary for a
given job classification.

STORE SALARY_RULE?2
PROCEDURE: SALARY_RULE? static
Parameters
Number: nJob
Number: nSalary
Local Variables
Sql Handle: hSql
Number: nFetchStatus
Number: nMax
Number :nMin
Actions
Call SqlConnect(hSql)
Call SqglPrepare(hSql,'SELECT JOB_MAX_SALARY\
JOB_MIN_SALARY from JOB\
where JOB_NO = :nJob into :nMax, :nMin")
Call SqlExecute(hSql)
Call SqlFetchNext(hSql, nFetchStatus)
Call SqlDisconnect(hSql)

I If the salary is out of range, return the user-defined
I error code 20000 to the SQL statement which invokes the
I trigger.

If nSalary < nMin
Return 20000

Else if nSalary > nMax
Return 20000

Else
Return 0;

INSERT. The following trigger is invoked when you run INSERT. The trigger calls
SALARY_RULE2. This procedure checks to see that the inserted values fall in a
range established by SALARY_RULEZ2.

CREATE TRIGGER EMP_ISRT before insert on EMP
(EXECUTE SALARY_RULE2 (EMP.EMP_JOB_NO, EMP.EMP_SALARY)
for each row;

The following insert fails because 25000 does not fall in the salary range for this job
number.

SINSERT INTO EMP values (1, 'Bill Bates', 25000, 103);

3-64 SQL Language Reference

CREATE TRIGGER

This example corrects the salary so that the insert will succeed:

INSERT into EMP values (1, 'Bill Bates', 30000, 103);
COMMIT;

UPDATE. This next trigger checks the salary of an employee who are changing jobs

to verify that the employees’ salaries are within the salary range of the newly-

assigned job. This update trigger uses the same stored procedure as the previous insert
trigger.

CREATE TRIGGER JOB_UPDT

before update of EMP_JOB_NO on EMP

referencing old as OLD_EMP new as NEW_EMP
(execute SALARY_RULE2

(NEW_EMP.EMP_JOB_NO, NEW_EMP.EMP_SALARY))
for each row;

This update fails because the employee does not have the salary required for the job
classification

UPDATE EMP set EMP_JOB_NO = 102 where EMP_NO = 1;

DELETE. This trigger invokes an inline stored procedure which provides referential
integrity checking. It ensures no rows can be deleted from the JOB table (parent table)
without first checking the dependent EMP table for dependent rows. If the inline
procedure detects dependent rows, it returns user-defined error code 20001 (defined
in error.sqg) to the trigger, which causes the invoked DELETE to fail with error

20001.

CREATE TRIGGER JOB_DELETE before delete on JOB
(execute inline (JOB.JOB_NO)
PROCEDURE: RI_RULE static
Parameters
Number: nJobNo
Local Variables
Boolean: bExists
Actions
Call SqlExists('SELECT EMP_JOB_NO from EMP \
where EMP_JOB_NO = :nJobNo', bExists)

! User defined error code in error.sql
' You cannot delete record(s) from the JOB table that
! have dependent record(s) in the EMP table

If bEXists
Return 20001
Else
Return O

SQL Language Reference 3-65

Chapter 3

SQL Command Reference

See also

for each row;
The delete trigger will not allow this referential integrity violation.
DELETE FROM JOB where JOB_NO = 103;

ALTER TRIGGER
DROP TRIGGER

CREATE VIEW

»»— CREATE VIEW view name |

P»—AS select

(L column name —[)

LWITH CHECK OPTION J

This command creates a view on one or more tables or views.

By granting certain privileges on a view instead of on base tables, you can selectively
restrict access to the data in the base tables. See GRANT (Table Privileges) for more
information.

You can modify tables through a view only if the view references a single table name
in the FROM clause of the SELECT command, and the view columns are not derived
from a function or arithmetic expression.

If you create the view from a table join, or it has derived columns, it is read-only and
you cannot update the underlying tables through it.

To create a view, you must possess the corresponding SELECT privileges on the
columns of the base tables that comprise the view.

If you have either SYSADM or DBA authority and create a table for another user,
SQLBase assumes that unqualified names specified in your CREATE VIEW
statement belong to the user, not you. For example, assume you execute the following
command as SYSADM:

3-66 SQL Language Reference

CREATE VIEW

Clauses

CREATE VIEW A_PAYAS
SELECT FNAME, LNAME, SALARY
FROM EMP, EMPSAL...

Since tables EMP and EMPSAL are unqualified, SQLBase assumes that the qualified
table name is A.EMP and A.EMPSAL, not SYSADM.EMP and
SYSADM.EMPSAL.

Like all DDL commands, this command locks system tables while executing.

Be aware that creating views can significantly increase the size of your database,
since each view generally adds 20-40k to the database. Views that reference other
views can be even larger.

view name
The view name has the form:

authorization ID.view-name

The view name, including the authorization ID, must not be the name of an existing
view in the database.
column name

Specify column names if you want to give different names to the columns in the view.
If you do not specify column names, the columns of the view have the same names as
those of the result table of the SELECT command.

If the results of the SELECT command have duplicate column names (as can occur
with a join), or if a column is derived from a function or arithmetic expression, you
must give names to all the columns in the view. The new column names have to
appear in parenthesis after the view name.

SELECT

A SELECT command defines the view. The view has the rows that would result if the
SELECT command were executed. See the description of SELECT for an
explanation of this clause.

You cannot use the ORDER BY clause in a view definition.

A view is considered read-only and cannot be updated if its definition involves any of
these:

* A FROM clause that names more than one table or view
* ADISTINCT keyword

A GROUP BY clause

* A HAVING clause

SQL Language Reference ~ 3-67

Chapter 3

SQL Command Reference

Examples

* An aggregate function

WITH CHECK OPTION

This causes all inserts and updates through the view to be checked against the view
definition and rejected if the inserted or updated row does not conform to the view
definition. If the clause is omitted, then no checking occurs.

If a view is read-only, or if the SELECT command includes a subselect, the WITH
CHECK OPTION mushot be specified. If the view definition allows updates to
some columns, the WITH CHECK OPTION applady to the updates.

This view is the result of a two-table join, and is therefore read only. Since the
column names of the view are not specified, they are the same as the column names
in the underlying table.

CREATE VIEW PAY AS
SELECT FNAME, LNAME, SALARY
FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO;

The next view example has different column names than the underlying table.

The creator of the view does not have to be the creator of the underlying table, since
the fully-qualified table name is used. Using the fully-qualified name is a good idea
when creating views if the views will be used by a variety of users.

Since this view references only one table, you could update the EMP table through
this view, given the proper privileges.

CREATE VIEW STARTDATES (FIRST, LAST, DOH) AS SELECT
FNAME, LNAME, HIREDATE FROM EMP;

This next view contains a column (TOTSAL) which is derived from the application
of an aggregate function. This makes it read only.

CREATE VIEW DEPT_SAL (DEPT, TOTSAL) AS
SELECT DEPTNO, SUM(SALARY) FROM EMP, EMPSAL WHERE
EMP.EMPNO = EMPSAL.EMPNO GROUP BY DEPTNO;

This view uses the WITH CHECK OPTION clause. Any update of the column
ORDERDATE is checked to make sure the value is a date later than the July 5, 1994.

CREATE VIEW WEEK2 AS
SELECT * FROM ORDERS
WHERE ORDERDATE > = 05-JUL-94
WITH CHECK OPTION;

The following view is created from two base tables, with one column from the second
table appearing twice, but from different rows.

3-68 SQL Language Reference

DBATTRIBUTE

See also

CREATE VIEW MYVIEW
(POSITION, ARG1,ADESCRIPT, ARG2, BDESCRIPT) AS SELECT
TABLE1.POSITION, TABLE1.ARG1,A.DESCRIPT AS ADESCRIPT,
TABLE1.ARG2, B.DESCRIPT AS BDESCRIPT
FROM TABLE1L, TABLE2 A, TABLE2 B
WHERE TABLE1.ARG1=A.CODE AND TABLE1.ARG2=B.CODE;

CREATE TABLE
SELECT

DBATTRIBUTE

»P»— DBATTRIBUTE — (i parameter name — va/uel) <<

Clauses

Note: This command is provided for informational purposes only. You should never need to
use this command.

This command sets database specific parameters by initializing them to a specified
value. Note that this command is intended for SQLBase internal use only and is
required for the SQLBase Unload/Load utility when it performs database migration.
Currently the supported parameters are SYSDBSequence and SYSDBTRANSID. For
details on these parameters, r€ddhpter 2, SQL Elements.

Warning: If you are using this command at all, exercise extreme caution. Although you can
compile and execute it like any other SQL command, you may experience serious complications
and problems with data integrity.

parameter name

The name of the database specific parameter. SQLBase currently supports
SYSDBSequence and SYSTRANSID. Either one or both of these parameters can be
specified. A value must be assigned to the parameter.

value

The value of the specified database parameter. Note that parameter name and value
are separated by a space. Each parameter-value pair must be separated by a colon.

SQL Language Reference ~ 3-69

Chapter 3 SQL Command Reference

Example
DBATTRIBUTE (SYSDBSequence 1000, SYSDBTRANSID 2000);

DEINSTALL DATABASE

»P»— DEINSTALL DATABASE database name <<

This command removes the database name from the network (removes the database
name from the list of names for which the server is listening) and makes the database
inactive. It updates th@bnamekeyword insgl.ini by deleting the database’s name.

This command does not physically delete the database, but it makes the database
unavailable to users.

You cannot DEINSTALL a database that is open (a database that has a user
connected).

This command deinstalls the database on the server that you specified by the last SET
SERVER command.

To bring the database back online, use INSTALL DATABASE.

Clauses

database name

The name of the database to deinstall.
Example

DEINSTALL DATABASE CUSTOMER;
See also

CREATE DATABASE

DROP DATABASE

INSTALL DATABASE

SET SERVER (SQLTalk command)

3-70 SQL Language Reference

DELETE

DELETE

»P»— DELETE FROM —[table name »
view name J L correlation name J

» L <<
WHERE —E search condition

CURRENT OF cursor name

Clauses

This command deletes one or more rows from a single table or view. All rows that
satisfy the search condition are deleted from either the table, or the base table of the
specified view.

You must possess the DELETE privilege on a table to execute this command.

table name

Any table name can be specified for which the user has delete privileges. The name
cannot identify a system table.

view name

Any view name can be specified for which the user has delete privileges. The name
cannot identify a read-only view.

correlation name

A correlation name can be used within a search condition to designate the table or
view.

WHERE search condition
The search condition qualifies a set of rows for deletion.

A DELETE command with this clause is called a "searched DELETE."

If you do not specify a search condition, all the rows in the specified table or view are
deleted.

Read the sectioBearch conditionsn page2-24for more information.

WHERE CURRENT OF cursor name

A DELETE command with this clause is called a "positioned DELETE" or a "cursor-
controlled DELETE."

This type of update requires two open cursors:

SQL Language Reference 3-71

Chapter 3 SQL Command Reference

e Cursor 1is associated with a SELECT command. The current row references
the row of the most recent fetch.

e Cursor 2 is associated with the DELETE command.

A cursor-name must be associated with cursor 1 before this command can be
executed.

You can only use a CURRENT OF clause if all of the following are true for the
corresponding SELECT command:
* The cursor must be named or be in result set mode.

* The SELECT command cannot contain joins, GROUP BY, DISTINCT, SET
functions, UNION, or ORDER BY.

e Any subselect in the SELECT command must satisfy the previous condition.

Examples
This command deletes employee 1234 from the EMP table.

DELETE FROM EMP WHERE EMPNO = 1234;
Delete employees in department 2500 from the EMPSAL table.

DELETE FROM EMPSAL
WHERE EMPNO IN
(SELECT EMPNO FROM EMP
WHERE DEPTNO = 2500);

Delete all rows from the table.
DELETE FROM ORDERS;

Delete the row referenced by the current fetch, using the cursor named
EMPCURSOR.

SET SCROLL ON;

SET CURSORNAME EMPCURSOR;
PREPARE SELECT * FROM EMPSAL,;
PERFORM,;

SET SCROLLROW 0;

FETCH 1;

CONNECT 2;

DELETE FROM EMPSAL WHERE CURRENT OF EMPCURSOR;

See also
CREATE TABLE
SET CURSORNAME (SQLTalk command)

3-72 SQL Language Reference

DROP DATABASE

DROP DATABASE

»P»— DROP DATABASE database name <<

This command physically deletes the entire database directory for a database
including all associated transaction log files on the server specified by the last SET
SERVER command. If the log is redirected, the log directory for the database is also
completely removed.

If the database is active, DROP DATABASE also automatically DEINSTALLS a
database; it deletes the database name from the network and alghithige.

You cannot drop a database that has any users connected to it.

Clauses

database name

The name of the database to be dropped.
Example

DROP DATABASE ACCTPAY;
See also

CREATE DATABASE
DEINSTALL DATABASE
INSTALL DATABASE
SET SERVER

DROP DBAREA

»P»— DROP DBAREA dbarea name <<

This command physically deletes the entire database area if none of its file space is
currently allocated.

Clauses
dbarea name
The name of the database area to delete.

SQL Language Reference 3-73

Chapter 3

SQL Command Reference

Example

See also

DROP DBAREA ACCT1;

ALTER DATABASE
CREATE DATABASE
CREATE DBAREA

SET DEFAULT STOGROUP

DROP EXTERNAL FUNCTION

»P»—— DROP EXTERNAL FUNCTION function name <<

RESTRICT:

CASCADE

FORCE

Clauses

This command removes the specified external function from the database.

An external function can only be dropped by its creator or by a user with SYSADM
or DBA authority.

A system catalog table, SYSDEPENDENCIES, maintain dependencies between
dependent objects and determinant objects. If a stored procedure calls an external
function, the stored procedure is tiependent objedf the external function, since

its existence depends on the external function. The external function is the
determinant objectsince it determines the existence of the stored procedure.

The SYSDEPENDENCIES table contains one row for each dependency between a
stored procedure and an external function. SQLBase checks this table when enforcing
rules for the DROP EXTERNAL FUNCTION clause options. For details on the
SYSDPENDENCIES tables, refer &ppendix ASystem Catalog Tablesf the

Database Administrator’'s Guide

function name
Specify the name of the external function that you want to delete.

RESTRICT

This is the default option for dropping the external function. RESTRICT allows the
DROP command to fail if the external function is a determinant object. For example,

3-74 SQL Language Reference

DROP INDEX

Examples

See also

if a procedure invokes the external function, the external function is the determinant
object.

CASCADE

This option drops all dependent objects associated with the external function. For
example, if a procedure invokes the external function, this option also causes the
procedure to be dropped.

Note: When using the CASCADE options, be aware of the implications of dropping the
external function and its dependent objects.

FORCE

This option drops the external function even if it is a determinant object, but does not
drop any dependent objects. If the FORCE option is specified and there are dependent
objects, the objects are marked invalid. You can check the SYSCOMMANDS system
catalog table for invalid dependent objects.

For example, if a procedure invokes the external function, the external function which
is a determinant object is dropped. The procedure remains, but is marked invalid.

DROP EXTERNAL FUNCTION FORCE;

CREATE EXTERNAL FUNCTION
ALTER EXTERNAL FUNCTION

DROP INDEX

»P»—— DROP INDEX index name <<

This command removes the specified index from the database.

Precompiled commands that reference the dropped indeotaatomatically
dropped.

An index can only be dropped by its creator or by a user with SYSADM or DBA
authority.

Like all DDL commands, this command locks system tables while executing.

SQL Language Reference 3-75

Chapter 3 SQL Command Reference

If you drop a table’s primary index, the table is incomplete and you cannot perform
tasks such as inserting or deleting data.

Clauses
index name
This removes the index. Indexes on system tables cannot be dropped. The existence
of views and tables are not affected.
Example
DROP INDEX EMP_IDX;
See also

CREATE INDEX

3-76 SQL Language Reference

DROP STOGROUP

DROP STOGROUP

P»P»— DROP STOGROUP stogroup name <<

This command deletes the storage group if it is not being used by any database and it
is not the default storage group. This command does not affect any existing space
allocations for databases or logs.

Clauses

stogroup name

The name of the storage group to be deleted.
Example

DROP STOGROUP ACCTDEPT;
See also

ALTER DATABASE
CREATE DATABASE
CREATE STOGROUP

SET DEFAULT STOGROUP

DROP SYNONYM

»»—— DROP |_ SYNONYM synonym name >
PUBLIC

> L <<
FOR — IABLE —— |

— EXTERNAL FUNCTION —

COMMAND

PROCEDURE

This command removes the specified synonym from the database.

Precompiled commands that reference the dropped synonymtaretomatically
dropped.

SQL Language Reference ~ 3-77

Chapter 3

SQL Command Reference

Clauses

Examples

See also

A synonym can only be dropped by its creator or by a user with SYSADM or DBA
authority.

If a synonym for an external function is dropped explicitly, all procedures that refer to
the synonym still remain, but are invalidated. If a synonym is dropped implicitly
because the external function is dropped, all synonyms are dropped. For details, read
DROP EXTERNAL FUNCTIONN page3-74

PUBLIC
This removes the PUBLIC synonym. Views based on the synonym are also dropped.

synonym
This removes the synonym. Views based on the synonym are also dropped.

FOR TABLE, EXTERNAL FUNCTION, COMMAND, or PROCEDURE

This clause identifies the object type of the synonym. If omitted, the object type is a
table by default. You must specify the keyword EXTERNAL FUNCTION in the

FOR clause when dropping an external function synonym. You must specify the
keyword COMMAND in the FOR clause when dropping a stored command
synonym. You must specify the keyword PROCEDURE in the FOR clause when
dropping a stored procedure synonym.

DROP SYNONYM SN1 FOR EXTERNAL FUNCTION MYFUNC;

Note that in the following examples, since no object type is included, the object type
defaults to TABLE.

DROP SYNONYM ES;
DROP PUBLIC SYNONYM ES;

CREATE SYNONYM

3-78 SQL Language Reference

DROP TABLE

DROP TABLE

»P»—— DROP TABLE table name <<

Clauses

Examples

This command removes the specified table from the database.

Precompiled commands that reference the dropped tablastamgtomatically
dropped.

A table can only be dropped by its creator or by a user with SYSADM or DBA
authority.

In a database with referential constraints, dropping a table drops its primary key. This
also drops any foreign keys in other tables that reference the parent table. When the
parent table of the relationship is dropped, or when the primary key of the parent table
is dropped, the referential constraint is also dropped.

DROP TABLE drops all constraints in which the table is a parent or dependent.
Dropping a table is not the same as deleting all its rows. Instead, when you drop a
table, you also drop all the relationships in which the table is involved, either as a
parent or dependent. This can affect application programs that depend on the
existence of a parent table, so use caution with the DRRBBPE command.

Like all DDL commands, this command locks system tables while executing.

When you drop a table, any triggers defined on that table are also dropped.

table name

This clause drops the following:
e The specified table.
« All synonyms and indexes defined for the table.
» All privileges granted on the table.

» Anyviews whose definition depends either partially or wholly on the dropped
table.

* Any triggers defined on that table.
System tables cannot be dropped.

DROP TABLE EMP;

SQL Language Reference ~ 3-79

Chapter 3

SQL Command Reference

See also

CREATE TABLE
CREATE VIEW

DROP TRIGGER

»P»— DROP TRIGGER trigger name <<

Example

See also

Use this command to remove the specified trigger from the database. Dropping a
trigger disables it.

You must be the owner of a table, or a user with SYSADM or DBA authority, to drop
a trigger from the table.

DROP TRIGGER trg_insert;

CREATE TRIGGER

DROP VIEW

»P»—— DROP VIEW view name <<

Clauses

This command removes the specified view from the database.

Precompiled commands that reference the dropped viemoaagitomatically
dropped.

An view can only be dropped by its creator or by a user with SYSADM or DBA
authority.

Like all DDL commands, this command locks system tables while executing.

view name

This removes the view from the system catalog. Also, any views whose definition
depends either partially or wholly on the dropped view are also dropped. All
privileges on the views are also removed.

3-80 SQL Language Reference

GRANT (Database Authority)

Example

See also

DROP VIEW WEEK?2;

CREATE VIEW

GRANT (Database Authority)

»» GRANT +RESOURCE TO —rauth id <<

DBA S ,
CONNECT TO ;avuth id 1IDENTIFIED BY Jpassword l

ENCRYPTED _gsword 1

This form of the GRANT command assigns users of the database and assigns their
authority level. Authority level means the types of operations a user can perform
(such as logging on, creating tables, or creating users).

A different form of the GRANT command assigns privileges for individual tables.

This form of the GRANT command can only be given by SYSADM. SYSADM can
create new users and change the authority levels and table privileges of existing users.
This is the highest authority level and it is preassigned by SQLBase to SYSADM.

A user cannot be granted SYSADM authority. The username SYSADM cannot be
changed and there can only be one SYSADM for a database. The only thing that can
be changed for SYSADM is the password.

If you GRANT a user the RESOURCE or DBA authority, it does not take effect until
the next time the user connects.

When a database is unloaded, the GRANT statements are unloaded. Passwords
remain encrypted in the UNLOAD file and cannot be used other than in a GRANT
CONNECT TO statement using the encrypted keyword.

SQL Language Reference ~ 3-81

Chapter 3

SQL Command Reference

Clauses

<authority levels>
The following authority levels can be granted by SYSADM:

CONNECT This authority level must be granted before any other. It
allows the user to log onto the database and exercise any of
the privileges assigned for specific tables. The IDENTIFIED
BY clause is required for granting CONNECT.

RESOURCE This gives a user the right to create tables, to drop those
tables, and to grant, modify or revoke privileges to those
tables for valid users of the database. A user with
RESOURCE authority automatically has all privileges on
tables that he or she has created.

DBA This level of authority automatically assigns all privileges pn
any table in the database to a user, including the right to grant,
modify, or revoke the table privileges of any other user in the
database. However, a DBA cannot create new users or change
a password or authority level of an existing user. These
privileges are restricted to SYSADM.

authorization id

The authorization-id is the username that gives a user authorization to connect to a
database. The authorization-id SYSADM is preassigned by the system and reserved
for the SQLBase "superuser."

IDENTIFIED BY password

This is requirednly when granting CONNECT authority to a user and is the phrase
used to introduce the new user's encrypted password.

password

A GRANT CONNECT command must include a password. The password can be any
valid SQL short identifier. To change the password of a user, grant that user
CONNECT authority with the new password.

ENCRYPTED password

This is requirednly when granting CONNECT authority to a user and is the phrase
used to introduce a user's password, as encrypted by an UNLOAD.

password

A GRANT CONNECT command must include a password. The password can be any
valid SQL short identifier. To change the password of a user, grant that user
CONNECT authority with the new password.

3-82 SQL Language Reference

GRANT (Database Authority)

Examples

See also

When a database is first created, the original creator of the database (SYSADM) is
always identified by the password SYSADM. The owner of the database can change
the password to a private password before granting authority to any other user.

The password is stored in the system catalog and can be read by a user with
SYSADM or DBA authority.

If the GRANT CONNECT command is issued using the ENCRYPTED clause, the
password is given as encrypted, for example, when unloaded in a GRANT statement.
Note that passwords are encrypted when transmitted across a network.

Create two new users, JOE and JEAN. JOE is given the password SWAN and JEAN
is given the password EAGLE.

GRANT CONNECT TO JOE, JEAN
IDENTIFIED BY SWAN, EAGLE;

Give Jean the privilege to CREATE tables.
GRANT RESOURCE TO JEAN;

Give Joe DBA privilege, which includes RESOURCE privileges.
GRANT DBA TO JOE;
Change SYSADM's password.

GRANT CONNECT TO SYSADM
IDENTIFIED BY CONDOR;

GRANT (Table Privileges)
REVOKE

SQL Language Reference ~ 3-83

Chapter 3 SQL Command Reference

GRANT (Table Privileges)

»P»—— GRANT l ALL >

I SELECT

— INSERT

I DELETE

— INDEX

— ALTER

— UPDATE

S (i column name L) ——

> ON L table name ‘ TO E auth id %I—44
L view—nameJ PUBLIC
This form of the GRANT command gives a user one or more specified privileges for
a table or view.

You cannot GRANT the INDEX and ALTER privileges on views.
Table privileges can be granted by any user who has the authority to do so.

« Auser with DBA authority can grant privileges on any tables or views in the
database.

* Auser with RESOURCE authority (but without DBA authority) can grant
privileges only on tables created by him or on views that are based
completely on tables created by him.

e Auser with only CONNECT authority cannot grant privileges. Nor does he
have privileges to any tables or views unless he is explicitly granted such
privileges with a GRANT command.

A different form of the GRANT command assigns privileges for a database.

3-84 SQL Language Reference

GRANT (Table Privileges)

Clauses

The system catalog tables are owned by the creator of the database (SYSADM) so
their name must be prefixed with the authorization-id SYSADM. For a description of
the system catalog tables, read Bregabase Administrator's Guide

<privilege>
The following privileges can be assigned.
Privilege Description
SELECT Select data from a table or view.
INSERT Insert rows into a table or view.
DELETE Delete rows from a table or view.
UPDATE Update a table and (optionally) update only the specified
columns.

INDEX Create or drop indexes for a table.
ALTER Alter a table.
ALL Exercise all the above for a table.

Note that you cannot GRANT the INDEX or ALTER privileges for a view. You
should GRANT these privileges directly on the base tables.

table name
Table names (including an implicit qualifier) must identify a table that exists in the
database.

view name
View names (including any implicit qualifier) must identify a view that exists in the
database.

column name

This is a column in the tables or views specified in the ON clause. Each column name
must be unqualified and each column name must bedrytable or view identified

in the ON clause.

authorization id
The authorization-id must refer to a user who has been granted at least CONNECT
authority to the database.

SQL Language Reference 3-85

Chapter 3 SQL Command Reference

PUBLIC

This means all users. By granting a privilege to PUBLIC, it means that all current and
future users have the specified privilege on the table or view.

Examples

Give Jean privilege to read (SELECT from) the EMPSAL table and change
(UPDATE) two columns, SALARY and REVIEW.

GRANT SELECT, UPDATE(SALARY,REVIEW)
ON EMPSAL TO JEAN;

Give JOE global privileges on the tables EMP and EMPSAL.
GRANT ALL ON EMP, EMPSAL TO JOE;
Allow all users (PUBLIC) to read SYSADM.SYSTABLES.
GRANT SELECT ON SYSADM.SYSTABLES TO PUBLIC,;

See also

GRANT (Database Authority)
REVOKE (Database Privileges)
REVOKE (Table Privileges)

GRANT EXECUTE ON

»»— GRANT EXECUTE ON ¢ object name J->
—— PROCEDURE —

—EXTERNAL FUNCTION —

»— TO userid J L
PUBLIC WITH

—[CREATOR j PRIVILEGES J

GRANTEE

Use this command to grant execute privilege on stored procedures or external
functions to other users.

3-86 SQL Language Reference

GRANT EXECUTE ON

Clauses

Privilege can only be granted by the owner of the stored procedure or by the DBA.
The clause WITH CREATOR OR GRANTEE PRIVILEGES does not apply to
external functions.

Privileges on an external function are checked at procedure compile and retrieval
time.

Note: If a user has been granted EXECUTE with CREATOR privileges on a stored procedure,
then the user does not need EXECUTE privileges on any external function invoked within the
procedure. Only the creator of the procedure needs to have EXECUTE privileges on the external
functions.

If a user has been granted EXECUTE with GRANTEE privileges on a stored procedure, the user
must also have EXECUTE privileges on an external function invoked with the procedure.

Ownership of Runtime Results

If a stored procedure or external function creates a table at runtime, SQLBase
determines the table’s owner based on the privileges of the user executing the
procedure or external function.

If the user was grantezteator’'s execute privilege, then the creator of the procedure
or external function is the table’s owner.

If the user was grantegtantee’sexecute privilege, then the user is the table’s owner.

If the procedure or external function references the USER keyword, SQLBase
interprets that to mean the user executing the procedure or external function, not the
procedures’s or external function creator (regardless of the privileges granted to the
user).

object name
The name of an existing stored procedure or external function.

PROCEDURE
If object name is omitted, the default object type is PROCEDURE.

EXTERNAL FUNCTION

If the object name is an external function, you must specify EXTERNAL
FUNCTION as the object type.

TO userid or PUBLIC

The authorization ID of a user who has been granted at least CONNECT authority to
the database.

SQL Language Reference ~ 3-87

Chapter 3 SQL Command Reference

Specifying PUBLIC grantall current and future users access to the stored procedure.
WITH CREATOR or GRANTEE PRIVILEGES

This clause applies only to procedures. Specify whether the user being granted
privileges is to have the creator’s (owner’s) privileges or the grantee’s (his own)
privileges while the stored procedure function executes.

Example

This example grants all users execute privilege opthpresstored procedure.
Users assume the data access privileges of the creator, by default.

GRANT EXECUTE ON pr_pres TO PUBLIC,;

The following example grants two users execute privilege oprth@esstored
procedure. The users access the data using their own privileges.

GRANT EXECUTE ON pr_pres TO userl, user2 WITH GRANTEE

PRIVILEGES;
INSERT
»P»—INSERT INTO T table-name >
view-name

(i column name J—)

P»—VALUES - (constant ‘

)
— bind variable L J
ADJUSTING cursor name

system keyword

L subselect

This command inserts rows of data into a table or view. For a view, the rows are
inserted into the base table.

If inserting a row causes a unique index to become non-unique, or if the row does not
satisfy the definition of a view that has the WITH CHECK OPTION, then the insert is
not allowed.

3-88 SQL Language Reference

INSERT

Clauses

You must possess INSERT privileges on the table to execute this command.

SQLBase itself does not restrict the number of records you can insert; this is limited
only by the amount of available disk space.

If the database has referential constraints, use the following guidelines when inserting
data into a parent table with a primary key:

» Do not enter non-unique values for the primary key.
e Insert only non-null values for any column of the primary key.
* Set LONG VARCHAR to a bind variable.
Use the following guidelines when inserting data into a dependent table with foreign
keys:
« Each non-null value inserted into a foreign key column must be equal to a
value in the primary key.

e The entire foreign key is regarded as null if any column in the foreign key is
null. The INSERT statement does not perform any referential checks for a
NULL foreign key, and will therefore successfully complete (as long as there
are no unique index violations).

* AnINSERT into either the parent table or dependent table will not work if the
index enforcing the primary key of the parent table has been dropped
(resulting in an incomplete table).

ReadChapter 6, Referential Integrifpr more information.

All new data inserted into the table receives an exclusive lock.

INTO
table name

Table names (including any qualifier) must reference a table that exists in the
database. You cannot insert into system catalog tables.

column name

This is one or more column names in the specified table or view for which you
provide insert values. You can name the columns in any order.

If you omit the column list, you are implicitly using a list of all the columns, in the
order they were created in the table or view, and must therefore provide a value for
each column.

You cannot omit a column name or insert NULL data into a column defined as NOT
NULL.

SQL Language Reference 3-89

Chapter

3

SQL Command Reference

3-90

view name

View names (including any qualifier) must reference a view that exists in the
database but thegannotbe any system catalog views.

VALUES
This clause contains one row of column values to be inserted. The values can be
constants, bind variables, or system keywords.

Separate the column values with commasnDiput a space before or after the
comma.

To embed characters such as commas, surround the string with double quotes. To
embed double quotes, enclose the string with additional single quotes. Refer to the
next section for an example.

SQLBase will convert the values to the target data type wherever possible.

System keywords such as NULL, USER, SYSTIME, SYSDATE, SYSDATETIME
cannot be used with inserts that use bind variables. However, you can enter them
directly, as shown in the following example:

insert into T1 values (SYSDATETIME);

subselect

This clause inserts the rows of a result table produced by a SELECT command. The
number of columns retrieved must match the number of columns being inserted.
Similarly, the rows of the select must match the create definition with respect to data
types and length of data. SQLBase attempts data type conversions where possible.
You can use a self-referencing INSERT here; in other words, you can insert from the
same table in this subselect clause.

You cannot use an ORDER BY clause in a subselect.

You cannot use a UNION clause in a subselect. However, you can create a view
containing a UNION, and use the view in the subselect statement. This allows you to
insert values from a SELECT statement that contains a UNION.

ADJUSTING cursor name

This clause is used for result set programming. This clause allows a user to INSERT a
row without invalidating the current result set.

INSERTed rows are added to the end of the result set and the database.

You cannot perform a multi-row insert with an ADJUSTING clause and a subselect.
You cannot perform an insert with an ADJUSTING clause and a subselect with a
join.

You cannot use the ADJUSTING clause on a join. The join uses a virtual table, and
SQLBase cannot hold its place with a table held in memaory.

SQL Language Reference

INSERT

Examples

This SQL command inserts one complete row into the EMP table.

INSERT INTO EMP VALUES (1001,‘Carver’,'Dan’,2500,01-
APR-1994, ‘Manager);

If all columns in the row are not being filled, you must specify the column names.

INSERT INTO EMP (EMPNO,LNAME, FNAME,HIREDATE)
(1002,'Murphy’,'Bill’,17-APR-1994);

The following example inserts double quotes in a string.

INSERT INTO EMP VALUES (1003,’Johnson’,’'Bob "Bo™,
2500,01-FEB-1994, ‘Analyst’);

This command uses bind variables to insert multiple rows of data.

INSERT INTO EMP VALUES (:1,:2,:3,:4,:5,:6)

\

1004,Drape,Jane,2600,01-FEB-1994,Programmer
1005,Foghorn,Ellen,2500,01-FEB-1994, Programmer
/

Use a subquery to derive rows for insertion.

CREATE TABLE RDEMP
(RDNO INTEGER,
RDLNAME CHAR(15),
RDFNAME CHAR(10);

INSERT INTO RDEMP (RDNO, RDLNAME, RDFNAME) SELECT
EMPNO, LNAME,FNAME FROM EMP
WHERE DEPTNO = 2500

The following example uses SQLTalk commands in an ADJUSTING clause and a
result set.

SET CURSORNAME MYCUR;
SET SCROLL ON;

SELECT * FROM EMP;

SET SCROLLROW 1,

FETCH 2;

A different cursor is used to INSERT, preserving the result set.
CONNECT SAMPLE 2;
INSERT into result set.

INSERT INTO EMP (EMPNO,LNAME) VALUES (1006,' Bush’)
ADJUSTING MYCUR;

SQL Language Reference 3-91

Chapter 3 SQL Command Reference

Return to the result set cursor.
USE 1;
Since the result set is unaffected, we can fetch without reissuing the SELECT.
FETCH 3;
See also

SELECT
SET CURSORNAME (SQLTalk command)

INSTALL DATABASE

»P»— INSTALL DATABASE database name <«

This command assumes that the specified database exists and installs the database
name on the network, addinglhnamekeyword insql.ini, and making the database
accessible to users.

The database is installed on the server specified by the last SQLTalk SET SERVER

command.
Clauses

database name

The name of the database to be installed.
Example

INSTALL DATABASE CUSTOMER;
See also

DEINSTALL DATABASE
DROP DATABASE
INSTALL DATABASE
SET SERVER

3-92 SQL Language Reference

LABEL

LABEL

»P»—LABEL ON
»TTABLE table name IS ‘string constant’ —4<€
_[view name 4
—COLUMN table-name.column-name
T view-name.column-name
— EXTERNAL FUNCTION — function-name

table name ’ J
view name (¢— column name IS 'string constant’)

v

This command adds or replaces labels in the system catalog descriptions of tables,
views, columns (or sets of columns), or external functions.

The system catalog can maintain a comment on every table, view, or column in the
SYSTABLES or SYSCOLUMNS tables. The LABEL command places a comment in
the LABEL column of the following tables: SYSTABLES, SYSCOLUMNS, or
SYSEXTFUN tables.

The COMMENT ON command is like the LABEL ON command. The difference is
that the REMARKS columns (maintained by COMMENT ON) is 254 characters long
while the LABEL column (maintained by LABEL ON) is 30 characters long.

The LABEL column can be retrieved through an API call.

Adding labels for more than one column

Do not specify the keywords TABLE, or COLUMN. Give the table, view name and
then, in parentheses, specify the label for each column. Separate each label definition
with a comma.

Clauses
ON TABLE table name

You can use this to specify the name of a table that you want to add a LABEL column
for.

SQL Language Reference ~ 3-93

Chapter 3

SQL Command Reference

Examples

See also

ON TABLE view name

You can use this to specify the name of a view that you want to add a LABEL column
for.

ON COLUMN table name.column name

You can use this to specify the name of a column in a table that you want to add a
LABEL column for.

ON COLUMN view name.column name

You can use this to specify the name of a column in a view that you want to add a
LABEL column for.

ON EXTERNAL FUNCTION function name

You can use this to specify the name of an external function that you want to add a
LABEL column for.

IS 'string constant '

You can use this to specify the comment. It can be up to 30 characters.

LABEL ON TABLE EMP IS 'CONTAINS EMP. INFO.";

LABEL ON COLUMN EMP.DEPTNO IS 'CONTAINS DEPARTMENT NUMBER.";

LABEL ON EMP (DEPTNO IS 'CONTAINS DEPARTMENT NUMBER.',
HIREDATE IS 'STARTING DATE);

The following example selects all labels from the SYSCOLUMNS system catalog
table. Note that you must enclose the column name (LABEL) in double-quotes and it
must be in upper-case:

SELECT NAME, TBNAME, "LABEL" FROM SYSCOLUMNS;

COMMENT ON

3-94 SQL Language Reference

LOAD

LOAD

»P»— LOAD L J SQL L 'file name' J
COMPRESS CONTROL 'file name'

— ASCII —E 'file name'' table name —
CONTROL 'file name' 4
— DIF —E'file name' L J
CONTROL ‘file name' J table name

T]]]
ON CLIENT LOG 'logfile name’ START AT line

—[SERVER

This command loads database information such as tables or data from an external file
into the current database.

You can use the LOAD command to restore data from an unloaded backup file, or to
enter data into the database from an external file. The external file can be in SQL,
ASCII or DIF format. You can create the file either manually or with the UNLOAD
command. ASCII files contain only data. DIF files can contain either data only, or
both data and tables.

You can load (and unload) to the serverittto the client from within a stored
command or procedure.

The external file can be split into segments, which allows you to load information to
databases that might exceed single disk or system unit limits. It also lets you take
advantage of available space that is spread out over several disks. Information about
the file segments is contained in a load control file.

SQLBase doesotissue a COMMIT operation to the database before executing the
LOAD command. If AUTOCOMMIT is on, this commanidesnot turn it to off

before executing. Make sure that BULK is not set to ON if AUTOCOMMIT is set to
ON.

A LOAD operation retains all AUTORECOMPILE settings.

SQL Language Reference 3-95

Chapter 3

SQL Command Reference

Clauses

If you have changed the SYSADM password, a subsequent UNLOAD and LOAD
operation retains these new settings. To enhance security of the passwords in the
external unload file, it is recommended that you do one of the following:

» Store the external unload file in an access-protected location on disk.

e Compress the unload file using the UNLOAD command’s COMPRESS
clause.

This command does not perform any referential integrity checks before executing.
The checks are turned back on after the LOAD operation completes.

During the LOAD operation, if any ALTER TRIGGER commands exist in the load
file, they are automatically processed.

Note if objects were dropped or altered that are referenced by triggers or procedures,
SQLBase issues errors when it encounters the missing or changed object. To correct
or prevent the error:

* Recreate any reference object that is dropped, or

» Restore any referenced object you changed back to its original state (known
by the procedure or trigger)

When you specify the load file name, enclose it in single quotes ('). This ensures that
the file name is processed correctly, even if the client and server are on different
platforms.

Do not edit the load files manually. If you try to add commands such as COMMIT or
ROLLBACK to the file, the load will fail.

To improve load performance, set an exclusive lock on the database first by running
LOCK DATABASE. This prevents users from connecting to the database. When you
are finished, run UNLOCK DATABASE.

Read théDatabase Administrator's Guider more information on loading and
unloading.

SQL
This specifies that the load file is in SQL format and was probably created by an
UNLOAD command.

A SQL format file contains the CREATE TABLE and CREATE INDEX data

definition commands along with corresponding INSERT commands for each table. It
does not contain the other two data manipulation commands, DELETE and
UPDATE. The CREATE TABLE and CREATE INDEX commands are optional
depending on whether you specified the DATA option in the UNLOAD command. If
you specified the ALL option in the UNLOAD command, the SQL file does not
contain any other database objects.

3-96 SQL Language Reference

LOAD

If the load file contains INSERT commands only, the tables into which loading occurs
must exist in the database. The opposite is true for the data definition commands; if
the load file includes data definition commands (such as CREATE), SQLBase creates
the tables and associated indexes are created for you, so thesabletyet exist.

LOAD SQL file-nameis equivalent to running the file as a script.
The data rows are inserted using bind variables.

When unloading, SQLBase converts binary data to ASCII characters. SQLBase
marks the converted binary data with a tilde (~) character. If you want to LOAD a
tilde characteas data mark it like this:

~HO~

Loading DB2 Tables

SQLTalk writes a line with $datatypes in UNLOADed tables in SQL format. The
$datatypes keyword provides data type mapping for compatibility with DB2. A
subsequent LOAD works for either DB2 or SQLBase.

SQLTalk allows "--" (two hyphens) in columns 1 and 2 of lines. This makes unload
files produced by SPUFI (SQL Preprocessor Using File Input) on a mainframe
compatible with SQLTalk. When SQLTalk sees "--" in columns 1 and 2, it ignores the
line and assumes it is a comment.

Also, SQLBase interprets the "-" operator (tlo¢ symbol for DB2) as a "!" (theot
operator in SQLBase).

ASCII

This specifies a load file that contains input data organized in ASCII format. You
must specify the name of the table into which the data is loaded.

Files produced with this format cannot create database objects.
You can only specifpneload table.

ASCII format is similar to the data format in SQL except that the character fields are
always delimited by double quotes (). To enter a double quote character as data,
precede it with a back slash: "He said, \"Hi.\\""

DIF

The load file must contain input data organized in Data Interchange Format (DIF), a
common format for spreadsheets and databases. Only one table can be loaded from a
single DIF file.

The rules governing loading a file in DIF format depend on whether the file was
UNLOADed with or without the DATA option.

SQL Language Reference ~ 3-97

Chapter

3

SQL Command Reference

3-98

DIF file unloaded with DATA option

The table from which the data was UNLOADed must exist. Data is then LOADed
into this table. It does not matter if you specify the table name in the LOAD
command or not.

DIF file unloaded without DATA option

The tablemust notcurrently exist. The DIF file tries to create the table named on the
UNLOAD and rolls back if the table exists. However, the table name specified for the
LOAD DIF command does not have to be the same as the table name specified during
the UNLOAD command.

file name

The name of an existing file from which loading occurs. If you are using the file
name with the ON SERVER clause, be sure to provide the volume name if it applies
to your SQLBase Server environment. The following example specifies the volume
name on a Netware Server:

db:\demo\acctl

table name

The name of the table into which you loaded data from an ASCII or DIF (data only)
file.

COMPRESS

Use this option to load information from a compressed external file. SQLBase
decompresses the information when it loads it.

This option is not valid for a DIF or ASCII file.

CONTROL

Use this clause with the load control file name to load data from a file split into
multiple segments.

If you specify CONTROL, SQLBase automatically creates the load control file
during the UNLOAD command execution, and puts this load control file in the same
file directory as the unload control file. The load control file uses the same file prefix
as the unload file segments, and is appended with suffix.

If you do not supply a path, SQLBase assumes that the load control file resides in the
default directory (for example, \Centura).

The load control file follows this syntax:

FILEPREFIX <filename prefix>
DIR <destination dir>
DIR <destination dir>

SQL Language Reference

LOAD

This file provides the following information:

Parameter Description

The prefix of the file segment names used for

FILEPREFIX the load.

The destination directory where the load file

DIr segments reside.

The following example shows a load control file for the Windows NT environment:
Example:

FILEPREFIX dbs
DIR c:\unldir\
DIR d:\unldir\
DIR e:\unldir\

In this example, there are three file segments with the following characteristics:
e asegment callect\unldindbs.1
» asecond segment callddunldindbs.2
e athird segment callegt\unidindbs.3

There is no SIZE parameter in this load control file. The name of this control file
itself isdbs.Icf.SQLBase loads the information from these three segments according
to their listed order.

Note: For a NetWare Server, be sure to specify the fully qualified volume name for the file
segments. For example: db:\demo\dbs.1

You should use the SQLBase-generated load control file whenever possible, without
making changes. However, if you need to create new file or edit the existing one (for
example, if you unloaded the information from a non-SQLBase database, or have
since moved the file segments to new directories since the UNLOAD), use an online
editor. The file must be in ASCII format, and strictly follow the syntax shown in the
example.

ON CLIENT

ON SERVER

This clause specifies whether the source file for the load is on the client or on the
server. The default is ON CLIENT.

If you are loading information from multiple file segments, they must either reside on
or be accessible from the same machine as the load control file.

SQL Language Reference ~ 3-99

Chapter 3

SQL Command Reference

Examples

You cannot use the ON CLIENT clause with either a SQLBase procedure or
SQLWindows program; with these two applications, you must use ON SERVER.

LOG

Use this option to automatically create a message log file. This message log file
documents activities occurring during the load, and also any errors. The log files
contain a timestamp for each action, summary information on the number of database
objects loaded, and a statement confirming at the load completed successfully.

Errors are logged along with the line number where the error occurred. After you fix
the error, use this line number with the START AT option to restart the load at that
point in the source file.

The default is no message log file.

If you do not specify a path for the message log file, SQLBase creates it in the
Centura home directory (for example, \Centura). If the client and server are on
different machines, SQLBase creates the message log file on the server machine.

You must specify this option to review any messages SQLBase generates during the
load operation. SQLBase does not send these messages to the screen.
START AT

For SQL or ASCII (not DIF) format files, use this option to start the load operation
from a specific line in the load input file. To find the line number where the error
occurred, use the message log generated with the LOG clause.

The line number for the START AT clause for a DDL statement must be the first line
of the DDL command. For an INSERT, the line number for the START AT clause
must be either the first line of the INSERT command or one of the line numbers that
corresponds to a row of data you are inserting.

Note that with segmented loads, the line numbers are cumulative in the load file
segments. To restart a segmented load from a specific line number, you must
determine yourself in which file segment the specified line number is located.

Load the SQL formatted external file located at the client:
LOAD SQL emp.sql;

Load the ASCII formatted external file located at the client, and load it into a table
called EMP:

LOAD ASCIl emp.asc EMP;

Load the DIF formatted external file located at the client, and load it into a table
called EMP:

LOAD DIF emp.dif EMP;

3-100 SQL Language Reference

LOCK DATABASE

Load the DIF formatted external file located at the client:
LOAD DIF emp.dif;

Load the SQL formatted external file located at the server, and log messages to a
message log file located at the server:

LOAD SQL db.unl ON SERVER LOG db.log;

Load the SQL formatted external file located at the server using a control file and log
messages to a message log file located at the server:

LOAD SQL CONTROL dbs.lcf ON SERVER LOG db.log;

Restart the load at the line of failure (101) using a control file and log messages to a
message log file:

LOAD SQL CONTROL dbs.Icf ON SERVER LOG db.log START AT 101;

Load the DIF formatted external file located at the server, and load it into a table
called T1:

LOAD DIF t1.unl t1 ON SERVER;

LOCK DATABASE

»P—— LOCK DATABASE <<

This command exclusively locks the database you are currently connected to,
preventing access by other users. This command requires at least DBA privileges.

When you issue this command, SQLBase prevents any new connections to the
database by other users, and waits the default time-out amount (300 seconds) for
other user connections to terminate. You can change this timeout value either by
changing the value of tHecktimeoutconfiguration keyword or by running the SET
TIMEOUT command. If the timeout limit is reached before all the concurrent user
sessions terminate, you receive an error.

When your session becomes the only session active after you issue LOCK
DATABASE, you have an exclusive lock on the entire database. You can acquire
additional connections to the database yourself, but no other users can connect. Note
that the lock is an exclusive lock; this command does not give you any other type of
lock on the database.

The user associated with the current session, not the transaction, receives the
exclusive lock. This means that when SQLBase performs a commit, the database lock

SQL Language Reference 3-101

Chapter 3 SQL Command Reference

is not automatically released. You must either run UNLOCK DATABASE or
disconnect your session to release the exclusive lock.

Issuing LOCK DATABASE before and UNLOCK DATABASE after a load operation

can noticeably improve performance. You can also use database locking to accelerate
other database operations which require a long time to complete, or for which a high
degree of concurrency control is not necessary, such as index maintenance and
referential integrity updates.

Example
The following example shows how you can improve a LOAD command’s
performance by issuing LOCK DATABASE and UNLOCK DATABASE.

CONNECT ACCTSDB1 SYSADM/SYSADM;
LOCK DATABASE;

LOAD SQL accts.unl;

UNLOCK DATABASE;

PROCEDURE:

»P»- PROCEDURE: procedure name >
DYNAMIC
STATIC
» >
L PARAMETERS — [CRI/LF] J‘j input parameter declaration j—t
input/output parameter declaration
» >
t LOCAL VARIABLES —— [CR/LF] ‘
A 20 local variable declaration JJ

»— ACTIONS —— [CRI/LF] !

statement block —— [CR/LF] —J«

LY

L flow control command — [CRI/LF]

3-102 SQL Language Reference

PROCEDURE:

Clauses

Use this command to create a procedure. The procedure can only access table and
views accessible to the creator.

If you have either SYSADM or DBA authority and create an object for another user
to be used in a procedure, SQLBase assumes that unqualified nhames specified in your
PROCEDURE statement belong to the user.

For example, if your procedure references a table called EMP created for user A,
SQLBase assumes that the qualified table name is A.EMP, not SYSADM.EMP or
DBA.EMP.

Procedures cannot perform SQL commands that require a SET SERVER command.
These SQL commands are:

CREATE DATABASE
DROP DATABASE
CREATE STOGROUP
DELETE

INSTALL DATABASE
DEINSTALL DATA

ReadChapter 7, Procedures and Triggds more information on procedures.

procedure name
The name of the procedure, which can contain up to 18 characters.

“PROCEDURE" is valid as a procedure name.

STATIC
DYNAMIC

A procedure is either dynamic or static. Dynamic is the default. Read the section
Static versus dynamic procedui@s page/-32for detailed information on both these
clauses.

PARAMETERS

Specify this clause if you want to define input or input/output parameters in the
procedure. Parameters provide you with a way to pass data to and from a procedure.

CR/LF
A carriage return or line feed character.

SQL Language Reference 3-103

Chapter 3 SQL Command Reference

input parameter declaration
Specify the data type and name of each input parameter in this form. A colon after the
data type is optional

—— BOOLEAN —— variable name —
— DATE/TIME ————
— NUMBER

— STRING ——
— LONG STRING——

~ WINDOW HANDLE -

input/output parameter declaration (Receive)
Specify the data type and name of each input/output parameter in this format. A colon
after the data type is optional.
— RECEIVE — 1 BOOLEAN —— variable name -

— DATE/TIME

— NUMBER ———
—STRING ——
— LONG STRING——
L. WINDOW HANDLE A

LOCAL VARIABLES

Specify this clause if you want to define local variables in the procedure. Local
variables provide temporary storage locations.

local variable declaration

Specify the data type and name of each local variable. A colon after the data type is
optional.

3-104 SQL Language Reference

PROCEDURE:

— BOOLEAN —— variable name -
- DATE/TIME
"NUMBER

- STRING

- LONG STRING —
- FILE HANDLE

- SQL HANDLE —

- WINDOW HANDLE —

ACTIONS
This clause introduces the section in which you include statements to be executed.

flow control command

Specify one of the following Scalable Application Language (SAL) statements. You
can also specify a comment with an exclamation point (!) at the beginning of the line.
ReadChapter 7, Procedures and Triggdms a detailed description of each

statement.

— BREAK ——————
- CALL

- IF [ELSE]

- LOOP

- ON

- RETURN

- SET

- TRACE

- WHEN SQLERROR —
- WHILE

statement block

Specify the statements to execute. For a discussion of statement blocks, read the
sectionActionson pager-7.

SQL Language Reference 3-105

Chapter 3 SQL Command Reference

Example

CREATE TABLE T1 (c1 integer, c2 integer);
INSERT into T1 values (1000, 2000);

PROCEDURE: P1
Parameters
Receive Number: nOutputl
Receive Number: nOutput2
Local Variables
Sql Handle: hSqlCurl
Sql Handle: hSqlCur2
Number: nind
Actions
On Procedure Startup
Call SqlConnect(hSqlCurl)
Call SqlConnect(hSqlCur2)
On Procedure Execute
Call SqglPrepare(hSqlCurl, 'Insert into T1 values (7,8)")
Call SqglPrepare(hSqlCur2, 'Select c1, c2 \
from T1 into :nOutputl, :nOutput2")
Call SqlExecute(hSqlCurl)
Call SqlExecute(hSqICur2)
On Procedure Fetch
If NOT SqlFetchNext(hSqlCur2, nind)
Return 1
Else
Return O
On Procedure Close
Call SqlDisconnect(hSqlCurl)
Call SqlDisconnect(hSqlCur2)
\

/

REVOKE (Database Authority)

»P»- REVOKE —— authority level ——— FROM Iauth id <<

This form of the REVOKE command removes the authority level of a user who has
previously been granted authority for a database.

3-106 SQL Language Reference

REVOKE (Database Authority)

Only a user with SYSADM authority can revoke the DBA authority of another user.

If you REVOKE a user's RESOURCE or DBA authority, it does not take effect until
the next time the user connects.

Clauses
<authority level>
The authority levels DBA, RESOURCE and CONNECT can be revoked by
SYSADM.
Privilege Description

SYSADM This authority level cannot be removed. It is assigned by the
system when the database is created.

DBA Revoking this authority means the user can no longer create
or drop tables, or grant or revoke privileges from users.
However, the user retains CONNECT privilege; this privilege
cannot be revoked. All tables and views previously created by
this user remain.

RESOURCE Revoking this authority means the user no longer has the right
to create or drop tables. However, the user retains CONNECT
authority. Previously-created tables and views remain.

You can revoke CONNECT privilege from a user with
RESOURCE authority.

CONNECT Revoking this authority means that the user is no longer
authorized to access the database. All privileges on tables and
views must be revoked from a user before revoking
CONNECT authority. CONNECT authority cannot be
revoked while a user owns tables.

Examples
REVOKE CONNECT FROM JOE, JEAN;
REVOKE RESOURCE FROM JEAN;
See also

GRANT (Database Authority)
GRANT (Table Privileges)
REVOKE (Table Privileges)

SQL Language Reference 3-107

Chapter 3 SQL Command Reference

REVOKE (Table Privileges)

»P»— REVOKE i ALL >

— SELECT

— INSERT

— DELETE

— INDEX

— ALTER

— UPDATE

L (i column name J—) —

> ON + tab/e name ;’—L FROM i[auth id j—‘—(-(
view-name PUBLIC
This form of the REVOKE command revokes privileges previously granted to users
for a table or view.

Any user with the appropriate GRANT (Table Privileges) authority for a table can
revoke the privileges for the corresponding tables or views. The creator of a table can
revoke privileges on it.

Clauses
<privilege>
The following privileges can be revoked.

Privilege Description
SELECT Select data from a table or view.
INSERT Insert rows into a table or view.

3-108 SQL Language Reference

REVOKE (Table Privileges)

Examples

Privilege Description
DELETE Delete rows from a table or view.
UPDATE Update a table and (optionally) update only the specified
columns.
INDEX Create or drop indexes for a table.
ALTER Alter a table.
ALL All of the above for a table.

ON table name
Table names (including any implicit qualifier) must identify a table that exists in the
database.

ON view name
View names (including any implicit qualifier) must identify a view that exists in the
database.

column name

If you specify more than one table or view, and UPDATE privileges are revoked for
selected columns, then each column named must be in the specified tables or views.

FROM authorization id
The authorization id must refer to a valid user who currently has the privileges that
are being revoked.

FROM PUBLIC
This keyword signifies all users. By revoking a privilege from PUBLIC, it means that
all current users have the specified privilege revoked.

Prevent Jean from reading the EMPSAL table or updating the columns SALARY and
REVIEW.

REVOKE SELECT, UPDATE(SALARY,REVIEW) ON EMPSAL FROM
JEAN;

Revoke all privileges on EMP and EMPSAL from JOE.
REVOKE ALL ON EMP, EMPSAL FROM JOE;
Prevent users from reading the system catalog table SYSTABLES.

REVOKE SELECT ON SYSADM.SYSTABLES
FROM PUBLIC,;

SQL Language Reference 3-109

Chapter 3

SQL Command Reference

See also

GRANT (Database Authority)
GRANT (Table Privileges)
REVOKE (Database Authority)

REVOKE EXECUTE ON

»»— REVOKE EXECUTE ON v object name J_>

»—— FROM —I;ljuseri <<

—— PROCEDURE —

—EXTERNAL FUNCTION —

PUBLIC

Clauses

This command revokes a user’s execute privilege on a stored procedure or external
function.

Privilege can only be revoked by the owner of the stored procedure/external function
or by the DBA.

object name
The name of the stored procedure or external function.

PROCEDURE
If object name is omitted, the default for the object type is PROCEDURE.

EXTERNAL FUNCTION

If you are specifying an external function name, you must specify EXTERNAL
FUNCTION as the object type.

FROM userid or PUBLIC

The authorization ID of one or more users who had been granted execute privilege on
the stored procedure or external function.

3-110 SQL Language Reference

ROLLBACK

Specify PUBLIC to revoke access privileges to the stored procedure or external
function and underlying tables and views fralhcurrent and future users.

Example
This example revokes execute privileges on the PR_PRES stored procedure from all
users. Note since no object type is included, the object type defaults to
PROCEDURE.

REVOKE EXECUTE ON PR_PRES FROM PUBLIC;

This example revokes execute privilege on the PR_PRES stored procedure from two
users.

REVOKE EXECUTE ON PR_PRES FROM USER1, USER?Z;

ROLLBACK

»P»— ROLLBACK <<

savepoint identifier
— TRANSACTION <id> FORCE

This command ends the current transaction (logical unit of work). A transaction
contains one or more SQL commands that must either all be committed or none at all.

When you issue a ROLLBACK command, SQLBase aborts the current transaction.
This restores the database either to the state it was in at the last COMMIT or
ROLLBACK, or if none has been previously given, since the user connected to the
database. The rollback applies to the work done for all cursors that the SQLTalk
session or the application has connected to the database.

If you set PRESERVECONTEXT to ON for the current cursor, SQLBase preserves
the cursor context after a user-initiated ROLLBACHKdth of the following are true:

» The application is in Release Locks (RL) isolation level
* No data definition language (DDL) operation was performed

Note SQLBase does not preserve the cursor context after a system-initiated
ROLLBACK, such as a deadlock, timeout, etc.

A ROLLBACK applies to all SQL commands including data definition (CREATE,
DROP, ALTER) and data manipulation commands (GRANT, REVOKE, UPDATE,
INSERT).

If you have CONNECT authority, you can execute the ROLLBACK command.

SQL Language Reference 3-111

Chapter 3 SQL Command Reference

A ROLLBACK destroys a compiled command unless you set cursor context
preservation on.

Clauses
savepoint identifier
If you specify the savepoint identifier, the transaction is rolled back to that savepoint.
A savepoint is marked within a transaction by the SAVEPOINT command.
If the specified savepoint does not exist, the entire transaction is rolled back and an
error is returned.
If you use the same savepoint identifier again, a ROLLBACK to that savepoint
identifier will cause a rollback to the later savepoint.
Rolling back to a savepoint doest release locks. Rolling back without specifying a
savepoindoesrelease locks.
TRANSACTION <ID> FORCE
This clause forces a manual ROLLBACK of an in-doubt distributed transaction.
Generally, the automatic recovery feature of the commit server daemon will resolve
all transactions; you should only force a ROLLBACK as a last resort. The <ID>
value is the transaction’s global ID in the SYSADM.SYSPARTTRANS table.
Example
In the following example, the COMMIT statement signals the end of one transaction
and the start of another. The ROLLBACK command undoes the three previous SQL
commands.
COMMIT;
<SQL Command>
<SQL Command>
<SQL Command>
ROLLBACK ;
See also
COMMIT
SAVEPOINT

3-112 SQL Language Reference

ROWCOUNT

ROWCOUNT

»P»— ROWCOUNT tablename <<

Clauses

Example

This command returns the number of rows in a table.

The difference between this command and the SQLTalk SHOW ROWCOUNT
command is that SHOW ROWCOUNT displays the number of rows in a result set,
not a table.

tablename
The name of the table.

Show how many rows are in the EMP table:

ROWCOUNT EMP;
5 ROWS IN TABLE

SAVEPOINT

P»P»— SAVEPOINT savepoint identifier <<

This command assigns a savepoint within the current transaction.

The ROLLBACK command can optionally specify a savepoint identifier. If an
identifier is specified, the transaction is rolled back to that savepoint. If the specified
savepoint does not exist, the entire transaction is rolled back and an error is returned.

The diagram on the next page illustrates the use of the SAVEPOINT command.

Rolling back to a savepoint domet release locks. Rolling back without specifying a
savepointdoesrelease locks. A SAVEPOINT for one transaction does not affect a
SAVEPOINT on another transaction.

If you are using distributed actions, the SAVEPOINT applies to all the databases
which participate in that transaction. For example, if a user is connected to both
database A and database B and sets a SAVEPOINT on database B, a ROLLBACK to
that SAVEPOINT will rollback actions on both databases.

SQL Language Reference 3-113

Chapter 3 SQL Command Reference

Clauses
savepoint identifier
The savepoint is identified by a long identifier that be can be up to 18 characters in
length.

If the same savepoint-identifier is specified twice in SAVEPOINT commands within
the same transaction, the transaction will rollback to the location of the most-recent
savepoint when the ROLLBACK command is given (the first savepoint is forgotten).

— P start of transaction

—® SAVEPOINT first_savepoint_id
\j SAVEPOINT second_savepoint_id
ROLLBACK second_savepoint_id

L ROLLBACK first_savepoint_id

—— ROLLBACK

COMMIT

Example
This example shows the COMMIT, ROLLBACK, and SAVEPOINT commands used
in a C program.

[* Example of savepoint use */

[* Start of application is an implicit begin
[* transaction */
for ()
{
[* Process 1st screen */
/* If non-fatal error encountered processing 1st screen,
rollback work done so far and reprocess 1st screen. */
if non_fatal_error
{
sqlcex(cur, "ROLLBACK", 0);
continue;
}
}

3-114 SQL Language Reference

SAVEPOINT

[* 1st screen successfully processed. Set SAVEPOINT so we
don't have to reprocess 1st screen if subsequent
errors are encountered. */

sqlcex(cur, "SAVEPOINT screenl", 0);
for ()
{

/* Process 2nd screen */

/* If non-fatal error encountered processing 2nd */
/* screen,rollback work done so far for 2nd screen */
/* and reprocess 2nd */screen. */

if non_fatal_error

{
sqlcex(cur, "ROLLBACK screenl", 0);
continue;

}

}
sqglcex(cur, "COMMIT");

See also

COMMIT
ROLLBACK

SQL Language Reference 3-115

Chapter 3 SQL Command Reference

SELECT

»P»— SELECT * t J
L — name =

DISTINCT -

expression

expression

L AS name J

»— FROM j—[table name J L J >
view name correlation name
» L >
WHERE search-condition —
> L >
GROUP BY JE integer constant |
column name
> >
— HAVING search condition E—
»
— ORDER BY JE integer constant |
column name kASC ﬁ
DESC
-« K

” L
FOR UPDATEOF — Y

column name

I

3-116 SQL Language Reference

SELECT

This command finds, retrieves, and displays data. It specifies the following
information:

* The tables or views in the database which are searched to find the data.
* The conditions for the search.
* The sequence in which the data is output.

SELECT commands are recursive; they can be nested within the main SELECT
clause. A nested SELECT command is called a subquery. You can select from other
tables in the subquery.

The result of a SELECT is a set of rows called a result table which meets the
conditions specified in the SELECT command.

You must have SELECT privileges on the tables and views to execute this command.

Clauses
ALL
The default for a SELECT is to retrieve ALL rows.

DISTINCT
This suppresses duplicate rows.

You cannot use the DISTINCT keyword to SELECT LONG VARCHAR data types.
You cannot use a DISTINCT keyword while in restriction mode.

You cannot perform an operation with the CURRENT OF clause on a result set that
you formed with the DISTINCT keyword.

expression

This is a select list that contains expressions that are separated by commas. An
expression can be:

* A column name

* A constant

e Abind variable

* The result of a function
e A system keyword

A maximum of 255 expressions are allowed in the list. Read the sétmassions
on page2-22for more information.

If you are using the concatenate operator (||) to concatenate two or more strings, the
result of the concatenation cannot be greater than 254 characters. SQLBase issues an
error message if the resulting string size is greater than 254 characters.

SQL Language Reference 3-117

Chapter

3

SQL Command Reference

3-118

A select list is usually a list of columns from one or more tables.

An asterisk (*) is a wildcard search operator that represents the entire set of columns
in the tables or views specified in the FROM clause. You can also specify all the
columns in a single table if *' is qualified with the desired table name. For example,
the command

SELECT TAB1.*, COL1 FROM TAB1, TAB2;

Returns all of the columns in table TAB1 and the single column COLL1 from table
TAB2.

Each column name in the select list must unambiguously identify a column in one of
the tables or views named in the FROM clause. If a result set is derived from a select
list of columns from more than one table or view, any column name in the list which
is the same in two tables must be qualified by the table name to make it a unique
name.

SELECT CUSTOMER.CUSTNO, ORDERNO FROM CUSTOMER, ORDERS WHERE
CUSTOMER.CUSTNO = ORDERS.CUSTNO;

In this example, the name CUSTNO appears in the CUSTOMER table and the
ORDERS table. It therefore must be qualified to make it unambiguous within the
SQL command.

The select list can only contain aggregate functions when the GROUP BY clause is
used, or when the select list consists entirely of aggregate functions.

name = expression
expression AS name

Both of these formats assigmamethat is used as a column heading in the output.
For example:

SELECT CUSTOMER_NUMBER=CUSTNO FROM CUSTOMER;

FROM

The FROM clause contains the names of the tables or views from which the set of
resulting rows are formed. Each name must identify a table or view that exists in the
database.

A correlation namecan be assigned for the table or view immediately preceding the
name. Each correlation name in a FROM clause must be unique.

Correlation names are required when a search condition is executed more than once
for the same table or view in a single SQL command (as in joining a table to itself or
in correlated subqueries, described below). They provide a shorthand way to qualify
column names.

SQL Language Reference

SELECT

The above SQL command can be written using the correlation name C to designate
CUSTOMER and O to designate ORDERS:

SELECT C.CUSTNO, ORDERNO FROM CUSTOMER C, ORDERS O
WHERE C.CUSTNO = O.CUSTNO;

WHERE search condition
The WHERE clause specifiesaarch conditiorior the base tables or views.
The search condition of the WHERE clause cannot contain any aggregate functions

(unless part of a subselect). Read the se&earch conditionen page2-24for more
information.

You cannot use a LONG VARCHAR column in a subselect search condition.

GROUP BY

The GROUP BY clause groups the result rows of the query in sets according to the
columns named in the clause.

If the column by which a grouping occurs is an expression (but not an aggregate
function), you must specify a number that indicates its relative position in the select
list only if the expression contains more than one column. If only one column is used
in the expression, it can be used in the GROUP BY.

Aggregate functions, since they yield one value, cannot be grouping columns.

The result of a grouping is the set of rows for which all values of the grouping column
are equal. NULL values in a grouping column are treated as a separate group.

If a GROUP BY clause is specified, each column in the select list must be listed in the
GROUP BY clause or each column in the select list must be used in an aggregate set
function that yields a single value.

The following example finds the total salary for each department, the average salary,
the number of people in each department. It illustrates a GROUP BY and an equijoin
(for getting the department name).

SELECT DEPTNO, SUM(SALARY), AVG(SALARY), COUNT(SALARY)
FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO
GROUP BY DEPTNO;

You cannot use GROUP BY while in restriction mode.

You cannot perform an operation with the CURRENT OF clause on a result set that
you formed with a GROUP BY clause.

SQL Language Reference 3-119

Chapter

3

SQL Command Reference

3-120

HAVING search condition

The HAVING clause allows a search condition for a group of rows resulting from a
GROUP BY or grouping columns. If a grouping column is an expression that is

an aggregate function (such as SAL*10), it cannot be used in the HAVING clause.

Using the example for the GROUP BY clause, we are only interested in the
departments where the average salary is greater than 30000.

SELECT DEPTNO, SUM(SALARY), AVG(SALARY), COUNT(SALARY)
FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO
GROUP BY DEPTNO HAVING AVG(SALARY) > 30000;

You cannot use a HAVING clause while in restriction mode.

The HAVING clause is useful to retrieve data that is grouped by one column, but only
returns one row for each group based on the maximum of another column.

ORDER BY

This specifies the ordering, or sorting, of rows in a result table. Rows can be sorted on
more than one column. The major sort is on the first column specified in the ORDER
BY clause and the minor sorts are on the columns specified after that.

If the sort is on a column derived from a function or arithmetic expression, the
column must be specified by an integer that signifies its relative number in the select
list of the command.

Each column name (or number) can be optionally followed by ASC or DESC for
ascending or descending sort sequence. ASC is the default order.

You cannot use the ORDER BY clause in a SELECT command that is a component
of a UNION of SELECT commands. You cannot use the ORDER BY clause in a
view definition.

You cannot perform an operation with the CURRENT OF clause on a result set that
you formed with an ORDER BY clause, since ORDER BY creates virtual row tables
that do not include rowids.

You cannot use an ORDER BY clause while in restriction mode.
You cannot use an ORDER BY clause in a subselect.

You cannot use string functions in an ORDER BY clause. Instead, specify the string
function in the select list and then use the select list column number in the ORDER
BY clause.

SQL Language Reference

SELECT

Examples

FOR UPDATE OF

If you are using a named cursor, this locks parts of a table so that a subsequent
UPDATE or DELETE will not cause a deadlock between concurrent users. This
clause is compatible with DB2.

You can UPDATE columns in the column-name list. Those columns must be a part of
the table or view named in the FROM clause of the SELECT command.

When you use the FOR UPDATE OF clause, SQLBase uses update locks. An update
lock reduces the possibility of deadlocks. Update locks are compatible with shared
locks, but not with other update locks or exclusive locks. An update lock is released if
the transaction does not immediately follow the SELECT...FOR UPDATE command
with an UPDATE or DELETE. This is in contrast to exclusive locks which are held
until a COMMIT or ROLLBACK.

For the read repeatability (RR) and cursor stability (CS) isolation levels, the FOR
UPDATE OF clause uses update locks. The FOR UPDATE OF clause has no effect on
read only (RO) or release lock (RL) isolation levels.

You can use the CURRENT OF clause in an UPDATE or DELETE command on a
result set formed with the FOR UPDATE OF clause.

You cannot use the FOR UPDATE OF clause with the UNION or ORDER BY
clauses or with multi-table selects.

Select all rows from the CUSTOMER table.
SELECT * FROM CUSTOMER,;

Make a list of the job titles.
SELECT DISTINCT JOB FROM EMP;

Display the employee number and monthly salary of people whose annual salary is
greater than $40000.

SELECT EMPNO,SALARY/12 FROM EMPSAL
WHERE SALARY > 40000;

Find the minimum and average salary for each department.

SELECT DEPTNO, MIN(SALARY), AVG(SALARY)
FROM EMP, EMPSAL
WHERE EMP.EMPNO=EMPSAL.EMPNO
GROUP BY DEPTNO;

Find the total employees hired for each quarter. This command illustrates the use of
an integer when using a function in a GROUP BY clause.

SQL Language Reference 3-121

Chapter 3 SQL Command Reference

SELECT @QUARTERBEG(HIREDATE), COUNT(EMPNO) FROM EMP
GROUP BY 1,

Get the employee information for people with the same job as Drape.

SELECT * FROM EMP
WHERE JOB IN
(SELECT JOB FROM EMP WHERE LNAME = 'Drape’);

Find the orders where the price paid was equal to the list price.

SELECT * FROM ORDERS X
WHERE PRICE = (SELECT LISTPRICE FROM PARTS WHERE
PARTS.PNUM = X.PNUM);

Find an order so that you can update it.

SELECT * FROM ORDERS
WHERE CUSTNO=2 ORDER BY ORDERDATE;

Update the EMP database to show employees in department 2500.

SELECT LNAME FROM EMP WHERE DEPTNO = 2500 FOR UPDATE OF
JOB;

UPDATE EMP SET JOB ="?"
WHERE CURRENT OF EMPCURSOR;

FETCH 1;

Carver

UNION Clause

UNION —m_
ALL
»i select command <4<

LORDER BY i integer constant
~ASC
DESC

This clause merges the result of two or more SELECT commands. Any duplicate
rows are eliminated.

3-122 SQL Language Reference

SET DEFAULT STOGROUP

Example

Each result table must have the same number of columns. None of the columns can be
LONG VARCHAR columns. Except for column names, the description of the
corresponding column in each table must be identical.

You cannot use UNIONS in restriction mode.

You cannot perform an operation with the CURRENT OF clause on a result set that
you formed with a UNION clause.

ALL

If this is specified, duplicate rows witlot be eliminated. The result contains all the
rows selected. If ALL is used, it must be repeated for every SELECT command:

select-cmd-1 UNION ALL select-cmd?2,
UNION ALL select-cmd-n.

ORDER BY

An ORDER BY clause sorts the final result set of rows from the UNION of two (or
more) tables. When an ORDER BY clause is used with a UNION, you must use an
integer specifying the sequence number of the column in the select list.

This command finds the employees from department 2500 and those whose salary is
more than 50000.

SELECT EMPNO FROM EMP WHERE DEPTNO = 2500 UNION SELECT
EMPNO FROM EMPSAL WHERE SALARY> 50000;

SET DEFAULT STOGROUP

»P»— SET DEFAULT STOGROUP

J <<

stogroup name

Clauses

This command sets the default storage group. After a default name is given to a
storage group, all subsequent CREATE DATABASE commands will cause databases
to be partitioned.

stogroup name

The name of the specified storage group. The storage group name is optional. If you
omit the storage group name, the storage group is null. This allows databases to be
created in the normal file system (non-partitioned).

SQL Language Reference 3-123

Chapter

SQL Command Reference

Example

See also

SET DEFAULT STOGROUP ACCTDEPT;

ALTER STOGROUP
CREATE STOGROUP
DROP STOGROUP

START AUDIT

P»P»— START AUDIT audit name L J >
% GLOBAL — TO directory name
PERFM ——
” L J L J "
SIZE integer APPEND integer —— KEEP integer
” L J L
OVERWRITE cATEGORY —Y— integer _ L

3-124

This command starts audit, andcreates an entry in the appropriate section of the
configuration file(sql.ini). An audit collects various system and performance
information, and writes it to an audit file. You can also write a message to an audit
file. For more details on the type of information collected, see the list of audit types
and applicable categories in tBéausessection.

An audit remains active while the server is running. It stops when you shut down the
SQLBase server, but restarts when you bring the server back up. To completely stop
an audit operation, use STOP AUDIT, or delete the audit entry from the configuration

file (sql.ini).

You can have up to 32 active audit operations running concurrently. However, it
generally is not necessary to have more than one or two, since you can record

SQL Language Reference

START AUDIT

Clauses

different types of information within each audit. Also, be aware that each additional
audit operation can affect performance.

This command requires a server connection.

GLOBAL
PERFM

Enter either GLOBAL or PERFM here. These are the audit types, and determine
which category options you access.

Enter GLOBAL for a global audit. A global audit includes information about the
entire SQLBase server, such as rejected logons, SQL security violations, and recovery
operations.

Enter PERFM for a performance audit. This type of audit tracks how long a certain
operation takes, such as the length of time needed to compile and execute a SQL
statement.

You can start a global audit in conjunction with an active performance audit, although
they must have different names.

The default is GLOBAL.

audit name

This is an identifier that names the current audit operation. Use this audit name when
you stop the audit with STOP AUDIT, or write a message to the audit file with the
AUDIT MESSAGE command.

The audit name is a short identifier, and therefore can be up to eight characters long.
All concurrent audit names must be unique.

Audit files have the same name as the audit operation, with an exteqsidrerex is
an ascending value. For example, starting an audit operation with themadit
generates an audit file calledyaudit.1

Since the sequence of audit files is controlled by the file extension, you can
theoretically have up to 1000 audit files for each individual audit (though this may not
be practical in real-time applications). The audit file extension sequence ranges from
auditname. o auditname.999After auditname.998the next file is called
auditname.Qand then wraps around to begin the sequence agaiawditname.1

TO directory name

Use this clause to specify a directory that contains audit files. If you do not specify a
directory, SQLBase creates the audit files in the home directory specifieddiydihe
configuration keyword (for exampl& entura). The directory name can be enclosed

in single quotes.

SQL Language Reference 3-125

Chapter

3

SQL Command Reference

3-126

SIZE integer

Use this clause to specify the maximum size of each audit file, in kilobytes. When the
file reaches the maximum size you specify, SQLBase automatically generates a new
file. This means that if you specify a maximum size of 100 kilobytes for an audit
calledmyaudit SQLBase automatically creates and starts writing outpuysudit.2
whenmyaudit.1reaches 100 kilobytes.

The default is 1000 kilobytes (1 megabyte).

Specify zero (0) to turn off all file size checking. This causes SQLBase to produce
only one trace file of unlimited size.

APPEND integer

If you specify this clause, stop the audit with STOP AUDIT, and specify the same
audit name again with START AUDIT, SQLBase continues to append audit
information to the audit file having the extension you specify.

For example, assume you run STOP AUBtyauditand see that SQLBase has
created four audit files, the last beimyaudit.4 If you use the same name to start a
new audit with the following command:

START AUDIT myaudit APPEND 4;

SQLBase appends the records of the mey@uditoperation tanyaudit.4 even
though they are two separate audits.

KEEP integer

This clause tells SQLBase the number of old audit files to keep besides the current
file. For example, if you specify a KEEP value of 2 for an audit cafigaudit

SQLBase automatically deletesyaudit.lwhen it createmyaudit.4 since it can only
keep two old filegmyaudit.2andmyaudit.3.

The default is one file.

OVERWRITE

If you specify this clause, SQLBase automatically overwrites an existing audit file if
it encounters one.

Unless you specify this clause, you cannot start an audit if there are existing audit
files with the same name. For example, if you try to run START AUDYaudit
without the OVERWRITE clause, and there is already an audit file cajeddit.1
SQLBase returns an error message.

If SQLBase encounters an existing file later in the audit process, (for example,
myaudit.4, it automatically stops the audit and writes a message to the last audit file
(myaudit.3.

SQL Language Reference

START AUDIT

CATEGORY integer

This clause identifies what types of information the audit operation records. The
category options depend on what type of audit you chose: GLOBAL or PERFM.

You can record information for multiple categories by separating them by commas.
Each category is independent of the others. This means that choosing category 3 does
not also include information for 1 and 2.

This clause is optional. However, if you do not use it, SQLBase automatically records
information forall categories of the audit type you chose.

GLOBAL type categories. The following table lists the valid categories for a
GLOBAL audit:

Category Data collected Description
1 Rejected logons Records unsuccessful login attempts. Useful to seq if a
user tried to access a restricted database.
2 Security violations Tells you if a user tried to access data without proper
privileges.
Valid logins/logoffs Records all valid logons, telling you when a user first
3 connected, and whether he/she disconnected. Use it|to
find out what users were logged on.
4 Valid connects/disconnects Records CONNECT and DISCONNECT statements.
Database creates, drops, Records CREATE DATABASE, DROP DATABASE,
5 installs, and deinstalls INSTALL DATABASE, and DEINSTALL DATABASE
commands.
6 Recovery operations Records all ROLLBACK commands.
7 Backup and restore operations Records all BACKUP and RESTORE commands.
8 Database Lock Manager Records information about deadlocks and timeouts.
deadlocks and timeouts
9 Table access information Tells you which users accessed which tables.
(queries)
10 Table update information Records database manipulation language commands

(inserts, updates, and deleteg) (DML), and which users issued the commands.

SQL Language Reference 3-127

Chapter 3

SQL Command Reference

PERFM type categories. The following table lists the valid categories for a
PERFM type audit:

Category Data collected Description

1 Connects and Disconnects Tells you how long it takes users to connect to and
disconnect from a database

2 SQL command Tells you how much time SQLBase takes to compile,

compilation, execution, store, retrieve, and execute a particular SQL statemgnt.
storage, and retrieval.

3 End of transaction. Tells you when a transaction ended, and how long the
transaction took. Useful for locating long-running
transactions.

Examples

Start a global audit calleauditall to record all information categories:
START AUDIT AUDITALL;

Start a performance audit to record long-running transactions, and write the output to
the\Centura directory:

START AUDIT PERFM LONGTRAN TO C:\CENTURA
CATEGORY 3;

Start a new global security audit to track rejected logons and attempts to access data
without the proper authority. Overwrite any existing files for that audit, and keep 10
old audit files:

START AUDIT SECURITY KEEP 10 OVERWRITE CATEGORY 1,2;

Start and stop a performance trace caibsting Start a new performance audit with
the same name, and append the output to theekistigaudit file testing.J:

START AUDIT PERFM TESTING;
STOP AUDIT TESTING;
START AUDIT PERFM TESTING APPEND 3 OVERWRITE;

3-128 SQL Language Reference

STOP AUDIT

STOP AUDIT

A

»P»—— STOP AUDIT |_
audit name

Clauses

Examples

This command stops either all or the specified audit operations. This command
requires a server connection.

This command removes the AUDIT entry in the server’s configurationrsfifleiri).

audit name

This is the audit name. This is the hame of the audit operation created with the
START AUDIT audit nameclause.

This clause is optional. If you do not designate a specific audit operation, all active
audit operations are stopped.

Stop all audit operations.
STOP AUDIT;
Stop only one audit operation calleyyaudit.

STOP AUDIT MYAUDIT;

SQL Language Reference 3-129

Chapter 3 SQL Command Reference

UNLOAD

‘ source table ! 2

P UNLOAD SQL -|:'file name’
LCOMPRESSJ L DATAJ CONTROL ‘file name' J {OVERWRITEJ t ALL
ASCII —[‘file name' J { J source table ——
L DATA— CONTROL ‘file name' OVERWRITE:
—|: ‘file name' J { J source table —
—- DATA— CONTROL ‘file name' OVERWRITE:
L DATABASE —T ‘file name' J \‘ J
COMPRESS CONTROL ‘file name' OVERWRITE
SCHEMA ——
L ON L CLIENT L LOG 'logfile name'
SERVER

This command dumps some or all of a database to an external file.

If you are unloading data only, you can unload to a SQL, ASCII, or DIF file.
Otherwise, SQLBase unloads information to a SQL formatted file.

You can unload (and load) to the serverrmittto the client from within a stored
command or procedure.

With the UNLOAD command, you can back up a database or transfer data from a
database to another program through interchange formats.

3-130 SQL Language Reference

UNLOAD

You can split the unload file into segments that reside on multiple disks. This allows
you to unload information from a database that might exceed single disk or system
unit limits, and also split an unload file into multiple files if you have smaller pockets
of available disk space spread across different disks.

To restore database information from an external file, use the LOAD command.

If you are running UNLOAD with a control file for file segmentation, SQLBase
automatically creates a corresponding load control file in the same directory. Use this
control file to reload the information with the LOAD command.

The control file you specify must contain sufficient valid segment specifications to
accommodate the total database size.

Note: SQLBase does not verify the existence of disk space availability for any of the files you
create. Be sure that there is sufficient space in the directories you designate for the LOAD
command and for the control file.

You should run the UNLOAD command in the Read-Only isolation level so that you
do not lock out other users.

You cannot UNLOAD while in restriction mode.
LONG data type columns can only be unloaded in SQL format.

If you have changed the SYSADM password, a subsequent UNLOAD and LOAD
operation retains these new settings. To enhance security of the passwords in the
external unload file, it is recommended that you do one of the following:

» Store the external unload file in an access-protected location on disk.

» Compress the unload file using the UNLOAD command’s COMPRESS
clause.

The UNLOAD operation does not unload invalid stored commands or procedures

When triggers are encountered during the UNLOAD operation, the status of the
trigger is checked. If the trigger is disabled, the UNLOAD operation generates an
ALTER TRIGGERtriggernameDISABLE statement for that trigger, which
immediately follows the trigger's CREATE TRIGGER statement. If the trigger is
enabled, the UNLOAD operation takes no action.

When you specify the unload file name, enclose it in single quotes (‘). This ensures
that the file name is valid on both the client and server platforms.

Read théDatabase Administrator’s Guider more information on loading and
unloading.

SQL Language Reference 3-131

Chapter 3

SQL Command Reference

Clauses

DATA

In the context of the SQL format, this means that only data is written to the external
file and no CREATE TABLE or CREATE INDEX statements are written. Depending
on whether the file format is SQL, ASCII or DIF, this can have varying implications
for the contents of the file.

SQL
This option causes the external file to be created with a series of SQL commands.

If you specify the DATA option in the command, the file contains only INSERT
commands followed by data rows.

If you do not specify the DATA option, the file also includes CREATE TABLE and
CREATE INDEX data definition commands along with corresponding INSERT
commands for each table. It does not contain any other database object if you also
specify the ALL clause.

The data rows associated with the INSERT command use bind variables.

When you use this option, multiple tables can be UNLOADed. You can specify ALL
to unload all the tables of the logged-in user.

SQLTalk writes a line with $datatypes in UNLOADed tables in SQL format. The
$datatypes keyword provides data type mapping for compatibility with DB2. A
subsequent LOAD works for either DB2 or SQLBase tables.

When unloading, SQLBase converts binary data to ASCII characters. SQLBase
marks the converted binary data with a tilde (~) character. If you want to LOAD a
tilde characteas data you must mark it as follows:

..HO._

A continuation character "\" (backslash) can be used in unload files while entering
data or commands. The continuation character works anywhere except in column 1.

The following example shows lines from a sample SQL UNLOAD file:

INSERT INTO SYSADM.ELECTION VALUES(

1,

2,

3,

4)

\

$datatypes NUMERIC,CHARACTER,NUMERIC,CHARACTER
1796,"Pinckney T",59,"L",

1796,"Washington G",2,"L",
/

3-132 SQL Language Reference

UNLOAD

ASCII

If you specify this, the external file contains only data, organized in ASCII format.
This is true even if you do not specify the DATA option.

You can only specifgnesource table.
You cannot unload LONG data type columns in ASCII.
The following example shows lines from a sample ASCIlI UNLOAD file:

1796,"Pinckney T",59,"L"
1796,"Burr A",30,"L"
1796,"Adams S",15,"L"
1796,"Ellsworth O",11,"L"
1796,"Clinton G",7,"L"
1796,"Jay J",5,"L"
1796,"Iredell 3",3,"L"
1796,"Henry J",2,"L"
1796,"Johnson S",2,"L"
1796,"Washington G",2,"L"

DIF

If you specify this, the external file contains data organized in Data Interchange
Format (DIF) which is a common format for spreadsheets and databases.

Only one table can be unloaded in a single DIF file.

If you specify the DATA option, only the data in the table is written to the file. If it is
not specified, the names of the table and columns are also written.

If the file is subsequently loaded into a database with the LOAD command, SQLTalk
automatically creates the table and columns into which the data is loaded.

You cannot unload LONG data type columns in DIF.

file name

This is the name of the file into which unloading occurs. If the file already exists, you
must specify the OVERWRITE clause. If you are using the file name with the ON
SERVER clause, be sure to provide the volume name if it applies to our SQLBase
Server environment. The following example specifies the volume name on a NetWare
Server:

db:\demo\acctl

source table

This is the name of the table from which data is unloaded. The table must exist in the
current database. The current database is the database to which you are connected at
sign-on or with the most recent CONNECT or USE command.

SQL Language Reference 3-133

Chapter

3

SQL Command Reference

3-134

If you specify a source table list, you must separate the table names with blanks. This
is not applicable for ASCII and DIF formats.

The source table can also be a view or a synonym.

ALL

This option unloads all tables and indexes belonging to the connected user and is only
applicable for the SQL format. It does not unload any other database objects.
DATABASE

This unloads the entire database to which the user is connected. You must be logged
on as SYSADM to give this command.

You can only use UNLOAD DATABASE for SQLBase databases.

SCHEMA

This is similar to the DATABASE parameter, but it unloads only DDL (Data

Definition Language) commands.

ALL

Use this command to unload all tables and indexes belonging to you. This command
does not unload views and synonyms.

COMPRESS

Use this option to compress the data when you unload it.

This option is not valid for DIF or ASCII data files.

CONTROL filename

Use this clause with an unload control file name if you are unloading information into
multiple file segments. SQLBase also generates a corresponding load control file.
The unload control file name cannot be the same name as the load control file name,
since they both reside in the same directory.

If you do not specify a path, SQLBase assumes that the control file resides in the
default directory (for example, \Centura).

You create the unload control file with an online editor using the following syntax:

FILEPREFIX <filename prefix>

DIR <destination dir> SIZE <maximum size of the unload
segment file in megabytes>

DIR <destination dir>SIZE <maximum size of the unload
segment file in megabytes>

SQL Language Reference

UNLOAD

This file provides the following information:

Parameter Description
FILEPREFIX The prefix of the file segment names used for the unlpad.
DIR The destination directory where the unload file segments
will reside.
SIZE Maximum file segment size in megabytes. You can

specify a null or integer value of 1 through 2048
megabytes. The control file must indicate a minimum
aggregate size to account for all the unload data.

Use the following to calculate the maximum number of
bytes you can allocate:

bytes = (size * 1048576)

which is the maximum file size common across most
systems.

The last unload file segments may not use the entire size
that you allocated.

The following example shows an unload control file for the Windows NT
environment:

Example:

FILEPREFIX dbs

DIR c:\unldir\ SIZE 100
DIR d:\unldir\ SIZE 50
DIR e:\unldir\ SIZE 200

Note: For NetWare, you specify the fully qualified volume name for the file segments. For
example: db:\demo\dbs.1

During an UNLOAD operation, this control file tells SQLBase to unload database
information in the following order:

1. 100 megabytes of information to a file calteWinidindbs.1
2. 50 megabytes of information to a file call&tunldir\dbs.2
3. 200 megabytes to a file calledunldir\dbs.3

It also creates a load control file callebs.|cf.

SQL Language Reference 3-135

Chapter 3

SQL Command Reference

Examples

OVERWRITE

This option allows you to overwrite an existing unload file. The default is NO
OVERWRITE.

ON CLIENT
ON SERVER

Use this clause to tell SQLBase where to create the destination file for the unload
operation - on the client or the server machine. The default is ON CLIENT.

If you intend to use a control file, use this clause to tell SQLBase where the unload
control file is. You can create the unload control file on either the client or server
machines, but it must be consistent with the ON SERVER or ON CLIENT
designations. As SQLBase unloads the database information, it generates the unload
file segments on the same machine as this control file.

Note: Even though SQLBase creates the unload file segments on thensamieeas the
unload control file (unless you are using connected network drives), the file segments and the
control file can reside in differedirectories(including network drives) on that machine.

You cannot use the ON CLIENT clause with either a SQLBase procedure or
SQLWindows program; with these two applications, you must use ON SERVER.

LOG

Use this option to automatically create a message log file. If you do not designate a

path for the log file, SQLBase creates it in the Centura home directory (for example,

\Centura. The log files contain a timestamp for each action, summary information on
the number of database objects unloaded, any errors that occurred, and a statement
confirming the load completed successfully.

The default is no log file.

If the client and server are on different machines, SQLBase creates the message log
file on the server machine.

Unload the EMP and DEPT (data only) tables in SQL format.
UNLOAD DATA SQL personnel.sql EMP DEPT;

Unload the EMP table (data only) in ASCII format.
UNLOAD ASCII emp.asc EMP;

Unload the EMP table in DIF format. Table and data are unloaded:
UNLOAD DIF table.unl EMP;

3-136 SQL Language Reference

UNLOCK DATABASE

Unload all tables and indexes belonging to the user who issues the command:
UNLOAD ALL mytables.uld;
Unload the entire EMPLOYEE database:

UNLOAD DATABASE emp.uld;

UNLOAD COMPRESS DATA SQL db.unl ALL ON SERVER LOG db.log;
UNLOAD SQL table.unl OVERWRITE t1 t2;

UNLOAD COMPRESS DATABASE db.unl ON SERVER,;

UNLOAD DIF table.unl;

Unload the entire database at the server using a control file located also at the server:

UNLOAD DATABASE CONTROL contrll.fil ON SERVER,;

UNLOCK DATABASE

»P»—— UNLOCK DATABASE <<

Example

This command releases the exclusive lock acquired on the current database with the
LOCK DATABASE command. After you run this command, SQLBase allows
additional connections by other users again.

Issuing LOCK DATABASE before and UNLOCK DATABASE after a load operation

can noticeably improve performance. You can also use database locking to accelerate
other database operations which require a long time to complete, or for which a high
degree of concurrency control is not necessary, such as index maintenance and
referential integrity updates.

If you hold an exclusive lock on the database and disconnect your last database
connection before running UNLOCK DATABASE, SQLBase automatically releases
your exclusive database lock.

The following example shows how you can improve a LOAD command’s
performance by issuing LOCK DATABASE and UNLOCK DATABASE.

CONNECT ACCTSDB1 SYSADM/SYSADM;
LOCK DATABASE;

LOAD SQL accts.unl;

UNLOCK DATABASE;

SQL Language Reference 3-137

Chapter 3

SQL Command Reference

UPDATE

»P»— UPDATE —[table name J L J »
view name correlation name
»— SET i column name — = expression ‘ >
L

NULL

T . T

WHERE —[search conditon ———— CHECK EXISTS

CURRENT OF cursor name —

Clauses

This command updates the value of one or more columns of a table or view based on
the specified search conditions. You must possess the UPDATE privilege on the
columns of the table or view.

The UPDATE command (for referential integrity) updates tables with primary or
foreign keys. Any non-null foreign key values that you enter must match the primary
key for each relationship in which the table is a dependent.

If you are updating a parent table, you cannot modify a primary key for which
dependent rows exist. This would violate referential constraints for dependent tables
and would leave a row without a parent. In addition, you cannot give a primary key a
null value.

In a database with referential integrity, the only UPDATE rule that can be applied to a
parent table is RESTRICT. This means that any attempt to update the primary key of
the parent table is restricted to cases where there are no matching values in the
dependent table.

If an UPDATE against a table with a referential constraint fails, an error message is
returned.

When a record is updated, the fields being updated are removed from the record and
new fields are added. If the new value’s data size is the same as the old size,
SQLBase overwrites the old field.

For more information on referential integrity, ré@kdapter 6, Referential Integrity.

table name
This identifies an existing table.

System catalog tables can be named, but only-user defined columns can be updated.

3-138 SQL Language Reference

UPDATE

view name
This identifies an existing view.

You cannot UPDATE a view based on more than one table.

correlation name

The correlation name must be specified if the search condition involves a correlated
subquery.

column name
This identifies the columns to be updated in the table or view.

Columns derived from an arithmetic expression or a function cannot be updated.

If a view was specified with WITH CHECK OPTION, the updated row must conform
to the view definition.

SET

If the update value is specified as NULL, the column must have been defined to
accept null values.

If a unique index is specified on a column, the update column value must be unique or
an error results. Note that for a multi-column index, it isathgregatevalue of the
index that must be unique.

If the update value is a string expression in which two or more strings are
concatenated, the resulting string size cannot exceed 254 characters.

WHERE search condition
The WHERE clause specifies the rows to be updated based on a search condition.

When this clause is used, it is called a “searched UPDATE.”

WHERE CURRENT OF cursor name

This clause causes the row at which a cursor is currently positioned to be updated
according to the specification of the SET clause.

When this clause is used, it is called a “positioned UPDATE" or a “cursor-controlled
UPDATE.”

This type of update requires two open cursors:

e Cursor 1 is associated with a SELECT command. The current row references
the row of the most recent fetch.

e Cursor 2 is associated with the UPDATE command.

A cursor-name must be associated with cursor 1 before this command can be
executed.

SQL Language Reference 3-139

Chapter 3

SQL Command Reference

Examples

See also

You can only use CURRENT OF if all of the following are true for the corresponding
SELECT command:

* The cursor must be named or be in result set mode.

* The SELECT command cannot contain joins, GROUP BY, DISTINCT, SET
functions, or UNION.

+ |Ifthe SELECT command contains an ORDER BY clause, the isolation level
must be RE (release lock).

* Any subselect in the SELECT command must satisfy the previous condition.

CHECK EXISTS

This clause specifies to return an error if at least one roatigpdated. This clause
can be used in any context, including in chained commands.

Change employee 1004's salary.
UPDATE EMPSAL SET SALARY = 45000 WHERE EMPNO= 1004;
Give all employees in department 2500 a 10% raise.

UPDATE EMPSAL SET SALARY = SALARY*1.10
WHERE EMPNO IN (SELECT EMPNO FROM EMP WHERE DEPTNO =
2500);

Prefix all job titles with the letter P. Update every row in the table.
UPDATE EMP SET JOB="P'||JOB,;
Update the row reference by the current fetch of cursor named FINDBUG.

UPDATE EMPSAL SET SALARY= 40000
WHERE CURRENT OF EMPCURSOR,;

CREATE TABLE
SELECT
SET CURSORNAME (SQLTalk command)

3-140 SQL Language Reference

UPDATE STATISTICS

UPDATE STATISTICS

.>_

»P»— UPDATE STATISTICS ON ! 2

— INDEX index name \\ <«
SET

— TABLE table name L JJ
SET i system catalog column name = expression

—— DATABASE

system catalog column name = expression

DISTINCTCOUNT (index key) = expression

This command updates the statistics for an index, table, or database.

Generally, you should execute this command when more than 10% of your data has
been modified or recently added, such as when the number of distinct key values have
changed for an index.

To have your stored commands take advantage of statistics yielding better
performance, you can restore your commands and then run the SQLBase-supplied
RECOMPILE procedure. For more information on RECOMPILE, read Appendix B
of theDatabase Administrator's Guide

You can run SET TIME ON to check the performance before and after the statistics
have been updated. This command displays the time required to obtain the results of
SQL commands. The command does not show times for each function call, although
it may calculate it that way.

SQL Language Reference 3-141

Chapter 3

SQL Command Reference

Clauses

By using the SET clause, you can enter test values for index and table statistics to
simulate a production environment, without using real data. This command updates
the data dictionaries with your test values as if you were using real data. The
SQLBase query optimizer then uses these new statistics to find the most optimal
access strategy. To restore table and index statistics to actual values, run this
command again without using the SET clause.

Whether you are updating real or test values for statistics, this command updates both
the internal dictionary (database control pages) as well as the external dictionary
(SYSADM catalogs). No database statistics are preserved when you unload, then
reload the database.

UPDATE STATISTICS has the following security rules:

» If you create an index or table, you have privileges to update its statistics.
You cannot update statistics for an object you do not own unless you have
DBA or SYSADM privileges.

e Only a user with SYSADM or DBA authority can update statistics for a
database.

* Auser with DBA or SYSADM authority can update statistics on any table,
index, or database.

INDEX index name
Updates the statistics for the specified index.

TABLE table name

Updates both the table statistics for the specified table, and also index statistics for all
indexes in that table.

DATABASE

Updates the statistics for all indexes and tables in the database. If you use this option,
you cannot enter test statistics with the SET option.

SET

To enter user-modified statistics, use this clause in conjunction with either one of the
following system catalog columns or the DISTINCTCOUMdex keyclause.

SQLBase then updates the specified value in the system catalog, as if the values were
real data.

system catalog column name=expression

Set a test value here for the system catalog column describing the index or table
specified in the ON clause. The value must evaluate to a constant. You enter a column
from either the SYSADM.SYSTABLES or SYSADM.SYSINDEXES table,

3-142 SQL Language Reference

UPDATE STATISTICS

depending on whether you are entering statistics for a table or index. SQLBase
updates the specified system catalog table with this value.

If you are updating statistics for a table, set a value for one of the following
SYSADM.SYSTABLES columns:

* ROWCOUNT

* PAGECOUNT

* ROWPAGECOUNT
* LONGPAGECOUNT

If you are updating statistics for an index, set a value for one of the following
SYSADM.SYSINDEXES columns:

* HEIGHT

* LEAFCOUNT

* CLUSTERCOUNT

* PRIMPAGECOUNT
* OVFLPAGECOUNT
* INDEXPAGECOUNT

Note: The PRIMPAGECOUNT and OVFLPAGECOUNT columns are applicable only to
clustered hashed indexes.

Read Appendix A in thBatabase Administrator's Guider complete descriptions
of these columns.

DISTINCTCOUNT (index key)

Use this clause to enter test values for the number of distinct index key values. The
value must be a constant.

Theindex keyparameter is a valid prefix key of the index you specified with the
INDEX index namelause. The syntax famdex keyis:

column-name [, column-name] ...

See the following section for an example.

SQL Language Reference 3-143

Chapter 3

SQL Command Reference

Example

See also

The following example updates statistics on the CUSTOMER_ID index:
UPDATE STATISTICS ON INDEX CUSTOMER_ID;

The following example sets values for the ROWCOUNT, ROWPAGECOUNT, and
LONGPAGECOUNT columns in SYSADM.SYSTABLES for the EMPLOYEE
table. Other statistics are unaffected.

UPDATE STATISTICS ON TABLE employee
SET rowcount = 5000, rowpageount=200,
longpagecount = 0;

The following command sets some of the index statistics for the index
emp_name_indan the table EMPLOYEE. This is a BTree index.

UPDATE STATISTICS ON INDEX emp_name_indx
SET height = 2, leafcount=100, clustercount = 200;

The following example updates statistics for an index key. Assuming that the index
EMP_NAME_IDX is a two column key, with 5000 distinct values for the key
(LNAME, FNAME) and 4000 distinct values for (LNAMEbnly, the following
alternatives can be used to define the distinct value.

UPDATE STATISTICS ON INDEX EMP_NAME_IDX SET
DISTINCTCOUNT (LNAME, FNAME) = 5000;

UPDATE STATISTICS ON INDEX EMP_NAME_IDX SET
DISTINCTCOUNT(LNAME) = 4000;

or

UPDATE STATISTICS ON INDEX EMP_NAME_IDX SET
DISTINCTCOUNT(LNAME, FNAME) = 5000,
DISTINCTCOUNT(LNAME) = 4000;

CREATE INDEX
SET TIME (SQLTalk command)

3-144 SQL Language Reference

Chapter 4
SQL Function Reference

SQLBase has a set of functions for manipulating strings, dates and numbers. Each
function is described in this chapter.

A function returns a value that is derived by applying the function to its arguments.

Functions are classified as:

Aggregate functions
String functions

Date and time functions
Logical functions
Special functions

Math functions

Finance functions

SQLBase provides both DB2-compatible and other functions. Functions which are
extensions of DB2 and am®t compatible with DB2 are prefixed with an "at sign"

(@).

SQL Language Reference 4-1

Chapter

4

SQL Function Reference

Data type conversions in functions

In most cases, functions accept any data type as an argument if the value conforms to
the operation that function performs. SQLBase will automatically convert the value to
the required data type.

For example, in functions that perform arithmetic operations, arguments can be
character data types if the value forms a valid numeric value (only digits and standard
numeric editing characters).

For date/time functions, an argument can be a character or numeric data type if the
value forms a valid date/time value.

Aggregate functions

An aggregate function computes one summary value from a group of values.

Aggregate functions can be applied to the data values of an entire table or to a subset
of the rows in a table.

They may be nested up to two levels deep.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/time
value (only digits and standard editing characters). SQLBase automatically converts
the value to the required data type.

You cannot use aggregate functions while in restriction mode.
SQLBase supports the following aggregate functions:

AVG
COUNT
MAX
@MEDIAN
MIN

SUM
@SDbV

String functions

String functions return information about character data types.

The output of a string function is always a string or a number. Some functions yield
TRUE or FALSE. TRUE is expressed as the number 1 and FALSE is expressed as 0.

You can nest string functions within one another, so that the output of the inner
function is used as an argument to the outer function.

4-2 SQL Language Reference

Date/Time functions

SQLBase supports the following string functions:

@CHAR
@CODE
@DECODE
@EXACT
@FIND
@LEFT
@LENGTH
@LOWER
@MID
@NULLVALUE
@PROPER
@REPEAT
@REPLACE
@RIGHT
@SCAN
@STRING
@SUBSTRING
@TRIM
@UPPER
@VALUE

String functions cannot be used in an ORDER BY clause of the SELECT command.
Instead, specify the string function in the select list and then use the select list column
number in the ORDER BY clause.

Date/Time functions

These functions return information about date/time data values or return a date/time
result. SQLBase supports the following date/time functions:

@DATE
@DATETOCHAR
@DATEVALUE
@DAY

@HOUR
@MICROSECOND
@MINUTE
@MONTH
@MONTHBEG
@NOW
@QUARTER
@QUARTERBEG

SQL Language Reference 4-3

Chapter

4

SQL Function Reference

@SECOND
@TIME
@TIMEVALUE
@WEEKBEG
@WEEKDAY
@YEAR
@YEARBEG
@YEARNO

For date/time functions, an argument can be a character or numeric data type if the
value forms a valid date/time value.

When a portion of the input date/time string is missing, SQLBase supplies the default
of 0, which converts to December 30, 1899 12:00:00 AM. Functions behaving this
way are @DATE, @DATEVALUE, @NOW, @TIME and @TIMEVALUE.

Math functions

These functions take single numeric values as arguments and return numeric results.

The mathematical functions are similar to Microsoft C Library math functions.
Trigonometric functions are based on radians instead of degrees.

Arguments can be character data types if the value forms a valid numeric value (only
digits and standard numeric editing characters). SQLBase will automatically convert
the value to the required data type.

SQLBase supports the following math functions:

@ABS
@ACOS
@ASIN
@ATAN
@ATAN2
@COS
@EXP
@FACTORIAL
@INT
@LN
@LOG
@MOD
@PI
@ROUND
@SIN
@SQRT
@TAN

4-4 SQL Language Reference

Finance functions

Finance functions

The finance functions are similar to Microsoft C Library math functions.

Arguments can be character data types if the value forms a valid numeric value (only
digits and standard numeric editing characters). SQLBase automatically converts the
value to the required data type.

SQLBase supports the following finance functions:

@CTERM
@FV
@PMT
@PV
@RATE
@SLN
@SYD
@TERM

Logical functions

Logical functions return a value based on a condition. The result of these functions is
always 1 or O (TRUE = 1, FALSE = 0).
SQLBase supports the following logical functions:

@IF
@ISNA

Special functions

These functions provide special capabilities.

@CHOOSE
@DECIMAL
@DECODE
@HEX
@LICS

SQL Language Reference 4-5

Chapter 4 SQL Function Reference

SQLBase function summary

Function Name Description
AVG Average of items.
COUNT Count of items.
MAX Maximum of items.
MIN Minimum of items.
SUM Sum of items.
@ABS Absolute value.
@ACOS Arc-cosine.
@ASIN Arc-sine.
@ATAN Two-quadrant arc-tangent.
@ATAN2 Four-quadrant arc-tangent.
@CHAR ASCII character for a decimal code.
@CHOOSE Select a value from a list based on a correlation.
@CODE ASCII decimal code of the first character in a string.
@CO0S Cosine.
@CTERM Compounding periods to earn a future value.
@DATE Convert to a date.
@DATETOCHAR Edit a date value.
@DATEVALUE Edit a date value.
@DAY Day of the month.
@DECIMAL Decimal value of a hexadecimal string.
@DECODE Returns a string, given an expression.
@EXACT Compare two strings.
@EXP Natural logarithmic base (e) raised to the x power.

4-6 SQL Language Reference

SQLBase function summary

Function Name Description
@FACTORIAL Factorial.
@FIND Position within string1 that occurs in string?2.
@FV Future value of a series of equal payments.
@HEX Hexadecimal string of a decimal number.
@HOUR Hour of the day.
@IF Test number and return 1 if TRUE or 2 if FALSE.
@INT Integer portion.
@ISNA Return TRUE if NULL.
@LEFT Left-most substring.
@LENGTH Length of a string.
@LICS Sort using international character set.
@LN Natural logarithm (base e) of (positive) x.
@LOG Positive base-10 logarithm of x.
@LOWER Upper-case to lower-case.
@MEDIAN Middle value in a set of items.

@MICROSECOND

Microsecond value.

@MID Retgrn a string, starting with the character at start-
position.

@MINUTE Minute of the hour.

@MOD Modulo (remainder) of x/y.

@MONTH Month of the year.

@MONTHBEG First day of the month.

@NOW Current date and time.

@NULLVALUE Return a string or number specified by y if x is NULL.

@PI Value Pifr= 3.14159265).

@PMT Periodic payments needed to pay off loan principal.

SQL Language Reference 4-7

SQL Function Reference

Function Name

Description

te.

ber

@PROPER Convert first character of each word in a string to
uppercase and make other characters lowercase.

@PV Present value of a series of equal payments.

@QUARTER Number that represents the quarter.

@QUARTERBEG First day of the quarter.

@RATE Interest rate for an investment to grow to a future val

@REPEAT Concatenates a string with itself for the specified nun
of times.

@REPLACE Replace characters in a string.

@RIGHT Rightmost substring.

@ROUND Round a number.

@SCAN Search a string for a pattern.

@Sbv Standard deviation.

@SECOND Second of the minute.

@SIN Sine.

@SLN Straight-line depreciation.

@SQRT Square root.

@STRING Convert a number to a string.

@SUBSTRING Return a portion of a string.

@SYD Sum-of-the-Years'-Digits depreciation.

@TAN Tangent.

@TERM Number of payment periods for an investment.

@TIME Return a date/time value given the hour, minute, and
second.

@TIMEVALUE Return a date/time value, given HH:MM:SS [AM or
PM].

@TRIM Strip leading and trailing blanks; compress multiple

spaces.

SQL Language Reference

AVG

Function Name Description
@UPPER Lower-case to upper-case.
@VALUE Convert a character string with digits to a number.
@WEEKBEG Monday of the week.
@WEEKDAY Day of the week.
@YEAR The year relative to 1900.
@YEARBEG First day of the year.
@YEARNO Calendar year.
AVG
»»- A — | ALL expression —) —4<
l: DISTINCT

This function returns the average of the values in the argument.

The data type of the argument may be numeric, date/time, or character. If an argument
is a character data type, the value must form a valid numeric or date/time value (only
digits and standard editing characters). SQLBase will automatically convert the value
to the required data type.

The data type of the result is numeric.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified,
duplicates are not eliminated.

Null values are ignored.

Example

SELECT AVG (SALARY) FROM EMPSAL,;
This example finds the total salary for each department, the average salary, the
number of people in each department.

SELECT DEPTNO, SUM(SALARY), AVG(SALARY), COUNT(SALARY)
FROM EMP.EMPSAL WHERE EMP.EMPNO = EMPSAL.EMPNO GROUP BY
DEPTNO;

SQL Language Reference 4-9

Chapter 4 SQL Function Reference

COUNT

»»- COUNT) <<t

(expression —)
_ DISTINCT J

This function returns a count of items.

COUNT(*) always returns the number of rows in the table. Rows that contain null
values are included in the count.

COUNT(column-name) returns the number of column values.
COUNT(DISTINCT column-name) filters out duplicate column values.
LONG VARCHARS can be counted.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified,
duplicates are not eliminated.

Example

How many rows are in each department of the EMP table?

SELECT DEPTNO, COUNT(*) FROM EMP
GROUP BY DEPTNGO;

MAX

P MAX — (I: ALL expression —) —4<4

DISTINCT

This function returns the maximum value in the argument, which is a set of column
values.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/time

4-10 sSQL Language Reference

MIN

value (only digits and standard editing characters). SQLBase will automatically
convert the value to the required data type.

The data type of the result is the same as the input argument.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Null values are ignored.

Example

MIN

This example finds the highest and the lowest salary.

SELECT MAX(SALARY), MIN(SALARY) FROM EMPSAL;

»» MIN — (I:AA expression —) — 44

DISTINCT

This function returns the minimum value in the argument, which is a set of column
values.

The data type of the argument may be numeric, date/time, or character. If an argument
is a character data type, the value must form a valid numeric or date/time value (only
digits and standard editing characters). SQLBase will automatically convert the value
to the required data type.

The data type of the result is the same as the input argument.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Null values are ignored.

Example

This example finds the highest and the lowest salary.
SELECT MAX(SALARY), MIN(SALARY) FROM EMPSAL;

SQL Language Reference 4-11

Chapter 4 SQL Function Reference

SUM

»Pp—SuMm — (—|: ALL expression) <«
DISTINCT
This function returns the sum of the values in the argument, which is a set of column
values.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/time
value (only digits and standard editing characters). SQLBase will automatically
convert the value to the required data type.

The data type of the result is the same as the input argument.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Null values are ignored.

Example

Calculate the total salary.
SELECT SUM (SALARY) FROM EMPSAL,;
This example totals the salary by department.

SELECT DEPTNO, SUM (SALARY), AVG (SALARY), COUNT
(SALARY) FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO GROUP BY DEPTNO;

@ABS

@ABS(x)

This function returns the absolute value of x.

4-12 sSQL Language Reference

@ACOS

Example

The following expression returns 1.1:
@ABS(-1.1)

The following expression returns all column entries as positive (absolute) values:
SELECT @ABS(IVAL) FROM GEOM;

@ACOS

@ACOS (X)

This function returns the arc-cosinexah radiansx must be in the range [-1, 1].

Example

The following expression returns 1.47062891:
@ACOS(.1)

The following expression returns the arc-cosine of all PVAL column entries in the
GEOM table:

SELECT @ACOS(PVAL) FROM GEOM;

@ASIN

@ASIN(X)

This function returns the arc-sinein radiansx must be in the range [-1, 1].

Example

The following expression returns .100167421:
@ASIN(.1)

The following expression returns the arc-sine of all PVAL column entries in the
GEOM table:

SQL Language Reference 4-13

Chapter 4 SQL Function Reference

SELECT @ASIN(PVAL) FROM GEOM,;

@ATAN

@ATAN (x)

This function returns the arc-tangentxah radians.

Example

The following expression returns .099668652:
@ATAN(.1)

The following expression returns the arc-tangent of all PVAL column entries in the
GEOM table:

SELECT @ATAN(PVAL) FROM GEOM,;

@ATANZ2

@ATAN2(x, y)

This function returns the arc-tangentybt.

The order of arguments is the opposite of C [atan2(y,X)]. The value of X may not be
zero.

Example

The following expression returns .785398163:
@ATAN2(.1,.1)

The following expression returns the arc-tangent of all QVAL and PVAL column
entries in the GEOM table:

SELECT @ATAN2(PVAL,QVAL) FROM GEOM,;

4-14 SQL Language Reference

@CHAR

@CHAR

@CHAR (number)

This function returns the ASCII character for a decimal code. If the argument is
outside the ASCII character set range, results depend on the display character set.

Example

The following expression returns the letter 'A":
@CHAR(65)

@CHOOSE

@CHOOQOSE (selector number, value 0, value 1, ..., valuen)

This function selects a value from a list based on a correlation between the selector-
number and the sequence number of a value in the list.

You must specify a selector-number and at least one value. A negative selector-
number maps to the first value in the list (value 0). If the selector number exceeds the
number of values in the list, the result is the last value in the list. Every value in the
list is cast to the data type of the first value (value 0).

Example

@CHOOSE(SEL_NUM, ‘A, 'B’, ‘'C’, 'D’, 'E', 'F’, ‘'G’)

Selector
Values
number
0 A
-1 A
2 C
12 G

This example finds the day of the week on which each employee was hired.

SQL Language Reference 4-15

Chapter 4

SQL Function Reference

@CODE

SELECT @CHOOSE(@WEEKDAY (HIREDATE), 'Sat','Sun’, ‘Mon',
Tue', 'Wed', 'Thu', 'Fri'), @YEAR(HIREDATE)
FROM EMP WHERE @YEARNO(HIREDATE) > 1990;

@CODE(string)

This function returns the ASCII decimal code of the first character in a string.

Example

@COS

The following expression returns the number 65, which is the code for 'A'";
@CODE('ABC))

@COS(X)

This function returns the cosine of x, wheres in radians.

Example
The following expression returns .995004165:
@COS(.1)
The following SQL statement returns the cosine of all PVAL column entries in the
GEOM table:
SELECT @COS(PVAL) FROM GEOM,;
@CTERM

@CTERM(int, fv, pv)

This function returns the number of compounding periods to an investment of present
valuepvto grow to a future valuly, earning a fixed periodic interest raté

4-16 SQL Language Reference

@DATE

@CTERM uses this formula to compute the term:

In (fv/pv) fv = future value

In (1+int) pv = present value
int = periodic interest rate
In = natural logarithm

Example

The following expression:
@CTERM(.10/12,20000,10000)

returns 83.5237559, which is the number of months it will take to double a $10,000
investment that earns a 10% annual interest rate compounded monthly.

@DATE
@DATE(year number, month number, day number)

This function converts the arguments to a date.

The data type of the result is date.

Example

The following expression returns 31-JAN-1996:
@DATE(1996,1,31)

@DATETOCHAR

@DATETOCHAR(date, picture)

This function accepts a DATE, TIME, or DATETIME data type value (specified in
date), applies the editing specified pycture and returns the edited value. For an
explanation opicture see the SQLTalk COLUMN command.

The data type of the result is character.

SQL Language Reference 4-17

Chapter 4 SQL Function Reference

Example

This SQL statement returns a string in the form 05-07-96:
SELECT @DATETOCHAR(SYSDATETIME, 'dd-mm-yy') FROM ...

@DATEVALUE

@DATEVALUE(date string)

This function converts the argument to a date.

@DATEVALUE is like @DATE, except its argument is a date string, or a portion of a
date string. It converts the date string in any standard date string form (dd-mon-yyyy
hh:mm:ss) to the date portion of the string.

The data type of the result is date.

Example

If a DATE column called APPT contains '18-JAN-1996 10:14:27 AM', then the
following expression returns 18-JAN-1996:

@DATEVALUE(APPT)

@DAY

@DAY (date)

This function returns a number between 1 and 31 that represents the day of the
month.

Example

If BIRTHDATE contains '12/28/46', then the following expression returns 28:
@DAY(BIRTHDATE)

4-18 sSQL Language Reference

@DECIMAL

@DECIMAL

@DECIMAL(string)

This function returns the decimal equivalent for the given hexadecimal number.

Example

The following expression returns 10:
@DECIMAL('A)

@DECODE

@DECODE(expr, searchl, returnl, search2, return2, ..., [default])

If exprequals anygearch this function returns the search’s correspondatgrn; if

not, it returngdefault If default is omitted and there is no match, NULL is returned.
Theexprmay be any data typsearchmust be the same type. The value returned is
forced to the same datatype as the fesirn.

Example

This returns employees’ names and their department name and number. If no match is
found, "Other" is returned:

SELECT LNAME, @DECODE (DEPTNO, 2500, ‘R&D’, 2600,
‘SALES’, ‘OTHER’), DEPTNO FROM EMP;

LNAME @DECODE(DEPTNO...DEPTNO

Carver R&D 2500
Murphy OTHER 2400

Johnson R&D 2500
Drape SALES 2600
Foghorn R&D 2500

SQL Language Reference 4-19

Chapter 4 SQL Function Reference

@EXACT

@EXACT((string1, string2)

This function compares two strings or numbers.
If the strings are identical, the function returns 1; otherwise the function returns 0.

This function is case sensitive.

Example

The following expression returns 0:
@EXACT('TRUDY', 'NOAH")

If the NAME column contains the value "'TRUDY", then the following expression
returns 1:

@EXACT('TRUDY', NAME)

The following expressions return 1:
@EXACT(2.3, 2.3)
@EXACT(3+4, 7)

@EXP

@EXP(x)

This function returns the natural logarithmic base (e) raised to the x power.

Example

The following expression returns 22026.4658:
@EXP(10)

The following SQL statement returns the natural logarithmic base of all PVAL
column entries in the GEOM table:

SELECT @EXP(PVAL) FROM GEOM,;

4-20 SQL Language Reference

@FACTORIAL

The following example raises 2 to the 10th power (2*10):
@EXP (10 * @LN(2))

@FACTORIAL
@FACTORIAL(x)

This function computes the factorial of the argument. The argument must be an
INTEGER (no decimal portion) and non-negative (>= 0). The upper limit is 69.

Example

The following expression returns 3628800:
@FACTORIAL(10)

The following SQL statement returns the factorial of all WVAL column entries in the
GEOM table:

SELECT @FACTORIAL(WVAL) FROM GEOM;

@FIND

@FIND(string1, string2, start position)

This function returns the position (offset) withstring1that occurs irstring2 The
search begins with the charactestairt-posin string2 If the pattern is not found, the
function returns -1.

The starting position represents an offset within a string argument. The first character
in a string is at position 0. For example, in the string 'RELATION', the character 'R’ is
at position 0, the final character 'N' is at position 7, and the string is 8 characters long.
In other words, the last position$tringlis calculated by subtracting one from the
length ofstringl

Example

The following expression returns 5:
@FIND('TRIPLETT', 'NOAH TRIPLETT', 0)

SQL Language Reference 4-21

Chapter 4

SQL Function Reference

@FV

@FV(pmt, int, n)

This function returns the future value of a series of equal paynmmmisgarning
periodic interest ratant) over the number of periods)(

@FV uses this formula to compute the future value of an ordinary annuity:
pmt * (1+int)'-1 pmt = periodic payment

int int = periodic interest rate
n = number of periods

Ordinary Annuity Example

The expression:
@FV(2000,.10,20)

returns $114,549.999, which is the value of an account after 20 years of depositing
$2,000 at the end of each year, at an annually compounded interest rate of 10%.
Interest payments and deposits are transacted dasthaéay of each year

Annuity Due Example

@HEX

The following expression:
@FV(2000,.10,20) * (1+.10)

returns $126,004.999, which is the value of an annuity amount due annually. Note
that this is 10% over the ordinary annuity calculated in the above example.

@HEX(number)

This function returns the hexadecimal equivalent for the given decimal number.

4-22 SQL Language Reference

@HOUR

Example
The following expression returns 'A'";
@HEX(10)
@HOUR
@HOUR(date)

This function returns a number between 0 and 23 that represents the hour of the day.

Example

The following expression returns 15:
@HOUR(12/28/46 03:52:00 PM)

@IF

@IF(number, valuel, value2)

This function testeumberand returnsvaluelif it is TRUE (non-zero) ovalue2if it
is FALSE (zero).

A non-zero argument evaluates to TRUE, and an argument of zero evaluates to
FALSE. A null value evaluates to FALSE. Each value in the list is cast to the data type
of the first value.

Example

The following expression returns 'M' if TEST1 is non-zero, and 'F' if TEST1 is O:
@IF(TEST1,'M','F)

SQL Language Reference 4-23

Chapter 4 SQL Function Reference

@INT

@INT(x)

This function returns the integer portiomoff x is negative, the decimal portion is
truncated.

Example

The following expression returns 10:
@INT(10.2)

The following expression returns -3:
@INT(-3.7)

The following SQL statement returns the integer portion of all PVAL column entries
in the GEOM table:

SELECT @INT(PVAL) FROM GEOM;

@ISNA

@ISNA(argument)

This function returns 1 (TRUE) if the argument is NULL. Any other value returns 0
(FALSE). The argument can be any value, including a column value.

Example

The following expression returns 1:
@ISNA (NULL)

The following expression returns 0:
@ISNA(hello")

4-24 sSQL Language Reference

@LEFT

@LEFT(string, length)
This function returns a string for the specified length, starting with the first (leftmost)
character in the string.
Example

The following expression returns 'P8'":
@LEFT(P8-196', 2)

The following example shows how to use the @LEFT function in a SELECT
statement:

SELECT * FROMSYSCOLUMNS
WHERE @LEFT (TBNAME, 3) | ='SYS’;

@LENGTH

@LENGTH(string)

This function returns the length of a string. The length is the number of characters in
the string.

You cannot use this function to find the length of a LONG VARCHAR column.

Example

If the value in the column EMPNAME is 'JOYCE!', the following expression returns
the number 5:

@LENGTH(EMPNAME)

The following example finds the entries in the EMP table where the length of the
LNAME column exceeds 10 characters.

SELECT EMPNO, @SUBSTRING (LNAME, 0, 10)
FROM EMP WHERE @LENGTH (LNAME) > 10

SQL Language Reference 4-25

Chapter 4 SQL Function Reference

@LICS

@LICS(string)

This function uses an international character set for sorting its argument, instead of
the ASCII character set. This is useful for sorting characters not in the English
language. The translation table for this character set is shown below.

Example

The following expression returns ‘NXTRI\' @LICS (‘Murphy")
SELECT @LICS(LNAME) FROM EMP ORDER BY 1;

Code Character Description
0 0 Ctrl @
1 1 Ctrl A
2 2 Ctrl B
3 3 Ctrl C
4 4 CtrlD
5 5 Ctrl E
6 6 Ctrl F
7 7 Ctrl G
8 8 Ctrl H
9 9 Ctrl |
10 10 Ctrl J line feed
11 11 Ctrl K
12 12 Ctrl L form feed
13 13 Ctrl M return
14 14 Ctrl N
15 15 Ctrl O

4-26 SQL Language Reference

@LICS

Code Character Description
16 16 Ctrl P
17 17 ctrl Q
18 18 CtrIR
19 19 Ctrl S
20 20 Ctrl T
21 21 Ctrl U
22 22 Ctrl vV
23 23 Ctrl W
24 24 Ctrl X
25 25 Ctrl Y
26 26 Ctrl z
27 27 [Esc]
28 28 FS
29 29 GS
30 30 RS
31 31 us
32 32 Space
33 33 !
34 34 "
35 35 #
36 36 $
37 37 %
38 38 &
39 39 Apostrophe
40 40 (
41 41)

SQL Language Reference

4-27

Chapter 4

SQL Function Reference

4-28 sSQL Language Reference

Code Character Description
42 42 *
43 43 +
44 44
45 45 -
46 46
47 47 /
48 48 0
49 49 1
50 50 2
51 51 3
52 52 4
53 53 5
54 54 6
55 55 7
56 56 8
57 57 9
58 58
59 59 ;
60 60 <
61 61 =
62 62 >
63 63 ?
64 64 @
65 65 A
66 66 B
67 67 C

@LICS

Code Character Description

68 68 D
70 69 E
71 70 F
72 71 G
73 72 H
74 73 |
75 74 J
76 75 K
7 76 L
78 77 M
79 78 N
81 79 (0]
82 80 P
83 81 Q
84 82 R
85 83 S
87 84 T
88 85 U
89 86 \%
90 87 w
91 88 X
92 89 Y
93 90 z
99 91 [
100 92 \
101 93]

SQL Language Reference

4-29

Chapter 4 SQL Function Reference

4-30 sSQL Language Reference

Code Character Description

102 94

103 95

104 96

65 97

66 98

67 99

68 100
70 101
71 102
72 103
73 104
74 105
75 106
76 107
77 108
78 109
79 110
81 111
82 112
83 113
84 114
85 115
87 116
88 117
89 118
90 119

@LICS

Code Character Description
91 120 X
92 121 y
93 122 z
105 123 {
106 124 |
107 125 }
108 126 ~ (tilde)
109 127 DEL
110 128 Uppercase grave
111 129 Uppercase acute
112 130 Uppercase circumflex
113 131 Uppercase umlaut
114 132 Uppercase tilde
115 133
116 134
117 135
118 136
119 137
120 138
121 139
122 140
123 141
124 142
125 143
126 144 Lowercase grave
127 145 Lowercase acute

SQL Language Reference

4-31

Chapter 4

SQL Function Reference

4-32 SQL Language Reference

Code Character Description
128 146 Lowercase circumflex
129 147 Lowercase umlaut
130 14 8 Lowercase tilde
131 149 Lowercase i without dot
132 150 Ordinal indicator
133 151 Begin attribute (display)
134 152 End attribute (display only)
135 153 Unknown character (display)
136 154 Hard space (display only)
137 155 Merge character (display)
138 156
139 157
140 158
141 159
142 160 Dutch Guilder
143 161 Inverted exclamation mark
144 162 Cent sign
145 163 Pound sign
146 164 Low opening double quotes
147 165 Yen sign
148 166 Pesetas sign
149 167 Section sign
150 168 General currency sign
151 169 Copyright sign
152 170 Feminine ordinal
153 171 Angle quotation mark left

@LICS

Code Character Description
154 172 Delta
155 173 Pi
156 174 Greater-than-or-equals
157 175 Divide sign
158 176 Degree sign
159 177 Plus/minus sign
160 178 Superscript 2
161 179 Superscript 3
162 180 Low closing double quotes
163 181 Micro sign
164 182 Paragraph sign
165 183 Middle dot
166 184 Trademark sign
167 185 Superscript 1
168 186 Masculine ordinal
169 187 Angle quotation mark right
170 188 Fraction one quarter
171 189 Fraction one-half
172 190 Less-than-or -equals
173 191 Inverted question mark
65 192 Uppercase A with grave
65 193 Uppercase A with acute
65 194 Uppercase A with circumflex
65 195 Uppercase A with tilde
65 196 Uppercase A with umlaut
65 197 Uppercase A with ring

SQL Language Reference 4-33

Chapter 4

SQL Function Reference

4-34 sQL Language Reference

Code Character Description
97 197 Uppercase A with ring
94 198 Uppercase AE with ligature
67 199 Uppercase C with cedilla
70 200 Uppercase E with grave
70 201 Uppercase E with acute
70 202 Uppercase E with circumflex
70 203 Uppercase E with umlaut
74 204 Uppercase | with grave
74 205 Uppercase | with acute
74 206 Uppercase | with circumflex
74 207 Uppercase | with umlaut
69 208 Uppercase eth (Icelandic)
80 209 Uppercase N with tilde
81 210 Uppercase O with grave
81 211 Uppercase O with acute
81 212 Uppercase O with circumflex
81 213 Uppercase O with tilde
81 214 Uppercase O with umlaut
80 215 Uppercase OE with diphthong
96 216 Uppercase O with slash
88 217 Uppercase U with grave
88 218 Uppercase U with acute
88 219 Uppercase U with circumflex
88 220 Uppercase u with umlaut
92 221 Uppercase Y with umlaut
98 222 Uppercase thorn (Icelandic)

@LICS

Code Character Description
86 223 Lowercase German sharp s
65 224 Lowercase a with grave
65 225 Lowercase a with acute
65 226 Lowercase a with circumflex
65 227 Lowercase a with tilde
65 228 Lowercase a with umlaut
65 229 Lowercase a with ring
95 230 Lowercase ae with ligature
67 231 Lowercase c¢ with cedilla
70 232 Lowercase e with grave
70 233 Lowercase e with acute
70 234 Lowercase e with circumflex
70 235 Lowercase e with umlaut
74 236 Lowercase i with grave
74 237 Lowercase i with acute
74 238 Lowercase i with circumflex
74 239 Lowercase i with umlaut
69 240 Lowercase eth (Icelandic)
80 241 Lowercase n with tilde
81 242 Lowercase o with grave
81 243 Lowercase o with acute
81 244 Lowercase o with circumflex
81 245 Lowercase o with tilde
81 246 Lowercase o with umlaut
80 247 Lowercase oe with diphthong
81 248 Lowercase o with slash

SQL Language Reference 4-35

Chapter 4 SQL Function Reference

4-36 SQL Language Reference

Code Character Description
88 249 Lowercase u with grave
88 250 Lowercase u with acute
88 251 Lowercase u with circumflex
88 252 L owercase u with umlaut
92 253 Lowercase y with umlaut
174 254 Lowercase thorn (Icelandic)

@LN

@LN

@LN(x)

This function returns the natural logarithm (base e) of (positivEhe log of a zero
or negative argument is handled as an overflow error.

Example

@LOG

The following expression returns -2.3025851:
@LN(.1)

The following SQL statement returns the natural logarithm of all PVAL column
entries in the GEOM table:

SELECT @LN(PVAL) FROM GEOM;

@LOG(x)

This function returns the (positive) base-10 logarithm. dte log of a zero or
negative argument is handled as an overflow error.

Example

The following expression returns -1:
@LOG(.1)

The following SQL statement returns the natural logarithm of all PVAL column
entries in the GEOM table:

SELECT @LOG(PVAL) FROM GEOM;

SQL Language Reference 4-37

Chapter 4 SQL Function Reference

@LOWER

@LOWER(string)

This function converts upper-case alphabetic characters to lower-case. Other
characters are not affected.

Example

The following expression returns the string ‘'joyce":
@LOWER('JOYCE')

@MEDIAN

»P»— MEDIAN - (—|: ALL expression) <<
DISTINCT J

This function returns the middle value in a set of values. An equal number of values
lie above and below the middle value.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/time
value (only digits and standard editing characters). SQLBase automatically converts
the value to the required data type. The data type of the result is the same as the input
argument.

@MEDIAN finds the middle value with this formula:
(n+1)/2

For example, if there are 5 items, then the middle item is the third:
(5+1)/2=6/2=3

For example, if there are 6 items, then the middle item is between the third and the
fourth:

(6+1)/2=7/2=35

The median is the arithmetic average of the third and fourth values.

4-38 sSQL Language Reference

@MICROSECOND

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated. Be cautious when using DISTINCT because the result
may loose its statistical meaning.

Null values are ignored.

Example

This example finds the middle salary for department 2500.

SELECT @MEDIAN(SALARY) FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO AND DEPTNO=2500;

@MICROSECOND

@MICROSECOND(date)

This function returns the microsecond value in a DATETIME or TIME value. If a
microsecond quantity was not specified on input, zero is returned.

Example

The following expression returns 500000:
@MICROSECOND(12:44:01:500000)

@MID

@MID(string, start-pos, length)

This function returns a string of specified length from a string, starting with the
character astart-pos This function is similar to @ SUBSTRING, except that it
requires the third argument.

Example

The following expression returns the second character from a string, a '9":
@MID('P9-186', 1, 1)

SQL Language Reference 4-39

Chapter 4 SQL Function Reference

@MINUTE

@MINUTE(date)

This function returns a number between 0 and 59 that represents the minute of the
hour.

Example

The following expression returns 52:
@MINUTE(12/28/46 03:52:00 PM)

@MOD
@MOD(x, y)

This function returns the modulo (remainderkbf Division by zero is an overflow
error.

Example

The following expression returns 5:
@MOD(5,10)

The following SQL statement returns the remainder of all PVAL/WVAL column
entries in the GEOM table:

SELECT @MOD(PVAL,WVAL) FROM GEOM;

@MONTH

@MONTH(date)

This function returns a number between 1 and 12 that represents the month of the
year.

4-40 sSQL Language Reference

@MONTHBEG

Example

The following expression returns 10 which represents October:
@MONTH(25-OCT-96)

@MONTHBEG

@MONTHBEG(date)

This function returns the first day of the month represented by the date.

Example

If the value in BIRTHDATE is '16-FEB-1947', then the following expression returns
01-FEB-1947:

@MONTHBEG(BIRTHDATE)

@NOW

@NOW

This function returns the current date and time. It returns the same value as the system
keyword SYSDATETIME.

For example, if the date and time is January 12, 1996, 3:15 PM, this function would
return 12-JAN-1996 03:15:00 PM.

@NULLVALUE

@NULLVALUE(x, y)
This function returns one of the following values specifieg byx is null:

e string
. number

SQL Language Reference 4-41

Chapter 4 SQL Function Reference

» date (if the date is a constant. If you try to specify a date by a bind variable
such adl:, the bind variable is read literally, since it is treated as a CHAR
value.)

The data type of the returned value is the same as the data type afghenent.

SQLBase converts the second paramatarqument) to the first parameter’s data
type & argument). An error results if SQLBase cannot convert this correctly.

Example

The following example returns "N/A" when the column is null:
@NULLVALUE(FNAME, 'N/A")
The following SQL statement:
SELECT @NULLVALUE(DEPTNO,'NOT ASSIGNED') FROM EMP;

returns the string ‘'NOT ASSIGNED' if the DEPTNO column value is null, and
DEPTNO is a character column. If the column is numeric, the replacement value
must be a number. For example, the following SQL statement:

SELECT @NULLVALUE(DEPTNO,9999) FROM EMP;

returns 9999 if a null exists in the DEPTNO column. DEPTNO is a numeric data
type.

@PI
@PI

This function returns the value Pi (3.14159265). This function has no arguments but
could be used as a numeric constant in a nested set of math functions.

Example

The following expression returns 31.4159265:
10 * @PI

The following SQL statement returns all PVAL column entries multiplied by the
value Pi in the GEOM table:

SELECT (PVAL) * @PI FROM GEOM,;

4-42 sSQL Language Reference

@PMT

@PMT

@PMT (principal, interest, periods)

This function returns the amount of each periodic payment needed to pay off a loan
principal (rin) at a periodic interest rate{) over a number of periods)(

@PMT uses this formula:
print * int prin = principal
(1-(@ +int)") int = periodic interest rate

n = number of periods; term

Example

The following expression:
@PMT(50000,.125/12,30 * 12)

returns $533.628881 which is the value of a monthly mortgage payment for a
$50,000, 30-year mortgage at an annual interest rate of 12.5%.

@PROPER

@PROPER(string)

This function converts the first character of each word in a string to uppercase and
other characters to lower case.

The argument must be a CHAR or VARCHAR data type.

Example

The following expressions both return 'Johann Sebastian Bach':
@PROPER('JOHANN SEBASTIAN BACH?)
@PROPER(‘johann sebastian bach’)

SQL Language Reference 4-43

Chapter 4 SQL Function Reference

@PV

@PV(pmt, int, n)

This function returns the present value of a series of equal paymperitsliscounted
at periodic interest raténf) over the number of periods)(

This function is useful when trying to decide the best way to receive a payment
option, over time or immediately.

@PYV uses this formula:

(1-(1+inty") pmt = periodic payment

* int int = periodic interest rate

pmt

n = number of periods; term

Ordinary Annuity Example

The following expression:
@PV(50000,.12,20)

returns $373,472.181 which is what $1,000,000 paid equally ($50,000 at the end of
each year) over 20 years at 12% is worth today.

Annuity Due Example

The following expression:
@PV(50000,.12,20) * (1+.12)

returns $418,288.843, which is what $1,000,000 paid equally ($50,000 at the
beginning of each year) over 20 years at 12% is worth today.

@QUARTER
@QUARTER(date)

This function returns a number between 1 and 4 that represents the quarter. For
example, the first quarter of the year is January through March.

4-44 SQL Language Reference

@QUARTERBEG

Example

The following expression returns 1, which represents the first quarter:
@QUARTER(12-MAR-96)

@QUARTERBEG

@QUARTERBEG(date)

This function returns the first day of the quarter represented by the date.

Example

The following expression returns 01-JUL-1776:
@QUARTERBEG(04-JUL-1776)

The following SQL statement displays the first day of the quarter in which each
employee was hired:

SELECT @QUARTERBEG (HIREDATE) FROM EMP;

@RATE

Q@RATE(H, pv, n)

This function returns the interest rate for an investment of present pajue grow
to a future valuef{) over the number of compounding periods (

@RATE uses this formula:

fv = future value
((fv/pv)(”“)) -1 pv = present value

n = number of periods; term

SQL Language Reference 4-45

Chapter 4 SQL Function Reference

Example

The following expression:
@RATE(18000,10000,5 * 12)

returns .009844587 which is the periodic (monthly) interest rate calculated for a
$10,000 investment for 60 months (5 years) with a maturity value of $18,000
(compounded monthly).

@REPEAT

@REPEAT(string, number)

This function concatenates a string with itself for the specified number of times. This
creates a string of pattern repetitions.

This function returns nulls if specified in a select list. However, it can be used in a
WHERE clause and in other contexts.

Example

The following expression returns the value '$$$$$":
@REPEAT('$',5)

@REPLACE

@REPLACE(string1, start-pos, length, string2)

This function returns a string in which characters fgtringl have been replaced
with characters frorstring2 The replacemerstring2 begins astart-pos the
position at which characters of the specifienigthhave been removed.

The first position in the string is 0.

4-46 SQL Language Reference

@RIGHT

Example

The following expression returns the value 'RALPH":
@REPLACE('RALF', 3, 1, 'PH)

@RIGHT

@RIGHT((string, length)

This function returns a specified number of characters starting from the end, or
rightmost part, of a string.

Example

The following expression returns '186";
@RIGHT('P4-186', 3)

@ROUND

@ROUND(x, n)

This function rounds the numbemith n decimal places. The rounding can occur to
either side of the decimal point.

Example

The following expression returns 31.42:
@ROUND(@PI * 10,2)

The following expression returns 1200:
@ROUND(1234.1234,-2)

The following SQL statement returns the value of all PVAL column entries in the
GEOM table, rounded to 2 decimal places to the RIGHT of the decimal point.t:

SELECT @ROUND(QVAL,2) FROM GEOM;

SQL Language Reference 4-47

Chapter 4 SQL Function Reference

The following SQL statement returns the value of all PVAL column entries in the
GEOM table, rounded to 2 decimal places to the LEFT of the decimal point:

SELECT @ROUND(QVAL,-2) FROM GEOM;

@SCAN

@SCAN(string, pattern)

This function searches a given string for a specified pattern and returns a number
indicating the numeric position of the first instance of the pattern.

This function returns null if the column being scanned is null.

The first position in the string is position 0. The match is performed without regard to
case.

If the result is -1, it indicates no match was found.

The @SCAN function can perform a case-insensitive match on columns of type
CHAR, VARCHAR, and LONG VARCHAR.

Example

The following expression returns 1 as the start position of the character '-":
@SCAN('P-186', -)

@SDV

»P»— @sbv — (—I: ALL expression) <<
DISTINCT
This function computes the standard deviation for the set of values specified by the
argument.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/time
value (only digits and standard editing characters). SQLBase automatically converts
the value to the required data type.

4-48 sSQL Language Reference

@SECOND

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Note that this function produces double precision, which is not the same as an integer
value.

Example

The following SQL statement returns the standard deviation of the SALARY column
in the table EMPSAL.

SELECT @SDV(SALARY) FROM EMPSAL;

@SECOND

@SECOND(date)

This function returns a number between 0 and 59 that represents the second of the
minute.

Example

The following expression returns 58:
@SECOND(12/28/46 03:52:58)

@SIN

@SIN(x)

This function returns the sine xfwherex is inradians

Example

The following expression returns .841470985:
@SIN(L)

SQL Language Reference 4-49

Chapter 4

SQL Function Reference

@SLN

The following SQL statement returns the value of all PVAL column entries in the
GEOM table:

SELECT @SIN(PVAL) FROM GEOM,;

@SLN(cost, salvage, life)

This function returns the straight-line depreciation allowance of an asset for each
period, given the base cost, predicted salvage value, and expected life of the asset.

@SLN uses this formula to compute depreciation:
(c-9) ¢ = cost of the asset
n s = salvage value of the asset

n = useful life of the asset

Example

@SQRT

The following expression:
@SLN(10000,1200,8)

returns $1100, which is the yearly depreciation allowance for a machine purchased
for $10,000, with a useful life of 8 years, and a salvage value of $1200 after the 8
years.

@SQRT(x)

This function returns the square root of x (which must be zero or positive). The
square root of a negative argument is handled as an overflow error.

4-50 sQL Language Reference

@STRING

Example

The following expression returns 3.16227766:
@SQRT(10)

The following SQL statement returns the square root of all PVAL column entries in
the GEOM table:

SELECT @SQRT(PVAL) FROM GEOM:;

@STRING

@STRING(number, scale)

This function converts a number into a string with the number of decimal places
specified byscale Numbers are rounded where appropriate.

Example

The following expression returns the character string '123.46":

@STRING(123.456, 2)

@SUBSTRING

@SUBSTRING(string, start-pos, length)

This function returns a desired portion of a string from a given argument string. The
substring starts at the specified start position and is of the specified length. If the start
position and length define a substring that exceeds the actual length of the string, the
result is truncated to the actual length of the string. If the start position is beyond
length of the string, a null string (") is returned. The first character in a string is at
start-pos 0.

The length parameter is optional.

SQL Language Reference 4-51

Chapter 4

SQL Function Reference

Example

@SYD

The following expression returns 'SMITH";
@SUBSTRING('DR. SMITH', 4, 20)

The following example returns the first 10 characters of the LNAME column in the
EMP table where the length of the LNAME column exceeds 10 characters.

SELECT EMPNO, @SUBSTRING(LNAME, 0, 10) FROM EMP WHERE
@LENGTH(LNAME) > 10;

The function is nearly the same as @MID$ except that if the third argument is left off,
the function returns a string beginning with the start position.

The following expression returns ‘R. SMITH’:

@SUBSTRING (‘DR. SMITH’, 1)

@SYD(cost, salvage, life, period)

This function returns the Sum-of-the-Years'-Digits depreciation allowance of an asset
for a given period, given the base cost, predicted salvage value, expected life of the
asset and specific period.

@SYD uses this formula to compute depreciation:

(c-s)*(n-p+1) ¢ = cost of the asset
(n*(n+ 1)/2) s = salvage value of the asset

p = period for which depreciation is being
computed

n = useful life of the asset

Example

The following expression:
@SYD(10000,1200,8,5)

4-52 sSQL Language Reference

@TAN

@TAN

returns $977.777778, which is the depreciation allowance for the fifth year for a
$10,000 machine with a useful life of 8 years, and a salvage value of $1200 after the 8
years.

@TAN(x)

This function returns the tangentxofwherexis in radians.

Example

@TERM

The following expression returns .648360827:
@TAN(10)

The following SQL statement returns the tangent of all PVAL column entries in the
GEOM table:

SELECT @TAN(PVAL) FROM GEOM,;

@TERM(pmt, int, fv)

This function returns the number of payment periods for an investment, given the
amount of each paymepint the periodic interest ratet, and the future valul of
the investment.

@TERM uses this formula to compute the term:
In (1 + (fv * int/pmt)) pmt = periodic payment
In (1 +int) fv = future value
int = periodic interest rate

In = natural logarithm

SQL Language Reference 4-53

Chapter 4

SQL Function Reference

Example

@TIME

The following expression:
@TERM(2000,.10,100000)

returns 18.7992455, which is the number of years it will take for an investment to
mature to an amount of $100,000. This is based on a yearly deposit of $2,000 at the
end of each year to an account that earns 10% compounded annually.

@TIME(hour, minute, second)

This function returns a time value given timur, minuteandsecondAn hour is a
number from 0 to 23; a minute is a number from 0 to 59; a second is a number from 0
to 59.

Example

The following expression returns 13:00:00:
@TIME(13,0,0)

@TIMEVALUE

@TIMEVALUE(time)

The function returns a time value, given a string in the form HH:MM:SS [AM or
PM]. If the AM or PM parameter is omitted, military time is used.

Example

If the CHAR column APPT contains '18-JAN-1994 10:14:27 AM', then the following
expression returns 10:14:27:

@TIMEVALUE(APPT)

4-54 sSQL Language Reference

@TRIM

@TRIM

@TRIM(string)

This function strips leading and trailing blanks from a string and compresses multiple
spaces within the string into single spaces.

Example

The following expression returns 'JOHN DEWEY":
@TRIM(JOHN DEWEY ")

@UPPER

@UPPER(string)

This function converts lower-case letters in a string to upper-case. Other characters
are not affected.

Example

The following expression returns 'E.E. CUMMINGS":
@UPPER('e.e. cummings')

@VALUE

@VALUE(string)

This function converts a character string that has the digits (0-9) and an optional
decimal point or negative sign into the number represented by that string.

SQL Language Reference 4-55

Chapter 4 SQL Function Reference

Example
The following expression returns the number 123456 which will be interpreted
strictly as a numeric data type by any function to which it is passed:
@VALUE('123456')
@WEEKBEG(date)
This function returns the date of the Monday of the week containing the date. This is
the previous Monday if the date is not a Monday, and the date value itself if it is a
Monday.
Example
If the value in DATECOL is 01/FEB/94, then the following expression returns 31-
JAN-1994:
@WEEKBEG(DATECOL)
@WEEKDAY (date)
This function returns a number between 0 and 6 (Saturday = 0 and Friday = 6) that
represents the day of the week.
Example

The following expression returns 1 which represents SUNDAY:
@WEEKDAY (12/28/86)

4-56 SQL Language Reference

@YEAR

@YEAR

The following SQL statement finds the day of the week on which each employee was
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun’,'Mon',
‘Tue', 'Wed', 'Thu', 'Fri'), @ YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@YEAR(date)

This function returns a number between -1900 and +200 that represents the year
relative to 1900. The year 1900 is 0, 1986 is 86, and 2000 is 100. Years before 1900
are negative numbers and 1899 is -1.

Example
The following expression returns 23.
@YEAR(12/28/1923)
The following SQL statement finds the day of the week on which each employee was
hired.
SELECT @CHOOSE (@WEEKDAY (HIREDATE), 'Sat','Sun’,'Mon’,
"Tue', 'Wed', 'Thu', 'Fri"), @YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;
@YEARBEG(date)
This function returns the first day of the year represented by the date.
Example

If the value in HIREDATE is '16-FEB-1996', then the following expression returns
01-JAN-1996:

@YEARBEG(HIREDATE)

SQL Language Reference 4-57

Chapter 4 SQL Function Reference

@YEARNO

@YEARNO(date)

This function returns a 4-digit number that represents a calendar year.

Example

If the column HISTORIC_DATE contains the value 04/JUL/1776, then the
expression returns 1776:

@YEARNO(HISTORIC_DATE)

The following SQL statement finds the day of the week on which each employee was
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun’,'Mon',
‘Tue', 'Wed', 'Thu', 'Fri'), @ YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@LEFT

@LEFT(string, length)

This function returns a string for the specified length, starting with the first (leftmost)
character in the string.

Example

The following expression returns 'P8'":
@LEFT('P8-196', 2)

The following example shows how to use the @LEFT function in a SELECT
statement:

SELECT * FROMSYSCOLUMNS
WHERE @LEFT (TBNAME, 3) | ='SYS’;

4-58 sQL Language Reference

@LENGTH

@LENGTH

@LENGTH(string)

This function returns the length of a string. The length is the number of characters in
the string.

You cannot use this function to find the length of a LONG VARCHAR column.

Example

@LICS

If the value in the column EMPNAME is 'JOYCE!', the following expression returns
the number 5:

@LENGTH(EMPNAME)

The following example finds the entries in the EMP table where the length of the
LNAME column exceeds 10 characters.

SELECT EMPNO, @SUBSTRING (LNAME, 0, 10)
FROM EMP WHERE @LENGTH (LNAME) > 10

@LICS(string)

This function uses an international character set for sorting its argument, instead of
the ASCII character set. This is useful for sorting characters not in the English
language. The translation table for this character set is shown below.

Example

The following expression returns ‘NXTRIV' @LICS (‘Murphy")
SELECT @LICS(LNAME) FROM EMP ORDER BY 1;

Code Character Description

0 0 Ctrl @

1 1 Ctrl A

SQL Language Reference 4-59

Chapter 4 SQL Function Reference

4-60 SQL Language Reference

Code Character Description
2 2 Ctrl B
3 3 Ctrl C
4 4 CtrID
5 5 Ctrl E
6 6 Ctrl F
7 7 Ctrl G
8 8 CtrlH
9 9 Ctrl |
10 10 Ctrl J line feed
11 11 Ctrl K
12 12 Ctrl L form feed
13 13 Ctrl M return
14 14 Ctrl N
15 15 Ctrl O
16 16 Ctrl P
17 17 ctrl Q
18 18 Ctrl R
19 19 Ctrl S
20 20 Ctrl T
21 21 CtrlU
22 22 Ctrl V
23 23 Ctrl W
24 24 Ctrl X
25 25 Ctrl Y
26 26 Ctrl Z
27 27 [Esc]

@LICS

Code Character Description
28 28 FS
29 29 GS
30 30 RS
31 31 us
32 32 Space
33 33 !
34 34 "
35 35 #
36 36 $
37 37 %
38 38 &
39 39 Apostrophe
40 40 (
41 41)
42 42 *
43 43 +
44 44
45 45 -
46 46
47 47 /
48 48 0
49 49 1
50 50 2
51 51 3
52 52 4
53 53 5

SQL Language Reference

4-61

Chapter 4

SQL Function Reference

4-62 SQL Language Reference

Code Character Description
54 54 6
55 55 7
56 56 8
57 57 9
58 58
59 59 ;
60 60 <
61 61 =
62 62 >
63 63 ?
64 64 @
65 65 A
66 66 B
67 67 C
68 68 D
70 69 E
71 70 F
72 71 G
73 72 H
74 73 |
75 74 J
76 75 K
77 76
78 77 M
79 78 N
81 79 (0]

@LICS

Code Character Description
82 80 P
83 81 Q
84 82 R
85 83 S
87 84 T
88 85 U
89 86 \%
90 87 w
91 88 X
92 89 Y
93 90 z
99 91 [
100 92 \
101 93]
102 94 A
103 95 _
104 96
65 97 a
66 98 b
67 99 c
68 100 d
70 101 e
71 102 f
72 103 g
73 104 h
74 105 i

SQL Language Reference

4-63

Chapter 4 SQL Function Reference

4-64 SQL Language Reference

Code Character Description
75 106 j
76 107 k
77 108 |
78 109 m
79 110 n
81 111 o]
82 112 p
83 113 q
84 114 r
85 115 S
87 116 t
88 117 u
89 118 v
90 119 w
91 120 X
92 121 y
93 122 z
105 123 {
106 124 |
107 125 }
108 126 ~ (tilde)
109 127 DEL
110 128 Uppercase grave
111 129 Uppercase acute
112 130 Uppercase circumflex
113 131 Uppercase umlaut

@LICS

Code Character Description
114 132 Uppercase tilde
115 133
116 134
117 135
118 136
119 137
120 138
121 139
122 140
123 141
124 142
125 143
126 144 Lowercase grave
127 145 Lowercase acute
128 146 Lowercase circumflex
129 147 Lowercase umlaut
130 148 Lowercase tilde
131 149 Lowercase i without dot
132 150 Ordinal indicator
133 151 Begin attribute (display)
134 152 End attribute (display only)
135 153 Unknown character (display)
136 154 Hard space (display only)
137 155 Merge character (display)
138 156
139 157

SQL Language Reference 4-65

Chapter 4 SQL Function Reference

4-66 SQL Language Reference

Code Character Description
140 158
141 159
142 160 Dutch Guilder
143 161 Inverted exclamation mark
144 162 Cent sign
145 163 Pound sign
146 164 Low opening double quotes
147 165 Yen sign
148 166 Pesetas sign
149 167 Section sign
150 168 General currency sign
151 169 Copyright sign
152 170 Feminine ordinal
153 171 Angle quotation mark left
154 172 Delta
155 173 Pi
156 174 Greater-than-or-equals
157 175 Divide sign
158 176 Degree sign
159 177 Plus/minus sign
160 178 Superscript 2
161 179 Superscript 3
162 180 Low closing double quotes
163 181 Micro sign
164 182 Paragraph sign
165 183 Middle dot

@LICS

Code Character Description
166 184 Trademark sign
167 185 Superscript 1
168 186 Masculine ordinal
169 187 Angle quotation mark right
170 188 Fraction one quarter
171 189 Fraction one-half
172 190 Less-than-or -equals
173 191 Inverted question mark
65 192 Uppercase A with grave
65 193 Uppercase A with acute
65 194 Uppercase A with circumflex
65 195 Uppercase A with tilde
65 196 Uppercase A with umlaut
65 197 Uppercase A with ring
97 197 Uppercase A with ring
94 198 Uppercase AE with ligature
67 199 Uppercase C with cedilla
70 200 Uppercase E with grave
70 201 Uppercase E with acute
70 202 Uppercase E with circumflex
70 203 Uppercase E with umlaut
74 204 Uppercase | with grave
74 205 Uppercase | with acute
74 206 Uppercase | with circumflex
74 207 Uppercase | with umlaut
69 208 Uppercase eth (Icelandic)

SQL Language Reference 4-67

Chapter 4

SQL Function Reference

4-68 SQL Language Reference

Code Character Description
80 209 Uppercase N with tilde
81 210 Uppercase O with grave
81 211 Uppercase O with acute
81 212 Uppercase O with circumflex
81 213 Uppercase O with tilde
81 214 Uppercase O with umlaut
80 215 Uppercase OE with diphthong
96 216 Uppercase O with slash
88 217 Uppercase U with grave
88 218 Uppercase U with acute
88 219 Uppercase U with circumflex
88 220 Uppercase u with umlaut
92 221 Uppercase Y with umlaut
98 222 Uppercase thorn (Icelandic)
86 223 Lowercase German sharp s
65 224 Lowercase a with grave
65 225 Lowercase a with acute
65 226 Lowercase a with circumflex
65 227 Lowercase a with tilde
65 228 Lowercase a with umlaut
65 229 Lowercase a with ring
95 230 Lowercase ae with ligature
67 231 Lowercase c¢ with cedilla
70 232 Lowercase e with grave
70 233 Lowercase e with acute
70 234 Lowercase e with circumflex

@LICS

Code Character Description
70 235 Lowercase e with umlaut
74 236 Lowercase i with grave
74 237 Lowercase i with acute
74 238 Lowercase i with circumflex
74 239 Lowercase i with umlaut
69 240 Lowercase eth (Icelandic)
80 241 Lowercase n with tilde
81 242 Lowercase o with grave
81 243 Lowercase o with acute
81 244 Lowercase o with circumflex
81 245 Lowercase o with tilde
81 246 Lowercase o with umlaut
80 247 Lowercase oe with diphthong
81 248 Lowercase o with slash
88 249 Lowercase u with grave
88 250 Lowercase u with acute
88 251 Lowercase u with circumflex
88 252 L owercase u with umlaut
92 253 Lowercase y with umlaut
174 254 Lowercase thorn (Icelandic)

SQL Language Reference 4-69

Chapter 4 SQL Function Reference

@LN

@LN(x)

This function returns the natural logarithm (base e) of (positivEje log of a zero
or negative argument is handled as an overflow error.

Example

The following expression returns -2.3025851:
@LN(.1)

The following SQL statement returns the natural logarithm of all PVAL column
entries in the GEOM table:

SELECT @LN(PVAL) FROM GEOM;

@LOG

@LOG(X)

This function returns the (positive) base-10 logarithm. dte log of a zero or
negative argument is handled as an overflow error.

Example

The following expression returns -1:
@LOG(.1)

The following SQL statement returns the natural logarithm of all PVAL column
entries in the GEOM table:

SELECT @LOG(PVAL) FROM GEOM;

4-70 sSQL Language Reference

@LOWER

@LOWER

@LOWER(string)

This function converts upper-case alphabetic characters to lower-case. Other
characters are not affected.

Example

The following expression returns the string ‘'joyce":
@LOWER('JOYCE')

@MEDIAN

»P»— MEDIAN - (—|: ALL expression) <<
DISTINCT J

This function returns the middle value in a set of values. An equal number of values
lie above and below the middle value.

The data type of the argument may be numeric, date/time, or character. If an argument
is a character data type, the value must form a valid numeric or date/time value (only
digits and standard editing characters). SQLBase automatically converts the value to
the required data type. The data type of the result is the same as the input argument.

@MEDIAN finds the middle value with this formula:
(n+1)/2

For example, if there are 5 items, then the middle item is the third:
(5+1)/2=6/2=3

For example, if there are 6 items, then the middle item is between the third and the
fourth:

(6+1)/2=7/2=35

The median is the arithmetic average of the third and fourth values.

SQL Language Reference 4-71

Chapter 4 SQL Function Reference

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated. Be cautious when using DISTINCT because the result
may loose its statistical meaning.

Null values are ignored.

Example

This example finds the middle salary for department 2500.

SELECT @MEDIAN(SALARY) FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO AND DEPTNO=2500;

@MICROSECOND

@MICROSECOND(date)

This function returns the microsecond value in a DATETIME or TIME value. If a
microsecond quantity was not specified on input, zero is returned.

Example

The following expression returns 500000:
@MICROSECOND(12:44:01:500000)

@MID

@MID(string, start-pos, length)

This function returns a string of specified length from a string, starting with the
character astart-pos This function is similar to @ SUBSTRING, except that it
requires the third argument.

Example

The following expression returns the second character from a string, a '9":
@MID('P9-186', 1, 1)

4-72 SQL Language Reference

@MINUTE

@MINUTE

@MINUTE(date)

This function returns a number between 0 and 59 that represents the minute of the
hour.

Example

@MOD

The following expression returns 52:
@MINUTE(12/28/46 03:52:00 PM)

@MOD(x, y)

This function returns the modulo (remainderkf Division by zero is an overflow
error.

Example

The following expression returns 5:
@MOD(5,10)

The following SQL statement returns the remainder of all PVAL/WVAL column
entries in the GEOM table:

SELECT @MOD(PVAL,WVAL) FROM GEOM;

@MONTH

@MONTH(date)

This function returns a number between 1 and 12 that represents the month of the
year.

SQL Language Reference 4-73

Chapter 4 SQL Function Reference

Example

The following expression returns 10 which represents October:
@MONTH(25-OCT-96)

@MONTHBEG

@MONTHBEG(date)

This function returns the first day of the month represented by the date.

Example

If the value in BIRTHDATE is '16-FEB-1947', then the following expression returns
01-FEB-1947:

@MONTHBEG(BIRTHDATE)

@NOW

@NOW

This function returns the current date and time. It returns the same value as the system
keyword SYSDATETIME.

For example, if the date and time is January 12, 1996, 3:15 PM, this function would
return 12-JAN-1996 03:15:00 PM.

@NULLVALUE

@NULLVALUE(x, y)
This function returns one of the following values specifieg byx is null:

e string

. number

4-74 SQL Language Reference

@PI

» date (if the date is a constant. If you try to specify a date by a bind variable
such adl:, the bind variable is read literally, since it is treated as a CHAR
value.)

The data type of the returned value is the same as the data type afghenent.

SQLBase converts the second paramatarqument) to the first parameter’s data
type & argument). An error results if SQLBase cannot convert this correctly.

Example

@PI

The following example returns "N/A" when the column is null:
@NULLVALUE(FNAME, 'N/A")
The following SQL statement:
SELECT @NULLVALUE(DEPTNO,'NOT ASSIGNED') FROM EMP;

returns the string ‘'NOT ASSIGNED' if the DEPTNO column value is null, and
DEPTNO is a character column. If the column is numeric, the replacement value must
be a number. For example, the following SQL statement:

SELECT @NULLVALUE(DEPTNO,9999) FROM EMP;
returns 9999 if a null exists in the DEPTNO column. DEPTNO is a numeric data type.

@PI

This function returns the value Pi (3.14159265). This function has no arguments but
could be used as a numeric constant in a nested set of math functions.

Example

The following expression returns 31.4159265:
10 * @PI

The following SQL statement returns all PVAL column entries multiplied by the value
Pi in the GEOM table:

SELECT (PVAL) * @PI FROM GEOM,;

SQL Language Reference 4-75

Chapter 4

SQL Function Reference

@PMT

@PMT (principal, interest, periods)

This function returns the amount of each periodic payment needed to pay off a loan
principal (rin) at a periodic interest rate{) over a number of periods)(

@PMT uses this formula:
print * int prin = principal
(1-(1+intM) int = periodic interest rate

n = number of periods; term

Example

The following expression:
@PMT(50000,.125/12,30 * 12)

returns $533.628881 which is the value of a monthly mortgage payment for a
$50,000, 30-year mortgage at an annual interest rate of 12.5%.

@PROPER

@PROPER(string)

This function converts the first character of each word in a string to uppercase and
other characters to lower case.

The argument must be a CHAR or VARCHAR data type.

Example

The following expressions both return 'Johann Sebastian Bach':
@PROPER('JOHANN SEBASTIAN BACH?)
@PROPER(‘johann sebastian bach’)

4-76 SQL Language Reference

@PV

@PV

@PV(pmt, int, n')

This function returns the present value of a series of equal paymansliscounted
at periodic interest raténf) over the number of periods)(

This function is useful when trying to decide the best way to receive a payment
option, over time or immediately.

@PYV uses this formula:

(1-(+inty") pmt = periodic payment

* int int = periodic interest rate

pmt

n = number of periods; term

Ordinary Annuity Example

The following expression:
@PV(50000,.12,20)

returns $373,472.181 which is what $1,000,000 paid equally ($50,000 at the end of
each year) over 20 years at 12% is worth today.

Annuity Due Example

The following expression:
@PV(50000,.12,20) * (1+.12)

returns $418,288.843, which is what $1,000,000 paid equally ($50,000 at the
beginning of each year) over 20 years at 12% is worth today.

@QUARTER

@QUARTER(date)

This function returns a number between 1 and 4 that represents the quarter. For
example, the first quarter of the year is January through March.

SQL Language Reference 4-77

Chapter 4 SQL Function Reference

Example

The following expression returns 1, which represents the first quarter:
@QUARTER(12-MAR-96)

@QUARTERBEG

@QUARTERBEG(date)

This function returns the first day of the quarter represented by the date.

Example

The following expression returns 01-JUL-1776:
@QUARTERBEG(04-JUL-1776)

The following SQL statement displays the first day of the quarter in which each
employee was hired:

SELECT @QUARTERBEG (HIREDATE) FROM EMP;

@RATE

@RATE(H;, pv, n)

This function returns the interest rate for an investment of present pajue grow
to a future valuef{) over the number of compounding period}s (

@RATE uses this formula:

fv = future value
((fv/pv)(ll ”)) -1 pv = present value

n = number of periods; term

4-78 sSQL Language Reference

@REPEAT

Example

The following expression:
@RATE(18000,10000,5 * 12)

returns .009844587 which is the periodic (monthly) interest rate calculated for a
$10,000 investment for 60 months (5 years) with a maturity value of $18,000
(compounded monthly).

@REPEAT

@REPEAT (string, number)

This function concatenates a string with itself for the specified number of times. This
creates a string of pattern repetitions.

This function returns nulls if specified in a select list. However, it can be used in a
WHERE clause and in other contexts.

Example

The following expression returns the value '$$$$$":
@REPEAT('$',5)

@REPLACE

@REPLACE(string1, start-pos, length, string2)

This function returns a string in which characters fgtringl have been replaced
with characters frorstring2 The replacemerstring2begins astart-posthe position
at which characters of the specifiedgthhave been removed.

The first position in the string is 0.

SQL Language Reference 4-79

Chapter 4 SQL Function Reference

Example

The following expression returns the value 'RALPH":
@REPLACE('RALF', 3, 1, 'PH)

@RIGHT

@RIGHT((string, length)

This function returns a specified number of characters starting from the end, or
rightmost part, of a string.

Example

The following expression returns '186";
@RIGHT('P4-186', 3)

@ROUND

@ROUND(x, n)

This function rounds the numbemwith n decimal places. The rounding can occur to
either side of the decimal point.

Example

The following expression returns 31.42:
@ROUND(@PI * 10,2)

The following expression returns 1200:
@ROUND(1234.1234,-2)

The following SQL statement returns the value of all PVAL column entries in the
GEOM table, rounded to 2 decimal places to the RIGHT of the decimal point.t:

SELECT @ROUND(QVAL,2) FROM GEOM;

4-80 sSQL Language Reference

@SCAN

The following SQL statement returns the value of all PVAL column entries in the
GEOM table, rounded to 2 decimal places to the LEFT of the decimal point:

SELECT @ROUND(QVAL,-2) FROM GEOM;

@SCAN

@SCAN(string, pattern)

This function searches a given string for a specified pattern and returns a number
indicating the numeric position of the first instance of the pattern.

This function returns null if the column being scanned is null.

The first position in the string is position 0. The match is performed without regard to
case.

If the result is -1, it indicates no match was found.

The @SCAN function can perform a case-insensitive match on columns of type
CHAR, VARCHAR, and LONG VARCHAR.

Example

The following expression returns 1 as the start position of the character '-":
@SCAN('P-186', -)

@SDV

»P»— @sbv — (—I: ALL expression) <<
DISTINCT
This function computes the standard deviation for the set of values specified by the
argument.

The data type of the argument may be numeric, date/time, or character. If an argument
is a character data type, the value must form a valid numeric or date/time value (only
digits and standard editing characters). SQLBase automatically converts the value to
the required data type.

SQL Language Reference 4-81

Chapter 4 SQL Function Reference

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Note that this function produces double precision, which is not the same as an integer
value.

Example

The following SQL statement returns the standard deviation of the SALARY column
in the table EMPSAL.

SELECT @SDV(SALARY) FROM EMPSAL;

@SECOND

@SECOND(date)

This function returns a number between 0 and 59 that represents the second of the
minute.

Example

The following expression returns 58:
@SECOND(12/28/46 03:52:58)

@SIN

@SIN(X)

This function returns the sine xfwherex is inradians

Example

The following expression returns .841470985:
@SIN(L)

4-82 sSQL Language Reference

@SLN

The following SQL statement returns the value of all PVAL column entries in the
GEOM table:

SELECT @SIN(PVAL) FROM GEOM,;

@SLN

@SLN(cost, salvage, life)

This function returns the straight-line depreciation allowance of an asset for each
period, given the base cost, predicted salvage value, and expected life of the asset.

@SLN uses this formula to compute depreciation:
(c-9) ¢ = cost of the asset
n s = salvage value of the asset

n = useful life of the asset

Example

The following expression:
@SLN(10000,1200,8)

returns $1100, which is the yearly depreciation allowance for a machine purchased
for $10,000, with a useful life of 8 years, and a salvage value of $1200 after the 8
years.

@SQRT
@SQRT(4)

This function returns the square root of x (which must be zero or positive). The square
root of a negative argument is handled as an overflow error.

SQL Language Reference 4-83

Chapter 4 SQL Function Reference

Example

The following expression returns 3.16227766:
@SQRT(10)

The following SQL statement returns the square root of all PVAL column entries in
the GEOM table:

SELECT @SQRT(PVAL) FROM GEOM:;

@STRING

@STRING(number, scale)

This function converts a number into a string with the number of decimal places
specified byscale Numbers are rounded where appropriate.

Example

The following expression returns the character string '123.46":

@STRING(123.456, 2)

@SUBSTRING

@SUBSTRING(string, start-pos, length)

This function returns a desired portion of a string from a given argument string. The
substring starts at the specified start position and is of the specified length. If the start
position and length define a substring that exceeds the actual length of the string, the
result is truncated to the actual length of the string. If the start position is beyond
length of the string, a null string (") is returned. The first character in a string is at
start-pos 0.

The length parameter is optional.

4-84 sQL Language Reference

@SYD

Example

@SYD

The following expression returns 'SMITH";
@SUBSTRING('DR. SMITH', 4, 20)

The following example returns the first 10 characters of the LNAME column in the
EMP table where the length of the LNAME column exceeds 10 characters.

SELECT EMPNO, @SUBSTRING(LNAME, 0, 10) FROM EMP WHERE
@LENGTH(LNAME) > 10;

The function is nearly the same as @MID$ except that if the third argument is left off,
the function returns a string beginning with the start position.

The following expression returns ‘R. SMITH’:

@SUBSTRING (‘DR. SMITH’, 1)

@SYD(cost, salvage, life, period)

This function returns the Sum-of-the-Years'-Digits depreciation allowance of an asset
for a given period, given the base cost, predicted salvage value, expected life of the
asset and specific period.

@SYD uses this formula to compute depreciation:

c-s)*(n-p+1) ¢ = cost of the asset
(n*(n+1)/2) s = salvage value of the asset

p = period for which depreciation is being
computed

n = useful life of the asset

Example

The following expression:
@SYD(10000,1200,8,5)

SQL Language Reference 4-85

Chapter 4 SQL Function Reference

returns $977.777778, which is the depreciation allowance for the fifth year for a
$10,000 machine with a useful life of 8 years, and a salvage value of $1200 after the 8
years.

@TAN

@TAN(X)

This function returns the tangentxofwherexis in radians.

Example

The following expression returns .648360827:
@TAN(10)

The following SQL statement returns the tangent of all PVAL column entries in the
GEOM table:

SELECT @TAN(PVAL) FROM GEOM,;

@TERM

@TERM(pmt, int, fv)

This function returns the number of payment periods for an investment, given the
amount of each paymepint the periodic interest ratet, and the future valul of
the investment.

@TERM uses this formula to compute the term:
In (1 + (fv * int/pmt)) pmt = periodic payment
In (1 +int) fv = future value
int = periodic interest rate

In = natural logarithm

4-86 SQL Language Reference

@TIME

Example

@TIME

The following expression:
@TERM(2000,.10,100000)

returns 18.7992455, which is the number of years it will take for an investment to
mature to an amount of $100,000. This is based on a yearly deposit of $2,000 at the
end of each year to an account that earns 10% compounded annually.

@TIME(hour, minute, second)

This function returns a time value given timur, minuteandsecondAn hour is a
number from 0 to 23; a minute is a number from 0 to 59; a second is a number from 0
to 59.

Example

The following expression returns 13:00:00:
@TIME(13,0,0)

@TIMEVALUE

@TIMEVALUE(time)

The function returns a time value, given a string in the form HH:MM:SS [AM or PM].
If the AM or PM parameter is omitted, military time is used.

Example

If the CHAR column APPT contains '18-JAN-1994 10:14:27 AM', then the following
expression returns 10:14:27:

@TIMEVALUE(APPT)

SQL Language Reference 4-87

Chapter 4 SQL Function Reference

@TRIM

@TRIM(string)

This function strips leading and trailing blanks from a string and compresses multiple
spaces within the string into single spaces.

Example

The following expression returns 'JOHN DEWEY":
@TRIM(JOHN DEWEY ")

@UPPER

@UPPER(string)

This function converts lower-case letters in a string to upper-case. Other characters
are not affected.

Example

The following expression returns 'E.E. CUMMINGS":
@UPPER('e.e. cummings')

@VALUE

@VALUE(string)

This function converts a character string that has the digits (0-9) and an optional
decimal point or negative sign into the number represented by that string.

4-88 sSQL Language Reference

@WEEKBEG

Example

The following expression returns the number 123456 which will be interpreted
strictly as a numeric data type by any function to which it is passed:

@VALUE('123456)

@WEEKBEG

@WEEKBEG(date)

This function returns the date of the Monday of the week containing the date. This is
the previous Monday if the date is not a Monday, and the date value itself if it is a
Monday.

Example

If the value in DATECOL is 01/FEB/94, then the following expression returns 31-
JAN-1994:

@WEEKBEG(DATECOL)

@WEEKDAY

@WEEKDAY(date)

This function returns a number between 0 and 6 (Saturday = 0 and Friday = 6) that
represents the day of the week.

Example

The following expression returns 1 which represents SUNDAY:
@WEEKDAY (12/28/86)

SQL Language Reference 4-89

Chapter 4

SQL Function Reference

@YEAR

The following SQL statement finds the day of the week on which each employee was
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun’,'Mon',
‘Tue', 'Wed', 'Thu', 'Fri'), @ YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@YEAR(date)

This function returns a number between -1900 and +200 that represents the year
relative to 1900. The year 1900 is 0, 1986 is 86, and 2000 is 100. Years before 1900
are negative numbers and 1899 is -1.

Example

The following expression returns 23.
@YEAR(12/28/1923)

The following SQL statement finds the day of the week on which each employee was
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun','Mon’,
‘Tue', 'Wed', 'Thu', 'Fri'), @ YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@YEARBEG

@YEARBEG(date)

This function returns the first day of the year represented by the date.

Example

If the value in HIREDATE is '16-FEB-1996', then the following expression returns
01-JAN-1996:

@YEARBEG(HIREDATE)

4-90 sSQL Language Reference

@YEARNO

@YEARNO

@YEARNO(date)

This function returns a 4-digit number that represents a calendar year.

Example

If the column HISTORIC_DATE contains the value 04/JUL/1776, then the expression
returns 1776:

@YEARNO(HISTORIC_DATE)

The following SQL statement finds the day of the week on which each employee was
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun’,'Mon',
‘Tue', 'Wed', 'Thu', 'Fri'), @ YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

SQL Language Reference 4-91

Chapter 5
SQL Reserved Words

This chapter lists the SQL reserved words.

SQL Language Reference 5-1

Chapter 5 SQL Reserved Words

SQL Reserved Words

The following words are reserved in SQL.

You can use a reserved word as an identifier if it is enclosed in double quotes, but this
is not recommended.

@ABS @ACOS
@ASIN @ATAN
@ATAN2 @CHAR
@CHOOSE @CODE
@COS @CTERM
@DATE @DATETOCHAR
@DATEVALUE @DAY
@DECIMAL @DECODE
@EXACT @EXP
@FACTORIAL @FIND
@FULLP @FV
@HALFP @HEX
@HOUR @IF

@INT @ISNA
@LEFT @LENGTH
@LICS @LN

@LOG @LOWER
@MEDIAN @MICROSECOND
@MID @MINUTE
@MOD @MONTH
@MONTHBEG @NOW
@NULLVALUE @PI

@PMT @PROPER
@PV @QUARTER
@QUARTERBEG @RATE
@REPEAT @REPLACE
@RIGHT @ROUND
@SCAN @SDV
@SECOND @SIN
@SLN @SQRT
@STRING @SUBSTRING
@SYD @TAN
@TERM @TIME
@TIMEVALUE @TRIM
@UPPER @VALUE
@WEEKBEG @WEEKDAY
@YEAR @YEARBEG

5-2 SQL Language Reference

SQL Reserved Words

@YEARNO
ACTIONS
ADJUSTING
ALL

AND
APPEND
ASC

AT

AUDIT
AVG
BETWEEN
BY
CASCADE
CATEGORY
CHAR
CHECK
CLUSTERED
COLUMN
COMMIT
COMPUTE
CONTROL
CR
CREATOR
CURRVAL
DATEDATE
DAY

DBA
DBAREA
DECIMAL
DEINSTALL
DESC
DIRECT
DISTINCT
DOUBLE
DYNAMIC
ENABLE
EVERY
EXISTS
FLOAT
FORCE
FROM
GLOBAL
GRANTEE

ABORTxxxDBSxxx
ADD
AFTER
ALTER
ANY
AS
ASCII
ATTRIBUTE
AUTHORITY
BEFORE
BUCKETS
CALLSTYLE
CATALOG
CDECL
CHARACTER
CLIENT
COLAUTH
COMMENT
COMPRESS
CONNECT
COUNT
CREATE
CURRENT
DATABASE
DATETIME
DAYS
DBATTRIBUTE
DEC
DEFAULT
DELETE
DIF
DISABLE
DISTINCTCOUNT
DROP
EACH
EVENT
EXECUTE
EXTERNAL
FOR
FOREIGN
FUNCTION
GRANT
GROUP

SQL Language Reference 5-3

Chapter

5

SQL Reserved Words

5-4

HASHED
HOUR

ID

IN

INDEXES
INSERT

INT

INTO
IXNAME
KEY

LF

LIKE

LOAD

LOCK

LONG
MESSAGE
MICROSECONDS
MINUTE
MODIFY
MONTHS
NEW

NOT
NUMBER
OFF

ON

OPTION
ORDER
PARAMETERS
PASSWORD
PERFM
PRECISION
PRIVILEGES
PROCESS
QUALIFIER
REAL
REFERENCING
RENAME
RESTRICT
REVOKE
ROW
ROWID
SAME
SCHEMA

SQL Language Reference

HAVING
HOURS
IDENTIFIED
INDEX
INLINE
INSTALL
INTEGER
IS
KEEP
LABEL
LIBRARY
LIMIT
LOCAL
LOG
MAX
MICROSECOND
MIN
MINUTES
MONTH
NAME
NEXTVAL
NULL
OF
OoLD
ONLY
OR
OVERWRITE
PASCAL
PCTFREE
POST
PRIMARY
PROCEDURE
PUBLIC
RAISE
REFERENCES
REL
RESOURCE
RETURNS
ROLLBACK
ROWCOUNT
ROWS
SAVEPOINT
SECOND

SQL Reserved Words

SECONDS
SEPARATE
SET

SMALLINT
START

STATIC
STDCALL

SUM
SYNNAME
SYSDATE
SYSDBSEQUENCE
SYSTIMEZONE
TABAUTH
TBNAME

TIME
TIMEZONE
TRANSACTION
TYPE

UNION
UPDATE
USERERROR
VALUES
VARIABLES
WAIT

WITH

WORK

YEARS

SELECT
SERVER
SIZE

SQL
STATEMENT

STATISTICS
STOGROUP
SYNCREATOR
SYNONYM
SYSDATETIME
SYSTIME
SYSDBTRANSID

TABLE

THREAD

TIMESTAMP

TO
TRIGGER
UNLOAD
UNIQUE
USER
USING

VARCHAR

VIEW

WHERE

WITHOUT

YEAR

SQL Language Reference 5-5

Chapter 6
Referential Integrity

This chapter describes how referential integrity works, and how it affects SQLBase
commands, and its components.

SQL Language Reference 6-1

Chapter 6 Referential Integrity

About referential integrity

Referential integrityensures that all references from one table to another are valid.
This prevents problems from occurring when changes in one table are not reflected in
another.

To illustrate the concept of referential integrity, assume that you have a table called
ENGINEERS where you store information about service engineer employees. You
need to add an engineer to a new office in this table:

INSERT INTO ENGINEERS (EMPL_NUM,NAME,REP_OFFICE,
TITLE,HIRE_DATE) VALUES (400,'Marv Epper’,50,
'Engineer’, 10/1/93,NULL);

There’s nothing inherently incorrect about this statement. However, if office 50 does
not yet exist, this record could potentially corrupt the data integrity.

Every office value in the ENGINEERS table should be a valid office in the OFFICES
table. This rule is called a referential integgtnstraint

Note that a valid reference is not the same as a correct reference. Referential integrity
does not correct a mistake such as assigning an engineemtmiigoffice; it only
verifies that the office actually exists.

Sample service database

To demonstrate referential integrity, this chapter uses a small database for a camera
company’s service organization. This database contains the following tables:

+ OFFICES
*+ ENGINEERS
+ CUSTOMERS
* SERV_CALLS
+ PRODUCTS
For a listing of the data in these tables, refer to the end of this chapter.

The benefits of referential integrity

Referential integrity is an important SQLBase feature. It takes care of data integrity
and validation at the database level. For example, assume you need to enforce the
following constraints in the sample service database:

» There can be only one manager per office.
» All employees must be associated with an office and manager.
e Each product has a manufacturer and product code.

6-2 SQL Language Reference

Components

» All customers have a service representative assigned to them.

SQLBase can take care of these referential integrity constraints; you do not have to
code them yourself in your application program. SQLBase, not the user, maintains
and enforces the referential integrity rules.

Components

Referential integrity is the enforcement of all referential constraints. To understand
how referential integrity works, you first need to be familiar with its main
components:

e primary key

» foreign key

» parent/child table

* parent/child row

» self-referencing table/row

Primary key

A table’sprimary keyis the column or set of columns that uniquely identifies each
row. In the OFFICES table, the OFFICE column is the primary key. It is a unique
identifier since each office has a different number.

/ Primary Key

OFFICE CITY REGION MGR AC'\(Aié\iJ_NT
20 San Francisco Western 103 1050
40 New York Eastern 108 2500
10 Los Angeles Western 100 3000
30 Chicago Midwest 106 1001

Primary key for OFFICES table

Primary keys ensure the integrity of the data. If the primary key is correctly used and
maintained, every row is different from every other row, and there are no empty rows.
A table can have only one primary key. The primary key cannot contain any NULL
values, and must be unique.

SQL Language Reference 6-3

Chapter 6 Referential Integrity

Composite primary key

Sometimes, more than one column is necessary to uniquely define a row. A table can
have acomposite primary kegontaining multiple columns. For example, the
PRODUCTS table has a primary key containing two columns: MFR_ID and
PRODUCT_ID. Neither column could be a primary key by itself, but together, these
two columns uniquely identify each product.

Primary Key
MFR_ID PRODUCT_ID DESCRIPTION

ACR 101 Tripod
ACR 102 Tripod2
MRP 101 Long Angle Lens
LMA 4211 Automatic Camera
LMA 4310 Regular Focus 1
LMA 4516 Regular Focus 2
MRP 600 Lens
MRP 601 Shutter
WRS 24c Widget 1
WRS 25a Widget 2

Composite primary key for PRODUCTs example

Candidate keys

A table can have more than one unique identifier that qualifies as a primary key. Each
column that is a unique identifier for the table is calledrmdidate keyand each can
be the primary key.

A candidate key must obey the following rules:

* No two rows in the table can have the same value for the candidate key.

6-4 SQL Language Reference

Components

The candidate key is not allowed to contain subsets that are unique. For
example, the composite key MFR_ID/PRODUCT _ID is not a candidate key
if either of its columns is also unique in the table.

You must choose yourself which candidate key is the primary key. The remaining
candidate keys are calletternate keys

Guidelines for defining primary keys

The following rules are not required, but are good guidelines for creating a primary

key.

Unique identifier.Create a primary key for every table that has a clear unique
identifier, such as the OFFICE column in the OFFICES table. SQLBase does
allow you to create a table without a primary key. However, it is strongly
recommended that you never do this, except in the following situations:

e There are not any referential rules applied to the table.
e The table is not a parent table (see the following secti@oamponents

e The index maintenance overhead clearly outweighs the benefits of a
primary key.

Permanent valuelf there are child rows referencing the primary key (see the
following section orComponents a primary key value should be permanent,
and not updateable.

For example, at first glance the MGR or CITY columns in the OFFICES table
could also be primary key candidates since they are currently unique.
However, if you open another office in the same city, or a manager leaves the
company, the values in these columns would change. Neither of these
columns would work well as a primary key, since their values may not always
be unique or permanent.

Views.An updateable view defined on a table with a primary key must
include all columns of the primary key. Although this is only required if you
use the view in an INSERT statement, the resulting unique identification of
rows is also useful if the view is used for updating, deleting, or selecting.

If you try to insert a row into a view that does not contain values for all of the
primary key columns, the following message appears:

NOT ENOUGH NON-NULL VALUES

This message appears because all the primary key columns are defined as
NOT NULL (since a primary key cannot contain NULL values).

Number of columnsFor composite primary keys, use only the minimum
number of columns necessary to ensure uniqueness of the primary key. This
is because every foreign key referencing this primary key must include the

SQL Language Reference 6-5

Chapter 6 Referential Integrity

same number of columns. For example, in the PRODUCTS table, you only
need the manufacturer number and product number, not the description.

e« NOT NULL WITH DEFAULT. When creating primary keys, you should not
use the NOT NULL WITH DEFAULT option unless the primary key
column(s) has a data type of TIMESTAMP or DATETIME.

The following rules are required when creating a primary key in SQLBase:

* Unique index.If a table has a primary key, you must also create a unique
index on the primary key columns to make the table complete. See the
following sectionPrimary key indexor more information.

» Format. The primary key format must obey the following rules:
« Cannot contain more than 16 columns.

e Sum of the column length attributes cannot be greater than 255 bytes.
e Cannot contain LONG or LONG VARCHAR columns.

« UPDATE WHERE CURRENT.You cannot use an UPDATE WHERE
CURRENT clause with a primary key column.

» Self-referenced rowdn a self-referencing row, you cannot update the
primary key value. For more information on self-referenced rows, see the
following section orelf-referenced rows

Primary index

If a table has a primary key, you must also create a unique index on that table’s
primary key columns using the same column order as the primary key. This index is
called theprimary index A table can have only one primary index. If a table has more
than one unique index created on the primary key columns, the first index created is
the primary index.

The primary index can be in either ascending or descending order. The table is in an
incompletestate until you create the primary index. If the table is incomplete, you
cannot perform tasks such as inserting or retrieving data, or creating foreign keys that
reference the primary key.

Because of these limitations, create the primary index soon after creating the table. If
a primary index is dropped later, the table becomes incomplete again, and you cannot
perform any data operations on it until the primary index is recreated.

If you create the table first, and then modify the table later by adding the primary key
with the ALTER TABLE statement, a unique index must already exist on the primary
key columns.

6-6 SQL Language Reference

Components

Foreign key

A foreign keyreferences a primary key in either the same or another table. The
OFFICE column of the OFFICES table is an example of a primary key. The
REP_OFFICE column of the ENGINEERS table is an example of a foreign key. The
office value in the ENGINEERS table references the office value in the OFFICES
table.

Foreign Primary

key key \

EMPL_ REP_ OFFICE CITY REGION
NUM ENE OFFICE
20 San Western
100 Paul 10 Francisco
Atkins
40 New York Eastern >
104 Bob Smith 20 >
10 Los Angeles Western >
107 Murray 30 >
Rochester 30 Chicago Midwest >
102 Larry 10
Sanchez
101 Sheila 10
Brown
106 Sam 10
Valdez

Example of a foreign key

Before creating a foreign key, you must first create both the primary key it references
and also a unique index on that primary key.

Naming a foreign key

Each foreign key has@nstraint nameThis name identifies the foreign key. For
example, a tokenized error message returns the constraint name when referencing a
foreign key. The foreign key name is also required when you use the DROP
FOREIGN KEY clause of the ALTER TABLE statement.

The constraint name is assigned when the foreign key is created (with CREATE
TABLE or ALTER TABLE). You can assign the constraint name yourself; if you do

SQL Language Reference 6-7

Chapter 6 Referential Integrity

6-8

not, SQLBASE generates a constraint name from the name of the first foreign key
column.

A foreign key constraint name can have up to eighteen characters. This means that if
the first foreign key column name is more than eighteen characters, you must assign a
constraint name yourself that does not violate this limit. Otherwise, SQLBase will not
create the foreign key.

If there are multiple foreign keys referencing the same table, each foreign key must
have a unique name. This ensures that every referential constraint is uniquely
identified by a table name/constraint name combination.

For example, you could create a foreign key on the OFFICE.MGR column, and
assign it a constraint name called HASMGR. If you do not assign the constraint
name, SQLBase assigns MGR as a default.

Foreign key guidelines
In SQLBase, a foreign key must obey the following rules:

* Matching columns A foreign key must contain the same number of columns
as the primary key. The data types of the foreign key columns must match
those of the primary key on a one-to-one basis, and the matching columns
must be in the same order.

However, the foreign key can have different column names and default
values. It can also have NULL attributes. If an index is defined on the foreign
key columns, the index columns can be in ascending or descending order,
which may be different from the order of the primary key index.

* Using primary key columnsA column can belong to both a primary and
foreign key.

» Foreign keys per tableA table can have any number of foreign keys.
* Number of foreign keysA column can belong to more than one foreign key.
* Number of columnsA foreign key cannot contain more than 16 columns.

« Parent table A foreign key can only reference a primary key in its parent
table. This parent table must reside in the same database as the foreign key.

e NULL values.A foreign key column value can be NULL. A foreign key
value is NULL if any column in the foreign key is NULL. See the following
subsection ofroreign keys and NULL valuésr more information.

» Privileges.You must grant ALTER authority on a table to all users who need
to define that table as the parent of a foreign key.

« System catalog tabl&.he foreign key cannot reference a system catalog
table.

SQL Language Reference

Components

* Views.A foreign key cannot reference a view.

» Self-referencing rowln a self-referencing row, the foreign key value can
only be updated if it references a valid primary key value. See the following
section orSelf-referencing table®r more information.

Foreign key indexes

SQLBase does not require an index on a foreign key, but an index can increase
database performance. A join with primary and foreign keys is fairly common, and
creating an index on the foreign key can improve the performance of these joins.

SQLBase optimizes index checks by considering any index where a left-anchored
partial key matches the dependent key. In particular, this method of index checking
affects those referential integrity rules that involve locating dependent rows given for
its parent key. Specifically,

« DELETE CASCADE (where dependent rows are located and deleted).
e« DELETE SET NULL (where dependent rows are located and set to NULL)

« DELETE RESTRICT (where dependent rows are located and if any are
found, deletion of the parent key is denied)

The following example shows you how SQLBase optimizes index checks.
Example:

Assume a parent table PT has a composite key (A, B) and a dependent table DT has a
dependent composite key (X,Y). The dependency rule between PT and DT is a
DELETE CASCADE, which means that when a row in PT is deleted, the
corresponding dependent rows in DB are also deleted.

In order to locate the dependent rows in DT, SQLBase checks if an index on DT can
be used. SQLBase not only considers an index on columns (X, Y) of DT, but also
considers indexes defined on (X, Y, Z), (X, Y, A, B, C), etc. The closest matching
index is chosen to enforce the referential integrity rule.

Foreign keys and NULL values

A foreign key column can have a NULL value, unlike a primary key column. Even
though a NULL value does not match any value in a primary key, it satisfies the
referential integrity constraint. This is also true for a multiple-column foreign key that
contains part NULL/non-NULL values; SQLBase regards a foreign key value as
NULL if any of its column values is NULL.

It is strongly recommended that you do not allow a foreign key to have partial NULL/
non-NULL values. Either all of the foreign key columns should allow NULL values,
or none at all.

SQL Language Reference 6-9

Chapter 6 Referential Integrity
The following example with the PRODUCTS and SERV_CALLS tables demonstrate
the problems with partial NULL foreign keys.
Example:
The composite key MFR_ID/PRODUCT _ID is a primary key in the PRODUCTS
table. The composite key MFR/PRODUCT is a foreign key in the SERV_CALLS
table referencing the PRODUCTS table.
Assume that the SERV_CALLS table allowed NULL values for the PRODUCT
column. This means that you can enter a non-NULL value for the SERV_CALL.MFR
column, and a NULL value in the SERV_CALL.PRODUCT column.
INSERT INTO SERV_CALLS VALUES (8000,
9-4-93,2000,103,’WRS’,NULL);
As a result, the row contains a foreign key value that does not match any primary key
value in the PRODUCTS table.
CALL_NUM CALL_DATE CUST REP MFR PRODUCT
8000 1993-00-04 2000 103 WRS
Primary key [| Foreign key |
| |
MFR_ID PRODUCT_ID DESCRIPTION
WRS 24c Widget 1
WRS 25a Widget 2

Example of partial NULL/non-NULL foreign key

SET NULL delete rule. The same situation applies with a SET NULL delete rule.
With this rule, deleting a row from the PRODUCTS table sets the
SERV_CALLS.PRODUCT column to NULL since it accepts a NULL value. Again,
the row in the SERV_CALLS table does not match the PRODUCTS table. For more
information on SET NULL, reaBELETE implication®n pages-26.

INSERT statement. With regards to referential integrity, SQLBase regards a row
with partial NULL/non-NULL values as NULL. Once a row is defined as NULL,
SQLBase does not perform any referential checks on it when you issue an INSERT
statement.This means that SQLBase does not check the values in the foreign key’s
non-NULL columns to see if they match any values in the parent table.

6-10 SQL Language Reference

Components

Parent and child tables

Together, the primary key and foreign key cregtar@nt/childrelationship. The table
containing the primary key is thparent table while the table containing the foreign
key is achild table A child of a child is called descendent

In the following example, the PRODUCTS table is a parent of the SERV_CALLS

table.
MFR_ID PRODUCT_ID DESCRIPTION
ACR 101 Tripod Parent Table
ACR 102 Tripod2 PRODUCTS
MRP 101 Long Angle Lens
LMA 4211 Automatic Camera
LMA 4310 Regular Focus 1
LMA 4516 Regular Focus 2
MRP 600 lens
MRP 601 Shutter
WRS 24c Widget 1
WRS 25a Widget 2
| |
Child Table |
|
CALL_NUM CALL_DATE CUST REP MFR PRODUCT
2133 1993-05-10 1000 102 ACR 102
6253 1993-05-02 3000 101 LMA 4516
7111 1993-05-09 1001 104 MRP 101
4250 1993-05-14 1050 109 MRP 101

Example of parent/child tables

To be a parent table, a table must have a primary key and primary index.

SQL Language Reference 6-11

Chapter 6

Referential Integrity

Parent and

Some tables have no parent or child tables. These are icaligzbndent tables.
Think carefully before using an independent table in your database design. Any
reference to this table is neither validated nor verified.

child rows

A row belonging to a parent table that is referred to by a row belonging to the child
table is aparent row The row that refers to it iscnild row The child row must have
at least one foreign key column value that is not NULL.

MFR_ID PRODUCT_ID DESCRIPTION
ACR 102 Tripod2
parent row | |
child row | |
CALL_NUM CALL_DATE CUST REP MFR PRODUCT
2133 1993-05-10 1000 102 ACR 102

Example of parent/child rows with the PRODUCTS and SERV_CALLS tables

Not every row in a parent table is necessarily a parent row; it may not have any child
rows that reference it. For example, on the previous page, the row in the PRODUCTS
table whose description is Automatic Camera is not referenced by any of the rows in
the SERV_CALL table.

Likewise, if a row in a child table has a NULL foreign key, it is not a child row.

Self-referencing tables and rows

A table can be a child of itself. This is callededf-referencing tableA self-
referencing table contains both a foreign and primary key with matching values
within the same table.

An example of a self-referencing table is the ENGINEERS table, where the foreign
key MGR (MANAGER) references the primary key EMPL_NUM.

6-12 SQL Language Reference

Components

v

E['\\|/Il§)|\|;|_ NAME O;R:E::()S_E TITLE g:?l_lé MANAGER

100 Paul Atkins 10 Manager 1988-02-12

104 Bob Smith 20 Sen. Engineer 1992-09-05 103

107 Murray 30 Sen. Engineer 1991-01-25 106
Rochester

102 Larry Sanchez 10 Sen. Engineer 1989-06-12 100

If a row is aself-referencing rowits foreign key value is the same as its primary key
value. This section does not show a self-referencing row.

The following restrictions apply to self-referencing tables and rows:

e The DELETE rule must be CASCADE.

* An INSERT statement with a subquery can only insert one row into a self-
referencing table.

* You cannot use a DELETE WHERE CURRENT OF statement.
e To update the primary key, you must use one of the following methods:

* Delete the row, and then reinsert it with the new primary and foreign key
values

OR

* Update the foreign key value to another value or NULL (if permitted),
and then update the primary key value.

* You can only update the foreign key in a self-referencing row if it references

a valid primary key.

Delete-connected tables

Tables aralelete-connecteifl deleting a row in one table affects the other table. For
example, deleting an office from the OFFICES table affects the ENGINEERS table
since each engineer is associated with an office.

Any table that is involved in a delete operation is delete-connected.

The following definitions apply to delete-connected tables:

SQL Language Reference

6-13

Chapter 6 Referential Integrity

» A self-referencing table is delete-connected to itself.

e A child table is always delete-connected to its parent table no matter what
DELETE rule you specify.

» Atable is delete-connected to its grandparent and great-grandparent tables
when the delete rule between the parent and grandparent, or the grandparent
and the great-grandparent, is CASCADE. The following figure illustrates this

concept.

TABLE 1

I
CASCADE

Y

TABLE 2

|
CASCADE

Y

TABLE 3

[
DON'T CARE

Y

TABLE 4

great-grandparent
table

grandparent table

parent table

Delete-connected tables

In this figure, TABLE 4 is delete-connected to its grandparent table, TABLE 2, since
the delete rule between TABLE 2 and TABLE 3 is CASCADE. TABLE 4 is also
delete-connected to its great-grandparent table, TABLE 1, since the delete rule
between TABLE 1 and TABLE 2 is CASCADE. The delete rules between TABLE 4
and its parent, TABLE 3, do not affect these delete-connections.

For information on restrictions for delete-connected tables, read the deetain-

connected table restrictions on page 6-27

6-14 SQL Language Reference

How to create tables with referential constraints

How to create tables with referential constraints

Use the CREATE TABLE or ALTER TABLE statement to create or alter tables with
primary keys or foreign keys, and to establish referential constraints.

Using the CREATE TABLE statement

In the following example, the CREATE TABLE command creates the ENGINEERS
table with a primary and foreign key:

CREATE TABLE ENGINEERS
(EMPL_NUM INTEGER NOT NULL,
NAME VARCHAR(24) NOT NULL,
REP_OFFICE INTEGER,
TITLE VARCHAR(15),
HIRE_DATE DATE NOT NULL,
MANAGER INTEGER,
PRIMARY KEY (EMPL_NUM),
FOREIGN KEY WORKSIN (REP_OFFICE)
REFERENCES OFFICES ON DELETE RESTRICT);

Issues for primary key

As a general rule, you should specify the primary key when you create the table with
the CREATE TABLE statement, rather than adding the key later with the ALTER
TABLE statement.

Remember to create a unique index on the table after creating the primary key, or the
table will be incomplete. Read the sectionGieating a primary inde®n pages-16

Issues for foreign key

You can use CREATE TABLE to create a foreign key while creating the table.
Remember, however, that the foreign key must reference a table with an existing
primary key and primary index. In the example above, the foreign key WORKSIN
references the OFFICES table. The OFFICES table must already have an existing
primary key, and a primary index created on the primary columns.

To create a foreign key, you must have the ALTER privilege on both the table
containing the foreign key and the table containing the primary key.

When you create a foreign key, you can also specify a DELETE rule for the foreign
key. If you do not specify the DELETE rule yourself, SQLBase assigns a default
DELETE rule of RESTRICT. Read the sectibELETE implicationson pages-23

for more information.

You cannot specify an UPDATE rule.

SQL Language Reference 6-15

Chapter 6 Referential Integrity

Using the ALTER TABLE statement

You can use the ALTER TABLE statement to create a primary and foreign key after
you create the tables. Since the parent table must exist, some foreign key constraints
can only be defined with the ALTER TABLE statement, such as a self-reference.

To add the foreign key ISFOR to the SERV_CALLS table after creating the table with
CREATE TABLE, use this ALTER TABLE command:

ALTER TABLE SERV_CALLS FOREIGN KEY ISFOR
(MFR,PRODUCT) REFERENCES PRODUCTS ON DELETE
RESTRICT,;

Before using ALTER TABLE to add a primary key, you must create a unique index
on the primary key columns.

Creating a primary index

Since a table is incomplete until you create a primary index, create the index soon
after creating the table. For example, to create the primary index for the OFFICES
table, enter the following command:

CREATE UNIQUE INDEX OFFICE_IDX ON OFFICES (OFFICE);

If you add the primary key later with ALTER TABLE, a unique index must already
exist on the primary key columns.

If you are loading database information with the LOAD command, you should create
the index after the load for performance reasons.

Reporting referential integrity

There are three SQLBase system catalog tables that contain referential integrity
information. For a description of the columns in these tables, read the appendix on
System catalog tables.

* SYSADM.SYSFKCONSTRAINTS (Foreign key constraints)

This table contains information about a table’s foreign keys, such as the
constraint name, column(s) of the foreign key, and the parent table it
references.

SELECT * FROM SYSFKCONSTRAINTS
WHERE NAME='SERV_CALLS’;

6-16 SQL Language Reference

Reporting referential integrity

CON- FKCOLS REFS REFDTB REFDTB REFD
CREATOR NAME STRAINT EQNUM COLUMN CREATOR NAME COLUMN
SYSADM SERV_CALLS ISFOR 1 MFR SYSADM PRODUCTS MFR_ID
SYSADM SERV_CALLS ISFOR 2 PRODUCT SYSADM PRODUCTS PRODUCT_ID

SYSADM.SYSFKCONSTRAINTS table

SYSADM.SYSPKCONSTRAINTS (Primary key constraints)

This table contains information about a table’s primary key columns, such as
the column name of the primary key and the table name.

SELECT * FROM SYSPKCONSTRAINTS WHERE
NAME="PRODUCTS,

CREATOR

NAME PKCOLSEQNUM COLNAME

SYSADM

PRODUCTS 1 MFR_ID

SYSADM

PRODUCTS 2 PRODUCT_ID

SYSADM.SYSPKCONSTRAINTS table

SYSADM.SYSTABCONSTRAINTS (Table constraints)

This table contains information about all constraints pertaining to a specific
table, such as the name and type of constraint (primary or foreign key), delete
rule for a foreign key, and any customized user error messages (read the
sectionCustomizing SQLBase error messagagages-30for more
information).

SELECT * FROM SYSTABCONSTRAINTS WHERE
NAME='SERV_CALLS’,

CREATOR

NAME

DELETE
RULE

USRERR
INSDEP

USRERR
UPDDEP

USRERR
DELPAR

USRERR

CONSTRAINT UPDPAR

TYPE

SYSADM

SERV_CALLS

ISFOR F R 0 0 0 0

SYSADM

SERV_CALLS

PRIMARY P 0 0 0 0

SYSADM.SYSTABCONSTRAINTS table

6-17

SQL Language Reference

Chapter 6

Referential Integrity

Implications for SQLBase operations

INSERT

UPDATE

Referential constraints have special implications for some SQLBase operations. This
section describes how referential integrity affects the SQLBase INSERT, UPDATE,
DROP, SELECT, and DELETE commands.

Views share the referential constraints of their base tables.

SQLBase enforces the following rules when you insert data into a table with one or
more foreign keys:

» Each non-null value you insert into a foreign key column must match a value
in the primary key.

« If any column in the foreign key is null, SQLBase regards the entire foreign
key as null. SQLBase does not perform any referential checks on an INSERT
statement with a NULL foreign key.

e You cannot insert values into a parent or child table if the parent table is no
longer complete (for example, if you dropped the primary index).
You can insert data into the parent table at any time without it affecting the child
table. For example, adding a new office to the OFFICES table does not affect the
ENGINEERS table.

If you are updating a child table, every non-NULL foreign key value that you enter
must match a valid primary key value in the parent table. If the child table references
multiple parent tables, the foreign key values must all reference valid primary keys.

The only UPDATE rule that can be applied to a parent table is RESTRICT. This
means that any attempt to update the primary key of the parent table is restricted to
cases where there are no matching values in the child tables.

SQLBase enforces the following rules on an UPDATE statement:

* An UPDATE statement that assigns a value to a primarg&egotspecify
more than one record.

* An UPDATE statement with a WHERE CURRENT OF clause cannot update
a primary key, or columns of a view derived from a primary key.

6-18 SQL Language Reference

Implications for SQLBase operations

DELETE

You can specify a delete rule for each parent/child relationship created by a foreign
key in a SQLBase application. The delete rule tells SQLBase what to do when a user
tries to delete a row from the parent table. You can specify one of three delete rules:

* RESTRICT
» CASCADE
+ SET NULL

If you execute a DELETE statement against a table, you cannot specify a subquery
that references the same table. For an example of this rule, see theBeleion
connected table restrictions on page 6-27.

DELETE RESTRICT

This rule prevents you from deleting a row from the parent table if the row has any
child rows. You can delete a row if there are no child rows.

For the sample service database, a DELETE RESTRICT rule is appropriate for the
relationship between a service call and the product that is serviced. You should not be
able to delete product information from the database if there are still open service
calls against the product.

ALTER TABLE SERV_CALLS FOREIGN KEY
(MFR,PRODUCT) REFERENCES SERV_CALLS ON DELETE
RESTRICT;

If you do not specify a DELETE rule, RESTRICT is the default, since it has the least
potential for damage.

DELETE CASCADE

This rule specifies that when a parent row is deleted, all of its associated child rows
are automatically deleted from the child table(s). Deletions from the parent table
cascadeo the child table. If any part of the delete fails, the whole delete operation
fails. The delete is also propagated to descendent tables.

A DELETE CASCADE rule is appropriate for the relationship between a service call
and the customer who is being serviced. You probably delete a customer row from the
database only if the customer is inactive or ends its relationship with the company; in
this case, all of the customer’s service calls should also be deleted.

ALTER TABLE SERV_CALLS FOREIGN KEY (CUST)
REFERENCES CUSTOMERS ON DELETE CASCADE;

Be careful using the CASCADE rule, since it can delete an extensive amount of data
if it is used incorrectly.

SQL Language Reference 6-19

Chapter 6 Referential Integrity

DELETE CASCADE does not delete a parent row if a child or descendent row has a
DELETE RESTRICT rule.

For a self-referencing table, CASCADE is the only DELETE rule allowed.
DELETE SET NULL

This rule specifies that when a parent row is deleted, the foreign key values in all of
its child rows should automatically be set to NULL.

If an engineer leaves the company, any customers serviced by that engineer become
the responsibility of an unknown engineer until they are reassigned.

ALTER TABLE CUSTOMERS FOREIGN KEY HASREP
(SERV_REP) REFERENCES ENGINEERS ON DELETE SET
NULL;

For a foreign key, you can use the SET NULL option only if at least one of the
columns of the foreign key allows NULL values. The default is RESTRICT.

DROP

Dropping a table drops both its primary key and any foreign keys. When you drop a
parent table or its primary key, the referential constraint is also dropped.

Before you drop a primary or foreign key, consider the effect this will have on your
application programs. Dropping a key drops the corresponding referential
relationship. It also drops the DELETE rule for a foreign key. In addition, the primary
key of a table is a permanent, unique identifier of the entities it describes, and some of
your programs might depend on it. Without a primary or foreign key, your programs
must enforce these referential constraints.

Note that dropping a primary or foreign key is not the same as deleting its value.
Use the ALTER TABLE statement to drop a primary or foreign key.
Dropping a primary key

If you have ALTER privilege on both the parent and child tables, you can drop a
primary key. The following example drops a primary key:

ALTER TABLE OFFICES DROP PRIMARY KEY;

This statement drops the primary key of the OFFICES table. It also drops the parent/
child relationship with the ENGINEERS table.

If a user has ALTER privilege on a table, you cannot revoke this privilege if he has
already created a foreign key that references that table.

Dropping a primary key does not drop the primary index. The index remains a unique
index on the former primary key’s columns.

6-20 SQL Language Reference

Cycles of dependent tables

Dropping a primary index

Dropping a primary index results in an incomplete table. To create a complete table
definition, create another unique index on the columns of the primary key.

Referential constraints remain even if you drop the primary index.

Dropping a foreign key

The following SQL statement drops the foreign key ISFOR from the SERV_CALLS
table:

ALTER TABLE SERV_CALLS
DROP FOREIGN KEY ISFOR,;

To drop a foreign key, you must have ALTER privilege on both the parent and
dependent tables.

SELECT

Because a SELECT statement does not change actual data values, it is not affected by
referential integrity.

Cycles of dependent tables

In the sample service database, the ENGINEERS table contains the REP_OFFICE
column, which references the OFFICES.OFFICE column. The OFFICES table also
contains a foreign key on the MGR column, which references the
ENGINEERS.EMPL_NUM column.

SQL Language Reference 6-21

Chapter 6 Referential Integrity

Primary Foreign Primary Foreign
key key key key

\ v v \

EMPL _ REP_ OFFICE CITY MGR
NUM DAL OFFICE
20 San Francisco 103
100 Paul Atkins 10
40 New York 108
104 Bob Smith 20
10 Los Angeles 100
107 Murray 30 -
Rochester 30 Chlcago 106 >
102 Larry 10 Offices table
Sanchez
101 Sheila 10
Brown
106 Sam Valdez 30

Engineers table

Example of a referential cycle

Both tables have a foreign key that reference each other’s primary key. These two
relationships form geferential cycleThis means that any given row in the
ENGINEERS table references a row in the OFFICES table, which refers to a row in
the ENGINEERS table, and so on. This example shows a cycle of two tables, but you
can create cycles with more tables.

6-22 SQL Language Reference

Cycles of dependent tables

INSERT implications

This kind of cyclical relationship can cause problems for an INSERT statement. For
example, assume you have just hired a new senior engineer, Ronald Casey (employee
112) who will be managing a new office in Boston (office 50)

INSERT INTO ENGINEERS (EMPL_NUM, NAME,
REP_OFFICE, TITLE, HIRE_DATE) VALUES
(112,'Ronald Casey’, 50,’'Manager’,8-15-93);

INSERT INTO OFFICES VALUES
(50,'Boston’,’Eastern’,112, NULL);

The first insert into the ENGINEERS table fails, because it refers to office 50, which
does not exist yet. Reversing the statements does not help either, since manager 112
does not exist yet.

To avoid this insert dilemma, at least one of the foreign keys in a referential cycle
must permit NULL values. You can then accomplish the two-row insertion with two
INSERT and one UPDATE statements:

INSERT INTO ENGINEERS VALUES (112,'Ronald Casey’,
NULL,’Manager’,8-15-93,NULL);

INSERT INTO OFFICES VALUES
(50,'Boston’,’Eastern’,112,NULL);

UPDATE ENGINEERS
SET REP_OFFICE=50
WHERE EMPL_NUM=112;

DELETE implications

Referential cycles can also cause problems for a DELETE operation. To illustrate this,
this section uses the following three tables:

» OFFICES
» CUSTOMERS
» ENGINEERS

These three tables have a referential cycle relationship. The CUSTOMERS table is a
parent of the OFFICES table, OFFICES is a parent of ENGINEERS, and
ENGINEERS is a parent of CUSTOMERS.

The following three examples demonstrate what happens if you delete a row in the
CUSTOMERS table with different DELETE rules.

The following diagram shows the relationships between the tables if you create each
foreign key with the DELETE CASCADE rule.

SQL Language Reference 6-23

Chapter 6

Referential Integrity

Primar
key y

CUSTOMERS Table

OFFICES Table :
Foreign key
Eéiymary OFFICE | MAJ_ACCOUNT
10 3000
20 1001
CASCADE

ENGINEERS Table

Start
here

Primary
key EMPL_NUM |REP_OFFICE| Foreign
key
101 10
102 10
105 20
CASCADE
CUST_NUM|SERV_REP
1000 101 Foreign
key
3000 102
1001 101
1050 105
CASCADE

-

Referential cycles with DELETE CASCADE
Using the CASCADE rule, the following delete cycle starts:

6-24 SQL Language Reference

Cycles of dependent tables

1. Delete customer 3000 from the CUSTOMER table.

#

2. This deletes office 10 from the OFFICES table.

#

3. This deletes engineers 101 and 102 from the ENGINEERS table.

#

4. This deletes customers 1000 and 1001 from the CUSTOMERS table.

#

5. This deletes office 20 from the OFFICES table.

#

6. This deletes engineer 105 from the ENGINEERS table, and so on.
To break this cycle of cascaded deletes, SQLBase has the following requirements:

* In a cycle with only two tables, neither delete rule can be CASCADE.

» In cycles of more than two tables, at least one of the delete rules must be
RESTRICT or SET NULL.

These rules prevent a table from becoming delete-connected to itself.

The following diagram shows the relationships between the tables if you create each
foreign key with the DELETE RESTRICT rule.

SQL Language Reference 6-25

Chapter 6 Referential Integrity

OFFICES Table)
Foreign key
) OFFICE | MAJ_ACCOUNT [
Eé'ymary 10 3000
20 1001
RESTRICT
ENGINEERS Table
Primary
key EMPL_NUM |REP_OFFICE| Foreign
key
101 10
102 10
105 20
RESTRICT
CUSTOMERS Table
Primary |CUST_NUM| SERV_REP
key
1000 101 Foreign
key
3000 102
1001 101
1050 105
Start RESTRICT
here

Referential cycles with DELETE RESTRICT

With this rule, you cannot delete any customers, since they are all parent rows in the
other tables.

You should not specify the RESTRICT rule for all the relationships in a referential
cycle, unless you want to prevent users from deleting any data.

6-26 SQL Language Reference

Cycles of dependent tables

Delete-connected table restrictions

The following restrictions apply to delete-connected tables.

If a DELETE operation involves a table that is referenced in a subquery, the
last delete rule in the path to that table must be RESTRICT.

A basic rule of SQL is that the result of an operation must not depend on the
order in which rows of a table are accessed. That means that a subquery of a
DELETE statement cannot reference the same table that rows are deleted
from.

For example, if there were no referential constraints, you could insert this row
into the OFFICES table:

INSERT INTO OFFICES VALUES
(15ANYTOWN’,MIDWEST",333,NULL)

Of course, this enters an office with a non-existing manager. With no
referential constraints defined, you could delete this row. For example, you
could delete all rows from the OFFICES table whose manager is not listed
correctly in the ENGINEERS table.

DELETE FROM OFFICES WHERE MGR NOT IN (SELECT
EMPL_NUM FROM ENGINEERS);

However, if you define a foreign key in the ENGINEERS table that
referenced the OFFICES table, the subquery breaks the rule that it cannot
reference the same table that rows are deleted from (the OFFICES table). The
results of this command depends on the order in which rows are accessed.
SQLBase forces this statement to fail with an error message.

If two tables are delete-connected via two or more distinct referential paths,
the paths (or last part of the path) must have the same delete rule, and it cannot
be SET NULL.

The following figures illustrates this rule. The first shows valid referential
structures with delete-connected tables:

SQL Language Reference 6-27

Chapter 6 Referential Integrity

TABLE 2 TABLE 2
CASCADE CASCADE CASCADE
TABLE 3 TABLE 4 TABLE 3 RESTRICT
RESTRICT RESTRICT RESTRICT
TABLE 1 TABLE 1

Valid delete-connected structures

In this figure, all the referential structures have valid delete-connections. In
both structures, table 1 has identical delete rules on its relationships, and the
last delete rule is not SET NULL.

6-28 SQL Language Reference

Cycles of dependent tables

The following figure shows invalid structures:

TABLE 2 TABLE 2
CASCADE CASCADE CASCADE
TABLE 3 TABLE 4 TABLE 3 RESTRICT
SET NULL SET NULL CASCADE
TABLE 1 TABLE 1
Figure 1 Figure 2
TABLE 2
CASCADE RESTRICT
TABLE 1 Figure 3

Invalid referential structures

In Figure 1, table 1 has identical rules of SET NULL. In Figure 2, the last two rules
are not the same. In Figure 3, two tables are connected by two different types of delete
rules.

SQL Language Reference 6-29

Chapter 6 Referential Integrity

The problem with the SET NULL rule was discussed in the earlier subsection on
Foreign keys and NULL valués the Componentsection Allowing SET NULL

rules in multiple paths could result in partial NULL/non-NULL foreign keys. By only
allowing CASCADE and RESTRICT, the child row is either deleted (CASCADE) or
remains the same (RESTRICT).

SQLTalk commands and referential integrity

When running the following SQLTalk commands, keep in mind that SQLBase does
not enforce referential integrity during their execution. This means that all your data
must be valid before executing the commands.

SQLTalk command Referential integrity impact

LOAD SQLBase turns off all referential integrity checks before starting
the load process, and turns the checks back on after the load.

CHECK DATABASE || Does not check if any tables were in the Pending state, or
perform any other referential checks

REORGANIZE SQLBase turns off all referential integrity checks before starting
the reorganize process, and turns the checks back on after the
reorganization.

COPY SQLBase turns off all referential integrity checks before starting
the copy process, and turns the checks back on after the copy.

Customizing SQLBase error messages

There are several error messages in SQLBase specific to referential integrity. This
section shows how you can create new referential integrity error messages that are
customized for certain tables.

Several default SQLBase messages appear when you violate referential integrity rules
For example, the following message appears when an insert into a child table fails
because there was no parent row in the parent table:

EXE UFV - unmatched foreign key values"

The following message appears when an update into a child table fails because there
was no parent row in the parent table containing the new set of values:

"EXE UFV - unmatched foreign key values”

6-30 SQL Language Reference

Customizing SQLBase error messages

The following message appears when you attempt to delete a parent row that has
associated child rows:

"EXE CDR - cannot delete row until all the dependent
rows are deleted”

The following message appears when you attempt to update a parent row that has
associated child rows:

"EXE CUR - cannot update row until all the dependent
rows are deleted"

To make these messages more specific, you can create new customized messages by
editing the error message filesror.sql
Editing the error messages
To customize the error messages for referential integrity, use the following steps:
1. Add the customized error message todtner.sqlfile.

2. Use the ALTER TABLE statement to associate the message with a particular
operation on a specific primary or foreign key. The following diagram shows the
syntax of this command to add, drop, or modify user-defined error messages for
primary or foreign keys.

»P»— ALTER TABLE table name ADD USERERROR error number —»
_{ DROP
MODIFY
»— FOR ‘DELETE_PARENT' ——— OF PRIMARY KEY <«
- ‘UPDATE_PARENT — —|: J

FOREIGN KEY key name
- 'INSERT_DEPENDENT’ —

‘UPDATE_DEPENDENT" —

ALTER TABLE syntax

The USERERROR <error number> clause is the number associated with the message
in error.sql. If you are dropping an error message (DROP), do not enter the error
number with this clause.

You can create a customized error message for the following operations:

e deleting a parent row
e updating a parent row

SQL Language Reference 6-31

Chapter 6 Referential Integrity

* inserting a child row
e updating a child row

You can customize one error message each per parent/child and child/parent
relationship. You can specify error messages for more than one child table if there are
multiple child/parent relationship.

To demonstrate how to create customized error messages, this section uses the
PRODUCTS and SERV_CALLS tables.

Primary key error messages

If a user attempts to delete a product from the PRODUCTS table that still has open
service calls associated with it, the DELETE fails with the default error message.

DELETE FROM PRODUCTS WHERE MFR_ID="LMA'
Error: EXE CDR - cannot delete row until all the dependent
rows are deleted

This message is not very helpful since it is so general. To customize it, create a new
message in therror.sqlfile:

20000 xxx xxx Product cannot be deleted while there are
still open service calls on it.

Then, use the ALTER TABLE statement to add the new message:

ALTER TABLE PRODUCTS ADD USERERROR 20000 FOR
'DELETE_PARENT' OF PRIMARY KEY;

If a user now tries to delete a product that still has open service calls against it, the
new message appears:

DELETE FROM PRODUCTS WHERE MFR_ID="LMA".
Error: Product cannot be deleted while there are still open
service calls on it.

Foreign key error messages

In the following example, if a user attempts to insert a new service call into the table
that does not reference a valid product, the command fails with the following default
error message:

INSERT INTO SERV_CALLS VALUES (2133,5-10-
93,1000,102,’PRR’,100,)
Error: EXE UFV unmatched foreign key values

To customize this message, create a new messagedrragheqlfile:

20001 xxx xxx Service call must reference a valid product
number.

6-32 SQL Language Reference

Service database tables

ALTER TABLE SERV_CALLS ADD USERERROR 20001 FOR
'INSERT_DEPENDENT' OF FOREIGN KEY ISFOR,;

INSERT INTO SERV_CALLS VALUES (2133,5-10-
93,1000,102,'PRR’,100);
Error: Service call must reference a valid product number.

Service database tables

Then, use the ALTER TABLE statement to add the new error message:

If a user now tries the same operation, the following error message appears:

This section shows the tables from the sample service database with their columns

and values.
OFFICE CITY REGION MGR ACl\(/IZg\iJ_NT
20 San Francisco Western 103 1050
40 New York Eastern 108 2500
10 Los Angeles Western 100 3000
30 Chicago Midwest 106 1001
OFFICES table
EII\\I/ISIM'— NAME OIR:EIF;Z_E TITLE SL\BI'IIEE MANAGER
100 Paul Atkins 10 Manager 1988-02-12
104 Bob Smith 20 Sen. Engineer 1992-09-05 103
107 Murray 30 Sen. Engineer 1991-01-25 106
Rochester
102 Larry Sanchez 10 Sen. Engineer 1989-06-12 100
101 Sheila Brown 10 Engineer 1990-10-10 100
106 Sam Valdez 30 Manager 1990-04-20
105 Rob Jones 20 Engineer 1991-09-08 103
103 Anna Rice 20 Manager 1985-07-10

SQL Language Reference

6-33

Chapter 6

Referential Integrity

6-34 SQL Language Reference

El,\\l/llfl\li_ NAME OIF\;EIPC_E TITLE SIA?-IE MANAGER
108 Mary Adams 40 Manager 1988-08-10
109 Nancy Bonet 40 Sen. Engineer 1989-11-12 108
110 Richard Park 40 Engineer 1990-11-14 108
111 Dan Chester 40 Engineer 1987-03-22 111
ENGINEERS table
CUST_NUM COMPANY SIEE\P!_ CSEIID_II_T—
1000 Acme Camera 101 5000
2500 Photo-1 Shop 110 3000
1001 Best Photography 106 1000
1050 Johnson’s Camera 105 8050
Company
2000 Sue’s Family Photo 103 5000
3000 1-Hour Quick Photo 102 3000
CUSTOMERS table
CALL_NUM CALL_DATE CUST REP MFR PRODUCT
2133 1994-05-10 1000 101 ACR 102
6253 1994-05-02 3000 102 LMA 4516
7111 1994-05-09 1001 106 MRP 600
4250 1994-05-14 1050 105 MRP 600

SERV_CALLS table

Service database tables

MFR_ID PRODUCT_ID DESCRIPTION

ACR 101 Tripod

ACR 102 Tripod2

MRP 101 Long Angle Lens

LMA 4211 Automatic Camera

LMA 4310 Regular Focus 1

LMA 4516 Regular Focus 2

MRP 600 Lens

MRP 601 Shutter

WRS 24c Widget 1

WRS 25a Widget 2
PRODUCTS table

SQL Language Reference

6-35

Chapter 7
Procedures and Triggers

This chapter describes procedures and provides you with the information necessary to
create procedures of your own. It covers the following topics:

« What s a procedure?

e Format of a procedure

e Data types supported in procedures

e System constants supported in procedures

« How to generate, store, and execute procedures

e Using SAL functions in procedures

e Error handling

* Procedure examples (contained in the \Centura\sp.sql directory)
e Triggers

SQL Language Reference 7-1

Chapter 7 Procedures and Triggers

What is a procedure?

A SQLBase procedure is a set of Scalable Application Language (SAL) and SQL
statements that is assigned a name, compiled, and optionally stored in a SQLBase
database.

SQLBase procedures can be static or dyna§tatic proceduremust be stored (at

which time they are parsed and precompiled) before they are exdoyteamic
procedurescontain dynamic embedded SQL statements, which are parsed and
compiled at execution time. For this reason, they do not have to be stored before they
are executed.

There are several different types of procedure implementations:

» Stored procedurescompiled and stored in the database for later execution.
They can be static or dynamic. You can define triggers on stored procedures.

* Non-stored procedurescompiled for immediate execution.

« Inline procedures:used optionally in triggers. You may want to specify the
INLINE clause of the CREATE TRIGGER command to call inline procedure
text. When you create the trigger, SQLBase stores these inline procedures in
the system catalog.

SQLBase’s implementation of procedures will be familiar to anyone already using
Centura Team Developer, a graphical application development system. SQLBase
provides a set of SAL functions that you can embed in procedures, and the flow
control language of procedures is the same as Team Developer programs. However,
you donotneed the Team Developer product to use these functions; they are provided
by SQLBase.

SQLBase also provides preconstructed procedures as useful tools to help you
maintain your database. S&ppendix Bof theDatabase Administrator’'s Guider a
description of SQLBase-supplied procedures.

Why use procedures?
Procedures offer a number of benefits:

» They simplify applications by transferring processing to the server.

» They reduce network traffic by storing the SQL statements to be executed on
the backend where the procedures are processed. The frontend need only call
the procedure and wait for results.

» They provide more flexible security, giving end-users privileges on data
which they might not otherwise be allowed to access.

7-2 SQL Language Reference

What is a procedure?

Storing procedures provide these additional benefits:

* They improve runtime performance because the procedural logic is
precompiled. In the case of static stored procedures, the SQL statements are
also precompiled; as a result, the SQL execution plans are predetermined.

* You have a centralized location of precompiled programs, which different
sites can then access for their own customized applications. This facilitates
control and administration of database applications.

* You can store a procedure and then retrieve and execute this procedure from
a variety of front-ends, such as SQLTalk, Team Developer, or a SQL/API
application.

* You caninvoke an external function within a stored procedure, providing you
with the flexibility to extend the functionality of your stored procedures, or
add functionality to your existing applications by creating plug and play
external components. Re&@dhapter 9, External Functiorfsr details.

When used in conjunction with triggers, procedures also can implement business
rules that are not possible from the database server through SQL declarative
referential integrity. For examples and more information on triggers;Treggerson
page7-54

How stored procedures are different from stored commands

SQLBase already allows you to store often-used SQL statemesttsed commands

for future execution. However, a stored command can only contain a single SQL
statement. Procedures, on the other hand, allow you to create a program using

procedural logic, data typing, and variables using multiple SQL statements.

Unlike stored commands, stored procedures themselves never become invalid,
although the stored commands within procedures may become invalid. This means
you do not need to automatically recompile the procedure with EXECUTE
RECOMPILE, or flag it to be recompiled with ALTER COMMAND.

Note: When using procedures with Team Developer programs, be aware that there are some
implementation issues you must address. These issues are discussed in thdsiagtion
procedures with Centura Team Developer applicatimmpager-43

SQL Language Reference 7-3

Chapter 7 Procedures and Triggers

Format of a procedure

SQLBase procedures follow a format and syntax similar to a Team Developer
program. A SQLBase procedure has the following elements:

* Name.This is the name of the procedure, which can be different from the
name under which you store the procedure.

» ParametersYou can define parameters for input and output to the procedure.
e Local Variables.You can define local variables for temporary storage.

» Action sectionUse this section to control both the conditions under which
the statements are executed and the order in which they are executed.

Unlike Team Developer, the elements of SQLBase procedures are case insensitive.

Name — PROCEDURE: myproc
Parameters —p» Parameters
Number: ninputVarl
Number: ninputVar2
Number: ninputVar3
Receive Number: nOutputVarl
Receive Number: nOutputVar2
Local Variables —p» Local Variables
Sqgl Handle: hSqglCurl
Sql Handle: hSqlCur2
Number: nind
Actions —P» Actions
Call SglConnect (hSqglCurl)

This example shows a sample procedure and its format.

Name
Every procedure has a name. For example:
PROCEDUREWIthDraw

The procedure name is a long identifier, and can contain up to 18 characters.

Note: Even though the colon is optional, you must supply it if your procedures are to be
compatible with Team Developer.

7-4 SQL Language Reference

Format of a procedure

When you store a procedure, you give it an additional name that lets you refer to the
procedure as well as access it once it is stored (this parallels the syntax for stored
commands). You can assign a stored name that differs from the procedure name. For
example:

STORE WDPROC
PROCEDURE: WithDraw
Parameters

Note that you cannot replace an existing procedure with one that uses the same stored
name. As in the example, assume you have stored procedure WithDraw under
WDPROC. You cannot replace WDPROC with a procedure that uses the same stored
name unless you have erased WDPROC first using the SQLTalk ERASE command.

Parameters

Parameters enable you to provide input to and receive output from a procedure. This
section is optional; you do not have to define parameters for a procedure. You supply
the values for all the parameters when you execute the procedure.

Declare a parameter using this syntax:

[Receive] DataType [:] ParameterName

Note: Even though the colon is optional, you must supply it if your procedures are to be
compatible with Team Developer.

For example:

Parameters

Boolean: bDone
Date/Time: dtBirthDate
Number: nCount
Receive Number: nTotal
String: strLastName

See théData types supported in procedui@s pager-9 for information on valid data
types for parameters.

Output parameters in procedures must be preceded with the kepered/e
Receive Number: nTotal

SQLTalk accepts values for binding for input parameters. For output receive
parameters, you must supply a place holder, with or without a value, for all binds
which map to those parameters. If the receive parameter is used strictly as output, you
can use a comma (,) with no leading space as a placeholder.

SQL Language Reference 7-5

Chapter 7 Procedures and Triggers

On the other hand, a SQL/API application uses bind values for input, and sets buffers
to receive output values. In the SQL/API, an output parameter’s value (generated by
an executing function such asglexe)can be retrieved with thegjlssbfunction (Set

Buffer) before the procedure starts executing, and then Iggtfetfunction (Fetch)

after the procedure passes control back to the invoker.

Note: In SQLTalk, output strings default to 80. This means you should resize the column(s)
generated from the procedure with the COLUMN command.

You cannot pass an array as a parameter. All parameters passed into a procedure keep
the values that were passed in, whether null or not null.

Local variables
Local variables perform several functions in SQL statements:

e They store data.

» They bind input data to a SQL statement. Variables used in this way are
called bind variables

» They specify where to put the output of a SQL SELECT statement. The
SELECT statement’s INTO clause specifies the variables where query data
is placed. Variables in an INTO clause are called into variables.

This section is optional; you do not have to define local variables for a procedure.
The Receivekeyword is not supported for local variables.
Declare a local variable using the same syntax as parameters:

DataType [:] LocalVariableName

Local variables are available to and accessible by only the procedure in which they
are defined. They are also automatic, which means that they are created when the
procedure executes and destroyed when the procedure ends.

Data you store in a variable are active across all stages of a procedure; their initial
values persist across multiple fetch and execute statements, and are destroyed only
when the procedure closes. Once the procedure closes, however, these values are not
retained for future invocations. See the section on the ON directive for information on
procedure states.

Variable buffers are allocated dynamically.

In addition to those data types supported for parameters, the Local Variables section
also supports Sqgl Handles and File Handles. For example:

Sql Handle: hSqlCurl
File Handle: hFileActive

7-6 SQL Language Reference

Format of a procedure

Actions

Note: Even though the colon is optional, you must supply it if your procedures are to be
compatible with Team Developer.

If you do not initialize a local variable, SQLBase assigns it a default value based on
its data type when the procedure is invoked and before it takes control. For default
value information, read the sectibata types supported in procedui@s pager-9.

Like parameters, you cannot pass an array as a local variable in a stored procedure.

This section contains statements to be executed depending upon the state of the
procedure. It also contains logic flow language that controls the order in which
SQLBase executes the statements.

ReadAppendix Afor a detailed description of the SAL functions you can include in a
procedure.

Unlike Team Builder, you cannot include user-defined functions in procedures.
However, your procedure can invoke another procedure that performs the work of
your desired function.

Statement blocks

A blockin the Actions section contains a set of statements to be executed in
successive order. All the statements in a block are either of the same indentation level
or enclosed within Begin and End statements.

Indentation

Indentation is an important element of logic flow. Use it to control the order in which
SQLBase executes blocks of statements in a procedure.

SQLBase is very strict about indentation, and a change in indentation is interpreted as
a block change. For example, when defining parameters, make sure that all of them
are indented by the same amount:

Parameters
Boolean: bDone
Date/Time: dtBirthDate
Number: nCount

Defining them according to the following example will produce an error:

Parameters
Boolean: bDone
Date/Time: dtBirthDate
Number: nCount

SQL Language Reference 7-7

Chapter 7 Procedures and Triggers

You can use spaces or tabs to implement indentation. If you are using spaces, one or
more spaces defines a specific indentation.

Note: Do not mix spaces and tabs for indentation. For example, four spaces may appear to have
the same indentation as a tab in your on-line editor, but the four spaces represent four levels of
indentation, while a tab only represents one.

This is an example of valid indentation:

Loop Outerloop
If13>0
If NOT SqlExecute (hSqglCurl)
Return 201
Setl3=13-1
Else
Break Outerloop

Using Begin and End statements (block delimiters)

Another way to achieve the same level of control is tdblsek delimiterso

surround a set of statements. To use block delimiters, begin a set of statements with
Begin, and end with End. This allows you to reduce the number of indentation layers
in your program.

Using Begin and End statements reduces the number of indentation levels in the
previous example:

On Procedure Execute
Loop Outerloop

Begin
If1I3>0
If NOT SqlExecute (hSqglCurl)
Return 201
Setl3=13-1
Else
Break Outerloop
End

Block delimiters are only allowed in a procedure’s Actions section.

Note: The If, Else, Else if, and Loop statements require either indentation or a Begin and End
statement.

7-8 SQL Language Reference

Data types supported in procedures

Data types supported in procedures

You must specify one of the following data types when defining parameters and local
variables in procedures.

The following table lists valid data types supported in procedures and their default
value. It also lists their SQL standard naming prefix. Although not required, using
these prefixes in the names of variables will help make your procedure self-
documenting.

Default Suggested

Data type Value Name prefix Example Comments

Boolean FALSE b bOk

SqglHandle|| none hSql hSqlCurl Supported only for
local variables.

Date/Time || null dt dtStartDate

String null string s (or) str strLastName Use the Long String
data types for strings
longer than 254 bytes

Long null string s (or) str strLastName Supports strings

String longer than 254 bytes

Number 0 n nSalary

Window 0 hWin hWinActive Bind to the variable

Handle using the program data
type SQLNUM. The
same holds for set
select buffer. Cannot
be used for any
arithmetic operation.

File 0 hFile hFileActive Supported only for

Handle local variables. Cannot
be used for any
arithmetic operation

Note the following restrictions:

« You cannot pass an array as a parameter to a procedure.

« Unlike Team Developer, you cannot use user-defined constants in a
procedure. However, you can use system constants. Read the next section,
System constants supported in procedures for details.

SQL Language Reference 7-9

Chapter 7

Procedures and Triggers

Boolean

Date/Time

Number

All data types can be an alternate form callegcaivedata type, which identify

output parameters. Receive data types allow you to pass data to a procedure by
reference rather than value. This means that SQLBase passes the variable’s storage
address and the procedure has access to the original value which it can then change.
For example:

Parameters
Receive Boolean: bOrderFilled

Actions
Set bOrderFilled = TRUE

Note: All parameters passed into a procedure keep the values that were passed in, whether null
or not null.

Unless otherwise noted, procedure data types conform to SQLBase data type formats.
Note that these may be different from Team Developer data type formats.

Use this data type for variables that can be TRUE (1) or FALSE (0). For example:

Local Variables
Boolean: bDone

Actions
Set bDone = FALSE

Use this data type for date and/or time variables. For example:

Parameters
Date/Time: dtBirthday

Actions
If dtBirthday > 07/01/1983

Use this data type for numbers with up to 15 digits of precision. For example:

Parameters
Number: nMonth

Actions
If nMonth =3

7-10 SQL Language Reference

Data types supported in procedures

Sql Handle

Use this data type to identify an existing connection to a database. All access to a
database requires a Sqgl Handle. For example:

Local Variables
Sql Handle: hSqlCurl

Actions
Call SglConnect (hSqlCurl)

String

Use this data type for character data. Unlike Team Developer, the maximum length of
a procedure string is 64 Kbytes; however, if a string is used as a receive parameter, its
length cannot exceed 254 characters on return from the procedure. If its length
exceeds 254 characters, SQLBase issues an error message. Use the Long String data
type to return strings longer than 254 characters,

Enclose literal strings in single quotes. For example:

PROCEDURE: CLIENTPROC
Parameters
Receive Date/Time: dtAppt
Receive String: sSelect
Local Variables
Sql Handle: hSqlCurl
Number: nind
Actions
Call SqglConnect(hSqlCurl)
Set sSelect = 'Select max(APPT) from CLIENT into :dtAppt '
Call SqglPrepare(hSqlCurl, sSelect)

Long String

Use this data type for character data to return strings greater than 254 bytes or to bind
the string to a LONG VARCHAR column type. Note that the behavior of a Long
String data type is identical to the String data type with the following exceptions:

« When used to return data (Receive Long String), the data type is identical to
Long Varchar. For example, if you usgldeg) to describe the parameter, the
data type returned will be SQLDLON. You must use the read long primitives
to fetch this data.

* When used to bind data, SQLBase uses the write long primitives to bind to
the string variable. SQLBase treats the target column as a Long Varchar.

SQL Language Reference 7-11

Chapter 7 Procedures and Triggers

Enclose literal strings in single quotes. For example:
Variables
Long String: sLong
Set sLong = 'Long String'

Window Handle

Use this data type to store window handles. A window handle identifies a single
instance of a particular window. This data type supports the SAL and WINAPI
functions that use and manipulate window handles. If this data type is used in the
parameter section of the procedure (that is, input/output), bind to the variable using
the program data type SQLPNUM. The same holds for set select buffer. For example:

PROCEDURE: CLIENTPROC
Parameters

Window Handle: hWind
Actions

Call SalSendMsg(hwind, ...)

File Handle

Use this data type to store file handles. A file window identifies an open file. This
data type supports the SAL file manipulation functions. For example:

Local Variables
File Handle: hFileActive

Actions
Call SalFileOpen (hFileActive, ...)

System constants supported in procedures

You can use the following standard system constants:

e The null constants: STRING_Null, NUMBER_Null, and DATETIME_Null

You can check for nulls within procedures using null constants. For example,
you can create a boolean expression, such as:

IF (A = NUMBER_Null)
IF (S = STRING_Null)
If the variable is null, the expression evaluates to TRUE.

* The TRUE and FALSE boolean constants.
» The Fetch_Delete, Fetch_EOF, Fetch_Ok, and Fetch_Update constants.

7-12 SQL Language Reference

Using SAL statements

The DBP parameters: DBP_AUTOCOMMIT, DBP_BRAND,
DBP_PRESERVE, DBP_VERSION, DBP_LOCKWAITTIMEOUT,
DBP_ROLLBACKTIMEOUT.

The DBV_BRAND database brands: DBV_BRAND_DB2,
DBV_BRAND_ORACLE, and DBV_BRAND_SQL.

For details on these constants, read the constant descriptidpgdandix A

Note: System constants in SQLBase are case insensitive. Case sensitivity that appears in the
system constants listed in this section apply only to Team Developer.

Using SAL statements

Use Scalable Application Language (SAL) statements to control the logic flow of the
statements in a procedure. SQLBase provides the following SAL statements:

Break

Break

Call

If, Else, and Else If
Loop

On

Return

Set

When SqlError
While

The Break statement terminates a Loop statement. If you specify a loop hame, that
particular loop terminates. This allows you to break out of more than one level of
loop. If you do not specify a loop name, the BREAK statement breaks out of the most
recently-entered loop.

Syntax

Break [loopname]

Example
Loop

Set nOutput2 = nOutput2 + ninput2
If nOutput2 > ninput2 + 10

Break

SQL Language Reference 7-13

Chapter 7 Procedures and Triggers

Call

The Call statement executes a SAL function. SAL functions are listed in the
following section SAL functionality in SQLBase

Syntax

Call FunctionName (Parameters, ...)

Example

Call Sgllmmediate ('DELETE FROM CUSTOMER WHERE \
CUSTNO =1290')

Be aware that using the Call statement means that the function’s return value is lost.
However, if an error is returned, SQLBase passes control to the closest error handle.
ReadError handlingon pager-45

If, Else, and Else If

The If, Else, and Else If statements execute other statements based on the outcome of
an expression. The Else and Else If parts are optional. For each If statement, you can
code as many Else If sections as you want, but there can be only one Else section.

Indentation determines the conditional flow of control.

Syntax

If Expressionl
<statement(s)>
Else If Expression2
<statement(s)>

Else
<statement(s)>

If ExpressionZkvaluates to TRUE, the first set of statements executésptéssionl
evaluates to FALSHE;xpressionds evaluated. IExpressionZvaluates to TRUE, the
second set of statements executeBxffressionZvaluates to FALSE, the third set of
statements executes.

Example

If nMonthly_Salary < 1000
Set nTax_Rate = 10

Else If nMonthly_Salary < 2000
Set nTax_Rate = 20

Else
Set nTax_Rate =25

7-14 SQL Language Reference

Using SAL statements

Loop

The Loop statement repeats a set of statements until a Break or Return statement is
executed.

Syntax

Loop [loopname]

The loopname is optional. Specifying a loopname lets you refer to that loop in a later
Break statement.

Examples

Loop
If nCount = 100
Return 1
Set nCount = nCount + 1

and:

Loop Outer
If1I3>0
If NOT SqlExecute (hSqlCur)
Return 201
Setl3=13-1
Else
Break Outer

On <procedure state>

The ON directive identifies the procedure’s current state, such as startup or executing.
When a procedure is at a specific state, the statements indented underneath it are
processed. The state of a procedure changes as the procedure execution progresses. A
procedure can be at any of the following states:

* Procedure Startup
* Procedure Execute
* Procedure Fetch

* Procedure Close

Using ON directives is optional. If you do not specify an ON directive in a procedure,
SQLBase processes thstire procedure when the calling program issues an execute
command. In other words, not specifying any ON directive in a procedure’s Actions
section is equivalent to including only an On Procedure Execute section under
Actions (see the following paragraphs).

SQL Language Reference 7-15

Chapter 7 Procedures and Triggers

The default state (On Procedure Execute) is often adequate for many procedures.
However, there are two situations in particular which do require one or more specific
ON <procedure states>:

» If you wish to repeatedly execute a procedure, such as when supplying
different parameter values, it can be more efficient to code an On Procedure
Startup state that contains commands requiring only a single execution (for
example, database connections and variable assignments.) This avoids
unnecessary multiple executions of these commands.

* When you are fetching multiple rows, an On Procedure Fetch state is
required.

SQLBase processes the Procedure Startup and Procedure Close sections only once.
The Procedure Execute and Procedure Fetch sections can be processed as many times
as you want. Local variables values are retained through multiple execute and fetch
operations; the values are only destroyed at the close section.

SQLBase only allows you to specify On directives at the topmost level of the Actions
section. In other words, you cannot nest an On directive within a statement block or
between Begin and End statements.

To retrieve all the output data generated by the procedures, you must declare as many
output variables as the number of items you want returned.

The following paragraphs describe the different procedure states.

Procedure StartupA procedure is in procedure startup state after the following two
steps are completed:

1. The calling program compiles the procedure (for example, with the SQL/API
sglcomfunction).

2. The calling program executes the procedure for the first time (for example, with
the first SQL/APIsqlexefunction).

After processing the commands in the Procedure Startup stage, the first execute
command from the calling program also processes the commands in the Procedure
Execute stage. In other words, the calling program'’s first execute command processes
both the Procedure Startup and Procedure Execute sections.

However,subsequenéxecute commands from the calling program only process the
Procedure Execute stage; they do not process the Procedure Startup section again.

Procedure ExecuteA procedure is in procedure execute state after the following two
steps are completed:

1. The calling program first executes the procedure.

2. The Procedure Startup section is processed.

7-16 SQL Language Reference

Using SAL statements

The Procedure Execute section is processed and reprocessed each time the calling
program issues subsequent execute commands.

Procedure Fetchlf the calling program issues a FETCH command (for example,

with the SQL/APIsglfetfunction) and you have a Procedure Fetch section, the
statements in the Procedure Fetch section are processed. The Procedure Fetch section
is processed and reprocessed each time you issue a FETCH command.

You must include a Procedure Fetch section to fetch multiple rows in your procedure.
It is recommended that you also include a Return statement (see the following section
on Return to first return 0 while fetching is in progress, and then return 1 when the
fetch is finished.

To retrieve all the output data generated by the procedures, you must declare as many
output variables as the number of items you want returned.

Note that for each row returned by a procedure, the On Procedure Fetch section is
executed. With multi-row buffering, therefore, a FETCH command from the client

can cause the On Procedure Fetch section to be executed several times (as many times
as the number of rows that fit into the buffer, or until end of the fetch). See the

following Examplessection which contains a procedure that demonstrates multi-row
buffering behavior. Although multi-row buffering is a performance feature, it can

result in unexpected behavior.

For example, you may expect that a single fetch command from the client causes the
Procedure Fetch section to issue a COMMIT each time it returns a row. But instead,
you find with multi-row buffering that the On Procedure Fetch section issues several
COMMITSs for the first row returned to the client.

If needed, you can have the On Procedure Fetch section generate exactly one row for
each fetch call from the client, by setting the FETCHTHROUGH mode ON at the
client. The default is OFF.

There are two ways to set FETCHTHROUGH mode:
* From SQLTalk, use the SET FETCHTHOUGH ON command

e From SQL/API, useqlsetfunction with the SQLPFT parameter

Procedure Close. Finally, when the calling program either issues a disconnect
command (for example, with the SQL/AR]ldisfunction) or you compile another
command on the same cursor that the calling program was using to execute the
procedure, the Procedure Close section is processed.

Syntax

On <procedure state>
<statement(s) >

SQL Language Reference 7-17

Chapter 7 Procedures and Triggers

Examples

This section shows examples of various procedure states using the ON directive. You
can find most of the examples shown in this section in the directory \Centura\SP.SQL.
These examples use the following PRODUCT_INVENTORY table:

create table PRODUDCT_INVENTORY (NAME varchar(25),
INVENTORY decimal (3,0), WHEN date);
insert into PRODUDCT_INVENTORY values (:1,:2,:3)

\

JF 12R,132,13-OCT-1992
DJ Y5Y,165,11-OCT-1992
DJ Y5Y,159,12-OCT-1992

/

Example with ON PROCEDURE states. This example prepares, executes, and
fetches results from a procedure called PRODUDCT_INPROC.

PREPARE
PROCEDURE: PRODUDCT_INPROC
Parameters
String: sName
Receive Number: nINVENTORY
Local Variables
Sql Handle: hSqglCurl
String: sSelect
Number: nind
Actions
g On Procedure Startup
Call SglConnect(hSqlCurl)
Set sSelect = 'Select INVENTORY from PRODUDCT_INVENTORY \
where NAME = :sName into :nINVENTORY"
Call SqglPrepare(hSqlCurl, sSelect)
ad On Procedure Execute
Call SqlExecute(hSqlCurl)
g On Procedure Fetch
If NOT SqlFetchNext(hSqglCurl, nind)
Return 1
Else
Return O
g On Procedure Close
Call SqlDisconnect(hSqlCurl)

O

perform PRODUDCT_INPROC
\
JF 12R,,

7-18 SQL Language Reference

Using SAL statements

9.

/

0 FETCH1;
O perform PRODUDCT_INPROC

\
DJ Y5Y,,
/

U FETCH 2;
0 SELECT * from PRODUDCT_INVENTORY;

This state is processed only once on the first EXECUTE by the calling program.
If the calling program re-executes the procedure, the commands in this section are
not processed again. This reduces procedure performance overhead.

This state is processed every time the calling program issues an EXECUTE
command. If there are no ON <procedure states> coded, the procedure defaults to
this state.

This state is processed every time the calling program issues a FETCH command,
and is essential to fetching multiple rows.

This state is processed only 1) after the procedure has finished all processing, or
2) if another command is compiled or executed on the calling program’s current
cursor, or that cursor becomes disconnected.

The calling program executes the procedure for the first time. The On Procedure
Startup and On Procedure Execute states are processed. Note that the second
comma used in the SQLTalk PERFORM command for the binding of the
Procedure provides the required placeholder for the procedure’'s Receive
parameter nINVENTORY. You must provide either a placeholder comma or an
argument value for all procedure parameters.

This the first fetch issued by the calling applications. The On Procedure Fetch
state is processed multiple times until end-of-fetch or until the buffer is full.

The calling program executes the procedure for the second time with a different
bind value. Only the On Procedure Execute state is processed.

The calling program issues another fetch, this time with a different bind value.
Two rows are returned to the client.

The On Procedure Close state is processed for the previous procedure.

Example with no On Procedure stateBhe next example compiles, executes and
fetches a single row from a procedure which defaults to the On Procedure Execute
state for all code under Actions.

SQL Language Reference 7-19

Chapter 7 Procedures and Triggers

PROCEDURE: PRODUDCT_INPROC
Parameters
Receive Number: nNSUumINVENTORY
Local Variables
Sql Handle: hSqlCurl
String: sSelect
Number: nind
Actions
g Call SglConnect(hSqlCurl)
Set sSelect = 'Select max(INVENTORY) from
PRODUDCT_INVENTORYinto :nSumINVENTORY"
Call SqlPrepare(hSqlCurl, sSelect)
Call SqlExecute(hSqlCurl)

g If NOT SqlFetchNext(hSqglCurl, nind)
Return 1
Else
Return 0
Call SqlDisconnect(hSqlCurl)
\

/

1. Since there are no On Procedure statements, the entire procedure defaults to the
On Procedure Execute state.

2. Thereis no On Procedure Fetch state in this procedure. This means that the calling
program can FETCH from the ON Procedure Execute state by embedding SAL
fetch calls like SqlFetchNext. However, in this instance you can only fetch and
return to the caller a single row (even if within the procedure the fetch is in a loop).
In this case, the caller's FETCH will only return the receive parameter values and
perform no other processing.

Example with single row fetch and multiple row resuhis example generates a
single row fetch and then manipulates that data in order to produce a multiple row
result. In this case the output is only indirectly tied to the database. This is a good
method to produce “what-if” scenarios. In general, any fetches from the calling
application do not necessarily have to have database sources within the procedure.

PROCEDURE: PRODUDCT_INPROC
Parameters
String: sName
Receive Number: nCurrentIN
Receive Number: nDays
Local Variables
Sql Handle: hSqlCurl

7-20 SQL Language Reference

Using SAL statements

String: sSelect
Number: nMaxINVENTORY
Number: nind
Actions
On Procedure Startup

Call SqglConnect(hSqlCurl)

Set sSelect = 'select max(INVENTORY) \
from PRODUDCT_INVENTORY
where NAME = :sName into :nMaxINVENTORY'

Call SqlPrepare(hSqlCurl, sSelect)

On Procedure Execute

Call SqlExecute(hSqICurl)

g Call SqglFetchNext(hSqlCurl, nind)

Set nCurrentIN = nMaxINVENTORY

On Procedure Fetch
0 If nCurrentIN < 200
Set nCurrentIN = nCurrentIN + 10
Set nDays = nDays + 1
Return 0
Else
Return 1
On Procedure Close
Call SqlDisconnect(hSqlCurl)
\
DJ Y5Y,,,

/

1. Because an On Procedure Fetch state is also coded, this single row fetch is not
returned to the caller and is only used internally by the procedure for subsequent
processing.

2. This statement lists the inventory by day (10 daily increase) until the inventory is
greater than 200, starting from the historical maximum inventory. In this case, the
caller is not directly fetching from the database.

Example of fetch with default multi-row buffering behaviofhis example generates
a multi-row buffer when a single fetch has been issued against the procedure. This
example is only intended to show the affect of multi-row buffering.

create table X (COL1 int);
TABLE CREATED
insert into X values(:1)

\
1

SQL Language Reference 7-21

Chapter 7 Procedures and Triggers

2
3
/

PROCESSING DATA

1
2
3

3 ROWS INSERTED
create table Y (COL1 int);
TABLE CREATED

-- Set FETCHTHROUGH ON at client before executing
-- this procedure if you want to maintain 6.0.0 procedure
-- fetch semantics:

prepare
procedure: MROWBUF1
Parameters
Receive Number: nColl
Local Variables
Sql Handle: hSqlCurl
Number: nind
Actions
On Procedure Execute
Call SglConnect(hSqglCurl)
Call SqlPrepareAndExecute(hSqlCurl, 'select\
COL1 from X into :nCol1")
I 1 fetch from client causes On Procedure Fetch
! to be executed multiple times
On Procedure Fetch
If NOT SqlFetchNext(hSqglCurl, nind)
Return 1
Else
Call Sgllmmediate(‘insert into Y values \
(:nCol1)")
Return O
On Procedure Close
Call SqlDisconnect(hSqlCurl)

STATEMENT PREPARED

7-22 SQL Language Reference

Using SAL statements

perform;
PROCESSING DATA

STATEMENT PERFORMED

1 ROW RETRIEVED FROM PROCEDURE

-- 3 rows should be inserted into Y because 1
-- fetch from client causes On Procedure Fetch
-- to be executed 3 times in this case.

select * from Y;

coL1

1
2
3

3 ROWS SELECTED
Example of data manipulation at the server if no data needs to be fetched at the
client. This example is the recommended method for achieving the same results in the
previous example. This example omits the On Procedure Fetch section.

drop table y;
create table y;
procedure: MOVE_DATA
Local Variables
Sql Handle: hSqlCurl
Number: nind
Number: nColl
Actions
I Omission of On Procedure section defaults
!'to On Procedure Execute
Call SqlConnect(hSqlCurl)
Call SqglPrepareAndExecute(hSqlCurl, 'select \
COL1 from X into :nCol1")
While SqlFetchNext(hSqglCurl, nind)

Call Sgllmmediate(insert into Y values (:nCol1)";

SQL Language Reference 7-23

Chapter

Procedures and Triggers

Return

0 ROWS RETRIEVED FROM PROCEDURE

-- Same result as earlier example without the
-- need for a client fetch:

select * from Y;

coL1

1
2
3

3 ROWS SELECTED

The Return statement breaks the flow of control and returns control to the calling
program.

The exception is when a Return is executed from the When SqlError section. In this
situation, control is returned back to the procedure with the boolean return (TRUE/
FALSE). This becomes the return value for the failed SAL Sql* function. The
procedure then resumes execution according to the Boolean return.

If you do not specify a Return statement in a procedure, one of the following codes is
returned to the calling program:

» If a SQL error occurs and there is no When SQLError block, the procedure
returns the error code. If there is a When SQLError block and a return
statement within the block, the procedure does not return the error code.

» If no error occurs, the procedure returns 0.

Note: If the calling program performs fetches in a loop and expects an end-of- fetch return from
the procedure, the On Procedure Fetch section must be coded with an appropriate return (usually
Return 1) or the or the calling program will go into an endless loop

Syntax

Return <expression>
The expression is mandatory, ateh be anything that evaluates to a number.

« If you code a Return statement in a When SqlError block (see the section on
When SqlError), you can only return a boolean such as TRUE or FALSE.

7-24 SQL Language Reference

Using SAL statements

» If you code a Return statement outside of a When SqlError block, you can
only return integer values. You can code these as either constants or variables.
You cannot return a string, date/time, or SQL Handle local variable type.

Example

On Procedure Startup
When SqlError
Set nRcd = SqlError(hSqlCurl)

If nRcd = 601
Return FALSE
Else

Return TRUE

On Procedure Fetch
If NOT SqlFetchNext(hSqglCurl, nind)
Return 1
Else
Return 0

Set

The Set statement assigns a value to a variable. You can set a variable to the value of
another variable.

Syntax

Set VariableName = Expression

Example

IDeclare two variables for End-of-File and Return Code
Local Variables

Boolean: bEOF

Number: nRCD

Actions
Set bEOF = FALSE
Set nRCD =0

Trace

The Trace statement prints the value of one or more variables. Use it when debugging
a procedure to check the values of variables. For example, code a Trace statement

immediately before and after a command that you expect will change the value of a
variable.

SQL Language Reference 7-25

Chapter 7 Procedures and Triggers

This statement is different from the SQLTalk SET TRACE command, which is issued
independently of the procedure and traces every statement the procedure executes.
You do not need to run SET TRACE ON to use the Trace statement.

By default, output from the Trace function is sent to the Process Activity screen for a
multi-user server, and is not displayed for a single-user engine. Generally, you will
want to direct the output to a file on the server with the SQLTalk SET TRACEFILE
command.

Syntax

Trace Variablel, Variable2, ..., VariableN

Example

This example shows a procedure using the Trace statement to trace the values of two
variables nCount and nRcd. It traces the values at different points in the procedure.

PROCEDURE: TRPROC
Local Variables
Number: nCount
Actions
Trace nCount
Loop
Set nCount = nCount + 1
Trace nCount
If nCount > 10
Trace nCount
Return 0

When SqlError

The When SqlError statement declares a local error handler. To learn more about
local error handling, see tli&ror Handling section later in this chapter
Syntax
When SqlError
<statement(s)>
Example

This example demonstrates local error handling with SqlError. It uses the following
tables JF and PRODUDCT_INVENTORY:

CREATE TABLE JF 12R,132,13-OCT-1992 (NAME varchar(25),
INVENTORY decimal (3,0), WHEN date);
INSERT INTO PRODUDCT_INVENTORY values
(JF 12R,132,13-0OCT-1992);

7-26 SQL Language Reference

Using SAL statements

COMMIT;

This examples also uses the following stored command INVENTORY_QUERY:

STORE INVENTORY_QUERY

SELECT INVENTORY from PRODUDCT_INVENTORY
where NAME = :1;

To create the error condition, the stored command is dropped prior to procedure
execution. The procedure’s When SqlError section traps error #207 (Command not
found for retrieval) and fixes the problem of the missing stored command.

ad

ERASE INVENTORY_QUERY;
PROCEDURE: ILPROC
Parameters

String: sName
Receive Number: nNINVENTORY

Local Variables

Sql Handle: hSqlCurl
Number: nind
Number: nRcd

Actions

On Procedure Startup
When SqlError
Set nRcd = SqlError(hSqlCurl)
If nRcd = 207
Call SqlIStore(hSqlCurl, 'INVENTORY_QUERY", \

'select INVENTORY \
from PRODUDCT_INVENTORY \
where NAME = :1 into :2")

Call SqlCommit(hSqlCurl)

Call SqglRetrieve(hSqlCurl, INVENTORY_QUERY', \
"sName', "nINVENTORY")

Return TRUE

Call SglConnect(hSqlCurl)

Call SqlRetrieve(hSqICurl, INVENTORY_QUERY', \
"sName', "nINVENTORY")
On Procedure Execute
Call SqlExecute(hSqICurl)
On Procedure Fetch
If NOT SqlFetchNext(hSqlCurl, nind)
Return 1
Else
Return 0
On Procedure Close
Call SqlDisconnect(hSqlCurl)

SQL Language Reference

7-27

Chapter 7 Procedures and Triggers
\
DJ Y5Y,,
/
1. This exception handling routine can detect the SQL error generated by the
SglRetrieve call, and handle this error by restoring the non-existing stored
command. In order to continue processing the procedure, the error handler returns
TRUE back to the procedure, and executes the stored command. If other SQL
errors are encountered, no Return is executed; control (along with the SQL error
code) is immediately returned to the calling program.
2. This call will fail due to the non-existing stored command. In this example, When
SqlError forces SqlRetrieve to return TRUE, and the procedure continues to
execute successfully.
While
The While statement repeats until the expression being evaluated becomes FALSE.
Syntax
While Expression
<statement(s) >
Example
While ninputvar3 >0
If NOT SqlExecute (hSqlCurl)
Return 201
Set ninputVar3 = ninputVar3 - 1
Comments

Comment lines allow you to include explanations in a procedure. A comment starts at
the beginning of a line with an exclamation point (!) and ends with a carriage return
or line feed character. Comments and code are not allowed on the same line.

You do not need to follow indentation rules for comments.
Syntax

I Comment line
Example

I These are comment lines; SQLBase does not attempt to
I execute them.

7-28 SQL Language Reference

Using SAL statements

Operators

These operators are supported in procedures and, excluding string concatenation, are
listed according to precedence:

Operator Description
() Parentheses
unary - Unary
* Numeric: multiply, divide
+, - Numeric: add, subtract
>, <, >z, <= Relational: greater than, less than, greater than or equal

to, less than or equal to

=, 1= Relational: equal to, not equal to

& Bitwise AND

| Bitwise OR
NOT Boolean NOT
AND Boolean AND
OR Boolean OR

Il Concatenate string

Continuation lines and concatenation

Use a backslash (\) at the end of a line to continue a statement on the next line. For
example:

Actions
Set sUpdate = 'UPDATE Checking \
Set Balance = Balance - :nAmount \
WHERE AccountNum = :nAccount’

You can also use the double line symbol (||) to concatenate strings. For example:

Set sWhere = 'where INVENTORY <200'

Set sSelect = 'SELECT name, inventory \
from PRODUDCT_INVENTORY’ ||sWhere || 'into :sName,
:NINVENTORY"

SQL Language Reference 7-29

Chapter 7 Procedures and Triggers

How to generate, store, execute and drop
procedures

This section describes how to generate, store, execute, and drop procedures through
SQLTalk. It also describes debugging a procedure and security issues.

You can also perform these functions through the SQL/API (see the Sdstian
SQL/API functions with proceduréster in the chapter for a list of associated
functions), through SQLConsole with the Procedures Editor, and through Team
Builder with the following functions:

SqlStore
SqlRetrieve
SqlExecute
SqlDropStoredCmd

See the documentation for these products for more detail. In addition, SQLBase
provides an online sample application cakkpdappthat demonstrates calling
procedures in a Team Developer application.

Like all other SQL commands, procedures can be stored, retrieved, compiled, and
executed through applications such as the SQL/API.

Generating a procedure

To generate a procedure, use the SQL PROCEDURE command. R<he
Language Referender detailed information on this command. When you generate
the procedure, specify the SAL statements and any parameters and local variables in
the Actions section.

If you turn on result sets on the client, you can scroll forwards and backwards through
the result set returned by a procedure. The result set for procedures is preserved
across COMMIT and ROLLBACK operations, even if preserve context mode is off.

In SQLTalk, result set mode is OFF by default.

Note: To avoid necessary performance degradation, keep result set mode OFF if you are not
using scrollable cursors. When set to ON, SQLBase builds the result set for a procedure.

Following are restrictions to note when generating procedures:

e Ifyouare using a network version of SQLBase, you cannot create procedures
that perform SQL commands that use a SET SERVER command. These
commands are:

CREATE DATABASE
DROP DATABASE

7-30 SQL Language Reference

How to generate, store, execute and drop procedures

CREATE STOGROUP
DELETE

INSTALL DATABASE
DEINSTALL DATA

» Recursion and nesting limits of procedures are determined by various settings
in your system, such as available memory.

e You cannot include DDL commands in static procedures. The only exception
is if you are specifying the LOAD...ON SERVER.. command in the
procedure and the file you are loading contains DDL commands.

» Restriction mode to filter a result set is not supported for procedures.

Procedure Validation

Typically, a procedure performs some action on a table, or contains stored commands
that reference tables in a single SQL statement. Note that SQLBase allows users to
drop or alter a table even if it is referenced in a procedure or in a stored command that
is contained in a procedure.

If the object a procedure references is changed or no longer exists, the procedure
remains valid. However, SQLBase issues a runtime error about the missing objects
when the procedure is executed. In addition, if you attempt to load a static procedure
that references a dropped or altered object, SQLBase also issues errors when it cannot
locate the missing or altered objects.

To execute and load procedures successfully, be sure to recreate any referenced object
that is dropped, or restore any referenced object that is altered to its original state (as
known by the procedure).

Procedure Example

The following procedure updates and returns bank account balances. In this example,
the procedure is executed through SQLTalk. This example uses the following table:

CREATE TABLE CHECKING (ACCOUNTNUM number, BALANCE
number);
PROCEDURE: WITHDRAW
Parameters
Number: nAccount
Number: nAmount
Receive Number: nNewBalance
Local Variables
String: sUpdate
String: sSelect
Actions
Set sUpdate = 'UPDATE CHECKING \
set BALANCE = BALANCE - :nAmount \

SQL Language Reference 7-31

Chapter 7 Procedures and Triggers

where ACCOUNTNUM = :nAccount’

Call Sgllmmediate(sUpdate)

Set sSelect = 'SELECT BALANCE from CHECKING \
where ACCOUNTNUM = :nAccount \
into :nNewBalance'

Call Sgllmmediate(sSelect)

1,50,,

/
Remember to follow the indentation guidelines when creating your procedure. Read
the sectiorindentationon pager-7 for more information. Also, if you are breaking a
long line to span multiple lines, you must use a backslash (\) at the end of the line as a
continuation marker.

Of course, typing a long procedure directly into the SQLTalk interface is time-
consuming, especially if you make typing errors. Generally, you will want instead to
create a script that contains the PROCEDURE command. You can then use the
SQLTalk RUN command to run this script in SQLTalk.

Static versus dynamic procedures

A procedure is either dynamic or static. Dynamic is the default.

The following table lists important differences between static and dynamic

procedures.
Feature Dynamic Static

Require storing to execute? No Yes
Parse/precompile procedural logic? Yes Yes
Parse SQL at store time? No Yes
Precompile SQL at store time? No Yes
Dynamic SQL support? Yes No
*SQL performance Slower Faster
Use for Triggers? No Yes

* Performance of Dynamic procedures can be enhanced by retrieving previously
stored SQL commands (SqlRetrieve as opposed to SqlPrepare).

Static procedures. SQLBase compiles and optimizes (determines the query plan)
the SQL statements embedded static stored procedure. These statements and

7-32 SQL Language Reference

How to generate, store, execute and drop procedures

their associated query execution plans are kept in the database. Static procedures must
be stored before they can be executed.

You must be sure that a static procedure’s embedded SQL commands meet the
following criteria:

* They are not data definition language (DDL) statements.

e They are string literals and contain no variables other than bind or INTO
variables.

The first requirement means that you cannot include a CREATE, ALTER, or DROP
command in a static procedure. However, the procedure can contain a LOAD.. ON
SERVER command that has DDL statements.

The second requirement means that SQLBase must know what the command string is
at compilation time. For example, you cannot include the following excerpt in a static
stored procedure:

Set sCmd = 'select * from employee'

ngPrepare (cur, sCmd)
You must specify the actual command string itself;
SqlPrepare (cur, 'select * from employee’)
As another example, this statement meets the static requirements:
Select Coll, Col2 from sysadm.Tablel into :Outl, :Out2
but these do not:
Set sColumns = 'Col1, Col2'

Set SELECT = 'Select' || sColumns || 'from sysadm.Tablel
into :Outl, :Out2''

Note that as with any statement that contains bind variables, SQLBase must
determine the optimal access method without all the necessary information.

While static procedures do not provide the flexibility of dynamic procedures, they do
optimize and parse SQL statements before storing and hence yield higher
performance at runtime.

The following example shows a static stored procedure:

STORE STATICS
PROCEDURE: STATIC_SQL static
Parameters

Receive String: sName

Receive Number: nINVENTORY
Local Variables

SQL Language Reference 7-33

Chapter 7 Procedures and Triggers

Sql Handle: hSqglCurl
Number: nind
Actions
On Procedure Startup
Call SqlConnect(hSqlCurl)
O Call SqglPrepare(hSqlCurl, 'select NAME, INVENTORY from \
PRODUDCT_INVENTORY into :sName, :nINVENTORY")
On Procedure Execute
Call SqlExecute(hSqICurl)
On Procedure Fetch
If NOT SqlFetchNext(hSqlCurl, nind)
Return 1
Else
Return O
On Procedure Close
Call SqlDisconnect(hSqlCurl)

/
execute STATICS
\

/

1. When static procedures are executed, the SqlPrepare statement is not reprocessed
since all SQL statements within a static procedure are precompiled. If you have
already stored the SQL statement either using the SQLTalk STORE command or
within the procedure using the SqlStore() function, SqlRetrieve() can be
substituted.

Dynamic proceduresA dynamicprocedure can contain dynamic embedded SQL
statements. Because the dynamic SQL string components can change, the SQL
statements cannot be precompiled.

Unlike static procedures, dynamic procedures do not have to be stored before they are
executed.

Note that since SQL statements in a dynamic stored procedure are not parsed until
execution, SQLBase does not catch any SQL errors in the procedure when you store
it.

The previous examples of invalid embedded SQL statements for static procedures are
acceptable for dynamic procedures:

Set sCmd = 'select * from employee'

SqlPrepare (cur, sCmd)

7-34 SQL Language Reference

How to generate, store, execute and drop procedures

and:
Set sColumns = 'Col1, Col2'

Set SELECT = 'Select' || sColumns || 'from sysadm.Tablel
into :Outl, :Out2'

To improve dynamic procedure performance and avoid the possibility of runtime
errors, you can store SQL commands outside of the procedure (as opposed to using
SqlPrepare within the procedure) and then retrieve and execute them within the
procedure. However, this prevents you from using dynamic SQL for that particular
SQL statement.

The following example shows a dynamic SQL procedure. This procedure cannot be
static because of the symbolic string substitution of the SQL statement found in the
SqlPrepare() call. The SQL statements in a dynamic procedure are not precompiled
and so are not optimized or parsed when stored.

store DYNAMITE
procedure: DYNAMIC_SQL
Parameters

Number: nOver200

Receive String: sName

Receive Number: nINVENTORY
Local Variables

Sql Handle: hSqlCurl

String: sWhere

String: sSelect

Number: nind
Actions
On Procedure Startup
Call SqlConnect(hSqlCurl)
If nOver200 =1
Set sWhere = 'where INVENTORY > 200
Else
Set sWhere = 'where INVENTORY < 200
Set sSelect = 'select NAME, INVENTORY \
from PRODUDCT_INVENTORY ' || sWhere || ' into
:sSName, :nINVENTORY"
Call SqglPrepare(hSqlCurl, sSelect)
1) On Procedure Execute
Call SqlExecute(hSqlCurl)
On Procedure Fetch
If NOT SqlFetchNext(hSqglCurl, nind)
Return 1
Else
Return O
On Procedure Close

SQL Language Reference 7-35

Chapter 7 Procedures and Triggers

Call SqlDisconnect(hSqlCurl)

/
execute DYNAMITE

\
1,,
/

The advantage to dynamic procedures is that they are more flexible than static
procedures. You can run and rerun a dynamic stored procedure with embedded
dynamic SQL by using string substitution to produce different SQL commands at run
time.

Determining whether to store a procedure as dynamic or statigou have a stored
procedure that contains SQL statements, some of which would benefit from static
storage and others which would benefit from dynamic storage, consider breaking the
procedure into several smaller static and dynamic procedures. For example, you
might have a main static stored procedure that calls several dynamic stored
procedures.

Storing a procedure

Storing a procedure stores it in the system catalog for future execution. You can then
later retrieve and execute it.

When you create the procedure with the PROCEDURE command, you specify
whether it is a dynamic or static stored procedure; dynamic is the default. When you
actually store the procedure, SQLBase also stores the procedure’s execution plan.

You can store a procedure under a different name than the one it is created with. For
details, read the sectidtameon page7-4.

Note: You cannot replace an existing procedure with a procedure that uses the same stored
name. You must first use the SQLTalk ERASE command to erase the existing procedure before
storing the new one.

You must store a procedure as static if you plan to use it in a trigger.

Use the SQLTalk STORE command to store a procedure. You issue this command at
the same time you generate the procedure text with PROCEDURE. For example:

STORE WD_PROC
PROCEDURE: WITHDRAW
Parameters
Number: nAccount
Number: nAmount

7-36 SQL Language Reference

How to generate, store, execute and drop procedures

Receive Number: nNewBalance
Local Variables
String: sUpdate
String: sSelect
Actions
Set sUpdate = 'UPDATE CHECKING set \
BALANCE = BALANCE - :nAmount where \
ACCOUNTNUM =:nAccount'
Call Sgllmmediate(sUpdate)
Set sSelect = 'SELECT BALANCE from CHECKING \
where ACCOUNTNUM = :nAccount \
into :nNewBalance'
Call Sgllmmediate(sSelect)

Generally, you will want to include the STORE command in a script file and then run
the script file.

Executing a procedure

Issuing a PROCEDURE command by itself automatically compiles and executes a
procedure. You can also run the SQLTalk PREPARE or RETRIEVE commands in
conjunction with the PERFORM command to compile/execute or retrieve/execute the
procedure in two separate steps.

To retrieve and execute a stored procedure in one step, use the EXECUTE command.
This command accepts input values and retrieves data as well as executes the stored
procedure. For example:

EXECUTE WD_PROC
\

1,50,,

/

Note: Stored commands embedded in procedures can become invalid if their underlying
database object changes. However, a stored procedure itself never becomes invalidated.

Runtime Errors

Stored commands embedded in procedures can become invalid if the stored
command, or its underlying objects are dropped or altered. In this case, SQLBase still
executes the procedure, but issues a runtime error about any missing or altered
objects.

Similarly, SQLBase also issues a runtime error if is it is unable to find tables that are
referenced in the stored procedure. Note that SQLBase allows users to delete or alter
tables that are referenced in existing stored procedures.

SQL Language Reference 7-37

Chapter 7 Procedures and Triggers

Dropping a procedure

To drop a procedure from the database, use the SQLTalk ERASE command. For
example:

ERASE WD_PROC;

Debugging a procedure

Within the procedure, you can use the SAL Trace statement to check the values of
individual variables. See the Trace statement documentation for more information on
this statement.

The SQLTalk SET and SHOW commands also have TRACE and TRACEFILE
options to help trace procedure statements. These are run independently of the
PROCEDURE command:

SQLTalk command Description
SET TRACE ON/OFF Enables or disables statement tracing.
SET TRACEFILE If this is set to a file name, SQLBase
<filename>/OFF directs statement trace output to a file on

—

the server; an Off value directs the outpd
to the server’s Process Activity screen.

SHOW TRACE Determines whether statement tracing is
enabled or disabled.

SHOW TRACEFILE Determines whether statement trace output
is being directed to a file on the server or
to the server’s Process Activity screen.

For example:

SET TRACE ON;
RUN example.sql;
PROCEDURE: WithDraw
Parameters
Number: nAccount
Number: nAmount

SET TRACE OFF;

7-38 SQL Language Reference

SAL functionality in SQLBase

Security

To grant privileges to other users for stored procedures, use the SQLTalk GRANT
EXECUTE command. You can grant either your own privileges to other users, or
grant them privileges of their own. To revoke users’ privileges, use the REVOKE
EXECUTE command.

Read thesQLTalk Language Referenfoe information on these commands.

SAL functionality in SQLBase

You can embed any of the following functions in a procedure. User-defined functions
are not supported. Note that while these functions are similar to Team Developer
functions, they are SQLBase-specific. Yoursidneed Centura’s Team Developer
program to use these functions. See the Appendix for a complete description and
syntax for these functions.

Team Developer system variables (such as SqlDatabase) are not supported. Also,
unlike Team Developer, SQLBase procedureatease sensitive.

Team Developer Function Description

SqlClearimmediate Disconnects the Sqgl Handle used by Sglimmediate.

SqlClose Closes a named cursor.

SqlCommit Commits the current SQL transaction.

SqlConnect Connects a Sql Handle to a database.

SqlDisconnect Disconnects a Sqgl Handle from a database.

SqlDropStoredCmd Deletes a stored command or stored procedure.

SqlError Gets the most recent error code for the specified Sql
Handle.

SqlExecute Executes a SQL statement, stored command, or stored
procedure.

SqlExists Checks if a specified row or rows exist.

SqlFetchNext Fetches the next row in a result set.

SqlFetchPrevious Fetches the previous row in a result set.

SqlFetchRow Fetches a specific row from a result set.

SqlGetErrorPosition Gets the offset of an error within a SQL statement.

SQL Language Reference 7-39

Procedures and Triggers

Team Developer Function

Description

SqlGetErrorText

Gets the message text for a SQL error number.

SqlGetModifiedRows

Returns the number of rows changed by an INSERT
UPDATE, or DELETE statement.

SqlGetParameter

Returns a database parameter.

SqlGetParameterAll

Returns a database parameter.

SqlGetResultSetCount

Returns the number of rows in a result set.

SqlGetRollbackFlag

Returns the database rollback flag.

Sqllmmediate

Compiles and executes a SQL statement.

SqlOpen

Names a cursor and executes a SQL statement.

SqlPrepare

Compiles a SQL statement or non-stored procedure|
execution.

for

SqlPrepareAndExecute

Compiles and executes a SQL statement or non-st
procedure.

pred

SqlRetrieve

Retrieves a stored command or stored procedure.

SqlSetlsolationLevel

Sets the isolation level.

SqlSetLockTimeout

Sets the timeout period on waiting for a lock.

SqlSetParameter

Sets a database parameter.

SqlSetParameterAll

Sets a database parameter.

SqlSetResultSet

Turns results set mode on and off.

SqlStore

Compiles and stores a command or procedure.

7-40 SQL Language Reference

Related SQLTalk commands

Related SQLTalk commands

Use the following SQLTalk commands to compile, prepare, and execute procedures.
For information on these commands, read3fp¢ Talk Language Reference

Command Description

ERASE Erases a stored command/stored procedure.

EXECUTE Executes a stored command or stored procedure.

PERFORM Executes either a prepared SQL command/non-stored
procedure, or retrieved stored command/stored
procedure.

PREPARE Compiles a SQL command or non-stored procedure.

SET TRACE Enables or disables statement tracing.

SET TRACEFILE Directs statement trace output to a file on the server or
to the server’'s Process Activity screen.

SHOW TRACE Determines whether statement tracing is enabled or
disabled.

SHOW TRACEFILE Determines whether statement trace output is being

directed to a file on the server or to the server’s Progess
Activity screen.

STORE Compiles and stores a command or procedure (and its
execution plan) for later execution.

Using SQL/API functions with procedures

You can use the following SQL/API functions to manipulate procedures. For
information on these functions, read 8@L/AP| Reference Manual

lszgnLéﬁ;: Description
sglbnd Bind input data by name.
sglbnn Bind input data by number.
sqlbnv Get the number of input parameters.
sqlcbv Clear bind variables.

SQL Language Reference 7-41

Chapter 7 Procedures and Triggers

SQL/API
Function

Description

sqlcex

Compile and execute a non-stored command or non-stored

procedure.

sglcom

Compile a non-stored command or non-stored procedure

sqlcty

Return the command type.

sqldes

Describe output parameters in terms of internal data types and

lengths.

sqldii

Describe an INTO variable.

sqldsc

Describe output parameters in terms of external data types and

lengths.

sqldst

Drop a stored command or stored procedure.

sqlepo

Retrieve error position.

sqlexe

Execute a command or procedure that has either been
previously-compiled or stored.

sqlfet

Fetch next row from result set.

sqlget

Return the statement trace status (enabled/disabled) with
SQLPTRC parameter, and the file name of the trace outpu
with the SQLPTRF parameter.

sqlnbv

Retrieve number of bind variables.

sqlnii

Get the number of INTO variables.

sqlnsi

Get the number of output parameters.

sqlret

Retrieve a stored command or stored procedure.

sqlset

Enable/disable statement tracing with the SQLPTRC
parameter, and redirect trace output to a file or the Proces
Activity (F2) screen with the SQLPTRF parameter.

sqlssb

Set up buffers for output parameter data.

sqlsto

Store a procedure or SQL command.

7-42 SQL Language Reference

the
file

Using procedures with Centura Team Developer applications

Using procedures with Centura Team Developer
applications

This section discusses implementation issues to consider when using procedures in
Centura Team Developer applications.

Default for Result Sets in Stored Procedures

To emulate scrollable results sets in Team Developer, the default for result sets in
stored procedures is turned ON when you issue a Call SglConnect (hsql). This cursor
has results sets turned ON so that scrollable result sets are available when you issue a
SqlFetchPrevious. Note that normally in SQLTalk, result sets in stored procedures is
turned OFF by default.

Note: If you are NOT using SqlFetchPrevious in your procedures, you can improve
performance by explicitly turning results sets OFF in procedures with SqlSetResultSet.

Calling a SQLBase Procedure

To call a SQLBase procedure from Team Developer, use theSgiRetrievecall.
You must follow these rules:

» All SQLBase procedure parameters must have a representative Team
Developer variable/visual object in the bind list (third paramefer) o
SqlRetrieve()

» All Receive parameters of a SQLBase procedure that are used as output for
the calling Team Developer application must be represented by a Team
Developer variable/visual object in the into list (fourth parameter) of
SqlRetrieve

Note: There is an exception to theSgIRetrieve(Jules when using Team Developer List and
Combo boxes. These are discussed in the following paragraphs.

For example, assume you are populating two Team Developer data fields, dfl and df2,
with the following procedure which returns rows from a SELECT:

Procedure: PRODUCTS
Parameters
Number: ninventory
Receive String: sName
Receive Date/Time: dtWhen
Actions

SQL Language Reference 7-43

Chapter

7

Procedures and Triggers

Call SqglPrepareAndExecute(hSqlCurl, 'select NAME, WHEN
from PRODUDCT_INVENTORY \
where INVENTORY = :ninventory into :sName, \
:dtWhen")

Within Team Developer, code the following lines. Notice the bind list.

Set ninvent = 200

Call SqglRetrieve(hCurl, 'PRODUCTS', "ninvent, :df1l,
:df2', ".df1, :df2")

Call SqlExecute(hCurl)

Call SqglFetchNext(hCurl, nind)

For table windows, the third parameter 8alTblPopulatés passed as a null. This is
the same method used when a stored command is the data source for a table window.

Set ninvent = 200

Call SglRetrieve(hCurl, 'PRODUCTS', "ninvent, :df1l,
.df2', .df1, :df2")

Call SalTblPopulate(tbProducts, hCurl, ",
TBL_InventNormal

For list boxes and combo boxes, both the fourth parameter (into list string) for
SqlRetrievaand the third parameter f&alListPopulates are passed as nulls. This is

the same method used when a stored command is the data source. Secondly, since
Team Developer has no method of referencing individual database columns in a list
or combo box, you must create dummy variables to represent the procedure Receive
parameters within the bind list. Backend result sets do not need to be turned off.

Window Variables:
String: sDummy1
String: sDummy?2
Number: ninvent

Message Actions

set ninvent = 200

Call SqglRetrive(hCurl, 'PRODUCTS', ":nlnvent, :sDummy1,
:sDummy2',)

Call SaListPopulate(hwndltem, hCurl, ")

To learn more about using SQLBase procedures with Team Developer, run the Team
Developer applicatiosp.appshipped with SQLBase.

7-44 SQL Language Reference

Error handling

Error handling

By default, SQLBase handles a SQL error by terminating execution of the procedure,
and returning an error code to you.

You can override this default SQL error processing using the When SqlError
statement. This enables you to specifgaal error handler as you can in Team
Developer. A local error handler is only effective for statements in the same statement
block as that in which the error handler is declared.

However, if the When SqlError returns control back to the procedure, it is the
procedure’s responsibility to check the return from the failed SQL statement and
process accordingly. If there is no return from the When SqlError construct, both the
control and the SQL error code are immediately returned to the caller.

Unlike Team Developer, procedures do not allow you to specify a global error
handler.

Put aWhen SqlError statement in a procedure’s Actions section:

» Before a procedure SAL function.
» Atthe same indent level as the procedure SAL function.

The following flowchart shows the steps that SQLBase follows when a SQL error
occurs during the execution of a procedure.

1. SQLBase looks for When SqlError in the procedure’s Actions section.

2. Ifthere is no When SqlError statement, SQLBase breaks the procedure execution,
and returns control to the calling program. The error code is returned to the calling
program.

3. Ifthere is a When SqlError, SQLBase performs the statements in the When
SqlError section.

4. You can use a Return statement to specify that either a TRUE or FALSE value be
returned by the procedure SAL function on which the error occurred. If you do not
specify a Return statement, the procedure breaks execution, and both control and
the error code are returned to the calling program.

+ |f the Return statement returns FALSE, FALSE becomes the return value of
the failed Sql* function. Procedure execution continues as if the failed SQL
statement returned FALSE.

+ |fthe Return statement returns TRUE, TRUE becomes the return value of the
failed Sql* function. Procedure execution continues as if the failed SQL
statement returned TRUE.

SQL Language Reference 7-45

Chapter 7 Procedures and Triggers

Encounter SQL
error during proce
dure execution

1,2 No

SqlError
construct?

Yes

Perform
3 When SqlError
statements

Is there
No

y y
Return TRUE Return FALSE

. .

Procedure Procedure
continues execution continues execution
as if failed SQL as if failed SQL
statement returned statement returned
TRUE FALSE

A 4

Break execution,
return SQL error
code to
calling program.

This example uses the tables JR and PRODUDCT _INVENTORY:
CREATE TABLE JF 12R,132,13-OCT-1992 (NAME varchar(25),

INVENTORY decimal (3,0), WHEN date);

INSERT INTO PRODUDCT_INVENTORY values

(JF 12R,132,13-OCT-1992);
COMMIT;

7-46 SQL Language Reference

Error handling

This examples also uses the following stored command INVENTORY_QUERY:

STORE INVENTORY_QUERY
SELECT INVENTORY from PRODUDCT_INVENTORY
where NAME = :1;

In this example, the When SqlError construct tests for two error conditions:

« |f the stored command does not exist, error code 207 is returned.

« |If the table used in the stored command does not exist, error code 601 is
returned.

In this example, error code 601 is returned because the table required for the stored
command is dropped prior to procedure execution.

DROP TABLE PRODUDCT_INVENTORY
PROCEDURE: ILPROC
Parameters
String: sName
Receive Number: NINVENTORY
Local Variables
Sql Handle: hSqlCurl
Number: nind
Number: nRcd
Boolean: bCond
Actions
On Procedure Startup
g When SqlError
Set nRcd = SqlError(hSqlCurl)
If nRcd = 207
Call SqlStore(hSqlCurl, INVENTORY_QUERY', \
'select INVENTORY from PRODUDCT_INVENTORY \
where NAME = :1 into :2")
Call SglCommit(hSqlCurl)
Call SqglRetrieve(hSqICurl, INVENTORY_QUERY', \
":sName’, "nINVENTORY")
Return TRUE
Else If nRcd = 601
Return FALSE
Call SqglConnect(hSqlCurl)

O Set bCond = SqlRetrieve(hSqlCurl,\
'INVENTORY_QUERY',":sName’, "nINVENTORY")
O If NOT bCond

Return 6302
On Procedure Execute
Call SqlExecute(hSqICurl)

SQL Language Reference 7-47

Chapter 7 Procedures and Triggers

On Procedure Fetch
If NOT SqlFetchNext(hSqglCurl, nind)
Return 1
Else
Return O
On Procedure Close
Call SqlDisconnect(hSqlCurl)

JF 12R,,

1. This exception handling routine Returns FALSE because the required table for the
stored command was dropped prior to the execution of the procedure. Returning
FALSE (as opposed to executing no Return from When SqlError) allows the
procedure to provide additional processing, such as returning a user defined error.

2. Since the When SqlError construct returned FALSE, the return value for bCond
is set to FALSE.

3. The When SqlError construct sets bCond to FALSE. This returns control back to
the calling application with the user defined error 633RODUDCT_INVENTORY
table is missing - see DBA".

Procedure examples

This section is a series of examples that demonstrate the different elements of
procedures. They use a table called CHECKING. You can run these and other
examples online using thep.sqlSQLTalk script, which is provided in the Centura
directory with your SQLBase software. In addition, $peappsample application
provided in the Centura directory demonstrates using procedures in Team Developer.

Example 1 - Procedure IF/Else statement

This next example adds an IF/Else statement to the procedure; this checks to see if the
balance is negative.

STORE WITHDRAW
PROCEDURE: WITHDRAW
Parameters

Number: nAccount

Number: nAmount

Receive Number: nNewBalance

Receive Boolean: bOverDrawn
Local Variables

7-48 SQL Language Reference

Procedure examples

String: sSelect
String: sUpdate
Actions

Set sSelect = 'SELECT BALANCE from CHECKING \

where ACCOUNTNUM = :nAccount \

into :nNewBalance'
Call Sgllmmediate(sSelect)
Set nNewBalance = nNewBalance - nAmount
If (nNewBalance < 0)

Set bOverDrawn = TRUE
Else

Set bOverDrawn = FALSE

Set sUpdate = 'UPDATE CHECKING \

set BALANCE = BALANCE - :nAmount \

whereACCOUNTNUM = :nAccount'

Call Sgllmmediate(sUpdate)

EXECUTE WITHDRAW
\

1,100,,,

/

Example 2- Using SQL handles and ON statements
The next example adds SQL handles and ON statements to the procedure.

STORE WITHDRAW
PROCEDURE: WITHDRAW
Parameters
Number: nAccount
Number: nAmount
Receive Number: nNewBalance
Receive Boolean: bOverDrawn
Local Variables
Sql Handle: hSqglSelect
Sql Handle: hSqlUpdate
String: sSelect
String: sUpdate
Number: nStatus
Actions
On Procedure Startup
Set sSelect = 'SELECT BALANCE from CHECKING \
where ACCOUNTNUM = :nAccount \
into :nNewBalance'
Set sUpdate = 'UPDATE CHECKING \
set BALANCE = BALANCE - :nAmount \
whereACCOUNTNUM = :nAccount’

SQL Language Reference 7-49

Chapter 7 Procedures and Triggers

Call SqlConnect(hSqlSelect)
Call SqglPrepare(hSqlSelect, sSelect)
Call SqlConnect(hSqglUpdate)
Call SqglPrepare(hSqglUpdate, sUpdate)
On Procedure Execute
Call SqlExecute(hSqglSelect)
Call SqglFetchNext(hSqglSelect, nStatus)
Set nNewBalance = nNewBalance - nAmount
If (nNewBalance < 0)
Set bOverDrawn = TRUE
Else
Set bOverDrawn = FALSE
Call SqlExecute(hSqglUpdate)
On Procedure Close
Call SqlDisconnect(hSqglSelect)
Call SqlDisconnect(hSqlUpdate)

EXECUTE WITHDRAW
\

1,100,,,

/

Example 3 - Doing a fetch
This example adds a fetch operation to the procedure.

STORE WITHDRAW
PROCEDURE: WITHDRAW
Parameters
Number: nAccount
Number: nAmount
Receive Number: nNewBalance
Local Variables
Sql Handle: hSqlSelect
String: sSelect
Number: nStatus
Boolean: bEOF
Actions
On Procedure Startup
Set sSelect = 'SELECT BALANCE from CHECKING \
where ACCOUNTNUM = :nAccount \
into :nNewBalance'
Call SqlConnect(hSqlSelect)
Call SqglPrepare(hSqlSelect, sSelect)
On Procedure Execute
Call SqlExecute(hSqlSelect)
I'Internal fetch - column is not returned to the calling

7-50 SQL Language Reference

Procedure examples

I program since there is an On Procedure Fetch state
I which does return values to the calling program.

Call SqglFetchNext(hSqlSelect, nStatus)
On Procedure Fetch
If (nNewBalance > 100)
Set nNewBalance = nNewBalance * 1.005
Set nNewBalance = nNewBalance - 100
Set bEOF = FALSE
Else
Set bEOF = TRUE
Return bEOF
On Procedure Close
Call SqglDisconnect(hSqlSelect);

EXECUTE WITHDRAW
\

1,100,,

/

Example 4 - Calling a stored procedure from within another

procedure

This example shows how one stored procedure can call another stored procedure. The
calling stored procedure is DYNAMIC and the called stored procedure is STATIC.
Nesting procedures can enhance the modularity of code by creating common routines
that perform specialized tasks. These tasks can then be called by any number of
different procedures or calling programs.

This example uses the following two tables PRODUCTIVE and RATE:

create table PRODUCTIVE

(

NAME varchar(25),

DEPT varchar(2),

BUILD varchar(1),

PRICE integer

)i

insert into PRODUCTIVE values(BM J18','TT','M',66);

create table RATE

(
RATE varchar(12),

PER_DAY double precision
)i

SQL Language Reference 7-51

Chapter 7 Procedures and Triggers

insert into RATE values(:1, :2)
\

"LEVEL H",300,

"LEVEL B",190,

"LEVEL T",150,

"LEVEL I",25,

/

This is the syntax of the static stored procedure PRODUCT _COUNT, which
determines the current population of the PRODUCT table. It is called by the dynamic
procedure ADJUST RATE.

STORE PRODUCT_COUNT
PROCEDURE: PRODUCT_COUNT static
Parameters
Receive Number: nCount
Local Variables
Sql Handle: hSqlCurl
Number: nind
Actions
Call SqglConnect(hSqlCurl)
Call SqglPrepareAndExecute(hSqlCurl, \
'select count(*) from PRODUCTIVE into :nCount')
Call SglFetchNext(hSqlCurl, nind)

The following dynamic stored procedure ADJUST_RATE calls the
PRODUCT_COUNT stored procedure. Based on the current PRODUCT population,
the DAILY rates are determined.

store ADJUST_RATE
procedure: ADJUST_RATE dynamic
Parameters
Receive String: sRate
Receive Number: nPerDay
Local Variables
Sql Handle: hSqlCurl
Number: nPop
Number: nind
String: sAdjust
String: sUpdate
String: sSelect
Actions
On Procedure Startup
Call SqlConnect(hSqlCurl)
SetnPop =0
g Call SqlRetrieve(hSqlCurl, \

7-52 SQL Language Reference

Procedure examples

'PRODUCT_COUNT, :nPop’, :nPop")
Set sSelect = 'Select RATE, PER_DAY from RATE \
into :sRate, :nPerDay’
On Procedure Execute
Call SqlExecute(hSqlCurl)
O Call SQLFetchNext(hSQICurl, nind)
g If nPop > 1
Set sAdjust = 'set PER_DAY = PER_DAY *1.15'
Else
Set sAdjust = 'set PER_DAY = PER_DAY * 1.05'
Set sUpdate = 'Update RATE ' || sAdjust

O Call SqglPrepareAndExecute(hSqlCurl, sUpdate)
g Call SqglPrepareAndExecute(hSqlCurl, sSelect)
On Procedure Fetch
If NOT SqlFetchNext(hSqglCurl, nind)
Return 1
Else
Return O
On Procedure Close
Call SqlDisconnect(hSqlCurl)

O column 1 width 15;
execute ADJUST_RATE

\

/

Retrieve the stored procedure to get the current PRODUCT count. Notice the bind
list must include (in proper order) variables which represent all parameters
declared in the called stored procedure PRODUCT_COUNT. Secondly, the into
list must include variables which map to those Receive parameters of the called
procedure that return output to procedure ADJUST_RATE.

Fetch a single row value into th@oplocal variable.

Use dynamic SQL to build the update statement based on the PRODUCT
population.

Update the RATE table.
Now select the new rates from the RATE table.

SQLTalk requires string columns to be resized.

SQL Language Reference 7-53

Chapter 7

Procedures and Triggers

Triggers

This section provides an overview of triggers which use stored procedures. For
detailed information about triggers, see the documentation on the CREATE
TRIGGER command in this manual.

What is a trigger?

A trigger activates a stored or inline procedure that SQLBase automatically executes
when a user attempts to change the data in a table. You create one or more triggers on
a table, with each trigger defined to activate on a specific command (an INSERT,
UPDATE, or DELETE). Attempting to modify data within the table activates the

trigger that corresponds to the command. For details on the trigger execution order
before a single data manipulation statement is executed, read the Badtion

Execution Modein Chapter 1.

Triggers enable you to:

* Implement referential integrity constraints, such as ensuring that a foreign
key value matches an existing primary key value.

* Prevent users from making incorrect or inconsistent data changes by ensuring
that intended data modifications do not compromise a database’s integrity.

» Take action based on the value of a row before or after modification.

« Transfer much of the logic processing to the backend, reducing the amount
of work that your application needs to do as well as reducing network traffic.

Creating Triggers

You can only use inline or static stored procedures with triggers. In addition, you
must first store the static procedure with the STORE command; a trigger cannot call a
non-stored procedure.

Use the SQL CREATE TRIGGER command to create a trigger. You can disable an
existing trigger by using the ALTER TRIGGER command. This command causes
SQLBase to ignore the trigger when an activating DML statement is issued. With this
command, you can also enable a trigger that is currently inactive.

You can easily disable all triggers defined on a table by using the stored procedure
\Centura\rep_trig.sql included with SQLBase.

To access the stored procedure, you must have SYSADM authority and run the file
REP_TRIG.SQL against the database that contains the triggers you want to enable or
disable. This file creates the stored procedure SYSADM.SYSPROC_ALTTABTRIG.

To use the stored procedure, provide the owner and name of the table that contains the
trigger and specify whether to enable or disable the triggers in the table. When you

7-54 SQL Language Reference

Triggers

execute the procedure, it retrieves the names of all triggers belonging to the table and
enables or disables each trigger one by one. Through the receive parameter, the
procedure returns the number of triggers that it processed.

For example, to disable all triggers on table T1 created by USERL1, run:

EXECUTE SYSPROC_ALTTABTRIG

\

USER1, T1, DISABLE, 0

/

To delete a trigger from the system catalog, use DROP TRIGGER.

Note: To see an online triggers tutorial, run thiggers.sqlscript that is installed with
SQLBase.

Trigger example

The following example shows how an insert statement can invoke a trigger to insert
data into a history table. The trigger calls an inline procedure qatbed newpres

This trigger uses the following PRESIDENT and ELECTION tables:

CREATE TABLE PRESIDENT
(PRES_NAME varchar(20) not null, BIRTH_DATE date,
YRS_SERYV integer, DEATH_AGE integer,
PARTY varchar (20),STATE_BORN varchar(20));

CREATE TABLE ELECTION (ELECTION_YEAR smallint,
CANDIDATE varchar(20),VOTES float,
WINNER_LOSER_INDIC char(1));

CREATE TRIGGER TRG_NEWPRES
after insert on SYSADM.PRESIDENT
(execute inline (1792, Jefferson T',4,'L")

PROCEDURE: PROC_NEWPRES static
Parameters
Number: nElecYear
String: sCandidate
Number: nVotes
String: sWinLose
Local Variables
Sql Handle: hSqlCur
Actions
On Procedure Startup
Call SqglConnect(hSqlCur)
Call SqglPrepare(hSqlCur, 'Insert into \
sysadm.election values \
(:nElecYear, :sCandidate, :nVotes, :sWinLose)")

SQL Language Reference 7-55

Chapter

7

Procedures and Triggers

On Procedure Execute

Call SqlExecute(hSqlCur)
On Procedure Close

Call SqlDisconnect(hSqlCur)

)

for each statement;

This trigger is invoked when you INSERT into the PRESIDENT table, as in the
following example:

INSERT into PRESIDENT values (‘Jefferson T',
13-Apr-1743,8,83,'Demo-Rep','Virginia');
Security

When a user invokes a trigger, he/she assumes the privileges of the owner of the table
on which the trigger is defined. The user invoking the trigger must have privileges to
do the DML command that causes the trigger to be activated.

You can only create a trigger which uses a stored procedure under one of the
following conditions:

* You have either DBA or SYSADM privileges.

e You are the owner of the stored procedure.
* You have been granted EXECUTE privileges for that stored procedure.

Error handling in triggers

If a trigger calls a stored procedure and the procedure performs validation logic
which returns an error code, the trigger returns the error code to the calling SQL
statement, which displays it. A procedure’s error will “bubble” all the way to the
trigger. This means that the error appears no matter how the trigger is invoked.

7-56 SQL Language Reference

Chapter 8
External Functions

This chapter describes external functions. It provides the information you need for
developing external functions and invoking them from within a SQLBase stored
procedure.

The following topics are covered:
¢ What is an external function?
* How to declare external functions
e Using external data types
e Calling external functions
« Developing external functions
« Modifying external function definitions
e Error handling
e System Catalog tables for external functions
e Scripts and DLLs for external functions
e External function example

SQL Language Reference 8-1

Chapter

8

External Functions

What is an External Function?

An external function is a user-defined function that resides in an “external” DLL
(Dynamic Link Library) that is invoked from within a SQLBase stored procedure.
You can create your own external function in a language of your choice, such as C,
C++, and so forth.

You use the CREATE EXTERNAL FUNCTION command to define external
functions calls by specifying such information as the function’s name, its arguments,
DLL where it resides, compiler callstyle, and execution mode.

From within a SQLBase stored procedure, you can use a CALL statement to invoke
the external function, or you can embed the function invocation in SAL expressions.
On invoking the external function, SQLBase looks for the function’s name in the
catalog, loads the appropriate DLL that is specified for the function, and then calls the
function. Figure 9.1 illustrates how an external funchyuncis invoked from

within a stored procedure.

Why use external functions?

The ability to call external functions within SQLBase enhances the power of the
SQLBase server. It provides you with the flexibility to extend the functionality of
your stored procedures, or add functionality to your existing applications by creating
plug and play external components. You can:

» Use existing SAL functions as external functions

» Execute application programs that call C/API functions directly on the server
by converting them into external functions.

e Maintain a centralized library of functions that can be used with different
applications and at different sites as needed.

Calling external functions from stored procedures extends functionality with no
impact on the application or the server. Your components are dynamically plugged in
and behave like built-in functions. Using external functions, you achieve maximum
flexibility and performance with minimal programming effort.

8-2 SQL Language Reference

What is an External Function?

Stored
Procedure

Call SQLPrepare()

-

Application

¢

SQL/API

SQLBase

Server

Call MyFunc() &

External Function Invocation

Myextern.dll

MyFunc()

C/IAPIs

SQL Language Reference

8-3

Chapter 8

External Functions

Security

If you have DBA authority, you can create, drop, and modify external functions and
create synonyms for them. When a user invokes a stored procedure and it calls an
external function, the user must have privileges to execute the external function. You,
as the creator of the external function, or another DBAgecant execute privileges

to other users so they can execute external functions.

If a user is granteexecute with creator privilegeson a procedure that calls external
functions, then the user does not need execute privileges on any external function
invoked within the procedure. Only the CREATOR of the procedure needs to have
execute privileges on the external function.

If the user is granteeixecute with grantee privilege®n a stored procedure, the user
must also have execute privileges on the external functions invoked within the
procedure. For details on setting up security for external functions, sBatdimse
Administrator’'s Guide

SQLBase checks for privileges on external functions at procedure compile and
retrieval time.

How to declare external functions

In order for SQLBase to recognize an external function in your stored procedure, you
must declare the external function with the CREATE EXTERNAL FUNCTION
command. The full syntax for this command is described in Chapter 3.

This example shows the use of an external function nanyéahcin your stored
procedure. To make this function known to SQLBase, it is declared with the CREATE
EXTERNAL FUNCTION command:

CREATE EXTERNAL FUNCTION MYFUNC
Parameters (int, Ipint)
Returns ()
Callstyle CDECL
Library myfunc.dll
Execute in same thread;

Note thatfunction nameandlibrary nameare mandatory. If your function uses
parameters, you can optionally specify the external data types for the parameters and
if the function returns a value, you can optionally specify the external data type for
the return value. For details, redding external data typesn pages-10.

After the function is declaredayfuncis then called within stored procediR#& as
shown in the following example:

PREPARE
Procedure P1

8-4 SQL Language Reference

How to declare external functions

local variables
receive number: nl
receive number: n2
Actions
call myfunc(nl1,n2)

Function name

Function name specifies the name of the function as known and referenced within
SQLBase. Function names are similar to other database object names, except they can
be up to 64 characters in length.

If you specify the function name without quotes, you must begin the function name
with an alpha, “a...z” character. By default, the characters are uppercased.

For example if an external function is hanmegfunc and is not enclosed in double
guotes, SQLBase converts the name to uppercaseMaSHWNC . When this
external function is called in a stored procedM¥FUNC must be specified in
upper case.

You must specify a function name in double quotes if:

» the name contains special characters
« the name starts with an alpha character
» the case of the name is to be preserved

Note that if you enclose the name in double quotes, the case of the name is preserved.
For example, if you want the external function name to remain in lower case, you can
specify the external function name in double quotes, as in “myfunc”.

If you do not provide the external name clause, the function name is also used to
specify the external name of the function in the library.

Naming Restrictions
Please note the following restrictions when choosing a function name.

* Function names cannot be the same as procedure names and vice versa.

* Functions names cannot be the same name used in any of the SQLBase
aggregate functions (for example, min, max, avg, etc., or any functions
beginning with the@ symbol, such as @ASIN, @ATAN, @CHAR, etc.)

e Function names cannot begin w8QL.

« |f the external name is not used in the function definition, then the function
name must match the exported name in the DLL.

« Ifthe external name is used in the function definition, then the external name
must match the exported name in the DLL.

SQL Language Reference 8-5

Chapter

8

External Functions

Library

Note: If you are using WINAPI functions, check the exported names for the function. We
recommend that you use the external name clause to make the function name match the exported
name. See the examples unBgternal Namen pages-7 for details.

Library is the file specification of the dynamic linked library (DLL) in which the
function resides. SQLBase checks for the existence of the library at function
invocation time, rather than function creation time.

You must provide a fully qualified path name for the file, or else be sure the PATH
environment variable is set to point to the location of the file in your operating
system.

Note: The directory from which SQLBase executes is considered the current working directory.

Specify the library name as a string with up to 254 characters. You can include
special characters in the string. If the library name contains spaces, you must delimit
the name in single quotes (for example, ‘lib name’).

You may be specifying the name of a DLL provided for Microsoft Window API
functions. The DDLs are typically stored in the system directory.

Parameters and return data types

When you create an external function, you must specify external data types for any
parameters and return values used in the function. If there are no parameters for the
external function, omit the PARAMETERS clause, or provide empty parenthgses

in the declaration. Similarly, If there is no return type from the external function, omit
the RETURNS clause, or provide empty parenthé3@sthe declaration.

The data type for parameters and returns tells SQLBase the format (both size and pass
by value/reference) to use when passing data to the external function and the format
to expect when receiving data from the function.

The external type typically corresponds to a standard Microsoft data type. There are
some data types that do not correspond to any Microsoft data typeNBead
Microsoft data typesn page8-16for details.

Once the external function is defined with the correct parameter and return types,
SQLBase automatically converts the stored procedure data types into the external
data representation.

8-6 SQL Language Reference

How to declare external functions

Declaring External Data types

You specify parameter and return data types in the CREATE EXTERNAL
FUNCTION command using the following format:

CREATE EXTERNAL FUNCTION MYFUNC
Parameters (int, Ipint)
Returns (int)
Library myfunc.dll
Execute in same thread;

In the PARAMETERS clause, you specify receive data types, which are passed to
functions by reference (pass by reference). Typically the external data types for
receive parameters are prefixedly (LPINT, LPWORD, etc.)

In the RETURNS clause, you can only specify data types that are passed to functions
by value (pass by value). Examples of external data types used to pass parameters by
value are INT, LONG, CHAR, etc.

For a list of external data types used to pass parameters by value and by reference,
readUsing external data typem pageB-10.

Parameters and return values must be compatible in size and type to the function
prototype in the DLL.

Note: SQLBase requires the function definition that you create with CREATE EXTERNAL
FUNCTION to push parameters on to the stack before calling the function and to read the return
value provided by the function. If the parameters are not specified properly, this will cause stack
corruption which can result in server failure.

For details on external function calls, rezalling External Functionen pages-17.

External Name

External name is an optional clause to specify the name of the function in the
specified dynamic link library (DLL). Defining an external name enables a function
name referenced in the stored procedure to be different from the name used to
reference the same function in the DLL.

Specify the external name as a string with up to 254 characters. You can include
special characters in the string. The external name is case-sensitive and must be
identical to the exported function name in the DLL.

SQL Language Reference 8-7

Chapter 8 External Functions

Examples

You may need to define an external name to:

indicate the function is used by more than one stored procedure or application

For example, you may want to provide an external name that clearly
identifies what stored procedure uses the function.

make the external name match the exported name of the function assigned by
your operating system.

For example, in 16-bit systems the exported name of a WINAPI function is
uppercase. To keep the call for the function name in the stored procedure the
same as the API call, you would use the external name clause and make the
external name match the exported name as in the following:

create external function “SendMessage”

library USER.EXE
external name SENDMESSAGE

indicate the correct version of the API function to use.

For example, in 32-bit systems, WINAPI functions have unicode (double
byte character) support which means that WINAPI functions have different
internal implementations depending on the character set that is used.

The version of the function that supports the ASCII character set #as an
appended to it, while the one that supports the double byte character set has
aW appended to it. The two external names for the SendMessage function,
areSendMessagefandSendMessageWIf you want to indicate
SendMessageA as the version to use, the external function definition is:

create external function “SendMessage”
parameters (...)

returns(...)

library USER32.DLL

external name SendMessageA

Note: Normally, the compiler converts a call to the correct version of the function. However,
external function calls are made without the use of a compiler; hence, you must provide the
correct version name.

8-8 SQL Language Reference

How to declare external functions

Callstyle

Depending on the platform you are using, you must specify a callstyle which
determines how SQLBase invokes your external function. SQLBase manipulates the
call stack based on the callstyle that you have defined for the external function.

Note: Be sure to specify the correct callstyle for your platform in the external function
definition. An incorrect callstyle will corrupt the call stack and result in server failure.

Win16 Platforms
On 16-bit platforms, there are two available call styles:

» pascal - the compiler pushes parameters from left to right and the callee pops
the stack before return. This callstyle applies to all Windows API calls.

» cdecl - the compiler pushes parameters from right to left and the callee pops
the stack after return from the called function. This is the default compiler call
style for 16-bit and 32-bit compilers.

Win32 Platforms
On 32-bit platforms, there are two available call styles:

» stdcall - the compiler pushes parameters from right to left and the callee pops
the stack before return. This is the default for all 32-bit Windows API calls.

» cdecl - the compiler pushes parameters from right to left and the callee pops
the stack after return from the called function. This is the default compiler call
style for 16-bit and 32-bit compilers.

Execution Mode

Execute Inspecifies the execution mode to use for your platform. If you are using a
16-bit platform, you are not required to specify this clause. SQLBase sets 16-bit
platforms forsame threadmode which is the only mode allowed on 16-bit platforms.
If you specifyseparate process moden a 16-bit platform, you will receive a
parsetime error.

If you are using a 32-bit platform, you can change the default seyghrate process
setting by specifyingame threadmode. Rea€€hoosing an Execution Mode for
Win32on pageB-20for details on using execution modes.

SQL Language Reference 8-9

Chapter 8 External Functions

Using external data types

When you declare an external function, you specify the parameters to the external
function and return type from the external function.

SQLBase uses the external data type that you specify in the CREATE EXTERNAL
FUNCTION command to format the actual parameters and return values in the form
expected by the external function.

SQLBase automatically converts the stored procedure data types into the external
data representation.

Parameters and External Data types

You can pass parameters by reference or by value. The external data type defines
whether the parameter is passed by value or by reference.

Pass by reference

Receive data types are passed to external functions by reference. This means that the
called function has access to the original value; the called function can change the
original value. Any change in value made to the data type within the external function

is reflected in SQLBase when the parameter is returned. Typically, the names for the
receive data types start with “LP” which means “Long Pointer” (for example,

LPINT).

Pass by value

Return values are passed to external functions by value. This means that the called
function only has access to a copy of the value; the called function can only change
the copy of the value. You can identify return value data types because they do not
have the prefix “LP” (for example, INT).

Providing external data types

SQLBase uses the external data type to allocate bytes on the stack when an
application calls the function in the DLL. If there are parameters for the external
function and/or the function has a return value, you must specify an external data type
for each parameter and/ or return value that represents the number of bytes that the
function expects.

The external data types for Number and Date/Time are easier to understand because
they are fixed-length. The external data types for strings are more complex because
they are variable in length. Detail on strings are described in the section “String Data
String data typen page3-12

To choose an external data type for a parameter or return value, you need to also
know the external data types that are available for each SQLBase internal data type

8-10 SQL Language Reference

Using external data types

(NUMBER, BOOLEAN, etc). This information is provided in the sections that
follow. Note that the external data types available are:

Each section also indicates those external data types used to pass parameters by value
and those used to pass parameters by reference. The names of external data types are

Standard Microsoft Windows and C scalar data types such as LONG, INT,
DWORD, and HWND.

External SAL data types such as HSTRING

Structures with one or more of the above data types such as NUMBER and

DATETIME.

UPPERCASE.

Numeric and boolean data types

Specify one of these external data types when you pass a Number or Boolean internal

data type:

Note: By specifying an external data type that is prefixed by LP (such as, LPINT, LPWORD,

etc.,) you indicate the parameter is passed by reference.

External Datatypes
(Passed By Value)

Corresponding
C scalar data type

External Data types
(Passed By Reference)

Corresponding C
scalar data type

BYTE unsigned char LPBYTE unsigned char*
CHAR char LPCHAR char*

DOUBLE double LPDOUBLE double*
DWORD unsigned long LPDWORD unsigned long*
FLOAT float LPFLOAT float*

INT int LPINT int*

UINT unsigned int LPUINT unsigned int*
LONG signed long LPLONG signed long*
WORD unsigned short LPWORD unsigned short*
BOOL int LPBOOL int*

NUMBER SQLBase internal LPNUMBER SQLbase internal

representation for
numeric types.

representation for
numeric types.

SQL Language Reference

8-11

Chapter 8 External Functions
External Datatypes Corresponding External Data types Corresponding C
(Passed By Value) C scalar data type (Passed By Reference) scalar data type
LPARAM unsigned int
WPARAM long

The following rules apply when you specify external data types for an internal
numeric or boolean data type.

* NUMBER and LPNUMBERre non-Microsoft data types. Both are SQLBase
internal representation for numeric types.The definitions for them are defined

in either SQL.Hncluded with SQLBase or SWTYPE.H included with
Centura.

 NUMBER data type consists of two fields, a 1-byte length field and a 12-byte

character array containing the internal representation of the number.
e« LPNUMBER is a pointer to the NUMBER data type
* NUMBER and LPNUMBER are used in only two cases:

* When calling SAL functions within SQLBase that use these data types.
Because a script is provided to create all external function definitions for

SAL functions, you will never need to specify these data types.

e When calling functions that in turn call SQL/API functions that use the

internal numeric representation. See $iGgL/API Programming

Referencananual for those functions that use internal representation.

e Memory representation for such datatypes as INT, UNIT, LPINT, LPUINT,

may differ between 16-bit and 32-bit platforms. To obtain the precise

memory representation of a specific data type and to resolve memory issues,

consult your C Compiler documentation for your platform.

String data type

Strings are buffers that can contain text or binary data. Text is null terminated. The
most important thing about the string data type is that you must be aware of its length.

When a string data type (other than HSTRING and LPHSTRING) is passed to an
external function, SQLBase makes a copy of the string and passes a pointer (string
address) to that copy on the stack. In case the string is passed by value, that copy is
discarded on return. If passed by reference, the string is copied back to its original
location. Note that SQLBase only passes to the stack the address or pointer to the

string even if the string is passed by value.

Specify one of these external data types when you pass a string internal data type:

8-12 SQL Language Reference

Using external data types

Note: By specifying an external data type that is prefixed by LP (such as, LPSTR, LPBINARY,
etc.) you indicate that the parameter for the data type is passed by reference.

External Data types Corresponding External Data types (Passed| Corresponding C
(Passed By Value) C scalar data type By Reference) scalar data type
LPCSTR char * (null terminated) LPSTR char* (null
terminated)
BINARY struct {char*; long;} LPBINARY pointer to struct
{char*;long;}
HSTRING Centura Builder handle LPHSTRING Centura Builder
handle
LPCVOID binary data LPVOID binary data

The following rules apply when you specify external data types for the internal string.

LPSTR data type is treated as a pointer to a null terminated string. When a
string is passed as LPSTR, the external function can modify the string up to
the maximum buffer size allocated for the string. The string may grow in size
as long as the new length does not exceed the buffer allocated for the string.

You can allocate buffers by calling SalStrSetBufferLength() or malloc().
SQLBase looks for the null terminator on return and copies the data up to the
null terminator back into buffer space. If SQLBase does not find a null
terminator within buffer size bytes, an error is generated.

LPVOID is treated as binary data. In this case, on return from the external
function, SQLBase assumes that the string length is unchanged and copies
any data up to the original length back into its buffer space.

If you want an external function to pass strings as binary data and include
length information, specify the external data type for the parameter as
BINARY or LPBINARY. Note that these data types are not standard
Microsoft data types.

BINARY data type is defined in SQL.H. LPBINARY is a pointer to

BINARY. Its structure contains a 4-byte string pointer and a 4-byte string
length. Also see the following sectidManipulating the Binary Data typier
available macros used to manipulate the BINARY and LBINARY data types.

When a string is passed by reference with LPBINARY, the external function
may allocate a string in its own memory and pass that string back. On return

8-13

SQL Language Reference

Chapter 8

External Functions

from the function, SQLBase copies into its own buffer space, the data pointed
by the string pointer up to a length defined by the string length field.

HSTRING and LPHSTRING are data types used only by Centura Builder on
32-bit platforms to call SAL functions. Since SQLBase provides a script to
create all function definitions for SAL functions, there is no need to create a
function that uses HSTRING or LPHSTRING.

Manipulating the Binary Data Type
Four macros are provided in SQL.H to manipulate the BINARY datatype. They are:

BINARY_GET_LENGTH (BINARY) - Get the length of the string
BINARY_GET_BUFFER (BINARY) - Get the pointer to the string
BINARY_SET_LENGTH (BINARY, LENGTH) - Put length into binary

BINARY_SET_BUFFER (BINARY, STRING) - Put pointer to string into
binary

Date/Time data types

Specify one of these external data types when you pass a date/time internal data type:

Note: By specifying an external data type that is prefixed by LP (such as, LPDATETIME,
LPSTR, etc.) you indicate that the parameter for the data type is passed by reference.

External Datatypes
(Passed By Value)

Corresponding
C scalar data type

External Data types
(Passed By Reference)

Corresponding C scalar
data type

DATETIME SQLBase internal datef LPDATETIME pointer to SQLBase
time representation. internal date/time
representation.
LPCSTR char* (null terminated LPSTR char* (null terminated)

The following rules apply when you specify external data types for each date/time

data type.

The external data type for Date/Time can also be a null terminated date string.

In this case, SQLBase converts the data type to ASCII format.

When Date/Time is passed by value with either the DATETIME or LPCSTR
data types, any changes made to the string within the external function are not

visible on return from the function.

8-14 SQL Language Reference

Using external data types

 DATETIME and LPDATETIME are non-standard Microsoft data types and
are SQLBase internal representations for date/time types. The definitions for
them are provided in either SQLikcluded with SQLBase or SWTYPE.H
included with Centura.

« DATETIME consists of two fields, a 1-byte length field and a 12-byte
character array containing the internal representation of the number.

 LPDATETIME is a pointer to the DATETIME data type
 DATETIME and LPDATETIME are used in only two cases:

e When calling SAL functions within SQLBase that use these data types.
Because a script is provided to create all external function definitions for
SAL functions, you will never need to specify these data types.

* When calling functions that in turn call SQL/API functions that use the
internal numeric representation. See$i3L/API Reference Manufadr
those functions that use internal representation

Other external data types
This section contains information on SAL window and file function data types and
non-Microsoft data types.
SAL Window and File function data types

The table below lists the external data types that have been added to support SAL
Window and File functions. You can use these data types for other external functions
that use window and file handles.

Internal data type External data type Corresponditr;%ec ST CEA
Window Handle HWND Microsoft data type HWND
LPHWND pointer to Microsoft data type
HWND
File Handle HFFILE FILE
LPHFFILE FILE*

The following rules apply when you specify external data types for the window
handle and file handle internal data types:

 The HWND and LPHWND external data types are used for storing window
handles and support the SAL window manipulation function. If these data
types are used in the parameter section of the procedure (that is, input/output),

SQL Language Reference 8-15

Chapter 8 External Functions

you should bind to the variable using the program data type SQLPNUM. The
same holds for set select buffer.

Use the keyword hwndNull to check whether a window handle is null. This
keyword is similar to STRING_NULL, NUMBER_NULL and
DATETIME_NULL.

The HFFILE and LPHFFILE external data types are used for storing file
handles and support the SAL file manipulation function and C Run Time file
manipulation functions. The file handle data type can only be used in the
local variable section; that is, it cannot be used to pass input/output in a
procedure.

HWND, LPHWND, HFFILE, and LPHFFILE data types can only be used for
storing window and file handles. These data types cannot be included in any
arithmetic operations.

Non-Microsoft data types

The non-microsoft data typesimber anddatetime are defined in SQL.H. You can
use each data type within the external function. Please refer to SQL.H for the exact
structure of these data types.

You can use the following macros with the data typgsber anddatetime, which
are defined in SQL.H.

NUMBER_IS_NULL(number) - returns TRUE if number is null, FALSE
otherwise

DATETIME_IS NULL(datetime) - returns TRUE if datetime is null, FALSE
otherwise

NUMBER_SET_NULL(number) - sets a number type to null
DATETIME_SET_NULL(datetime) - sets a datetime type to null

Note: These macros cannot be used with NUMBER and DATETIME data types.

8-16 SQL Language Reference

Calling External Functions

Calling External Functions

This section provides a list of tasks you may need to perform before your external
function is ready to be called from within a stored procedure. Review this list to see if
you have met the basic requirements and any additional ones that may apply to your
environment.

To set up SQLBase to call external functions, you need to:

1.

Provide the CALL command for the external function within the stored procedure.
ReadSpecifying external functions within stored procedurepagesd-19

Set up the Dynamic Linked Library (DLL) to store the external function.

You must provide a fully qualified path name for the file, or else be sure the PATH
environment variable is set to point to the location of the file in your operating
system.

Optionally, specify the DLLs for loading at SQLBase server start up time.

Note that this procedure is highly recommended and is mandatory if the DLL uses
global variables that can be accessed from different functions or from multiple
invocations of a function.

Define the external functions in the SQLBase server database using the CREATE
EXTERNAL FUNCTION command. Readow to declare external functioms
page8-4.

Run the SQLSAL32.SQL script if you are using SAL functions as external
functions. ReadCalling SAL functions as external functiams page3-20.

Set up user privileges to the functions. Read#tabase Administrator’'s Guide
for details on setting up security for external functions.

Set up synonyms. Read hatabase Administrator’s Guider details on setting
up synonyms and Chapter 3 of this manual for details on the CREATE
SYNONYM command.

Make sure the function name is exported from the DLL. The exported name
should be identical to either the external function name or the name in the external
name clause.

To export the function, you can use the EXPORTS keyword in the .DEF file, the
/EXPORTS option when linking the DLL, or the keywords _declspec (dllexport)
when declaring the function. Please read you compiler/linker documentation for
more details.

SQL Language Reference 8-17

Chapter 8 External Functions

Building a 16-bit DLL

If you are using the Microsoft Visual C++ version 1.52 to build a 16-bit DLL which
contains the external functions, make sure to:

1. Select Project Compiler Options instead of using the Default Project Options.
2. Select LARGE memory model.
3. Set the segment setup option to:

SS 1= DS, DS loaded on function entry

Note: This is the same option as /ALu when the 16-bit DLL is built from the command line.

4. Inthe Windows Prolog/Epilog section, choose None (that is, no prolog/epilog
code optimization) option.

Note: This is the same as NOT giving the /GD option when the 16-bit DLL is built from the
command line.

Pre-loading DLLs

By default, SQL loads the DLL at function call time by calling the Microsoft API
function Load Library. Because of the enormous overhead involved in making this
call, (especially in the case of large DLLs or DLLs that cause more DLLs to be
loaded), SQLBase allows you to specify pre-loading DLLs at server startup time.
This saves overhead and guarantees that the DLL is loaded as long as the server is
running.

Note: If you have a DLL that uses global variables that can be accessed from different functions
or from multiple invocations of a function, you must load the DLL at server start up.

To set up the DLLs for pre-loading on the server, add the EXTdLhamekeyword

to the dbwservr or dbntsrv (whichever applies to your environment) server section of
the SQL.INI file. For example, if you are loading DLLs for WINAPIs in a 32-bit
platform, you would specify:

EXTDLL=USER32.DLL

If you want to pre-load more than one DLL, you can specify the parameter multiple
times within the server section. If the DLL name is not qualified, the Operating
System uses the path environment variable to locate the DLL.

At server startup time, the server screen displays the following message after each
DLL is loaded:

8-18 SQL Language Reference

Calling External Functions

Loaded External Library <dliname>
If there is an error loading the DLL, you will see the following message:

Load of External Library <dliname> failed with error <errornum>
The errornum is the error code returned by the Microsoft API call LoadLibrary. You
must look up the error code in the Microsoft function reference.

DLLs and global variables

If the DLL uses global variables that can be accessed from different functions or from
invocations of a function, be sure to load the DLL at server start up.

If you are using SAL functions, you are advised to preload the DLL in which the
function resides (currently CDLLI10.DLL) since the size of this DLL is large and
results in a costly load operation.

For example, if you want to use the function SalNumberRandom to return a different
random number for each invocation, the CDLLI10.DLL must be pre-loaded. This is
because the random number generator is initialized by calling SalNumberRandInit
with a seed. This seed is maintained as a global variable and is used for each
invocation of SalNumberRandom.

For details on using CDLLI10.DLL read the manwdyveloping with Centura
Builder.

Specifying external functions within stored procedures

You can directly invoke an external function using the CALL statement described in
Chapter 7, Procedures and TriggeFor example:

CALL extfunc()
You can also embed external functions in SAL expressions. For example:

set n = m + extfun()
or,

if (extfun())

Function Names Used for Invocation

Calls to external functions in stored procedures are case sensitive. Any reference to an
external function must be identical to the name of the external function or synonym.
For details on haming external functions, r€adction namen pages-5.

You cannot use qualified names to invoke functions. Hence, if a function creator
grants execute privilege to another user, the creator must create a public or private
synonym for the function.

SQL Language Reference 8-19

Chapter 8 External Functions

Specifying external functions for export to the DLL

When you specify the external functions to be exported, each name must be identical
to either the external name of the function if specified, or the function name
(including case) if the external name is not specified.

If you are not specifying an external name and the exported name has lower case
characters, you must enclose the function name in double gtioe® (be sure of
the case sensitivity.

Calling SAL functions as external functions

If you are using a 32-bit platform, you can invoke SAL functions as external
functions. Included in your SQLBase package is a script called SQLSAL32.SQL that
creates external function definitions for the SAL functions. For details on the SAL
functions included in the DLL, see tl@ntura Function Refereneeanual.

To call SAL functions in your stored procedure:

1. Runthe SQLSAL32.SQL script. The script contains unqualified names to load
into the DLLS.

2. Add the location of the SAL DLLs to the path environment.

3. If desired, pre-load the DLL for the SAL functions. R€ad-loading DLLson
page8-18for details.

Note: To avoid high overhead since the SAL DLL is quite large, we recommend that you pre-
load the SAL DLL.

Developing external functions

This section describes issues you need to consider when developing external
functions on Windows 16-bit and 32-bit platforms and invoking the functions within
SQLBase.

Choosing an Execution Mode for Win32

When you declare an external function and are using a 32-bit platform, you have the
option of invoking the external function on a separate OS process or in the same
server database thread as the invoking stored procedureHBwatt declare

external function®n pages-4 for syntax details.

You must choose the separate OS process if you are using external functions that
require C/API calls

8-20 SQL Language Reference

Developing external functions

Note: C/API calls cannot be invoked within external functions that execute in the same thread
as the calling procedure.

Otherwise, you will want to consider what impact the execution mode has on the
called function.

Once an external function is invoked within SQLBase, the server relinquishes its
execution control over the code to the external function. If the external function is
invoked on the same database thread as the SQLBase server, this action can have
adverse impact on the server’s ability to continue to carry through with the stored
procedure.

For example, if the external function performs I/O’s or is connected to another server,
it may be locked out from performing its task, thereby blocking the SQLBase Server.

In addition the external function would continue executing in the same process space
as SQLBase and could corrupt server memory.

In using the same thread execution mode, you need to consider what task the function
performs, its resources, and volume of activity. Small, self contained functions that do
not perform 1/0 or C/API calls can execute in the same thread successfully. For
example, SAL string manipulation functions (that are definable as external functions)
are those that perform well under the same thread mode.

For functions that perform I/O and C/API calls, executing in a separate process is a
way to prevent the server from blockage and memory corruption. When executing in
this mode, C/API calls can be invoked from within the function and executed in
SQLBase. When a function executes in a separate process there is no chance for the
function to corrupt server memory. Also 1/Os are performed in a separate process and
cannot block the server.

Executing in separate process

By defining external functions to execute in a separate OS process mode within a
stored procedure or application, all processes come under the control of the external
function daemon (EFDaemon).

The SQLBase server process sends messages to the EFDaemon and informs the
daemon when native OS shared memory is implemented. The EFDaemon
communicates with each external function process known as EFHost through
messages and the shared memory block created by SQLBase for each external
function.

SQL Language Reference 8-21

Chapter 8 External Functions

Shared Memory[——® EFHost
|~
SQLBase [@----® EFDaemon >
Shared Memory|lgq g EEHost
Legend:

<« » Message passing
e REEEEEEEE = Shared memory Access

Developing External Functions for Concurrent Execution

When developing external functions for concurrent execution, note that the scope of
execution of an external function is the duration of the stored procedure execution.
This means that a EFHost process is assigned to a stored procedure on the first
invocation of an external function that requires a separate process execution. From
then on, all subsequent calls to external functions from the same stored procedure are
routed to the same EFHost process. This behavior has the following implications that
you need to keep in mind when designing an external application:

e Multiple external functions share the same Dynamic Link Library (DLL) and
the DLL is loaded only once.

» Multiple external functions can share global variables.
e All DLLs are unloaded when the stored procedure is closed by SQLBase.
» Nested procedure(s) are executed in their own scope.

8-22 SQL Language Reference

Developing external functions

Checking external function processes

While a stored procedure or external application is running, you can check each
external function process through the EFDaemon window which displays
automatically upon function execution. On the window, a menu item displays the
status of currently active EFHost processes. For each EFHost process, the following
information is displayed:

Field Description

Cursor Number Unique number of SQLBase thread. If the stored procedure is called
directly, the cursor number corresponds to the cursor number
displayed in the Process Activity window in the main database sarver
status window. If the stored procedure is called indirectly, for
example, through a trigger, then the cursor number is different than
the one shown in the server window.

External function Serial number of the EFHost process.
host number

EFHost The possible values displayed under this heading are:
Idle

This indicates that the EFHost process is not executing any extgrnal
function calls; that is, it is not communicating the EFDaemon.

Busy

This indicates that the EFHost process is busy executing an extérnal
function call.

Waiting

This indicates that the EFHost process is waiting in-between calls to
external functions; that is, waiting to serve.

Error

This indicates the EFHost process experienced some error while
executing the external function call.

Function Name External function name. Not currently shown in window.

External function DLL containing the external function. Not currently shown in
DLL name window.

SQL Language Reference 8-23

Chapter

8

External Functions

Testing and debugging external functions

If you are using a 32-bit platform, we recommend testing the external function using
the separate process mode. Réadosing an Execution Mode for WinBR2 page

8-20for details. Once the function has been sufficiently tested without problems, you
can change the execution mode to server thread using the ALTER FUNCTION
command.

Note: You should always use the separate process model for external functions that perform
blocking operations (such as file 1/0), C/API calls, and any CPU memory intensive operations.

Before inserting the function into a DLL and defining the function to SQLBase, be
sure to use standard debugging techniques to ensure the function is bug free. You may
want to execute the function as a front end application and apply the debugging
techniques of your choice to the application. In a test environment, you may also want
to set up the compile of your function to display debugging information and then

bring up SQLBase from within a symbolic debugging facility.

Modifying external function definitions

Once you have created an external function, you can alter its definition, or delete it.

Alter external function

You use the ALTER EXTERNAL FUNCTION command to alter those properties of
an external function that do not invalidate dependent objects. Those properties are
library name, external name, callstyle, and execution mode. You must have DBA
authority to execute this command. For details, read the section on ALTER
EXTERNAL FUNCTION in Chapter 3.

Drop external function

You use the DROP EXTERNAL FUNCTION command to delete the specified
external function from the database. An external function can only be dropped by its
creator or by a user with SYSADM or DBA authority.

The command presents three options that determine the behavior that occurs when an
external function is dropped. You can:

« prevent the external function from being dropped if a stored procedure refers
to the function.

» specify that all stored procedures that call the external function also be
dropped.

8-24 sQL Language Reference

Error Handling

» specify the external function be dropped and all stored procedures that refer
to the function be invalidated.

A system catalog table, SYSDEPENDENCIES, maintains dependencies between
dependent objects and determinant objects. The SYSDEPENDENCIES table contains
one row for each dependency between a stored procedure and an external function.

For details, read the section on the DROP EXTERNAL FUNCTION command in
Chapter 3. For details on the SYSDPENDENCIES tables, refgsgendix ASystem
Catalog Tableof theDatabase Administrator's Guide

Error Handling

By default, errors encountered when an external function is executed within a stored
procedure terminates the procedure and returns an error code to you. For details on
stored procedure error handling, réador Handling in Chapter 7, Procedures and
Triggers

Errors specific to external functions are included in the ERROR.SQL file. The file
includes the exact error message, the reason, and the remedy. You can identify errors
specific to external functions in this file from tBXF identifier. For example:

12502 EXF GPA Cannot get address for external function <name>
Reason: An attempt to get the address for an
externalfunction failed.
Remedy: Check to make sure that the function exists and/or
its ordinal number is correct.

Exception Handling

If you are using a 32-bit platform, SQLBase identifies the following exceptions if they
occur in the external function.

* Bad memory access
e Floating point underflow
e Floating point overflow
* Floating point divide by zero
* Integer overflow
* Integer divide by zero
In the 16-bit platform, such exceptions will result in server shut down.

SQL Language Reference 8-25

Chapter 8 External Functions

System Catalog tables for external functions

SQLBase provides and maintains system catalogs, a set of tables owned by the
SYSADM that contain information about objects in the database. Following are the
tables that are specific to external functions. For details on each of these tables, refer
to Appendix A, System Catalog TahblesheDatabase Administrator's Guide

Table Name Brief Description
SYSDEPENDENCIES Lists each dependency between a stored procefure
and an external function.
SYSEXTFUN Lists all declared external functions.
SYSEXTPARAMS Lists each parameter of an external function.
SYSOBAUTH Lists each user who is granted execute privilege jon

an external function.

SYSOBJSYN Lists each synonym created for an external function.

SQLBase-supplied scripts and DLLs

This section describes the external function scripts and DLLs that are supplied with
SQLBase. You can use these scripts and DLLs to invoke SAL and C Run Time
functions.

Scripts and DLLs for 32-bit systems

SQLSAL32.SQL

Script that contains the definitions for SAL functions. If you want to use SAL
functions, be sure the Centura runtime DLLs are installed on your system.

SQLCRT32.SQL

Script that contains the definitions for the 32-bit C Run Time Library
functions.

SQLCRT32.DLL

Because it is not possible for SQLBase to directly call the C Run Time
Library functionmallod), this library contains a wrapperalloq() function

that turns around and invokes the C Run Time version. The source, make, and
project files are provided if you want to add any functions not already
included with the C Run Time version. They are:

* SQLCRT32.C (source file)

8-26 SQL Language Reference

External function example

* SQLCRT32.MAK (make file)
* SQLCRT32.MDP (project file)
Note that the project was built using Microsoft Visual C++ 4.0.

MSVCRT40.DLL

Contains the C Run Time Library functions and is a redistributable DLL
provided by Microsoft for the 32-bit system.

Scripts and DLLs for 16-bit systems

SQLCRT16.SQL

Script that contains the definitions for the 16-bit C Run Time Library
functions.

SQLCRT16.DLL

Library of C Run Time functions. The source, make, and def files are
provided if you want to add any functions not already included with the C
Run Time version. They are:

* SQLCRT16.C (source file)

¢ SQLCRT16.MAK (make file)

e SQLCRT16.DEF (def file)

Be sure to use the settings mentioneBuilding a 16-bit DLLon page3-18

External function example

Following is an example of the SAL external functi®aDateConstrucinvoked

within stored procedurdateconstructThe example also includes the CREATE
EXTERNAL FUNCTION declaration foBalDateConstrugtand the SQL commands
for creating a synonym for the function name, and privileges for executing the
function. Read the end of this section for step by step explanations of this example.

-- create SAL external function definitions.

[0 create external function "SalDateConstruct"
parameters (INT, INT, INT, INT, INT, INT)
returns (DATETIME)
library cdlli10.dll
callstyle STDCALL
execute in same thread;

O create public synonym "SalDateConstruct" for external
function "SalDateConstruct";

SQL Language Reference 8-27

Chapter 8 External Functions

O grant execute on external function "SalDateConstruct” to
public;

store dateconstruct
0 procedure dateconstruct

parameters
number : nYear
number : nMonth
number : nDay
number : nHour
number : nMinute
number : nSecond

receive date/time : dtDate
actions
0 setdtDate = SalDateConstruct
(nYear,nMonth,nDay,nHour,nMinute,nSecond)

execute p_extsal8
\
1994,12,26,9,15,0,,
/
1. Creates the external function definition. This defines the parameters, return type,
library, etc.

2. Creates a public synonym f8alDateConstrucso that all users may refer to the
function asSalDateConstruct

Grants all users execute privilegesSaiDateConstruct

4. Creates the procedure that invokes the external furstitibateConstructThe
proceduredateconstructtakes the individual components of a date and sends
back a complete date.

5. Call to the external functioBalDateConstruct

8-28 SQL Language Reference

Appendix A
SAL Functions

This appendix describes the SAL functions that you can invoke within SQLBase
procedures.

SQL Language Reference A-1

Appendix A

SAL Functions

SqlClearimmediate

SqglClose

Syntax
bOk= SqlClearimmediate ()

Description
Disconnects the internal Sgl Handle from a database.

You connect the internal handle to a database by calling Sgllmmediate and it remains
connected until the application terminates or you explicitly disconnect it with
SqlClearimmediate.

SqlClearimmediate causes an implicit COMMIT if it is the last cursor you disconnect
from the database.

Parameters

None.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

Syntax
bOk= SqlClose hSql)

Description

Invalidates a SQL command and/or frees the cursor name associated with the
specified cursor, making the cursor name available for reuse.

If you create a named cursor by calling SqlOpen and then instead of closing it, call
SqglOpen or SqlExecute again, you get an error that the name has already been used.

Parameters

hSql Sql Handle. A handle that identifies a database connection.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

A-2 SQL Language Reference

SqglCommit

SqglCommit

Syntax
bOk= SqlCommit (hSql)
Description

Commitsall of the SQL transaction’s cursors that are connected to the same database,
including those outside the procedure.

Note: In stored procedures, if you have a SqlPrepare function called in an On Procedure Startup
section and a SQLCommit function called in a subsequent On Procedure Execute section, the
COMMIT will destroy the cursor of the SQLPrepare function. Subsequent executions will fail
because the cursor’s “preparation” is lost.

To prevent destroying a cursor’s result set when a COMMIT is performed, turn on cursor context
preservation by calling SqlSetParameter and setting the DBP_PRESERVE parameter to TRUE.

Parameters

hSql Sql Handle. A handle that identifies a database connection.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

Example

Call SglConnect (hSql)

Call SqlPrepare (hSql, INSERT INTO TEST VALUES (1))
Call SglExecute (hSql)

Call SqglCommit (hSql)

SQL Language Reference A-3

Appendix A

SAL Functions

SqglConnect

Syntax
bOk= SqlConnect fSq)

Description

Connects to the currently active database. This means that SQLBase establishes a
new connection to the same database that you were connected to when you executed
the procedure.

For example, assume your SQLTalk session has two cursors outside the procedure, 1
and 2. These cursors are attached to databases DEMO1 and DEMO2, respectively. If
you execute a procedure on cursor 1, you connect DEMOZ1,; if you execute the
procedure on cursor 2, you connect to DEMO2.

You cannot connect to multiple databases with SglConnect.

Parameters

hSql Receive Sql Handle. A handle that identifies a database
connection.

Return value

bOkis TRUE if the function succeeds and FALSE if it fails.

Example

Assume you are connected to the TEST database. When the procedure begins, it
connects th&SqlPrimarySgl Handle to the TEST database. When the procedure
ends, it disconnects theSqglPrimarySql Handle from the TEST database.

Actions
On Procedure Startup
Call SglConnect (hSqlPrimary)

On Procedure Close
Call SqlDisconnect (hSqlPrimary)

A-4 SQL Language Reference

SqlDisconnect

SqlDisconnect

Syntax
bOk= SqlDisconnect (Sql)
Description

Disconnects from a database.

Parameters

hSql Sql Handle. The handle that identifies the database
connection to disconnect.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

Example

When the procedure begins, it connectshtglPrimarySqgl Handle to the database
which is currently being accessed. When the procedure ends, it disconnects the
hSqlPrimarySql Handle from the database.

Actions
On Procedure Startup
Call SqglConnect (hSqlPrimary)

On Procedure Close
Call SqlDisconnect (hSqlPrimary)

SqlDropStoredCmd
Syntax
bOk= SqlDropStoredCmdhSql, strName¢

Description

Deletes a stored command/stored procedure from a database.

Parameters

hSql Sql Handle. A handle that identifies a database connection.

SQL Language Reference A-5

Appendix A SAL Functions

strName String. The name of the stored command/procedure to
delete.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

SqlError

Syntax
nError = SqlError (hSql)

Description
Returns the most recent error code for the specified Sgl Handle.

SqlError is not useful after a call to Sgllmmediate because Sqllmmediate does not
return a handle that you can use as the parameter for SqlError.

Parameters

hSql Sql Handle. A handle on which an error occurred.

Return value

nError is the error code returned. It is equal to zero (0) if no error occurred.

SqglExecute

Syntax
bOk= SqlExecute HSql)

Description

Executes a SQL statement, procedure, or command that was prepared with
SqlPrepare, or a SQL statement, stored command, or stored procedure that was
retrieved with SqlRetrieve.

SqlExecute does not fetch data. To fetch data, call one of the fetch functions:
SqlFetchNext, SqlFetchPrevious, or SqglFetchRow.

Bind variables values are sent to the database when you call SqlExecute.

You can use SqlExecute just like SqlOpen, but you can never address rows in the
result set by a cursor name. That is, you cannot use the “CURRENT OF

A-6 SQL Language Reference

SqlExists

<cursor_name>" and “ADJUSTING <cursor_name>" clauses to INSERT, UPDATE,
or DELETE result set rows.

Parameters
hSql Sql Handle. The handle associated with a SQL statement.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

SqlExists

Syntax
bOk= SqlExists (trSelect, bExists

Description
Determines whether a row or rows exist.

SqlExists connects to the currently active database and uses the internal Sql Handle to
execute the specified query.

Parameters

strSelect String. The SELECT statement that establishes the
existence of a row.

bEXxists Receive Boolean. TRUE if the row exists and FALSE if it
does not.

Return value
bOkis TRUE ifstrSelecis correct and executable and FALSE otherwise.

SqglFetchNext

Syntax
bOk= SqlFetchNext HiSqgl, nind)

Description

Fetches the next row in a result set. You must have first 1) prepared or retrieved the
SELECT statement with SqlPrepare or SqglRetrieve, respectively, and then 2) either
executed it with SglExecute, or opened it with SqlOpen.

SQL Language Reference A-7

Appendix A SAL Functions

If you call the this function within the On Procedure Fetch section, it is recommended
that you specify a Return statement. For example:

If NOT SqlFetchNext (hSqlCurl, nind)

Return 1
Else
Return O
Parameters
hSql Sql Handle. The handle of a SELECT statement.
nind Receive Number. The fetch return code is one of the
following fetch values:
Constant Description
Fetch_Delete Indicates failure. The row has been deleted singe it
was last fetched.
Fetch_EOF Indicates failure. There are no more rows to fetch
(end of fetch).
Fetch_Ok Indicates success. The row was fetched.
Fetch_Update Indicates failure. The row has been updated since it
was last fetched.

Return value
bOkis TRUE if there is another row to fetch and FALSE otherwise.

SqglFetchPrevious

Syntax
bOk= SqlFetchPrevioushSq|, nind)

Description

Fetches the previous row in a scrollable result set. You must have first 1) prepared or
retrieved the SELECT statement with SqlPrepare or SqlRetrieve, respectively, and
then 2) either executed it with SqlExecute, or opened it with SqlOpen.

If you call the this function within the On Procedure Fetch section, it is recommended
that you specify a Return statement. For example:

If NOT SqlFetchPrevious (hSqlCurl, nind)
Return 1

A-8 SQL Language Reference

SqlFetchRow

Else
Return 0

Note: To use this function, first ensure that result set mode is set to on. To turn it on, use
SqlSetResultSet.

Parameters
hSql Sql Handle. The handle of a SELECT statement.
nind Receive Number. The fetch return code is one of the
following fetch values:
Constant Description
Fetch_Delete Indicates failure. The row has been deleted singe it
was last fetched.
Fetch_EOF Indicates failure. There are no more rows to fetch
(end of fetch).
Fetch_Ok Indicates success. The row was fetched.
Fetch_Update Indicates failure. The row has been updated since it
was last fetched.

Return value
bOkis TRUE if there is another row to fetch and FALSE otherwise.

SqlFetchRow

Syntax
bOk= SqglFetchRow fSql, nRow, nindl

Description

Fetches a row according to an absolute row position. You must have first 1) prepared
or retrieved the SELECT statement with SqlPrepare or SqglRetrieve, respectively, and
then 2) either executed it with SqlExecute, or opened it with SqlOpen.

Parameters
hSql Sql Handle. The handle of a SELECT statement.
nRow Number. The row number of the row to fetch.

SQL Language Reference A-9

Appendix A

SAL Functions

nind Receive Number. The fetch return code is one of the
following fetch values:

Constant Description

Fetch_Delete Indicates failure. The row has been deleted singe it
was last fetched.

Fetch_EOF Indicates failure. There are no more rows to fetch
(end of fetch).

Fetch_Ok Indicates success. The row was fetched.

Fetch_Update Indicates failure. The row has been updated since it
was last fetched.

Return value
bOkis TRUE ifnRowcould be fetched and FALSE otherwise.

SqlGetErrorPosition

Syntax
bOk= SqlGetErrorPosition §Sql, nPog

Description

Returns the offset of the error position within a SQL statement. After a SqlPrepare,
the error position points to the place in the SQL statement where a syntax error was
detected. The first character position in the SQL statement is zero (0).

Parameters
hSql Sql Handle. The handle of a SELECT statement.
nPos Receive Number. The position in the SQL statement where

a syntax error occurred.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

A-10 SQL Language Reference

SqlGetErrorText

SqlGetErrorText

Syntax
bOk= SqlGetErrorText AError, strText)

Description

Gets the message text for a SQL error number &owor.sql

Parameters
nError Number. The error number.
strText Receive String. The error text.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

SqlGetModifiedRows

Syntax
bOk= SqlGetModifiedRows (iSqgl, nCoun)

Description

Returns the number of rows affected by the most recent INSERT, UPDATE, or
DELETE statement.

Parameters
hSql Sql Handle. The handle of a SQL statement.
nCount Receive Number. The number of rows affected.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails.

SQL Language Reference A-11

Appendix A SAL Functions

SqlGetParameter

Syntax

bOk= SqlGetParametehSql, nParameter, nNumber, strStripg

Description

Gets the value of a database parameter. This function returns the parameter value in
nNumberor strStringas appropriate for the data type of the parameter.

Parameters
hSql

nParameter

Sqgl Handle. A handle that identifies a database connection.

Number. The database parameter. You can specify either
one of the literal strings from the following table, or the
number associated with the desired database parameter
(for example, the When to return Describe information
(SQLPDIS) parameter number is 3018). To find the
number of the associated parameter, seeghkheader

file:

Constant

Description

DBP_AUTOCOMMIT

D

Autocommit. If autocommit is on (TRUE), the databas
commits changes automatically after each SQL
command. If autocommit is off (FALSE), the database
commits changes only when you issue a COMMIT
command.

DBP_BRAND

Database server brandCurrently, only the SQLBase
brand (DBV_BRAND_SQL) is supported.

A-12 SQL Language Reference

SglGetParameter

Constant

Description

DBP_FetchTHROUGH

Fetchthrough. The fetchthrough feature enables you
retrieve rows directly from the database server instea
from the client’s input message buffer, thereby ensuri
that the user sees the most up-to-date data.

If fetchthrough is on (TRUE), the application fetches
data one row at a time from the backend. Using this
feature increases response time because of the netw
traffic incurred, so you should only use it when the ug
needs the most current information.

If fetchthrough is off (FALSE), the application fetches
data from the client’s input message buffer whenever|
possible. This is the default.

Note that in a procedure, performance is enhanced. &

client side fetch request (by default) generates a buff
full of row(s), rather than one row for each fetch. If yg
want the On Procedure Fetch section to execute exa
once for every fetch call from the client (returning one
row at a time), set fetchthrough mode on (TRUE) at t
client.

DBP_LOCKWAITTIMEOUT

Lock wait timeout. This is the number of seconds an
application should wait for the database server to acq
a lock before timing out. After the specified time has
elapsed, SQLBase rolls back the transaction. The def
lock timeout value is 300 seconds.

Valid timeout values are 1 to 1800 (30 minutes), -1 (W
forever), and 0 (never wait).

0
d of

ng

ork

ach

er

[«

ctly

ne

bire

ault

ait

DBP_NOPREBUILD

Don’t Prebuild. SQLbase does not prebuild result set]
when the application is in result set mode and is usin
the Release Locks isolation level.

Pre-building a result set provides the advantage of be
able to release shared locks and return control to the|
client. The disadvantage of pre-building a result set is
that the application must wait while the result set is
being built.

If noprebuild is on (TRUE), result sets are not pre-bui
A shared lock remains on the current page. This is th
default.

If noprebuild is off (FALSE), result sets are pre-built.

[

ing

It.

(4]

SQL Language Reference A-13

Appendix A SAL Functions

Constant Description

DBP_PRESERVE Cursor context preservation.If cursor context
preservation is on (TRUE), a COMMIT does not destroy
an active result set. This enables an application to
maintain its position after a COMMIT, ROLLBACK,
INSERT, or UPDATE. A user-initiated ROLLBACK
preserves cursor context if both of the following are true:

» The application is in Release Locks (RL)
isolation level

* A data definition language (DDL) operation
was not performed

Note that a system-initiated ROLLBACK such as a
deadlock, timeout, etc., does not preserve cursor context
even when cursor context preservation is on.

If cursor context preservation is off (FALSE), a
COMMIT does destroy an active result set. Cursor
context preservation is lost.

DBP_ROLLBACKONTIMEOUT Roll back a transaction when a lock timeout occurs.

If TRUE, the entire transaction rolls back when a lock
timeout occurs. If FALSE, only the current command
rolls back on a lock timeout. The default is TRUE.

DBP_VERSION Database server version.
nNumber Receive number. The value (TRUE or FALSE) of the
parameter.

If nParametelis DBP_BRAND,nNumbeiris one of the
DBV_BRAND_* values.

strString Receive string. If you specify DBP_VERSION in
nParameterthis is the version number.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

Example

Actions
On Procedure Startup
Call SglGetParameter (hSql, DBP_LOCKWAITTIMEOUT\
nTimeout, strNull)

A-14 SQL Language Reference

SqglGetParameterAll

SqglGetParameterAll

Syntax

bOk= SqlGetParameterAll{Sql, nParameter, nNumber, strString
bNumber)

Description

Gets the value of a database parameter identified by a SQLP* constant value defined
in sgl.h This function returns the parameter valueumberor strStringas
appropriate for the data type of the parameter.

Note: A set of the SQLP* constantssnl.hhave the same values as the DBP_* constants, but
the values identify different parameters. Be sure to specify the correct number.

Parameters
hSql Sql Handle. A handle that identifies a database connection.
nParameter Number. The database parameter. You can specify either

one of the literal strings from the table in the previous
SqglGetParameter section, or the number associated with
the desired database parameter (for example, the When to
return Describe information (SQLPDIS) parameter number
is 3018). To find the number of the associated parameter,
see thesql.hheader file.

nNumber Receive number. The value (TRUE or FALSE) of the
parameter. IhParametetis DBP_BRAND,nNumberis
one of the DBV_BRAND_* values.

strString Receive string. If you specify DBP_VERSION in
nParameterthis is the version number.

bNumber Boolean. If TRUE, the parameter value is returned in
nNumberIf FALSE, the parameter value is returned in
strString

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

SQL Language Reference A-15

Appendix A

SAL Functions

SqlGetResultSetCount

Syntax
bOk= SqlGetResultSetCounhSqgl, nCounj

Description
Counts the rows in a scrollable result set by building the result set.

SQLBase fetches each row that has not already been fetched, returns a count of the
rows, and positions the cursor back to its original position.

Warning: This can be time-consuming if the result set is large.

INSERTS into the result set increase the result set row count, but DELETES do not
decrease the row count. However, the deleted rows disappear on the next SELECT.

You must be in result set mode and you must call SqlExecute before
SqglGetResultSetCount.

Parameters
hSql Sql Handle. A handle associated with a result set.
nCount Receive Number. The number of rows in the result set.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

Example

Call SqglPrepare (hSql, strSqlStatement)
Call SqlExecute (hSql)
Call SqglGetResultSetCount (' hSql, nRowCount)

A-16 SQL Language Reference

SqglGetRollbackFlag

SqlGetRollbackFlag

Syntax
bOk= SqglGetRollbackFlagt{Sql, bRollbackFlag

Description

Returns the database rollback flag. Use this function after an error to find out if a
transaction rolled back.

SQLBase sets the rollback flag when a systeme-initiated rollback occurs as the result
of a deadlock or system failure. It does not set the rollback flag on a user-initiated

rollback.

Parameters

hSql Sql Handle. The handle associated with the function call
which got an error.

bRollbackFlag Receive Boolean. TRUE if a rollback occurred and FALSE
otherwise.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

Example

Call SqglGetRollbackFlag (hSqlError, bRollbackFlag)
If bRollbackFlag
I Execute code to handle rolled back transaction...

Sqgllmmediate

Syntax
bOk= Sqgllmmediate §trSgqlCommand

Description

Prepares and executes a SQL statement. Sgllmmediate actually performs a
SqlConnect, a SqlPrepare, a SqlExecute, and for SELECT statements, a
SqlFetchNext. The first time you call Sgllmmediate, the system performs all of these
functions. On later calls, only those functions that need to be performed are
performed. For example, if the handle is still connected to a database, the system does

SQL Language Reference A-17

Appendix A SAL Functions

not perform a SqglConnect. If the SQL statement to compile is the same statement as
that used by the last Sgllmmediate call, the system does not perform a SqlPrepare.

Use Sgllmmediate with INSERT, UPDATE, DELETE, and other non-query SQL
commands. You can use Sgllmmediate with a SELECT statement if you expect that
the statement only returns one row. Sgllmmediate manages the internal handle.

Any command that you execute with Sqllmmediate can also be executed with explicit
calls to SglConnect, SqglPrepare, SglExecute or SglOpen, and SqlFetchNext, for
SELECTSs.

When static procedures are executed, the compile phase of Sglimmediate is not
reprocessed since all SQL statements within a static procedure are precompiled.

Note: Do not use Sgllmmediate if you are implementing error handling with SglError(), since
Sqllmmediate does not retain a database handle.

Parameters

strSglCommand String. The SQL statement to prepare and execute. This
statement cannot have more than 255 bind variables and
255 INTO variables.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

SqlOpen

Syntax
bOk= SqlOpen qSql, strCursorNamg

Description

Names a cursor and executes a SQL statement. Use this function to perform
INSERTS, UPDATES, and DELETES on the current row.

Call SqlOpen after SglPrepare and before any of the SqlFetch* commands.

Parameters
hSql Sql Handle. The handle associated with the SqlPrepare.
strCursorName String. A string containing the cursor name.

A-18 SQL Language Reference

SqlPrepare

Specify this name in the 'CURRENT OF <cursor_name>'
or '"ADJUSTING <cursor_name>' clause of an INSERT,
UPDATE, or DELETE statement.

The value of this parameter is case insensitive. You can set
it to null using the empty string ().

Return value

bOkis TRUE if the function succeeds and FALSE if it fails

SqlPrepare

Syntax
bOk= SqlPrepare lSql, strSqlStatemeht

Description
Compiles a SQL statement (including non-stored procedures) for execution.
Compiling includes:

» Checking the syntax of the SQL statement or procedure.

» Checking the system catalog.

e Processing a SELECT statement's INTO clause.

An INTO clause names where data is placed when it is fetched. These
variables are sometimes called INTO variables. You can specify up to 255
INTO variables per SQL statement.

* ldentifying bind variables in the SQL statement. Bind variables contain input
data for the statement. You can specify up to 255 bind variables per SQL
statement.

Follow this function with a SqlOpen, SqlExecute fetches.

When static procedures are executed, the compile phase of SqglPrepare is not
reprocessed since all SQL statements within a static procedure are precompiled.

Parameters
hSql Sql Handle. A handle that identifies a database connection.
strSglStatement String. The SQL statement to compile.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

SQL Language Reference A-19

Appendix A SAL Functions

SqlPrepareAndExecute

Syntax
bOk= SqlPrepareAndExecuté§ql, strSqlStatemept

Description

Compiles and executes a SQL statement (including non-stored procedures).
Compiling includes:

» Checking the syntax of the SQL statement.
» Checking the system catalog.
e Processing a SELECT statement's INTO clause.

An INTO clause names where data is placed when it is fetched. These
variables are sometimes called INTO variables. You can specify up to 255
INTO variables per SQL statement.

» ldentifying bind variables in the SQL statement. Bind variables contain input
data for the statement. You can specify up to 255 bind variables per SQL
statement.

SqlPrepareAndExecute does not fetch data. To fetch data, call one of the following
fetch functions: SqlFetchNext, SqlFetchPrevious, or SqlFetchRow.

When static procedures are executed, the compile phase of SqglPrepareAndExecute is
not reprocessed since all SQL statements within a static procedure are precompiled.

For dynamic procedures, it is recommended that you do not call
SqlPrepareAndExecute if your procedure needs to be executed repeatedly, and only
needs to be compiled once. An example is binding different variables at execution
time. Calling SqglPrepareAndExecute in this situation would compile the SQL
statement each time it is executed, resulting in unnecessary overhead.

Instead, prepare the SQL statement with SglPrepare in the On Procedure Startup
section, and then execute it in the On Procedure Execute section with SglExecute.

Parameters
hSql Sqgl Handle. A handle that identifies a database connection.
strSglStatement String. The SQL statement to compile and execute.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

A-20 SQL Language Reference

SqlRetrieve

SqglRetrieve

Syntax
bOk= SqlRetrieve fSql, strName, strBindList, strintoList

Description
Retrieves a SQLBase stored command or stored procedure.

To execute the command, you need only call SglExecute. You do not need to compile
the command with SqlPrepare because the command is compiled when it is stored
with SqlStore.

Parameters

hSql Sql Handle. A handle that identifies a database connection.

strName String. The name of the compiled command.

strBindList String. A comma-separated list of up to 255 bind variables.
Each string must be preceded by a coldiThis list has
the same number of variables as the compiled command.
This string can be null.

strintoList String. A comma-separated list of up to 255 INTO

variables. Each string must be preceded by a coldrh(s
list has the same (or less) number of INTO variables as
named in the SELECT list of the compiled command.

This stringcanbe null (" or strNULL).
Return value

bOkis TRUE if the function succeeds and FALSE if it fails

SqglSetlsolationLevel

Syntax
bOk= SqlSetlsolationLevell{Sql, strisolation)

Description

Sets the isolation level for all the application’s cursors connected to the database.

SQL Language Reference A-21

Appendix A SAL Functions

The default isolation level for a procedure is Read Repeatability (RR). However, if
the calling program is set at a different isolation level, the procedure isolation level
automatically changes to that of the calling program.

Also, if the procedure makes a change to the isolation level using
SqlSetlsolationLevel, the calling program inherits this new isolation level by default.
As a result, all cursors connected to the same database both within and outside the
procedure are committed.

Parameters
hSql Sql Handle. A handle that identifies a database connection.
strisolation String. The isolation level to set. Specify one of these

values:

CS Cursor Stability

RL Release Locks
RO Read Only
RR Read Repeatability (default)

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

SqglSetLockTimeout

Syntax
bOk= SqlSetLockTimeout§Sql, nTimeou}

Description

Specifies the maximum time to wait to acquire a lock. After the specified time
elapses, a timeout occurs and the transaction rolls back.

Parameters

hSql Sql Handle. A handle that identifies a database connection;
the cursor on which you want to set a lock timeout value.

nTimeout Number. The timeout period in seconds. Valid value

include -1 (wait forever), 0 (never wait), and values up to
and including 1800 (30 minutes). The default is 300.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

A-22 SQL Language Reference

SqlSetParameter

SqglSetParameter

Syntax
bOk= SqlSetParametehSql, nParameter, nNumber, strString

Description

Sets the value of a database parameter. Use the numhhenipe) and string
(strString arguments as appropriate for the data type of the parameter.

Parameters
hSql Sql Handle. A handle that identifies a database connection.
nParameter Number. The database parameter to set. Specify one of the
DBP_* constants or the desired database parameter
number (found irsqgl.h listed for SglGetParameter.
nNumber Number. The value afParameterSpecify TRUE or
FALSE for all but DBP_LOCKWAITTIMEOUT, for
which you must specify a value in seconds.
strString String. The value ofiParameter

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

SqlSetParameterAll

Syntax

bOk= SqlSetParameterAll{Sql, nParameter, nNumber, strString,
bNumber)

Description

Sets the value of a database parameter. Use the numhlenioe) and string
(strString arguments as appropriate for the data type of the parameter.

Parameters

hSql Sql Handle. A handle that identifies a database connection.

SQL Language Reference A-23

Appendix A SAL Functions

nParameter Number. The database parameter to set. Specify one of the
DBP_* constants or the desired database parameter
number (found irsqgl.h listed for SglGetParameter.

nNumber Number. The value afParameterSpecify TRUE or
FALSE for all but DBP_LOCKWAITTIMEOUT, for
which you must specify a value in seconds.

strString String. The value ofiParameter

bNumber Boolean. If TRUE, the parameter’s value isidumber If
FALSE, the parameter’s value isstrString

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

SqlSetResultSet

Syntax
bOk= SqlSetResultSethSql, bSe}

Description
Turns result set mode on or off.

By default, result set mode is on.

Parameters
hSql Sqgl Handle. A handle that identifies a database connection.
bSet Boolean. Turns result set mode on (TRUE) or off

(FALSE).

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

A-24 sSQL Language Reference

SqlStore

SqlStore

Syntax
bOk= SqlStore HSql, strName, strSqlCommand

Description
Stores and names a SQLBase compiled SQL statement (including procedures).

You do not need to call SqlPrepare before calling SqlStore. SqlStore compiles the
SQL statement.

You can specify up to 255 bind variables. Use numeric bind variables in the SQL
statement, not variable names. For example: "SELECT * FROM PRESIDENT
WHERE LASTNAME =:1 AND AGE = :2;".

When you retrieve the stored command with SglRetrieve, you specify the bind
variable names in the INTO clause.

Parameters

hSql Sql Handle. A handle that identifies a database connection.
strName String. The name of the stored command.

strSglCommand String. The SQL statement to compile and store.

Return value
bOkis TRUE if the function succeeds and FALSE if it fails

SQL Language Reference A-25

Glossary

access path-The path used to get the data specified in a SQL command. An access
path can involve an index or a sequential search (table scan), or a combination of
the two. Alternate paths are judged based on the efficiency of locating the data.

aggregate functior—A SQL operation that produces a summary value from a set of
values.

alias—An alternative name used to identify a database object.

API (application programming interface}-A set of functions that a program uses to
access a database.

application—A program written by or for a user that applies to the user's work. A
program or set of programs that perform a task. For example, a payroll system.

argument—A value entered in a command that defines the data to operate on or that
controls execution. Also called parameter or operand.

arithmetic expressior-An expression that contains operations and arguments that
can be reduced to a single numeric value.

arithmetic operator—A symbol used to represent an arithmetic operation, such as the
plus sign (+) or the minus sign (-).

attribute—A characteristic or property. For example, the data type or length of a row.
Sometimes, attribute is used as a synonym for column or field.

audit file—A log file that records output from an audit operation.
audit message-A message string that you can include in an audit file

audit operation—A SQLBase operation that logs database activities and
performance, writing output to an audit file. For example, you can monitor who
logs on to a database and what tables they access, or record command execution
time.

authorization—The right granted to a user to access a database.

authorization ID—A unique name that identifies a user. Associated to each
authorization id is a password. Abbreviated auth id. Also called username.

back-end—See database server.

backup—To copy information onto a diskette, fixed disk, or tape for record keeping
Or recovery purposes.

SQL Language Reference Glossary-l

Glossary

Glossary-2

base table-The permanent table on which a view is based. A base table is created
with the CREATE TABLE command and does not depend on any other table. A
base table has its description and its data physically stored in the database. Also
called underlying table.

bindery—A NetWare 3.x database that contains information about network resources
such as a SQLBase database server.

bind variable—A variable used to associate data to a SQL command. Bind variables
can be used in the VALUES clause of an INSERT command, in a WHERE
clause, or in the SET clause of an UPDATE command. Bind variables are the
mechanism to transmit data between an application work area and SQLBase.
Also called into variable or substitution variable.

browse—A mode where a user queries some of a database without necessarily
making additions or changes. In a browsing application, a user needs to examine
data before deciding what to do with it. A browsing application allows the user to
scroll forward and backward through data.

buffer—A memory area used to hold data during input/output operations.

C/API—A language interface that lets a programmer develop a database application
in the C programming language. The C/API has functions that a programmer
calls to access a database using SQL commands.

cache—A temporary storage area in computer memory for database pages being
accessed and changed by database users. A cache is used because it is faster to
read and write to computer memory than to a disk file.

Cartesian product-In a join, all the possible combinations of the rows from each of
the tables. The number of rows in the Cartesian product is equal to the number of
rows in the first table times the number of rows in the second table, and so on. A
Cartesian product is the first step in joining tables. Once the Cartesian product
has been formed, the rows that do not satisfy the join conditions are eliminated.

cascade—A delete rule which specifies that changing a value in the parent table
automatically affects any related rows in the dependent table.

case sensitive-A condition in which names must be entered in a specific lower-case,
upper-case, or mixed-case format to be valid.

cast—The conversion between different data types that represent the same data.

CHAR—A column data type that stores character strings with a user-specified length.
SQLBase stores CHAR columns as variable-length strings. Also called
VARCHAR.

character—A letter, digit, or special character (such as a punctuation mark) that is
used to represent data.

SQL Language Reference

character string—A sequence of characters treated as a unit.

checkpoint—A point at which database changes older than the last checkpoint are
flushed to disk. Checkpoints are needed to ensure crash recovery.

clause—A distinct part of a SQL command, such as the WHERE clause; usually
followed by an argument.

client—A computer that accesses shared resources on other computers running as
servers on the network. Also called front-end or requester.

column—A data value that describes one characteristic of an entity. The smallest unit
of data that can be referred to in a row. A column contains one unit of data in a
row of a table. A column has a nhame and a data type. Sometimes called field or
attribute.

command—A user request to perform a task or operation. In SQLTalk, each
command starts with a name, and has clauses and arguments that tailor the action
that is performed. A command can include limits or specific terms for its
execution, such as a query for names and addresses in a single zip code.
Sometimes called statement.

commit—A process that causes data changed by an application to become part of the
physical database. Locks are freed after a commit (except when cursor-context
preservation is on). Before changes are stored, both the old and new data exist so
that changes can be stored or the data can be restored to its prior state.

commit server—A database server participating in a distributed transaction, that has
commit service enabled. It logs information about the distributed transaction and
assists in recover after a network failure.

composite primary key-A primary key made up of more than one column in a table.

concatenated key-An index that is created on more than one column of a table. Can
be used to guarantee that those columns are unique for every row in the table and
to speed access to rows via those columns.

concatenatior—Combining two or more character strings into a single string.

concurrency—The shared use of a database by multiple users or application
programs at the same time. Multiple users can execute database transactions
simultaneously without interfering with each other. The database software
ensures that all users see correct data and that all changes are made in the proper
order.

configure—To define the features and settings for a database server or its client
applications.

connect—To provide a valid authorization-id and password to log on to a database.

SQL Language Reference Glossary-3

Glossary

Glossary-4

connection handle—Used to create multiple, independent connections. An
application must request a connection handle before it opens a cursor. Each
connection handle represents a single transaction and can have multiple cursors.
An application may request multiple connection handles if it is involved in a
sequence of transactions.

consistency—A state that guarantees that all data encountered by a transaction does
not change for the duration of a command. Consistency ensures that
uncommitted updates are not seen by other users.

constant—Specifies an unchanging value. Also called literal.

control file—An ASCII file containing information to manage segmented load/
unload files.

cooperative processingProcessing that is distributed between a client and a server
in a such a way that each computer works on the parts of the application that it is
best at handling.

coordinator—The application that initiates a distributed transaction.

correlated subquer~A subquery that is executed once for each row selected by the
outer query. A subquery cannot be evaluated independently because it depends
on the outer query for its results. Also called a repeating query. Also see
subqguery and outer query.

correlation name—A temporary hame assigned to a table in an UPDATE, DELETE,
or SELECT command. The correlation name and column name are combined to
refer to a column from a specific table later in the same command. A correlation
name is used when a reference to a column name could be ambiguous. Also
called range variable.

crash recovery-The procedures that SQLBase uses automatically to bring a
database to a consistent state after a failure.

CRC (Cyclic Redundancy Check)Atechnique that makes unauthorized changes to
a database page detectable. SQLBase appends an extra bit sequence to every
database page called a Frame Check Sequence (FCS) that holds redundant
information about the page. When SQLBase reads a database page, it checks the
FCS to detect unauthorized changes.

current ron—The latest row of the active result set which has been fetched by a
cursor. Each subsequent fetch retrieves the next row of the active result set.

cursor—The term cursor refers to one of the following definitions:

* The position of a row within a result table. A cursor is used to retrieve rows
from the result table. A named cursor can be used in the CURRENT OF
clause or the ADJUSTING clause to make updates or deletions.

SQL Language Reference

* A work space in memory that is used for gaining access to the database and
processing a SQL command. This work space contains the return code,
number of rows, error position, number of select list items, number of bind
variables, rollback flag, and the command type of the current command.

* When the cursor belongs to an explicit connection handle that is created using
the SQL/API function calsglcchor the SQLTalk BEGIN CONNECTION
command, it identifies a task or activity within a transaction. The task or
activity can be compiled/executed independently within a single connection
thread.

Cursors can be associated with specific connection handles, allowing
multiple transactions to the same database within a single application. When
this is implemented, only one user is allowed per transaction.

* When a cursor belongs to an implicit connection handle created using the
SQL/API function calkglcncor sqlcnr, or the SQLTalk CONNECT
command, the cursor applies to an application in which you are connecting
the cursor to a specific database that belongs to a single transaction.

cursor-context preservatica-A feature of SQLBase where result sets are maintained
after a COMMIT. A COMMIT does not destroy an active result set (cursor
context). This enables an application to maintain its position after a COMMIT,
INSERT, or UPDATE. For fetch operations, locks are kept on pages required to
maintain the fetch position.

cursor handle—Identifies a task or activity within a transaction. When a connection
handle is included in a function call to open a new cursor, the function call
returns a cursor handle. The cursor handle can be used in subsequent SQL/API
calls to identify the connection thread. A cursor handle is always part of a
specific transaction and cannot be used in multiple transactions. However, a
cursor handle can be associated with a specific connection handle. The ability to
have multiple transactions to the same database within a single application is
possible by associating cursor handles with connection handles.

Cursor Stability (CS}-The isolation level where a page acquires a shared lock on it
only while it is being read (while the cursor is on it). A shared lock is dropped as
the cursor leaves the page, but an exclusive lock (the type of lock used for an
update) is retained until the transaction completes. This isolation level provides
higher concurrency than Read Repeatability, but consistency is lower.

data dictionary—See system catalog.

data type—Any of the standard forms of data that SQLBase can store and manipulate.
An attribute that specifies the representation for a column in a table. Examples of
data types in SQLBase are CHAR (or VARCHAR), LONG VARCHAR (or

SQL Language Reference Glossary-5

Glossary

LONG), NUMBER, DECIMAL (or DEC), INTEGER (or INT), SMALLINT,
DOUBLE PRECISION, FLOAT, REAL, DATETIME (or TIMESTAMP), DATE,
TIME.

database—A collection of interrelated or independent pieces of information stored
together without unnecessary redundancy. A database can be accessed and
operated upon by client applications such as SQLTalk.

database administrator (DBA}-A person responsible for the design, planning,
installation, configuration, control, management, maintenance, and operation of
a DBMS and its supporting network. A DBA ensures successful use of the
DBMS by users.

A DBA is authorized to grant and revoke other users’ access to a database, modify
database options that affect all users, and perform other administrative functions.

database area-A database area corresponds to a file. These areas can be spread
across multiple disk volumes to take advantage of parallel disk input/output
operations.

database management system (DBMS) software system that manages the
creation, organization, and modification of a database and access to data stored
within it. A DBMS provides centralized control, data independence, and
complex physical structures for efficient access, integrity, recovery, concurrency,
and security.

database objeet-A table, view, index, synonym or other object created and
manipulated through SQL.

database serverA DBMS that a user interacts with through a client application on
the same or a different computer. Also called back-end or engine.

DATE—A column data type in SQL that represents a date value as a three-part value
(day, month, and year).

date/time value—A value of the data type DATE, TIME, or TIMESTAMP.

DCL (Data Control Language}-SQL commands that assign database access
privileges and security such as GRANT and REVOKE.

DDL (Data Definition Language}—SQL commands that create and define database
objects such as CREATE TABLE, ALTER TABLE, and DROP TABLE.

deadlock—A situation when two transactions, each having a lock on a database page,
attempt to acquire a lock on the other's database page. One type of deadlock is
where each transaction holds a shared lock on a page and each wishes to acquire
an exclusive lock. Also called deadly embrace.

DECIMAL —A column data type that contains numeric data with a decimal point.
Also called DEC.

Glossary-6 SQL Language Reference

default—An attribute, value, or setting that is assumed when none is explicitly
specified.

delimited identifie—An identifier enclosed between two double quote characters (")
because it contains reserved words, spaces, or special characters.

delimite—A character that groups or separates items in a command.
dependent objeet-An object whose existence depends on another object.

For example, if a stored procedure calls an external function, the stored procedure
is the dependent object of the external function, since its existence depends on the
external function.

dependent table-The table containing the foreign key.
determinant object-An object that determines the existence of another object.

For example, if a stored procedure calls an external function, the external function
is the determinant object, since it determines the existence of the stored procedure.

digital signature—A unique binary number generated by an algorithm that identifies
the content of a larger block of bytes.

dirty page—A database page in cache that has been changed but has not been written
back to disk.

distributed database-A database whose objects reside on more than one system in a
network of systems and whose objects can be accessed from any system in the
network.

distributed transactior—Coordinates SQL statements among multiple databases that
are connected by a network.

DLL (Dynamic Link Library)—A program library written in C or assembler that
contains related modules of compiled code. The functions in a DLL are not read
until run-time (dynamic linking).

DML (Data Manipulation Language}-SQL commands that change data such as
INSERT, DELETE, UPDATE, COMMIT, and ROLLBACK.

DOUBLE PRECISION—A column data type that stores a floating point number.

DQL (Data Query Language}-The SQL SELECT command, which lets a user
request information from a database.

duplicates—An option used when creating an index for a table that specifies whether
duplicate values are allowed for a key.

SQL Language Reference GIossary-?

Glossary

Glossary-8

embedded SQE-SQL commands that are embedded within a program, and are
prepared during precompilation and compilation before the program is executed.
After a SQL command is prepared, the command itself does not change
(although values of host variables specified within the command can change).
Also called static SQL.

encryption—The transformation of data into a form unreadable by anyone without a
decryption key or password. Encryption ensures privacy by keeping information
hidden from anyone for whom it is not intended, even those who can see the
encrypted data. Unencrypted data is called plain text; encrypted data is called
cipher text.

engine—See database server.

entity—A person, place, or thing represented by a table. In a table, each row
represents an entity.

equijoin—A join where columns are compared on the basis of equality, and all the
columns in the tables being joined are included in the results.

Ethernet—A LAN with a bus topology (a single cable not connected at the ends).
When a computer wants to transmit, it first checks to see if another computer is
transmitting. After a computer transmits, it can detect if a collision has happened.
Ethernet is a broadcast network and all computers on the network hear all
transmissions. A computer selects only those transmissions addressed to it.

exclusive lock (X-lock)-An exclusive lock allows only one user to have a lock on a
page at a time. An exclusive lock prevents another user from acquiring a lock
until the exclusive lock is released. Exclusive locks are placed when a page is to
be modified (such as for an UPDATE, INSERT, or DELETE).

An exclusive lock differs from a shared lock because it does not permit another
user to place any type of lock on the same data.

expressior—An item or a combination of items and operators that yield a single
value. Examples are column names which yield the value of the column in
successive rows, arithmetic expressions built with operators such as + or - that
yield the result of performing the operation, and functions which yield the value
of the function for its argument.

extent page-A database page used when a row is INSERTed that is longer than a
page or when a row is UPDATEd and there is not enough space in the original
page to hold the data.

external function—A user-defined function that resides in an "external” DLL
(Dynamic Link Library) invoked within a SQLBase stored procedure.

field—See column.

SQL Language Reference

file server—A computer that allows network users to store and share information.
FLOAT—A column data type that stores floating point numbers.

floating point—A number represented as a number followed by an exponent
designator (such as 1.234E2, -5.678E2, or 1.234E-2). Also called E-notation or
scientific notation.

foreign key—Foreign keys logically connect different tables. A foreign key is a
column or combination of columns in one table whose values match a primary
key in another table. A foreign key can also be used to match a primary key
within the same table.

front-end—See client.

function—A predefined operation that returns a single value per row in the output
result table.

grant—That act of a system administrator to permit a user to make specified use of a
database. A user may be granted access to an entire database or specific portions,
and have unlimited or strictly-limited power to display, change, add, or delete
data.

GUI (Graphical User Interface)-A graphics-based user interface with windows,
icons, pull-down menus, a pointer, and a mouse. Microsoft Windows and
Presentation Manager are examples of graphical user interfaces.

history file—Contains previous versions of changed database pages. Used when read-
only (RO) isolation level is enabled.

host language-A program written in a language that contains SQL commands.
identifier—The name of a database object.

index—A data structure associated with a table used to locate a row without scanning
an entire table. An index has an entry for each value found in a table’s indexed
column or columns, and pointers to rows having that value. An index is logically
ordered by the values of a key. Indexes can also enforce uniqueness on the rows
in a table.

INTEGER—A column data type that stores a number without a decimal point. Also
call INT.

isolation level—The extent to which operations performed by one user can be
affected by (are isolated from) operations performed by another user. The
isolation levels are Read Repeatability (RR), Cursor Stability (CS), Release
Locks (RL), and Read Only (RO).

SQL Language Reference Glossary-9

Glossary

Glossary-10

join—A query that retrieves data from two or more tables. Rows are selected when
columns from one table match columns from another table. See also Cartesian
product, self-join, equijoin, natural join, theta join, and outer join.

key—A column or a set of columns in an index used to identify a row. A key value
can be used to locate a row.

keyword—One of the predefined words in a command language.

local area network (LAN)-A collection of connected computers that share data and
resources, and access other networks or remote hosts. Usually, a LAN is
geographically confined and microcomputer-based.

lock—To temporarily restrict other usersO access to data to maintain consistency.
Locking prevents data from being modified by more than one user at a time and
prevents data from being read while being updated. A lock serializes access to
data and prevents simultaneous updates that might result in inconsistent data. See
shared lock (S-lock) and exclusive lock (X-lock).

logical operator—A symbol for a logical operation that connects expressions in a
WHERE or HAVING clause. Examples are AND, OR, and NOT. An expression
formed with logical operators evaluates to either TRUE or FALSE. Logical
operators define or limit the information sought. Also called Boolean operator.

LONG VARCHAR—INn SQL, a column data type where the value can be longer than
254 bytes. The user does not specify a length. SQLBase stores LONG
VARCHAR columns as variable-length strings. Also called LONG.

mathematical function—An operation such as finding the average, minimum, or
maximum value of a set of values.

media recovery-Restoring data from backup after events such as a disk head crash,
operating system crash, or a user accidentally dropping a database object.

message buffer—Fhe input message buffer is allocated on both the client computer
and the database server. The database server builds an input message in this
buffer on the database server and sends it across the network to a buffer on the
client. It is called an input message buffer because it is input from the client’s
point of view.

The out put message buffer is allocated on both the client computer and on the
database server. The client builds an output message in this buffer and sends it to
a buffer on the database server. It is called an output message buffer because it is
output from the client’s point of view.

modulo—An arithmetic operator that returns an integer remainder after a division
operation on two integers.

SQL Language Reference

multi-user—The ability of a computer system to provide its services to more than one
user at a time.

natural join—An equijoin where the value of the columns being joined are compared
on the basis of equality. All the columns in the tables are included in the results
but only one of each pair of joined columns is included.

NDS (NetWare Directory Services)A network-wide directory included with
NetWare 4.x, that provides global access to all network resources, regardless of
their physical location. The directory is accessible from multiple points by
network users, services and applications.

nested query-See subquery.

NetWare—T he networking components sold by Novell. NetWare is a collection of
data link drivers, a transport protocol stack, client computer software, and the
NetWare server operating system. NetWare runs on Token Ring, Ethernet, and
ARCNET.

NetWare 386-A server operating system from Novell for computers that controls
system resources on a network.

NLM (NetWare Loadable Module)-An NLM is a NetWare program that you can
load into or unload from server memory while the server is running. When
loaded, an NLM is part of the NetWare operating system. When unloaded, an
NLM releases the memory and resources that were allocated for it.

null—A value that indicates the absence of data. Null is not considered equivalent to
zero or to blank. A value of null is not considered to be greater than, less than, or
equivalent to any other value, including another value of null.

NUMBER—A column data type that contains a number, with or without a decimal
point and a sign.

numeric constant—A fixed value that is a number.

ODBC—The Microsoft Open DataBase Connectivity (ODBC) standard, which is an
application programming interface (API) specification written by Microsoft. It
calls for all client applications to write to the ODBC standard API and for all
database vendors to provide support for it. It then relies on third-party database
drivers or access tools that conform to the ODBC specification to translate the
ODBC standard API calls generated by the client application into the database
vendor’s proprietary API calls.

operator—A symbol or word that represents an operation to be performed on the
values on either side of it. Examples of operators are
arithmetic (+, -, *, /), relational (=, I=, >, <, >=, <=), and logical (AND, OR,
NOT).

SQL Language Reference Glossary-11

Glossary

Glossary-12

optimization—The determination of the most efficient access strategy for satisfying a
database access.

outer join—A join in which both matching and non-matching rows are returned.
Each preserved row is joined to an imaginary row in the other table in which all
the fields are null.

outer query—wWhen a query is nested within another query, the main query is called
the outer query and the inner query is called the subquery. An outer query is
executed once for each row selected by the subquery. A subquery cannot be
evaluated independently but that depends on the outer query for its results. Also
see subquery.

page—T he physical unit of disk storage that SQLBase uses to allocate space to tables
and indexes.

parent table—The table containing the primary key.

parse—0 examine a command to make sure that it is properly formed and that all
necessary information is supplied.

partitioning—A method of setting up separate user areas to maximize disk space.
Databases can be stretched across several different network partitions.

password-A sequence of characters that must be entered to connect to a database.
Associated to each password is an authorization-id.

picture—A string of characters used to format data for display.
precedence-Fhe default order in which operations are performed in an expression.
precision—The maximum number of digits in a column.

precompilation—Processing of a program containing SQL commands or procedures
that takes place before compilation. SQL commands are replaced with
statements that are recognized by the host language compiler. Output from
precompilation includes source code that can be submitted to the compiler.

predicate—An element in a search condition that expresses a comparison operation
that states a set of criteria for the data to be returned by a query.

primary key—The columns or set of columns that are used to uniquely identify each
row in a table. All values for a key are unique and non-null.

privilege—A capability given to a user to perform an action.

procedure—A named set of SAL or SQL statements that can contain flow control
language. You compile a procedure for immediate and/or later execution.

SQL Language Reference

guery—A request for information from a database, optionally based on specific
conditions. For example, a request to list all customers whose balance is greater
than $1000. Queries are issued with the SELECT command.

Read Only (RO)—Fhe isolation level where pages are not locked, and no user has to
wait. This gives the user a snapshot view of the database at the instant that the
transaction began. Data cannot be updated while in the read-only isolation level.

Read Repeatability (RR)Fhe isolation level where if data is read again during a
transaction, it is guaranteed that those rows would not have changed. Rows
referenced by the program cannot be changed by other programs until the
program reaches a commit point. Subsequent queries return a consistent set of
results (as though changes to the data were suspended until all the queries
finished). Other users will not be able to update any pages that have been read by
the transaction. All shared locks and all exclusive locks are retained on a page
until the transaction completes. Read repeatability provides maximum protection
from other active application programs. This ensures a high level of consistency,
but lowers concurrency. SQLBase default isolation level.

REAL—A column data type that stores a single-precision number.
record—See row.

recovery—Rebuilding a database after a system failure.

referential cycle—Tables which are dependents of one another.

referential integrity—Guarantees that all references from one database table to
another are valid and accurate. Referential integrity prevents problems that occur
because of changes in one table which are not reflected in another.

relation—See table.

relational database-A database that is organized and accessed according to
relationships between data items. A relational database is perceived by users as a
collection of tables.

relational operator—A symbol (such as =, >, or <) used to compare two values. Also
called comparison operator.

Release Locks (RL)-With the Cursor Stability isolation level, when a reader moves
off a database page, the shared lock is dropped. However, if a row from the page
is still in the message buffer, the page is still locked.

In contrast, the Release Lock (RL) isolation level increases concurrency. By the
time control returns to the application, all shared locks have been released.

repeating query—See correlated subquery.

requester—See client.

SQL Language Reference Glossary-13

Glossary

Glossary-14

restore—Copying a backup of a database or its log files to a database directory.

restriction mode—n restriction mode, the result set of one query is the basis for the
next query. Each query further restricts the result set. This continues for each
subsequent query.

result set mode-Normally, result table rows are displayed and scrolled off the
screen. In result set mode, the rows of the result table are available for
subsequent scrolling and retrieval.

result table—The set of rows retrieved from one or more tables or views during a
guery. A cursor allows the rows to be retrieved one by one.

revoke—T he act of withdrawing a user's permission to access a database.

rollback—To restore a database to the condition it was in at its last COMMIT. A
ROLLBACK cancels a transaction and undoes any changes that it made to the
database. All locks are freed unless cursor-context preservation is on.

rollforward—Reapplying changes to a database. The transaction log contains the
entries used for rollforward.

router—A client application talks to a SQLBase server through a router program.
The router enables a logical connection between a client and the server. Once this
connection is established on the LAN, the client application uses the router
program to send SQL requests to the server and to receive the results.

row—A set of related columns that describe a specific entity. For example, a row
could contain a name, address, telephone number. Sometimes called record or
tuple.

ROWID—A hidden column associated with each row in a SQLBase table that is an
internal identifier for the row. The ROWID can be retrieved like any other
column.

ROWID validation—A programming technique that ensures that a given row that
was SELECTed has not been changed or deleted by another user during a
session. When a row is updated, the ROWID is changed.

SAP (Service Advertisement ProtocolpA-NetWare protocol that resources (such as
database servers) use to publicize their services and addresses on a network.

savepoint—An intermediate point within a transaction to which a user can later
ROLLBACK to cancel any subsequent commands, or COMMIT to complete the
commands.

scale—The number of digits to the right of the decimal point in a number.

search condition—A criterion for selecting rows from a table. A search condition
appears in a WHERE clause and contains one or more predicates.

SQL Language Reference

search—J0 scan one or more columns in a row to find rows that have a certain
property.

self-join—A join of a table with itself. The user assigns the two different correlation
names to the table that are used to qualify the column names in the rest of the

query.

self-referencing table-A table that has foreign and primary keys with matching
values within the same table.

server—A computer on a network that provides services and facilities to client
applications.

SHA (Secure Hash Algorithm)-A hash algorithm published by the United States
government that SQLBase uses to detect unauthorized changes to a database
page. SHA produces a condensed representation of a database page called a
message digest that is used to generate a digital signature. When SQLBase reads
a page encrypted with SHA, it verifies the signature. Any unauthorized changes
to the page results in a different message digest and the signature will fail to
verify. It is extremely unlikely to find a page that corresponds to a given message
digest, or to find two different pages which produce the same message digest.

shared cursor—A handle that is used by two or more Windows applications.

shared lock (S-lock)-A shared lock permits other users to read data, but not to
change it. A shared lock lets users read data concurrently, but does not let a user
acquire an exclusive lock on the data until all the users’ shared locks have been
released. A shared lock is placed on a page when the page is read (during a
SELECT). At a given time, more than one user can have a shared lock placed on
a page. The timing of the release of a shared lock depends on the isolation level.

A shared lock differs from an exclusive lock because it permits more than one user
to place a lock on the same data.

single-user—A computer system that can only provide its services to one user at a
time.

SMALLINT—A column data type that stores numbers without decimal points.

socket—An identifier that Novell's IPX (Internetwork Packet Exchange) uses to route
packets to a specific program.

SPX (Sequenced Packet ExchangeNovell communication protocol that
monitors network transmissions to ensure successful delivery. SPX runs on top of
Novell's IPX (Internetwork Packet Exchange).

SQL (Structured Query Language)-A-standard set of commands used to manage
information stored in a database. These commands let users retrieve, add, update,
or delete data. There are four types of SQL commands

SQL Language Reference Glossary-15

Glossary

Glossary-16

Data Definition Language (DDL), Data Manipulation Language (DML), Data
Query Language (DQL), and Data Control Language (DCL). SQL commands
can be used interactively or they can be embedded within an application
program. Pronounced ess-que-ell or sequel.

SQLBase—A relational DBMS that lets users access, create, and update data.

SQLTalk—SQLTalk is an interactive user interface for SQLBase that is used to
manage a relational database. SQLTalk has a complete implementation of SQL
and many extensions. SQLTalk is a client application.

static SQL—See embedded SQL.

statistics—Attributes about tables such as the number of rows or the number of
pages. Statistics are used during optimization to determine the access path to a
table.

storage group-A list of database areas. Storage groups provide a means to allow
databases or tables to be stored on different volumes.

stored procedure-A precompiled procedure that is stored on the backend for future
execution.

string delimiter—A symbol used to enclose a string constant. The symbol is the
single quote ().

string—A sequence of characters treated as a unit of data.

subquery—A SELECT command nested within the WHERE or HAVING clause of
another SQL command. A subquery can be used anywhere an expression is
allowed if the subquery returns a single value. Sometimes called a nested query.
Also called subselect. See also correlated subquery.

synonym—A name assigned to a table, view, external function that may be then used
to refer to it. If you have access to another user’s table, you may create a
synonym for it and refer to it by the synonym alone without entering the user’s
name as a qualifier.

syntax—The rules governing the structure of a command.

system catalog-A set of tables SQLBase uses to store metadata. System catalog
tables contain information about database objects, privileges, events, and users.
Also called data dictionary.

system keywordskeywords that can be used to retrieve system information in
commands.

table—The basic data storage structure in a relational database. A table is a two-
dimensional arrangement of columns and rows. Each row contains the same set
of data items (columns). Sometimes called a relation.

SQL Language Reference

table scan—A method of data retrieval where a DBMS directly searches all rows in a
table sequentially instead of using an index.

theta join—A join that uses relational operators to specify the join condition.

TIME— A column data type in the form of a value that designates a time of day in
hours, minutes, and possibly seconds (a two- or three-part value).

timeout—A time interval allotted for an operation to occur.

TIMESTAMP—A column data type with a seven-part value that designates a date
and time. The seven parts are year, month, day, hour, minutes, seconds, and
microseconds (optional). The format is

yyyy-mm-dd-hh.mm.ss.nnnnnn

token—A character string in a specific format that has some defined significance in a
SQL command.

Token-Ring—A LAN with ring topology (cable connected at the ends). A special
data packet called a token is passed from one computer to another. When a
computer gets the token, it can attach data to it and transmit. Each computer
passes on the data until it arrives at its destination. The receiver marks the
message as being received and sends the message on to the next computer. The
message continues around the ring until the sender receives it and frees the token.

tokenized error messageAhn error message formatted with tokens in order to
provide users with more informational error messages. A tokenized error
message contains one or more variables that SQLBase substitutes with object
names (tokens) when it returns the error message to the user.

transaction—A logically-related sequence of SQL commands that accomplishes a
particular result for an application. SQLBase ensures the consistency of data by
verifying that either all the data changes made during a transaction are
performed, or that none of them are performed. A transaction begins when the
application starts or when a COMMIT or ROLLBACK is executed. The
transaction ends when the next COMMIT or ROLLBACK is executed. Also
called logical unit of work.

transaction log—A collection of information describing the sequence of events that
occur while running SQLBase. The information is used for recovery if there is a
system failure. A log includes records of changes made to a database. A
transaction log in SQLBase contains the data needed to perform rollbacks, crash
recovery, and media recovery.

trigger—Activates a stored procedure that SQLBase automatically executes when a
user attempts to change the data in a table, such as on a DELETE or UPDATE
command.

SQL Language Reference Glossary-17

Glossary

Glossary-18

two-phase commit-Fhe protocol that coordinates a distributed transaction commit
process on all participating databases.

tuple—See row.

unigue key—One or more columns that must be unique for each row of the table. An
index that ensures that no identical key values are stored in a table.

username—See authorization-id.

value—Data assigned to a column, a constant, a variable, or an argument.
VARCHAR—See CHAR.

variable—A data item that can assume any of a given set of values.

view—A logical representation of data from one or more base tables. A view can
include some or all of the columns in the table or tables on which it is defined. A
view represents a portion of data generated by a query. A view is derived from a
base table or base tables but has no storage of its own. Data for a view can be
updated in the same manner as for a base table. Sometimes called a virtual table.

wildcard—Characters used in the LIKE predicate that can stand for any one character
(the underscore _) or any number of characters (the percent sign %) in pattern-
matching.

Windows—A graphical user interface from Microsoft that runs under DOS.

With Windows, commands are organized in lists called menus. Icons (small
pictures) on the screen represent applications. A user selects a menu item or an
icon by pointing to it with a mouse and clicking.

Applications run in windows that can be resized and relocated. A user can run two
or more applications at the same time and can switch between them. A user can
run multiple copies of the same application at the same time.

write-ahead log (WAL)-A transaction logging technique where transactions are
recorded in a disk-based log before they are recorded in the physical database.
This ensures that active transactions can be rolled back if there is a system crash.

SQL Language Reference

Index

Symbols

7-29

- 7-29

I=7-29

% 2-31

& 7-29

* 7-29

+ 7-29

| 7-29

<7-29

=7-29

> 7-29

>=7-29

@ABS 4-4, 4-12
reserved wordb-2

@ACOS4-4, 4-13
reserved wordb-2

@ASIN 4-4, 4-13
reserved word-2

@ATAN 4-4, 4-14
reserved wordb-2

@ATAN2 4-4, 4-14
reserved wordb-2

@CHAR 4-3, 4-15
reserved wordb-2

@CHOOSE4-5, 4-15
reserved wordb-2

@CODE3-36, 4-3, 4-16
reserved wordb-2

@CO0S4-4, 4-16
reserved wordb-2

@CTERM4-5, 4-16
reserved word-2

@DATE 4-3, 4-17
reserved word-2

@DATETOCHAR4-3, 4-17
reserved word-2

@DATEVALUE 3-36, 4-3, 4-18
reserved wordb-2

@DAY 3-36, 4-3, 4-18
reserved word-2

@DECIMAL 4-5, 4-19
reserved word-2

@DECODE4-3, 4-5, 4-19
reserved wordb-2

@EXACT 4-3, 4-20
reserved word-2
@EXP 4-4, 4-20
reserved wordb-2
@FACTORIAL 4-4, 4-21
reserved wordb-2
@FIND 4-3, 4-21
reserved word-2
@FULLP
reserved word-2
@FV 4-5, 4-22
reserved wordb-2
@HALFP
reserved word-2
@HEX 4-5, 4-22
reserved word-2
@HOUR 3-36, 4-3, 4-23
reserved wordb-2
@IF 4-5, 4-23
reserved word-2
@INT 4-4, 4-24
reserved word-2
@ISNA 4-5, 4-24
reserved wordb-2
@LEFT 3-36, 4-3, 4-24
reserved word-2
@LENGTH 3-36, 4-3, 4-25, 4-58
reserved wordb-2
@LICS 3-36, 4-5, 4-25, 4-58
reserved wordb-2
@LN 4-4, 4-37, 4-70
reserved wordb-2
@LOG 4-4, 4-37, 4-70
reserved wordb-2
@LOWER 3-36, 4-3, 4-38, 4-71
reserved wordb-2
@MEDIAN 4-2, 4-38, 4-71
reserved word-2
@MICROSECOND3-36, 4-3, 4-39, 4-72
reserved wordb-2
@MID 3-36, 4-3, 4-39, 4-72
reserved wordb-2
@MINUTE 3-36, 4-3, 4-40, 4-73
reserved word-2
@MOD 4-4, 4-40, 4-73
reserved wordb-2

Database Administrator's Guide

Index-1

Index

@MONTH 3-36, 4-3, 4-40, 4-73
reserved wordb-2
@MONTHBEG 3-36, 4-3, 4-41, 4-74
reserved word-2
@NOW 4-3, 4-41, 4-74
reserved wordb-2
@NULLVALUE 4-3, 4-41, 4-74
reserved wordb-2
@P14-4, 4-42, 4-75
reserved wordb-2
@PMT 4-5, 4-43, 4-76
reserved wordb-2
@PROPER3-36, 4-3, 4-43, 4-76
reserved wordb-2
@PV 4-5, 4-44, 4-77
reserved word-2
@QUARTER3-36, 4-3, 4-44, 4-77
reserved word-2

@QUARTERBEG3-36, 4-3, 4-45, 4-78

reserved wordb-2
@RATE 4-5, 4-45, 4-78
reserved word-2
@REPEAT4-3, 4-46, 4-79
reserved wordb-2
@REPLACEA4-3, 4-46, 4-79
reserved wordb-2
@RIGHT 3-36, 4-3, 4-47, 4-80
reserved wordb-2
@ROUND4-4, 4-47, 4-80
reserved wordb-2
@SCAN4-3, 4-48, 4-81
reserved wordb-2
@SDV 4-2, 4-48, 4-81
reserved wordb-2
@SECOND3-36, 4-4, 4-49, 4-82
reserved wordb-2
@SIN 4-4, 4-49, 4-82
reserved wordb-2
@SLN 4-5, 4-50, 4-83
reserved wordb-2
@SQRT4-4, 4-50, 4-83
reserved wordb-2
@STRING3-36, 4-3, 4-51, 4-84
reserved wordb-2
@SUBSTRINGS3-36, 4-3, 4-51, 4-84
reserved word-2
@SYD 4-5, 4-52, 4-85
reserved wordb-2

Index-2 SQL Language Reference

@TAN 4-4, 4-53, 4-86
reserved wordb-2

@TERM 4-5, 4-53, 4-86
reserved wordb-2

@TIME 4-4, 4-54, 4-87
reserved wordb-2

@TIMEVALUE 3-36, 4-4, 4-54, 4-87
reserved wordb-2

@TRIM 3-36, 4-3, 4-55, 4-88
reserved word-2

@UPPERS3-36, 4-3, 4-55, 4-88
reserved wordb-2

@VALUE 3-36, 4-3, 4-55, 4-88
reserved wordb-2

@WEEKBEG3-36, 4-4, 4-56, 4-89
reserved wordb-2

@WEEKDAY 3-36, 4-4, 4-56, 4-89
reserved wordb-2

@YEAR 3-36, 4-4, 4-57, 4-90
reserved wordb-2

@YEARBEG 3-36, 4-4, 4-57, 4-90
reserved wordb-2

@YEARNO 4-4, 4-58, 4-91
reserved word-3

@YEARNUM 3-36

\ (backslashp-31

_ (underscore) pattern matchi@e31

| 7-29

|| 7-29

‘external function
REVOKE EXECUTE ON3-110

A
ABORTxxxDBSxxx
reserved word-3
action section
On statement
where to specify’-16
ACTIONS
PROCEDURE3-105
Actions
reserved wordb-3
When SqlErrof7-45
actions
procedurer-7
execute7-7
activate
trigger 3-52

ADD
ALTER STOGROUP3-9
ALTER TABLE 3-10
ALTER TABLE (Error Messages3-13
ALTER TABLE (referential integrity)3-15
reserved word-3
add7-29
ADJUSTING
reserved word-3
ADJUSTING cursor name
INSERT 3-90
AFTER
trigger 3-57
AFTERr
reserved word-3
ALL
GRANT (Table Privileges3-85
privilege 3-85
reserved word-3
REVOKE (Table Privileges}-109
SELECT 3-117
UNLOAD 3-134
ALL keyword 2-29
ALTER
GRANT (Table Privileges3-85
privilege 3-85
reserved word-3
REVOKE (Table Privileges}-109
Alter
procedure7-33
alter
external functior8-7
ALTER authority
with foreign key3-17, 3-47, 6-8
ALTER DATABASE 1-6, 3-2, 3-5
LOG 3-5
STOGROUP3-5
ALTER DBAREA 1-6, 3-2, 3-6
SIZE 3-6
ALTER EXTERNAL FUNCTION 1-6, 3-2
ALTER PASSWORD1-6, 3-2, 3-8
ALTER STOGROUP1-6, 3-2, 3-9
ADD 3-9
DROP3-9
ALTER TABLE 1-6, 3-2, 3-10
ADD 3-10
DROP3-11
MODIFY 3-11

NOT NULL WITH DEFAULT 3-11
NULL 3-11
RENAME 3-12
ALTER TABLE (Error Messages3-19, 6-31
ADD 3-13
DELETE PARENT3-13
DROP3-13
INSERT_DEPENDENT3-14
MODIFY 3-13
UPDATE_DEPENDENT3-14
UPDATE_PARENT3-14
USERERROR3-13
ALTER TABLE (error messages-2
ALTER TABLE (referential ilntegrity)6-20
ALTER TABLE (Referential Integrity)6-16

ALTER TABLE (referential integrity)3-2, 3-15

ADD 3-15
CASCADE delete rule-18
DROP3-15
FOREIGN KEY 3-16
ON DELETE3-18
PRIMARY KEY 3-15
REFERENCES3-18
RESTRICT3-18
SET NULL 3-18
ALTER TRIGGER1-6, 3-2, 3-19
DISABLE 3-20
ENABLE 3-20
alternate key6-5
AND 7-29
reserved wordb-3
AND operator2-25
ANY
reserved word-3
ANY keyword 2-28
APPEND
reserved word-3
START AUDIT 3-126
array
parametei7-9
AS
reserved wordb-3
AS filename/raw device
CREATE DBAREA 3-29
ASC
CREATE DBAREA 3-37
reserved wordb-3
ASCII

SQL Language Reference Index-3

Index

LOAD 3-97
reserved wordb-3
UNLOAD 3-133
AT
reserved wordb-3
ATTRIBUTE
reserved word-3
AUDIT
reserved word-3
audit
APPEND clause3-126
CATEGORY clauses3-127
GLOBAL clause3-125
KEEP clause3-126
OVERWRITE clause3-126
PERFM clause3-125
SIZE clause3-126
stopping3-129
TO clause3-125
audit file 3-124
AUDIT keyword 3-129
AUDIT MESSAGE 1-5, 3-2, 3-20
audit name
START AUDIT 3-125
AUTHORITY
reserved wordb-3
authority level
GRANT (Database Authority3-82
authorization ID2-3
GRANT (Database Authority3-82
GRANT (Table Privileges3-85
name2-3
name convention2-6
autocommitA-12
trigger 3-59
AVG 4-2, 4-9
reserved word-3

B
backslash «\2-31
BEFORE
reserved wordb-3
trigger 3-57
begin
statement block-7, 7-8
BETWEEN
reserved word-3
BETWEEN predicate2-30

Index-4 SQL Language Reference

binary data
storage2-9
bind variables
definition 2-44
identify A-19, A-20
name2-5
name convention2-6
SqlExecuteA-6
SqlStoreA-25
trigger 3-62
bitmap file
storage2-9
BLOBS 2-9
block
statement-7
boolean7-9, 7-10
Boolean expressioB-25
brand
serverA-12
Break7-13
example7-13
BUCKETS
CREATE INDEX 3-38
reserved word-3
BY
reserved word-3

C
Call 7-14

example7-14
CALLSTYLE

reserved wordb-3
candidate keys-4
Cartesian produc-40
CASCADE

ALTER TABLE (referential integrity)3-18

CREATE TABLE 3-49

reserved word-3
CATALOG

reserved word-3
CATEGORY

reserved wordb-3

START AUDIT 3-127
CDECL

reserved wordb-3
CHAR 3-45

reserved word-3

with LIKE 2-31

CHAR/VARCHAR
definition 2-8
CHARACTER
reserved word-3
character2-7, 2-8
CHAR 2-8
character strin@-8
CHECK
DATABASE
SYSTEM ONLY 3-21
examples3-23, 3-24
reserved word-3
TABLE
WITHOUT INDEXES 3-24
view 3-23
check
securityA-19, A-20
syntaxA-19, A-20
CHECK DATABASE 1-6, 3-2, 3-21
with referential integrity6-30
CHECK EXISTS
UPDATE 3-140
CHECK INDEX 1-6, 3-
CHECK TABLE 1-6, 3-
child row 6-3, 6-12
child table6-3, 6-11, 6-18
delete connectioB-14
CLIENT
reserved wordb-3
CLUSTERCOUNT3-143
CLUSTERED
reserved wordb-3
CLUSTERED HASHED
CREATE DBAREA 3-37
Codd, E.F1-2
COLAUTH
reserved word-3
COLUMN
COMMENT ON 3-25
reserved word-3
column1-8
data typel-8
in trigger 3-60
namel-8, 2-4
CREATE TABLE 3-45
CREATE VIEW 3-67
identifier 2-4
UPDATE 3-139

2, 3-23
2, 3-23

naming convention2-6
pseudo for sequence obje&<20
columns1-7
command
compiled
returnA-21
name2-5
naming conventiong-6
processing phases11
SQL
compile A-19, A-20
executeA-17, A-18, A-20
invalidate A-2
nameA-25
prepareA-17
storeA-25
stored
deleteA-5
Command Summarg-2
COMMENT
reserved word-3
COMMENT ON 1-6, 3-2, 3-24
COLUMN 3-25
EXTERNAL FUNCTION 3-25
TABLE 3-25
comments
example7-28
procedure7-28
COMMIT 1-5, 3-2, 3-25
reserved word-3
TRANSACTION <ID> FORCE3-26
WORK 3-26
commit
cursorsA-3
implicit 3-26
trigger 3-59
comparison operatioriz-8
comparison predicat2-28
comparison relational predica2e27
compile
procedurel-10
SQL commandL-10, A-19, A-20
composite primary keg-46, 6-4
COMPRESS
LOAD 3-98
reserved word-3
UNLOAD 3-134
COMPUTE

SQL Language Reference

Index-5

Index

reserved word-3 LOG TO 3-28
concatenate CREATE DBAREA 1-4, 3-2, 3-29
string 7-29 AS clause3-29
concatenation ASC 3-37
string operatoR-23 CLUSTERED HASHED3-37
with procedure¥-29 dbarea nam&-29
CONNECT DESC3-37
GRANT (Database Authority3-82 PCTFREES3-38
reserved word-3 SIZE 3-29
REVOKE (Database Authority3-107 SIZE ROWS3-38
connect UNIQUE 3-37
databaseé\-4 CREATE EXTERNAL FUNCTION1-4, 3-30
constant2-17 CREATE EXTERNAL FUNCTIONSS-2
examples2-18 CREATE INDEX 1-4, 3-2, 3-30

constraint name

see referential integrity
CONTROL

LOAD 3-98

reserved word-3

UNLOAD 3-134
control

flow 3-105
control file 3-98, 3-134

DIR 3-99, 3-135

FILEPREFIX 3-99, 3-135

SIZE 3-135
conversion, data typexs17
COPY

with referential integrity6-30
correlation

naming conventiong2-7
correlation name-4

DELETE 3-71

UPDATE 3-139
COUNT 4-2, 4-10

reserved word-3

BUCKETS 3-38
index functions3-36
ROWS 3-38
CREATE STOGROUPL-4, 3-2, 3-40
USING dbarea nama-40
CREATE SYNONYM 1-4, 3-3, 3-41
PUBLIC 3-42
CREATE TABLE 1-4, 3-3, 3-44
CASCADE 3-49
column name3-45
data type3-45
FOREIGN KEY 3-47
foreign key6-15
IN 3-49
IN DATABASE 3-49
NOT NULL 3-48
NOT NULL WITH DEFAULT 3-48
ON DELETE 3-49
PCTFREE3-49
PRIMARY KEY 3-46
primary key6-15
REFERENCES3-48

count RESTRICT3-49
result set row#\-16 SET NULL 3-49
CR table name3-45
reserved word-3 with referential integrity6-15
CREATE CREATE TRIGGER1-4, 3-3
reserved wordb-3 CREATE VIEW 1-4, 3-3, 3-66
create column name3-67

external functior8-31
local variable7-6
procedure3-103 7-33

CREATE DATABASE 1-4, 3-2, 3-27
IN stogroup namé-28

Index-6 SQL Language Reference

SELECT 3-67

view name3-67

WITH CHECK OPTION3-68
CREATOR

reserved wordb-3

currency
using DECIMAL data type-13
CURRENT
reserved word-3
CURRENT DATE 2-36
CURRENT DATETIME 2-35, 2-36
CURRENT TIME 2-36
CURRENT TIMESTAMP2-35, 2-36
CURRENT TIMEZONEZ2-36
CURRVAL 2-19, 2-20
CURRVAI
reserved word-3
cursor
context preservatioA-3
isolation level
setA-21
nameA-18
free A-2
SqlExecuteA-6
Cursor StabilityA-22
cursors
commit A-3

D
DATA
UNLOAD 3-132
data
consistency
trigger 7-54
control command4-6
integrity
trigger 7-54
SQL organizatiorll-7
types1-8, 2-7, 3-48
boolean7-9, 7-10
CHAR/VARCHAR 2-8
character2-8
DATE 2-16
date/time7-9, 7-10
DECIMAL/DEC 2-10
DOUBLE PRECISION2-14
FLOAT 2-14
foreign key3-17, 3-47, 6-8
INTEGER/INT 2-13
local variable7-6
local variablesr-6
LONG VARCHAR/LONG 2-9
NUMBER 2-10

number7-9, 7-10
numeric2-7, 2-9, 2-13
parameters-5
REAL 2-14
sql handle7-9, 7-11, 7-12
string 7-9, 7-11
TIME 2-16
data compression
LOAD 3-98
UNLOAD 3-134
Data Control Commandbs-6
Data Definition Command$-4
data dictionaryl-11
Data Manipulation Commands
see DML commands
Data query commandk5
data type
conversion2-16
conversion in function2-17
CREATE TABLE 3-45
date/time2-15
DATETIME/TIMESTAMP 2-15
DATABASE
reserved word-3
UNLOAD 3-134
UPDATE STATISTICS3-142
database
audit messag8-2, 3-20
check3-21
connectA-4
deinstall3-70
disconnectA-5
drop3-73
install 3-92
name2-4
CREATE DATABASE 3-27
extension2-4
requirement-7
valid character-4
naming conventiong-2, 2-7
new 3-27
parameter
autocommitA-12
brandA-12
cursor context preservatioh-14
database versioA-14
fetchthroughA-13
getA-12

SQL Language Reference

Index-7

Index

get valueA-15
lock wait timeoutA-13
pre-build result sef-13
roll back transactioi\-14
setA-23
rollback flag
getA-17
server
brandA-12
unload3-134
versionA-14
database sequence objects
SYSDBSequence-20
databaseg-7
DATE 3-45
reserved word-3
date
add, subtracp-37
DATE data type?-16
date/time2-7, 7-9, 7-10
entering value®-33
expression®-37
keyword resolutior2-36
keywords2-35
valid input format2-35
date/time constar2-17
date/time data typ2-15
DATETIME 3-45
reserved word-3
DATETIME data type2-15
DAY 2-36
reserved word-3
DB2 3-48
load tables3-97
DBA
GRANT (Database Authority3-82
reserved wordb-3
REVOKE (Database Authority3-107
dba authority
definition 3-82
DBAREA
reserved word-3
dbarea
drop3-73
dbarea name
CREATE DBAREA 3-29
DBATTRIBUTE 1-6, 3-3, 3-69
reserved word-3

Index-8 SQL Language Reference

DBP_AUTOCOMMIT 7-13, A-12
DBP_BRAND 7-13, A-12
DBP_FETCHTHROUGHA-13
DBP_LOCKWAITTIMEOUT 7-13, A-13
DBP_NOPREBUILDA-13
DBP_PRESERVE/-13, A-3

cursor

context preservatioA-14

DBP_ROLLBACKONTIMEOUT A-14
DBP_ROLLBACKTIMEOUT 7-13
DBP_VERSION7-13 A-14
DBV_BRAND_DB2 7-13
DBV_BRAND_ORACLE 7-13
DBV_BRAND_SQL 7-13
DDL 1-4
DEC

reserved wordb-3
DEC data type2-10
DECIMAL 3-45

reserved wordb-3
DECIMAL data type2-10
declare

input variable3-104

local variablesr’-6

output variable3-104

parameterg-5
DEFAULT

reserved word-3
default

error handling7-45
DEINSTALL

reserved wordb-3
DEINSTALL DATABASE 1-6, 3-3, 3-70
DELETE 1-5, 2-24, 3-3, 3-71

AFTER 3-59

BEFORE3-59

correlation name-71

GRANT (Table Privileges3-85

referential cycle$-23

reserved word-3

REVOKE (Table Privileges}-109

search conditior8-71

table name3-71

trigger 3-52, 3-59

view name3-71

when to specify for referential integri§+15

WHERE 3-71
WHERE CURRENT OR3-71

with referential integrity6-19

with self-referencing rows and tablésl3
delete

stored commané-5

stored procedurd-5
DELETE CASCADE®6-19

referential cycles

rules6-25

referential cycles examplg-23
DELETE RESTRICT6-19

referential cycle$-25
DELETE SET NULL6-19, 6-20

with partial NULL foreign key6-10
DELETE WHERE CURRENT OF

with self-referencing rows and tablésl3
DELETE_PARENT

ALTER TABLE (Error Messages3-13
delete-connected table restrictioh7
delimited identifier2-2
delimiters

statement block'-8
DESC

CREATE DBAREA 3-37

reserved word-3
descendent tablé-11
destroy

local variable7-6
DIF

LOAD 3-97

reserved word-3

UNLOAD 3-133
DIR

for control file 3-99, 3-135
DIRECT

reserved word-3
DISABLE

ALTER TRIGGER3-20

reserved word-3
disconnect

databasé\-5

internal Sql HandI&\-2
DISCOUNTCOUNT

reserved word-3
DISTINCT

reserved word-3

SELECT3-117
DISTINCTCOUNT 3-143

UPDATE STATISTICS3-143

divide 7-29
DML commandsl-5
DML execution modell-12
DOUBLE
reserved wordb-3
DOUBLE PRECISION data typ2-14
double quote
using with identifier2-2
DQL commandsl-5
DROP
ALTER STOGROUP3-9
ALTER TABLE 3-11
ALTER TABLE (Error Messages3-13
ALTER TABLE (referential integrity)3-15
reserved word-3
with referential integrity6-20
Drop
procedure7-33
DROP DATABASE 3-3, 3-73
DROP DBAREA3-3, 3-73
DROP EXTERNAL FUNCTION3-3
DROP INDEX 3-3, 3-74
DROP STOGROUR-3, 3-77, 3-81
DROP SYNONYM3-3, 3-77
DROP TABLE 3-3, 3-79
DROP TRIGGER3-3, 3-80
example3-80
privileges3-80
DROP VIEW 3-3, 3-80
DYNAMIC
PROCEDURE3-103
reserved wordb-3
Dynamic
procedure
advantage§-36
dynamic procedur&-32

E
EACH
reserved wordb-3
Else7-14
Else If 7-14
ENABLE
ALTER TRIGGER3-20
reserved wordb-3
ENCRYPTED
GRANT (Database Authority3-82
end

SQL Language Reference Index-9

Index

statement block-7, 7-8
equijoin 2-40
Erase
description7-41
procedure7-41
error
code
return A-6
local handler7-45
message
text A-11
position
offset A-10
syntax
position A-10
error handling
default7-45
in procedureg-45
in triggers7-56
procedure7-45
error message
customizing for referential integrit§-30
ERROR.SQLA-11
add customized error messa®81
ERRORLEVEL
SET 3-23, 3-24
EVENT
reserved word-3
EVERY
reserved word-3
EXECUTE
CREATE TRIGGER3-61
reserved word-3
execute
actions7-7
commandl-11
procedure7-41, A-6
SQL commandA-6, A-17, A-18
Team Developer functioi-14
trigger 3-57
EXISTS
reserved wordb-3
EXISTS predicate-30
expression
definition 2-22
SELECT 3-117
using null value-23
extension

Index-10 SQL Language Reference

database-4
EXTERNAL

reserved word-3
EXTERNAL FUNCTION

COMMENT ON 3-25
external function

alter 3-7

create3-30, 3-31
external functiond -7

=
FALSE 7-12
fetch
next row
result setA-7
previous row
result setA-8
result set
next rowA-7
previous rowA-8
row A-9
FETCH_Delete
SqlFetchNexf7-12, A-8
SqlFetchPrevious-9
SqlFetchRowA-10
FETCH_EOF
SqlFetchNexf7-12, A-8
SqlFetchPrevious-9
SqlFetchRowA-10
FETCH_Ok
SqlFetchNex7-12, A-8
SqlFetchPrevious-9
SqlFetchRowA-10
FETCH_Update
SqlFetchNex7-12, A-8
SqlFetchPrevious\-9
SqlFetchRowA-10
fetchthroughA-13
file
UNLOAD 3-133
file segments
specifying size3-135
FILEPREFIX

for control file 3-99, 3-135

FLOAT 3-45
reserved word-3
FLOAT data type2-14

flow control

language3-105
FOR
reserved word-3
FOR EACH ROW
trigger 3-62
FOR EACH STATEMENT
trigger 3-62
FOR UPDATE OF
SELECTS3-121
FORCE
reserved word-3
FOREIGN
reserved word-3
FOREIGN KEY
ALTER TABLE (referential integrity)3-16
CREATE TABLE 3-47
foreign key1-8, 6-3, 6-7
columns3-17, 3-47, 6-8
constraint namé-7
create6-15, 6-16
customized error messages32
DROP6-20, 6-21
guidelines6-8
index 3-17, 3-47, 6-8, 6-9
insertion rules6-18
matching primary key columr3-17, 3-47, 6-8
name3-17
NULL values3-17, 3-47, 6-8, 6-23
report6-16
using primary key column3-17, 3-47, 6-8
with NULL values6-9
Form
templates3-2
free
cursor nameA-2
FROM
reserved word-3
SELECT3-118
FROM PUBLIC
REVOKE (Table Privileges3-109
REVOKE EXECUTE ON3-110
FROM userid
REVOKE EXECUTE ON3-110
FUNCTION
reserved word-3
function 2-32
with indexes3-36

G
get
database parametér12
error
message texA-11
rollback flagA-17
value
database parametérl5
GLOBAL
reserved word-3
START AUDIT 3-125
grandparent tablé-14
GRANT 1-6, 3-3
reserved word-3
GRANT (Database Authority3-81
authority level3-82
authorization 1D3-82
CONNECT3-82
DBA 3-82
ENCRYPTED3-82
IDENTIFIED BY 3-82
password3-82
RESOURCE3-82
GRANT (Table Privileges)
ALL 3-85
ALTER 3-85
authorization ID3-85
DELETE 3-85
INDEX 3-85
INSERT 3-85
privilege 3-85
PUBLIC 3-86
SELECT3-85
table name3-85
UPDATE 3-85
view name3-85
GRANT (table privilegesB-3, 3-84
GRANT EXECUTE ON1-6, 3-3, 3-86
example3-88
procedure nama-87
TO PUBLIC 3-87
TO userid3-87
WITH CREATOR PRIVILEGES3-88
WITH GRANTEE PRIVILEGES3-88
GRANT EXECUTEON
PUBLIC keyword3-88
GRANTE EXECUTE ON
privileges3-87

SQL Language Reference Index-11

Index

GRANTEE

reserved wordb-3
greater tharv-29
greater than or equal ©-29
great-grandparent tab& 14
GROUP

reserved word-3
GROUP BY

SELECT3-119

H
HASHED
reserved word-4
HAVING
reserved wordb-4
SELECT3-120
HEIGHT 3-143
HOUR 2-36
reserved word-4
HOURS
reserved wordb-4

I
ID
reserved wordb-4
IDENTIFIED
reserved wordb-4
IDENTIFIED BY
GRANT (Database Authority3-82
identifier 2-2
delimited 2-2
using quote-2
long 2-2
maximum length2-2
ordinary 2-2
qualified 2-2
see alsmame
short2-2
using double quote2-2
see also name
identify
bind variablesA-19, A-20
If 7-14
IF/ELSE
example7-48
implicit commit 3-26
IN
CREATE TABLE 3-49

Index-12 SQL Language Reference

reserved word-4
IN DATABASE
CREATE TABLE 3-49
IN predicate2-31
IN stogroup name
CREATE DATABASE 3-28
indentation
example7-8
logic flow 7-7
statement block-7
independent tablé-12
INDEX
GRANT (Table Privileges3-85
privilege 3-85
reserved word-4
REVOKE (Table Privileges}-109
UPDATE STATISTICS3-142
index 1-9, 3-17, 3-47, 6-8
check3-23
drop 3-74
dropping primary6-21
foreign key6-9
functions3-36
name2-5
naming conventiong-7
size3-35
with functions3-36
with OR operato2-26
INDEXES
reserved word-4
indexesl1-7
INDEXPAGECOUNT 3-143
initialize
local variable7-7
INLINE
reserved wordb-4
trigger 3-62
input
procedure7-5
input parameter
procedure3-103
input variable
declare3-104
INSERT 1-5, 3-3, 3-88
ADJUSTING 3-90
AFTER 3-59
BEFORE3-59
GRANT (Table Privileges3-85

privilege 3-85
referential cycle$-23
reserved word-4
REVOKE (Table Privileges}-108
subselecB-90
trigger 3-52, 3-59
VALUES 3-90
with partial NULL foreign key6-10
with referential integrity6-18
INSERT_DEPENDENT
ALTER TABLE (Error Messages3-14
INSTALL
reserved word-4
INSTALL DATABASE 1-6, 3-3, 3-92
INT
reserved word-4
INT data type2-13
INTEGER 3-45
reserved word-4
integer arithmeti@2-10
INTEGER data type-13
integrity check3-21, 3-23
error 3-23, 3-24
system indexe8-21
system table§-21
view 3-23
integrity violation3-23, 3-24
internal
Sql Handle
disconnectA-2
SqlimmediateA-18
INTO
reserved word-4
INTO clause
SqlPreparéA-19, A-20
invalidate
SQL commandA-2
IS
reserved wordb-4
IS ’string-constant ’
COMMENT ON 3-25
isolation level
Cursor StabilityA-22
Read OnlyA-22
Read Repeatabilitp-22
Release Lock#\-22
setA-21
item

definition 2-22
IXNAME
reserved word-4

J

join 1-8, 2-38, 2-39, 2-40
equijoin 2-40
non-equijoin2-43
number2-43
outer join2-41
self join 2-42

K
KEEP
reserved wordb-4
START AUDIT 3-126
KEY
reserved wordb-4
keywords, syster?-18

L
LABEL 1-6, 3-4, 3-93
multiple columns3-94
ON COLUMN 3-94
ON TABLE 3-93
reserved word-4
LEAFCOUNT 3-143
less thari7-29
less than or equal t6-29
LF
reserved wordb-4
LIBRARY
reserved wordb-4
LIKE
reserved word-4
LIKE predicate2-31
LIMIT
reserved word-4
literal 2-17
LOAD 1-6, 3-4, 3-95
ASCII 3-97
COMPRESS3-98
CONTROL 3-98
DB2 table3-97
DIF 3-97
LOG 3-100
ON CLIENT 3-99
ON SERVER3-99

SQL Language Reference Index-13

Index

reserved word-4
SQL 3-96
START AT 3-100
with referential integrity6-16, 6-30
LOCAL
reserved word-4
local error handlerr-45
local variable
boolean7-10
create7-6
data types’-6
date/time7-10
default valuer-7
destroy7-6
initialize 7-7
number7-10
procedure3-104, 7-6
sql handle7-11, 7-12
string 7-11
LOCK
reserved word-4
lock
wait maximumA-22
wait timeoutA-13
LOCK DATABASE 1-6, 3-4
database
lock 3-101
locking mode
Cursor StabilityA-22
Read OnlyA-22
Read Repeatabilitp-22
Release Lock#\-22
setA-21
LOG
ALTER DATABASE 3-5
LOAD 3-100
reserved word-4
UNLOAD 3-136
LOG TO
CREATE DATABASE 3-28
logic flow
Break7-13
example7-13
Call 7-14
example7-14
Else7-14
Else If 7-14
If 7-14

Index-14 SQL Language Reference

indentation7-7
Loop 7-15
example7-15
On 7-15
example7-18
Return7-24
Set
example7-25
Set statemeni-25
Trace7-25
example7-26
When sqglerrof7-26
While 7-28
logical operator®-25
LONG 2-9
reserved word-4
long identifier2-2
LONG VARCHAR 2-9, 3-45
long varchar
trigger 3-62
LONGPAGECOUNT3-143
Loop 7-15
loop
example7-15
terminate7-13

M
MAX 4-2, 4-10
reserved wordb-4
MESSAGE
reserved word-4
MICROSECOND2-36
reserved wordb-4
MICROSECONDS2-36
reserved word-4
MIN 4-2, 4-11
reserved word-4
MINUTE 2-36
reserved wordb-4
MINUTES
reserved word-4
MODIFY
ALTER TABLE 3-11
ALTER TABLE (Error Messages3-13
reserved wordb-4
MONTH 2-36
reserved word-4
MONTHS

reserved word-4
multiply 7-29

N
NAME
reserved wordb-4
name
authorization ID2-3
bind variable2-5
column name2-4
command2-5
correlation2-4
cursorA-18
free A-2
SqlExecuteA-6
database-4
examples2-2
index 2-5
password2-5
procedure2-5, 3-103
requirement-6
see alsadentifier
SQL commandA-25
synonymz2-5
table 2-5
types2-3
user2-3
view 2-6
naming conventions
variables7-9
nest
triggers3-54
NEW
reserved word-4
NEW AS
trigger 3-61
next row
fetch A-7
NEXTVAL 2-19, 2-20
reserved word-4
non-equijoin2-40, 2-43
NOT 7-29
reserved word-4
NOT NULL
ALTER TABLE 3-11
CREATE TABLE 3-48
NOT NULL WITH DEFAULT
ALTER TABLE 3-11

CREATE TABLE 3-48
NOT operator2-25
NULL 2-18, 3-46

ALTER TABLE 3-11

reserved word-4

with foreign key3-17, 3-47, 6-8, 6-9, 6-10
null

definition 2-7

in expression®-23

search condition2-26
NULL predicate2-30
NUMBER 3-45

reserved word-4
number2-7, 7-9, 7-10
NUMBER data type2-10
numeric constan®-17
numeric data typ@-7, 2-9

O
ODBC Glossary-11
OF

reserved word-4
OFF

reserved word-4
offset

error positionA-10
OLD

reserved word-4
OLD AS

trigger 3-61
ON

reserved word-4
On7-15

example7-18
ON CLIENT

LOAD 3-99

UNLOAD 3-136
ON COLUMN

LABEL 3-94
ON DELETE

ALTER TABLE (referential integrity)3-18

CREATE TABLE 3-49
ON SERVER

LOAD 3-99

UNLOAD 3-136
On statement

where to specifyr-16
ON TABLE

SQL Language Reference Index-15

Index

LABEL 3-93
ONLY

reserved word-4
Open DataBase Connectivity

see ODBCGlossary-11
operators/-29

7-29

- 7-29

1= 7-29

& 7-29

* 7-29

+ 7-29

[7-29

<>7-29

=7-29

> 7-29

>=7-29

| 7-29

|| 7-29

AND 7-29

NOT 7-29

parentheseg-29

unary -7-29
optimize1-11
optimizer1-12
OPTION

reserved word-4
OR

operators

OR 7-29

reserved word-4
OR operatorR-25

with index 2-26
Oracle outer joirR-42
oracleouterjoin keywor@-42
ORDER

reserved word-4
ORDER BY

SELECT 3-120
order of execution

trigger 3-59
ordinary identifier2-2
outer join2-40
output

procedure7-5
output parameter

procedure3-103
output variable

Index-16 SQL Language Reference

declare3-104
OVERWRITE 3-136
reserved word-4
START AUDIT 3-126
UNLOAD 3-136
OVFLPAGECOUNT3-143

P
PAGECOUNT3-143
Parameter
PROCEDURES3-32
parameter
array 7-9
boolean7-10
data types’-5
database
getA-12
setA-23
date/time7-10
DBP_AUTOCOMMIT A-12
DBP_BRAND A-12
DBP_FETCHTHROUGHA-13
DBP_LOCKWAITTIMEOUT A-13
DBP_NOPREBUILDA-13
DBP_PRESERVEA-14
DBP_ROLLBACKONTIMEOUT A-14
DBP_VERSIONA-14
number7-10
setA-23
sql handle7-11, 7-12
string 7-11
PARAMETERS
PROCEDURE3-103
reserved wordb-4
parent row6-3, 6-12, 6-19, 6-30, 6-31
customized error messages31
parent table3-17, 3-47, 6-3, 6-8, 6-11, 6-18
parsel-11
partial NULL/non-NULL foreign key6-9
PASCAL
reserved wordb-4
pass by reference-10
pass by valu@-10
PASSWORD
reserved wordb-4
password2-5
GRANT (Database Authority3-82
naming conventiong-7

pattern matchin@-31
PCTFREE

CREATE DBAREA 3-38

CREATE TABLE 3-49

reserved wordb-4
percent sign pattern matchi2g31
PERFM

reserved wordb-4

START AUDIT 3-125
Perform

procedure7-41
position

error

offset A-10

syntax errorA-10
POST

reserved wordb-4
pre-build

result setA-13
precedence rulez-24
PRECISION

reserved word-4
precision2-10

calculating for addition/subtractio?+11

calculating for division2-12

calculating for multiplicatior2-12
predicate2-25, 2-27

BETWEEN 2-30

EXISTS 2-30

IN 2-31

LIKE 2-31

NULL 2-30

relational2-27
Prepare

procedure7-41
prepare

SQL commandi-17
preservation

cursor contexiA-3
previous row

fetch A-8
PRIMARY

reserved word-4
primary index6-6, 6-11

create6-16

DROP6-21
PRIMARY KEY

ALTER TABLE (referential integrity)3-15

CREATE TABLE 3-46
primary key1-8, 6-3, 6-11
alternate key6-5
candidate key-4
composite3-46, 6-4
create6-15, 6-16
customized error message32
definition 6-3
DROP6-20
format 3-16, 3-46, 6-6
guidelines6-5
number of column$-5
report6-17
UPDATE rules6-18
with self-referencing rovB-16, 3-46, 6-6
PRIMPAGECOUNT3-143
privilege
GRANT (Table Privileges3-85
REVOKE (Table Privileges}-108
PRIVILEGES
reserved wordb-4
PROCEDUREL1-4, 3-4, 3-102, 7-30
ACTIONS 3-105
DYNAMIC 3-103
example3-106
input variable
declare3-104
Local variables3-104
output variable
declare3-104
Parameter8-32, 3-103
reserved wordb-4
STATIC 3-103
procedure3-102
access dat8-103
actions7-7
execute7-7
When SqlError7-45
Actions section7-12
Alter 7-33
benefits7-2, 7-3
boolean7-9
Break7-13
example7-13
Call 7-14
example7-14
calling within another stored procedufes1
case sensitivg-39

SQL Language Reference Index-17

Index

command invalidatior’-37
comments7-28
example7-28
compile1-10
continuation lines and concatenatiti29
create3-103 7-33
data types
boolean7-10
date/time7-10
number7-10
sql handle7-11, 7-12
string 7-11
date/time7-9
debug7-38
description1-10, 7-2
difference from stored commands3
Drop 7-33
drop 7-38
Dynamic
advantage§-36
Else7-14
Else If 7-14
Erase7-41
error handler
local 7-45
error handling7-45
Execute7-41
execute7-37
fetch example7-50
format 7-4
generate/-30
GRANT EXECUTE ON3-86
If 7-14
IF/IELSE 7-48
indentation7-7
input 7-5
input parameteB8-103
introduction7-1
local variable7-6
create7-6
data types’-6
default value7-7
destroy7-6
initialize 7-7
local variables
data types7-6
declare7-6
Loop 7-15

Index-18 SQL Language Reference

example7-15
name2-5, 3-103 7-4
naming conventiong-7
number7-9
On 7-15

example7-18
ON statemen?-49
operators/-29
output7-5
output parametes-103
parameter

array 7-9
parameters-5

data types’-5

declare7-5
Perform7-41
Preparer-41
PUBLIC keyword3-88
receive data types-10

related SQLTalk command&41

result set
retrieve rows7-16, 7-17
Return7-24

REVOKE EXECUTE ON3-110

Revoke execute 08-110
rules for static7-33
SAL 3-105
security 7-39
Set

example7-25
Set statemeni-25
Set tracefile7-41
Show tracer-38, 7-41
Show tracefile7-38, 7-41
sql handle7-9
sqlbnd7-41
sqlbnn7-41
sqlbnv7-41
sqlcbv7-41
sqlcex7-42
SqlCloseA-2
sglcom7-42
SqlCommitA-3
SqlConneciA-4
sqlcty 7-42
sqldes7-42
sqldii 7-42
sqldis 7-17

SqlDisconneciA-5
SqlDropStoredCma\-5
sqldsc7-42
sqldst7-42
sqlepo7-42
SqlError A-6
sqlexe7-42
SqlExecuteA-6
SqlExistsA-7
sqlfet 7-17, 7-42
SqlFetchNextA-7
SqlFetchPrevious-8
SqlFetchRowA-9
sqlget7-42
SqlGetErrorPositiorA-10
SqlGetErrorTextA-11
SqlGetModifiedRowsA-11
SqlGetParameteh-12
SqlGetParameterA\-15
SqlGetResultSetCoumt-16
SqlGetRollbackFlagh-17
SqllmmediateA-17
sqlnbv 7-42
sqlnii 7-42
sqlnsi7-42
SqlOpenA-18
SqlPreparéA-19
SqlPrepareAndExecut&-20
sqlret7-42
SqlRetrieveA-21
sqlset7-42
SqlSetlsolationLeveh-21
SqlSetLockTimeou-22
SqlSetParametek-23
SqlSetParameterA-23
SqlSetResultSeA-24
sqlssb7-42
sqlsto7-42
state7-15
static and dynami@-32
store1-10, 7-36, 7-41
stored

deleteA-5

static7-32
string 7-9
Team Developer-2
Trace7-25

example7-26

USER 3-87
using SAL functionality7-39
using SQL/API functiong-41
using SQLhandling’-49
variables
local 3-104
When SqlErrof7-45
When sqglerror7-26
While 7-28
with Team Developer-43
procedure name
GRANT EXECUTE ON3-87
procedure_clos&-17
execute7-16
procedure_execute-16
execute’/-16
procedure_fetcfy-17
execute7/-16
procedure_startup-16
execute7-16
PROCESS
reserved word-4
PUBLIC
CREATE SYNONYM 3-42
DROP SYNONYM3-74, 3-78
GRANT (Table Privileges3-86
reserved word-4
PUBLIC keyword
GRANT EXECUTE ON3-88

qualified identifier2-2
QUALIFIER
reserved word-4
quantified relational predica®-27, 2-28
query
input 1-5
output1-5
guotation mark
with delimited identifier2-2

R
RAISE

reserved word-4
Read OnlyA-22
Read Repeatabilitp-22
REAL

reserved wordb-4

SQL Language Reference Index-19

Index

REAL data type2-14
receive data typ&-10
recursive triggeB-54
REFERENCES
ALTER TABLE (referential integrity)3-18
CREATE TABLE 3-48
reserved word-4
REFERENCING
reserved word-4
trigger 3-61
referential cycles-22
referential integrity6-1—6-35
ALTER TABLE 6-16, 6-20, 6-31
alternate key6-5
benefits6-2
candidate key-4
CHECK DATABASE 6-30
child row 6-12
child table6-11, 6-18
component$-3
composite primary keg-4
concept6-2
COPY 6-30
DELETE 6-19
DELETE CASCADE®6-19
DELETE RESTRICT6-19
delete rule3-49
DELETE SET NULL6-10, 6-19, 6-20
descendent tablé-11
DROP6-20
error messages-30
foreign key1-8, 3-17, 3-47, 6-3, 6-7, 6-8, 6-9, 6-
21
constraint namé-7
create3-47, 6-15
customized error messagess2
DROP6-20
guidelines6-8
index 6-9
matching primary key columri3-17, 3-47, 6-8
NULL values3-17, 3-47, 6-8, 6-10
number of columng-17, 3-47, 6-8
number per tabl8-17, 3-47, 6-8
parent table8-17, 3-47, 6-8
partial NULL/non-NULL 6-9
privileges3-17, 3-47, 6-8
sharing columng-17, 3-47, 6-8
system catalog tableés17, 3-47, 6-8

Index-20 SQL Language Reference

using primary key column3-17, 3-47, 6-8
with NULL values6-23
with view 3-17, 3-47, 6-9
incomplete tablé-6
independent tablé-12
INSERT 6-10, 6-18
LOAD 6-16, 6-30
parent row6-12
parent tables-11, 6-18
parent/child table§-11
primary index6-6
DROP6-21
primary key1-8, 6-3
columns6-5
create6-15, 6-16
customized error message32
DROP6-20
format 3-16, 3-46, 6-6
guidelines6-5
permanent valué-5
unique identifier6-5
with self-referencing rov8-16, 3-46, 6-6
with view 3-16, 3-46, 6-5
referential cycle$-22
DELETE implications6-23
DELETE RESTRICT examplé-25
INSERT implications5-23
rules6-25
REORGANIZE6-30
report6-16
sample database tablé<2, 6-33
see also primary key
self-referencing rov8-16, 3-17, 3-46, 3-48, 6-9,
6-13
restrictions6-13
self-referencing tablé-3, 6-12
restrictions6-13
SYSADM.SYSFKCONSTRAINTS6-16
SYSADM.SYSPKCONSTRAINTS-17
SYSADM.SYSTABCONSTRAINTS6-17
table
create6-15
delete-connected restrictioBs27
triggers7-54
UPDATE 6-18
using triggers3-56
view 3-17, 3-47, 6-9
referential integrity constrair@-2

REL
reserved wordb-4
relational operatol-5, 2-43
relational predicat@-27
comparisor2-28
quantified2-28
release lock#\-22
RENAME
ALTER TABLE 3-12
reserved wordb-4
REORGANIZE
with referential integrity6-30
reserved word$-2
as identifiers2-2
RESOURCE
GRANT (Database Authority3-82
reserved wordb-4
REVOKE (Database Authority3-107
resource authority
definition 3-82
RESTRICT
ALTER TABLE (referential integrity)3-18
CREATE TABLE 3-49
reserved wordb-4
result set
pre-build A-13
rows
countA-16
saveA-3
result set mode
changeA-24
retrieve
rows
procedurer-16, 7-17
Return7-24
return
compiled command-21
error codeA-6
number of rowsA-11
When SqlError7-45
RETURNS
reserved wordb-4
REVOKE 1-6, 3-4
reserved wordb-4
REVOKE (Database Authority3-106
CONNECT3-107
DBA 3-107
RESOURCE3-107

SYSADM 3-107
REVOKE (Table Privileges}-108
ALL 3-109
ALTER 3-109
DELETE 3-109
FROM PUBLIC 3-109
INDEX 3-109
INSERT 3-108
privilege 3-108
SELECT3-108
UPDATE 3-109
REVOKE EXECUTE ON1-6, 3-4
FROM PUBLIC 3-110
FROM userid3-110
Revoke execute o8-110
examples3-111
privileges3-110
revoke privilege
external functior3-110
stored procedurgd-110
roll back
transactionA-14
ROLLBACK 1-5, 3-4, 3-111
reserved word-4
savepoint identifieB8-112
rollback flag
getA-17
ROW
reserved wordb-4
row 1-8
countA-16
counting3-4, 3-113
fetch A-9
next
fetch A-7
number of
returnA-11
previous
fetch A-8
self-referencing3-16, 3-17, 3-46, 3-48, 6-13
ROWCOUNT1-6, 3-4, 3-113 3-143
reserved wordb-4
ROWID 2-18
reserved wordb-4
ROWPAGECOUNT3-143
ROWS
CREATE INDEX 3-38
reserved wordb-4

SQL Language Reference Index-21

Index

S
SAL 7-13
procedure3-105
SAME
reserved wordb-4
save
result setA-3
SAVEPOINT 1-5, 3-4, 3-113
reserved wordb-4
savepoint identifier
ROLLBACK 3-112
SAVEPOINT 3-114
scale2-10
calculating for multiplicatior2-12
SCHEMA
reserved wordb-4
UNLOAD 3-134
search conditior2-24
DELETE 3-71
SECOND2-36
reserved wordb-4
SECONDS
reserved wordb-5
security
checkA-19, A-20
with triggers7-56
see DQL commands
SELECT 2-24, 3-4, 3-116
ALL 3-117
CREATE VIEW 3-67
DISTINCT 3-117
expressior3-117
fetch rowA-7, A-8, A-9
FOR UPDATE OF3-121
FROM 3-118
GRANT (Table Privileges3-85
GROUP BY3-119
HAVING 3-120
ORDER BY 3-120
privilege 3-85
reserved wordb-5
REVOKE (Table Privileges}-108
SqllmmediateA-17
UNION 3-122
WHERE 3-119
self join 2-40, 2-42

self-referencing rov8-16, 3-17, 3-46, 3-48, 6-13

with foreign key3-17, 3-48, 6-9

Index-22 SQL Language Reference

self-referencing tablé-3, 6-12
delete connectioh-14
DELETE rule6-20

SEPARATE
reserved wordb-5

SERVER
reserved word-5

SET
reserved word-5
UPDATE 3-139
UPDATE STATISTICS

set test valu@-142

Set
example7-25

set
database parameté&r23
isolation levelA-21
locking modeA-21
result sets

on/off A-24

SET DEFAULT STOGROUR-6, 3-4, 3-123

SET ERRORLEVEL3-23, 3-24
SET NULL

ALTER TABLE (referential integrity)3-18

CREATE TABLE 3-49
Set statemeni-25
Set tracefile
procedure7-41
short identifier2-2
Show trace
procedure7-38, 7-41
Show tracefile
procedure7-38, 7-41
SIZE
ALTER DBAREA 3-6
CREATE DBAREA 3-29
CREATE INDEX 3-34
for control file 3-135
reserved wordb-5
START AUDIT 3-126
SIZE integer constant ROWS
CREATE DBAREA 3-38
SMALLINT 2-13, 3-45
reserved wordb-5
SMALLINT data type2-13
SOME keyword2-28
source table
UNLOAD 3-133

SQL
benefits1-3
command processiniy11
command typeg-4

data administration commands5

data control commandk6
DDL 1-4
description1-2
DML commandsl-5
DML execution modell-12
history 1-2
how it organizes data-7
how to use itl-3
join 1-8
LOAD 3-96
optimizer1-12
relational operatol-5
reserved word-5
subselectl-5
transaction control commands5
types of userd-4
UNLOAD 3-132

SQL command
compileA-19, A-20
error

positionA-10

executeA-17, A-18, A-20
invalidate A-2
nameA-25
prepareA-17
storeA-25

SQL functionality in procedures-39

SQL handle7-49
Sql Handle

internal

SqlimmediateA-18

sql handle7-9, 7-11, 7-12
SQL/API

with procedures-41
sqlbnd

procedure7-41
sqlbnn

procedure7-41
sqlbnv

procedure7-41
sqlcbv

procedure7-41
sqlcex

procedure7-42
SqlClearimmediat&-39, A-2
COMMIT A-2
parameters\-2
return valueA-2
syntaxA-2
SqlClose7-39
descriptionA-2
parameters\-2
return valueA-2
syntaxA-2
sglcom
procedure7-42
SqlCommit7-39
descriptionA-3
exampleA-3
parameterf\-3
return valueA-3
syntaxA-3
SqlConnecf7-39
descriptionA-4
exampleA-4
parameter\-4
return valueA-4
syntaxA-4
sqlcty
procedure7-42
sqldes
procedure7-42
sqldii
procedure7-42
sqldis
procedure7-17
SqlDisconnec-39
descriptionA-5
exampleA-5
parameters\-5
return valueA-5
syntaxA-5
SqlDropStoredCmd-39
descriptionA-5
parameters\-5
return valueA-6
syntaxA-5
sqldsc
procedurer-42
sqldst
procedure7-42

SQL Language Reference Index-23

Index

sqlepo
procedure7-42
SqlError7-39
descriptionA-6
parameterf\-6
return valueA-6
syntaxA-6
sqlexe
procedure7-42
SqlExecute7-39
bind variablesA-6
cursor nameA-6
descriptionA-6
parameters\-7
return valueA-7
syntaxA-6
SqlExists7-39
descriptionA-7
parameters\-7
return valueA-7
syntaxA-7
sqlfet
procedurer-17, 7-42
SqlFetchNex{7-39, A-6, A-20
descriptionA-7
FETCH_Deleter-12, A-8
FETCH_EOF7-12, A-8
FETCH_Ok7-12, A-8
FETCH_Updater-12, A-8
parameters\-8
return valueA-8
syntaxA-7
SqlFetchPreviou3-39, A-6, A-20
descriptionA-8
FETCH_DeleteA-9
FETCH_EOFA-9
FETCH_OKA-9
FETCH_UpdateA-9
parameterf\-9
return valueA-9
syntaxA-8
SqlFetchRow7-39, A-6, A-20
descriptionA-9
FETCH_DeleteA-10
FETCH_EOFA-10
FETCH_OKA-10
FETCH_UpdateA-10
parameterf\-9

Index-24 sQL Language Reference

return valueA-10
syntaxA-9
sqlget
procedure7-42
SqlGetErrorPositiory-39
descriptionA-10
parameters\-10
return valueA-10
syntaxA-10
SqlGetErrorTex{7-40
descriptionA-11
parameters\-11
return valueA-11
syntaxA-11
SqlGetModifiedRows7-40
descriptionA-11
parameterd\-11
return valueA-11
syntaxA-11
SqlGetParametef-40
descriptionA-12
exampleA-14
parameterf\-12
return valueA-14
syntaxA-12
SqlGetParameterAlr-40
descriptionA-15
parameters\-15
return valueA-15
syntaxA-15
SqlGetResultSetCount-40
descriptionA-16
exampleA-16
parameters\-16
return valueA-16
syntaxA-16
SqlGetRollbackFlag-40
descriptionA-17
exampleA-17
parameters\-17
return valueA-17
syntaxA-17
Sqllmmediate7-40
descriptionA-17
parameterf\-18
return valueA-18
SELECTA-17
Sql Handle

internal A-18
syntaxA-17
sqlnbv
procedure7-42
sqlnii
procedure7-42
sqlnsi
procedure7-42
SqlOpen7-40
descriptionA-18
parameterf\-18
return valueA-19
syntaxA-18
SqlPreparer-40
descriptionA-19

INTO clauseA-19, A-20

parameterf\-19, A-20
return valueA-19, A-20
syntaxA-19

SqlPrepareAndExecuté-40

descriptionA-20
syntaxA-20
sqlret
procedure7-42
SqlRetrieve7-40
descriptionA-21
parameters\-21
return valueA-21
syntaxA-21
sqlset
procedure7-42
SqlSetlisolationLevel
parameters\-22
SqlSetlsolationLever-40
descriptionA-21
return valueA-22
syntaxA-21
SqlSetLockTimeou®-40
descriptionA-22
parameters\-22
return valueA-22
syntaxA-22
SqlSetParametéf-40
cursor contexA-3
descriptionA-23
parameters\-23
return valueA-23
syntaxA-23

SqlSetParameterAll-40
descriptionA-23
parameters\-23
return valueA-24
syntaxA-23

SqlSetResultSer-40
descriptionA-24
parameterf\-24
return valueA-24
syntaxA-24

sqlssb
procedure7-42

sqlsto
procedure7-42

SqlStore7-40
bind variablesA-25
descriptionA-25
parameters\-25
return valueA-25
syntaxA-25

SQLTalk
commands for procedur&s41

START
reserved word-5

START AT
LOAD 3-100

START AUDIT 1-5, 3-4, 3-124
APPEND 3-126
audit name3-125
CATEGORY 3-127
GLOBAL 3-125
KEEP 3-126
OVERWRITE 3-126
PERFM3-125
SIZE 3-126
TO 3-125

state
procedure7-15

STATEMENT
reserved word-5

statement block-7
begin7-7, 7-8
delimiters7-8
end7-7, 7-8
indentation7-7

STATIC
PROCEDURE3-103
reserved wordb-5

SQL Language Reference Index-25

Index

static procedure
describedr-32
rules7-33
STATISTICS
reserved wordb-5
STDCALL
reserved wordb-5
STOGROUP
ALTER DATABASE 3-5
reserved wordb-5
STOP AUDIT 1-5, 3-4, 3-129
storage group
drop 3-77, 3-81
set default3-123
STORE7-36
procedurel-10
SQL commandL-10
store
procedure7-41
SQL commandA-25
stored command
deleteA-5
stored commands-7
stored procedure
deleteA-5
loading data3-95
static7-32
trigger 3-62
unloading data8-130
stored procedures-7
string 7-9, 7-11
concatenat&-29
concatenation operat@-23
definition 2-17
string constang-17
subquery2-43
examples2-29
subselectl-5
examples2-29
INSERT 3-90
subtract7-29
SUM 4-2, 4-12
reserved wordb-5
SYNCREATOR
reserved wordb-5
SYNNAME
reserved wordb-5
SYNONYM

Index-26 SQL Language Reference

reserved wordb-5
synonym

definition 1-9

drop 3-77

naming conventiong-7
synonym name-5
synonymsl-7
syntax

checkA-19, A-20
syntax error

positionA-10
SYSADM

REVOKE (Database Authority3-107
SYSADM.SYSFKCONSTRAINTS5-16
SYSADM.SYSPKCONSTRAINTS5-17
SYSADM.SYSTABCONSTRAINTS6-17
SYSDATE 2-19, 2-35, 2-36

reserved wordb-5
SYSDATETIME 2-19, 2-35

reserved wordb-5
SYSDBSEQUENCE

reserved wordb-5
SYSDBSequenceé-20
SYSDBTRANSID2-19

reserved wordb-5
system catalod-11

with foreign key3-17, 3-47, 6-8
system keyword®-18
SYSTEM ONLY

CHECK DATABASE 3-21
SYSTIME 2-19, 2-35, 2-36

reserved wordb-5
SYSTIMEZONE 2-19, 2-35, 2-36

reserved wordb-5

T
TABAUTH
reserved word-5
TABLE
ALTER TABLE 3-10
ALTER TABLE (referential integrity)3-15
COMMENT ON 3-25
LABEL ON 3-94
reserved word-5
UPDATE STATISTICS3-142
table1-7, 2-4
check3-23
child 6-11

create with referential integrit§-15

delete-connected restrictioBs27
drop 3-79
grandparen6-14
great-grandpareré-14
incomplete6-6

name2-5

name within comman@-4
naming conventiong2-7
parent6-11

report constraint§-17
row count3-4, 3-113

rules for inserting with foreign ke§-18

self-referencings-12
table name2-5

CREATE TABLE 3-45

DELETE 3-71

GRANT (Table Privileges3-85

UPDATE 3-138
TBNAME

reserved word-5
Team Developer

function

executer-14
functions
case sensitiv&-39

procedurer-2

using with procedureg-43
terminate

loop 7-13
text

storing 2-9
THREAD

reserved word-5
TIME 3-45

reserved wordb-5
time

keywords2-36

lock wait A-22

see also date/time
TIME data type2-16
time zone2-37
timeout

lock A-13
TIMESTAMP 3-45

reserved word-5
TIMESTAMP data type2-15
TIMESYSTIME 2-36

TIMEZONE

reserved wordb-5
timezone

sql.ini keyword2-37
TO

reserved word-5

START AUDIT 3-125
TO PUBLIC

GRANT EXECUTE ON3-87
TO userid

GRANT EXECUTE ON3-87
Trace7-25

example7-26
TRANSACTION

reserved word-5
transaction

control command4-5

roll back A-14
TRANSACTION <ID> FORCE

COMMIT 3-26

ROLLBACK 3-112
Transaction Control Commandsb
TRIGGER

reserved word-5
Trigger 2-7

naming requirementa-7
trigger 7-54

activate3-52

AFTER 3-57

autocommit3-59

BEFORE3-57

bind variables3-62

columns3-60

commit 3-59

data consistency-54

data integrity7-54

definition 1-10, 7-54

DELETE 3-52, 3-59

AFTER 3-59
BEFORE3-59

DML execution modell-12

drop 3-80

error handling3-52, 7-56

examples3-63

EXECUTE 3-61

execution ordeB-59

execution time3-57

FOR EACH ROW3-62

SQL Language Reference Index-27

Index

FOR EACH STATEMENT3-62
INLINE 3-62
INSERT 3-52, 3-59
AFTER 3-59
BEFORE3-59
limit 3-52, 3-57
long varchar3-62
name3-57
nest3-54
NEW AS 3-61
OLD AS 3-61
privileges3-51
recursive3-54
recursive updat8-59
REFERENCING3-61
referential integrity3-56, 7-54
security 7-56
stored procedur8-62
UPDATE 3-52, 3-59
AFTER 3-58
BEFORE3-58
REFERENCING3-61
view 3-51
triggers1-7
TRUE 7-12
TYPE
reserved word-5

U
unary -7-29
unary operatoR-24
underscore2-31
UNION
reserved word-5
SELECT3-122
UNIQUE
CREATE DBAREA 3-37
reserved word-5
UNLOAD 1-6, 3-4, 3-13Q 3-136
ALL 3-134
ASCII 3-133
COMPRESSION3-134
CONTROL 3-134
DATA 3-132
DATABASE 3-134
DIF 3-133
file 3-133
LOG 3-136

Index-28 SQL Language Reference

ON CLIENT 3-136

ON SERVER3-136

reserved wordb-5

SCHEMA 3-134

source table3-133

SQL 3-132

with AUTORECOMPILE 3-131
UNLOCK DATABASE 1-6, 3-4, 3-137
UPDATE 1-5, 2-24, 3-4, 3-138

AFTER 3-58

BEFORE3-58

CHECK EXISTS3-140

column name3-139

correlation namé-139

GRANT (Table Privileges3-85

REFERENCING3-61

reserved wordb-5

REVOKE (Table Privileges}-109

SET 3-139

table name3-138

trigger 3-52, 3-59

view name3-139

WHERE 3-139

WHERE CURRENT OR3-139

with referential integrity6-18
update (recursive)

trigger 3-59
UPDATE privilege3-85
UPDATE RESTRICT6-18
UPDATE STATISTICS1-6, 3-4, 3-143

DATABASE 3-142

INDEX 3-142

TABLE 3-142
UPDATE WHERE CURRENT

with referential integrity6-6
UPDATE_DEPENDENT

ALTER TABLE (Error Messages3-14
UPDATE_PARENT

ALTER TABLE (Error Messages3-14
USER?2-3, 2-19

procedure3-87

reserved wordb-5
user

name2-3
USERERROR

ALTER TABLE (Error Messages3-13

reserved wordb-5
username2-3

USING
CREATE STOGROUR-40
reserved word-5

\Y
VALUES
INSERT 3-90
reserved wordb-5
VARCHAR 2-8, 2-31, 3-45
reserved word-5
variable
input
declare3-104
output
declare3-104
VARIABLES
reserved wordb-5
variables
bind
SqlExecuteA-6
local
procedure3-104
naming conventiong-9
version
databasé\-14
VIEW
reserved wordb-5
view 1-7, 2-4
definition 1-9
drop 3-80
integrity check3-23
name2-6
name within comman@-4
naming conventiong2-7

referential integrity3-16, 3-46, 6-5

trigger 3-51

UPDATE rules6-18

with foreign key3-17, 3-47, 6-9
view name2-6

CREATE VIEW 3-67

DELETE 3-71

GRANT (Table Privileges3-85

UPDATE 3-139

W
WAIT

reserved word-5
wait

lock
maximumA-22
When SqlError
actions7-45
procedure7-45
return7-45
When sqglerror7-26
WHERE 2-24
DELETE 3-71
reserved word-5
SELECT3-119
UPDATE 3-139
WHERE CURRENT OF
DELETE 3-71
UPDATE 3-139
While 7-28
WITH
reserved word-5
WITH CHECK OPTION
CREATE VIEW 3-68
WITH CREATOR PRIVILEGES
GRANT EXECUTE ON3-88
WITH GRANTEE PRIVILEGES
GRANT EXECUTE ON3-88
WITHOUT
reserved wordb-5
WITHOUT INDEXES
CHECK TABLE 3-24
WORK
COMMIT 3-26
reserved word-5

Y
Y2K 2-33
YEAR 2-36
reserved wordb-5
year 20002-33
YEARS
reserved wordb-5

SQL Language Reference Index-29

	SQLBase SQL Language Reference
	Contents
	Preface
	Who should read this manual
	Summary of chapters
	Syntax diagrams
	Notation conventions
	Other helpful resources
	Send comments to...

	Chapter 1: Introduction to SQL
	What is SQL?
	SQL history
	Why is SQL used?
	How you use SQL
	Who uses SQL?
	Types of SQL commands
	Example of a SQL command

	What are SQL objects?
	Database
	Tables
	Indexes
	Views
	Synonyms
	Stored commands and procedures
	External functions
	Triggers

	System catalog tables
	SQL command processing
	Optimizer
	DML Execution Model

	Chapter 2: SQL Elements
	Names
	Examples of names
	Types of names
	Summary of naming requirements

	Data types
	Null values

	Character data types
	CHAR (or VARCHAR)
	LONG VARCHAR (or LONG)

	Numeric data types
	NUMBER
	DECIMAL (or DEC)
	Currency
	INTEGER (or INT)
	SMALLINT
	DOUBLE PRECISION
	FLOAT
	REAL

	Date/Time data types
	DATETIME (or TIMESTAMP)
	DATE
	TIME

	Data type conversions
	Data type conversions in assignments
	Data type conversions in functions

	Constants
	String constants
	Numeric constants
	Date/Time constants
	Examples of constants

	System keywords
	Using SYSDBTRANSID keyword

	Database sequence objects
	Using SYSDBSequence

	Expressions
	Null values in expressions
	String concatenation operator (||)
	Precedence
	Examples of expressions

	Search conditions
	Nulls and search conditions
	Examples of search conditions

	Predicates
	Relational predicate
	BETWEEN predicate
	NULL predicate
	EXISTS predicate
	LIKE predicate
	IN predicate

	Functions
	Date/Time values
	Entering date/time values
	Date/time system keywords
	Resolution for time keywords
	Time zones
	Date/Time expressions
	Examples of date/time expressions

	Joins
	Types of joins
	Number of joins

	Subqueries
	Examples of subqueries

	Bind variables

	Chapter 3: SQL Command Reference
	SQL command summary
	ALTER DATABASE
	ALTER DBAREA
	ALTER EXTERNAL FUNCTION
	ALTER PASSWORD
	ALTER STOGROUP
	ALTER TABLE
	ALTER TABLE (Error Messages)
	ALTER TABLE (Referential Integrity)
	ALTER TRIGGER
	AUDIT MESSAGE
	CHECK DATABASE
	CHECK INDEX
	CHECK TABLE
	COMMENT ON
	COMMIT
	CREATE DATABASE
	CREATE DBAREA
	CREATE EXTERNAL FUNCTION
	CREATE INDEX
	CREATE STOGROUP
	CREATE SYNONYM
	CREATE TABLE
	CREATE TRIGGER
	CREATE VIEW
	DBATTRIBUTE
	DEINSTALL DATABASE
	DELETE
	DROP DATABASE
	DROP DBAREA
	DROP EXTERNAL FUNCTION
	DROP INDEX
	DROP STOGROUP
	DROP SYNONYM
	DROP TABLE
	DROP TRIGGER
	DROP VIEW
	GRANT (Database Authority)
	GRANT (Table Privileges)
	GRANT EXECUTE ON
	INSERT
	INSTALL DATABASE
	LABEL
	LOAD
	LOCK DATABASE
	PROCEDURE:
	REVOKE (Database Authority)
	REVOKE (Table Privileges)
	REVOKE EXECUTE ON
	ROLLBACK
	ROWCOUNT
	SAVEPOINT
	SELECT
	SET DEFAULT STOGROUP
	START AUDIT
	STOP AUDIT
	UNLOAD
	UNLOCK DATABASE
	UPDATE
	UPDATE STATISTICS

	Chapter 4: SQL Function Reference
	Data type conversions in functions
	Aggregate functions
	String functions
	Date/Time functions
	Math functions
	Finance functions
	Logical functions
	Special functions
	SQLBase function summary
	AVG
	COUNT
	MAX
	MIN
	SUM
	@ABS
	@ACOS
	@ASIN
	@ATAN
	@ATAN2
	@CHAR
	@CHOOSE
	@CODE
	@COS
	@CTERM
	@DATE
	@DATETOCHAR
	@DATEVALUE
	@DAY
	@DECIMAL
	@DECODE
	@EXACT
	@EXP
	@FACTORIAL
	@FIND
	@FV
	@HEX
	@HOUR
	@IF
	@INT
	@ISNA
	@LEFT
	@LENGTH
	@LICS
	@LN
	@LOG
	@LOWER
	@MEDIAN
	@MICROSECOND
	@MID
	@MINUTE
	@MOD
	@MONTH
	@MONTHBEG
	@NOW
	@NULLVALUE
	@PI
	@PMT
	@PROPER
	@PV
	@QUARTER
	@QUARTERBEG
	@RATE
	@REPEAT
	@REPLACE
	@RIGHT
	@ROUND
	@SCAN
	@SDV
	@SECOND
	@SIN
	@SLN
	@SQRT
	@STRING
	@SUBSTRING
	@SYD
	@TAN
	@TERM
	@TIME
	@TIMEVALUE
	@TRIM
	@UPPER
	@VALUE
	@WEEKBEG
	@WEEKDAY
	@YEAR
	@YEARBEG
	@YEARNO
	@LEFT
	@LENGTH
	@LICS
	@LN
	@LOG
	@LOWER
	@MEDIAN
	@MICROSECOND
	@MID
	@MINUTE
	@MOD
	@MONTH
	@MONTHBEG
	@NOW
	@NULLVALUE
	@PI
	@PMT
	@PROPER
	@PV
	@QUARTER
	@QUARTERBEG
	@RATE
	@REPEAT
	@REPLACE
	@RIGHT
	@ROUND
	@SCAN
	@SDV
	@SECOND
	@SIN
	@SLN
	@SQRT
	@STRING
	@SUBSTRING
	@SYD
	@TAN
	@TERM
	@TIME
	@TIMEVALUE
	@TRIM
	@UPPER
	@VALUE
	@WEEKBEG
	@WEEKDAY
	@YEAR
	@YEARBEG
	@YEARNO

	Chapter 5: SQL Reserved Words
	SQL Reserved Words

	Chapter 6: Referential Integrity
	About referential integrity
	Sample service database
	The benefits of referential integrity

	Components
	Primary key
	Foreign key
	Parent and child tables
	Parent and child rows
	Self-referencing tables and rows
	Delete-connected tables

	How to create tables with referential constraints
	Using the CREATE TABLE statement
	Using the ALTER TABLE statement
	Creating a primary index

	Reporting referential integrity
	Implications for SQLBase operations
	INSERT
	UPDATE
	DELETE
	DROP
	SELECT

	Cycles of dependent tables
	INSERT implications
	DELETE implications
	Delete-connected table restrictions

	SQLTalk commands and referential integrity
	Customizing SQLBase error messages
	Editing the error messages
	Primary key error messages
	Foreign key error messages

	Service database tables

	Chapter 7: Procedures and Triggers
	What is a procedure?
	Why use procedures?
	How stored procedures are different from stored commands

	Format of a procedure
	Name
	Parameters
	Local variables
	Actions

	Data types supported in procedures
	Boolean
	Date/Time
	Number
	Sql Handle
	String
	Long String
	Window Handle
	File Handle

	System constants supported in procedures
	Using SAL statements
	Break
	Call
	If, Else, and Else If
	Loop
	On <procedure state>
	Return
	Set
	Trace
	When SqlError
	While
	Comments
	Operators
	Continuation lines and concatenation

	How to generate, store, execute and drop procedures
	Generating a procedure
	Storing a procedure
	Executing a procedure
	Dropping a procedure
	Debugging a procedure
	Security

	SAL functionality in SQLBase
	Related SQLTalk commands
	Using SQL/API functions with procedures
	Using procedures with Centura Team Developer applications
	Default for Result Sets in Stored Procedures
	Calling a SQLBase Procedure

	Error handling
	Procedure examples
	Example 1 - Procedure IF/Else statement
	Example 2- Using SQL handles and ON statements
	Example 3 - Doing a fetch
	Example 4 - Calling a stored procedure from within another procedure

	Triggers
	What is a trigger?
	Error handling in triggers

	Chapter 8: External Functions
	What is an External Function?
	Why use external functions?
	Security

	How to declare external functions
	Function name
	Library
	Parameters and return data types
	External Name
	Callstyle
	Execution Mode

	Using external data types
	Parameters and External Data types
	Providing external data types
	Numeric and boolean data types
	String data type
	Date/Time data types
	Other external data types

	Calling External Functions
	Building a 16-bit DLL
	Pre-loading DLLs
	Specifying external functions within stored procedures
	Specifying external functions for export to the DLL
	Calling SAL functions as external functions

	Developing external functions
	Choosing an Execution Mode for Win32
	Executing in separate process
	Testing and debugging external functions

	Modifying external function definitions
	Alter external function
	Drop external function

	Error Handling
	Exception Handling

	System Catalog tables for external functions
	SQLBase-supplied scripts and DLLs
	Scripts and DLLs for 32-bit systems
	Scripts and DLLs for 16-bit systems

	External function example

	Appendix A: SAL Functions
	SqlClearImmediate
	SqlClose
	SqlCommit
	SqlConnect
	SqlDisconnect
	SqlDropStoredCmd
	SqlError
	SqlExecute
	SqlExists
	SqlFetchNext
	SqlFetchPrevious
	SqlFetchRow
	SqlGetErrorPosition
	SqlGetErrorText
	SqlGetModifiedRows
	SqlGetParameter
	SqlGetParameterAll
	SqlGetResultSetCount
	SqlGetRollbackFlag
	SqlImmediate
	SqlOpen
	SqlPrepare
	SqlPrepareAndExecute
	SqlRetrieve
	SqlSetIsolationLevel
	SqlSetLockTimeout
	SqlSetParameter
	SqlSetParameterAll
	SqlSetResultSet
	SqlStore

	Glossary
	Index

