
SQLBase
SQL Language Reference
20-2107-1005

Gupta

ay,

d
 and

ed

ica

d
Trademarks
Centura, Centura Ranger, the Centura logo, Centura Web Developer, Gupta, the
logo, Gupta Powered, the Gupta Powered logo, Fast Facts, Object Nationalizer,
Quest, Quest/Web, QuickObjects, SQL/API, SQLBase, SQLConsole, SQLGatew
SQLHost, SQLNetwork, SQLRouter, SQLTalk, and Team Object Manager are
trademarks of Centura Software Corporation and may be registered in the Unite
States of America and/or other countries. SQLWindows is a registered trademark
TeamWindows, ReportWindows and EditWindows are trademarks exclusively us
and licensed by Centura Software Corporation.

Microsoft, Win32, Windows, Windows NT and Visual Basic are either registered
trademarks or trademarks of Microsoft Corporation in the United States of Amer
and/or other countries.

Java is a trademark of Sun Microsystems Inc.

All other product or service names mentioned herein are trademarks or registere
trademarks of their respective owners.

Copyright
Copyright  1997 by Centura Software Corporation. All rights reserved.
SQL Language Reference
20-2107-1005
November 1997

Contents
SQL Language Reference
Preface . xix

1 Introduction to SQL. 1-1

What is SQL? . 1-2

SQL history . 1-2

Why is SQL used? . 1-3

How you use SQL. 1-3

Who uses SQL? . 1-4

Types of SQL commands 1-4

Example of a SQL command 1-7

What are SQL objects? . 1-7

Database . 1-8

Tables . 1-8

Indexes . 1-9

Views . 1-9

Synonyms . 1-9

Stored commands and procedures. 1-10

External functions . 1-10

Triggers. 1-10

System catalog tables . 1-11

SQL command processing . 1-11

Optimizer . 1-12

DML Execution Model. 1-12

2 SQL Elements . 2-1

Names. 2-2

Examples of names . 2-2
SQL Language Reference iii

Types of names . 2-3

Summary of naming requirements 2-6

Data types . 2-7

Null values . 2-7

Character data types. 2-8

CHAR (or VARCHAR) . 2-8

LONG VARCHAR (or LONG) 2-9

Numeric data types . 2-9

NUMBER . 2-10

DECIMAL (or DEC). 2-10

Currency . 2-13

INTEGER (or INT) . 2-13

SMALLINT . 2-13

DOUBLE PRECISION . 2-14

FLOAT . 2-14

REAL . 2-14

Date/Time data types . 2-15

DATETIME (or TIMESTAMP) 2-15

DATE . 2-16

TIME . 2-16

Data type conversions. 2-16

Data type conversions in assignments 2-16

Data type conversions in functions. 2-17

Constants . 2-17

String constants . 2-17

Numeric constants . 2-17

Date/Time constants. 2-17

Examples of constants . 2-18

System keywords . 2-18

Using SYSDBTRANSID keyword 2-19

Database sequence objects 2-20

Using SYSDBSequence 2-20
iv SQL Language Reference

Expressions. 2-22

Null values in expressions 2-23

String concatenation operator (||) 2-23

Precedence. 2-24

Examples of expressions 2-24

Search conditions . 2-24

Nulls and search conditions 2-26

Examples of search conditions 2-26

Predicates . 2-27

Relational predicate . 2-27

BETWEEN predicate . 2-30

NULL predicate. 2-30

EXISTS predicate . 2-30

LIKE predicate . 2-31

IN predicate . 2-31

Functions. 2-32

Date/Time values . 2-33

Entering date/time values 2-33

Date/time system keywords 2-35

Resolution for time keywords 2-36

Time zones . 2-37

Date/Time expressions . 2-37

Examples of date/time expressions 2-38

Joins . 2-38

Types of joins . 2-40

Number of joins. 2-43

Subqueries . 2-43

Examples of subqueries 2-44

Bind variables . 2-44

3 SQL Command Reference. 3-1

SQL command summary . 3-2

ALTER DATABASE . 3-5
SQL Language Reference v

ALTER DBAREA. 3-6

ALTER EXTERNAL FUNCTION 3-6

ALTER PASSWORD. 3-8

ALTER STOGROUP . 3-9

ALTER TABLE . 3-10

ALTER TABLE (Error Messages) 3-13

ALTER TABLE (Referential Integrity) 3-15

ALTER TRIGGER . 3-19

AUDIT MESSAGE. 3-20

CHECK DATABASE . 3-21

CHECK INDEX . 3-23

CHECK TABLE . 3-23

COMMENT ON . 3-24

COMMIT . 3-25

CREATE DATABASE . 3-27

CREATE DBAREA . 3-29

CREATE EXTERNAL FUNCTION 3-30

CREATE INDEX . 3-34

CREATE STOGROUP . 3-40

CREATE SYNONYM . 3-41

CREATE TABLE . 3-44

CREATE TRIGGER . 3-51

CREATE VIEW . 3-66

DBATTRIBUTE . 3-69

DEINSTALL DATABASE . 3-70

DELETE . 3-71

DROP DATABASE . 3-73

DROP DBAREA . 3-73

DROP EXTERNAL FUNCTION 3-74

DROP INDEX . 3-75

DROP STOGROUP . 3-77

DROP SYNONYM. 3-77
vi SQL Language Reference

DROP TABLE . 3-79

DROP TRIGGER . 3-80

DROP VIEW . 3-80

GRANT (Database Authority) 3-81

GRANT (Table Privileges). 3-84

GRANT EXECUTE ON . 3-86

INSERT . 3-88

INSTALL DATABASE . 3-92

LABEL . 3-93

LOAD . 3-95

LOCK DATABASE . 3-101

PROCEDURE: . 3-102

REVOKE (Database Authority) 3-106

REVOKE (Table Privileges) 3-108

REVOKE EXECUTE ON. 3-110

ROLLBACK . 3-111

ROWCOUNT. 3-113

SAVEPOINT . 3-113

SELECT . 3-116

SET DEFAULT STOGROUP 3-123

START AUDIT. 3-124

STOP AUDIT. 3-129

UNLOAD . 3-130

UNLOCK DATABASE . 3-137

UPDATE . 3-138

UPDATE STATISTICS . 3-141

4 SQL Function Reference. 4-1

Data type conversions in functions 4-2

Aggregate functions . 4-2

String functions . 4-2

Date/Time functions . 4-3

Math functions. 4-4
SQL Language Reference vii

Finance functions . 4-5

Logical functions . 4-5

Special functions . 4-5

SQLBase function summary . 4-6

AVG. 4-9

COUNT . 4-10

MAX . 4-10

MIN . 4-11

SUM . 4-12

@ABS . 4-12

@ACOS . 4-13

@ASIN . 4-13

@ATAN. 4-14

@ATAN2. 4-14

@CHAR . 4-15

@CHOOSE. 4-15

@CODE . 4-16

@COS. 4-16

@CTERM . 4-16

@DATE. 4-17

@DATETOCHAR . 4-17

@DATEVALUE . 4-18

@DAY . 4-18

@DECIMAL. 4-19

@DECODE . 4-19

@EXACT. 4-20

@EXP . 4-20

@FACTORIAL . 4-21

@FIND . 4-21

@FV . 4-22

@HEX . 4-22

@HOUR . 4-23
viii SQL Language Reference

@IF . 4-23

@INT. 4-24

@ISNA . 4-24

@LEFT . 4-25

@LENGTH . 4-25

@LICS. 4-26

@LN . 4-37

@LOG. 4-37

@LOWER . 4-38

@MEDIAN. 4-38

@MICROSECOND . 4-39

@MID . 4-39

@MINUTE. 4-40

@MOD . 4-40

@MONTH . 4-40

@MONTHBEG . 4-41

@NOW . 4-41

@NULLVALUE . 4-41

@PI . 4-42

@PMT. 4-43

@PROPER . 4-43

@PV . 4-44

@QUARTER. 4-44

@QUARTERBEG . 4-45

@RATE. 4-45

@REPEAT . 4-46

@REPLACE . 4-46

@RIGHT . 4-47

@ROUND . 4-47

@SCAN. 4-48

@SDV . 4-48

@SECOND . 4-49
SQL Language Reference ix

@SIN. 4-49

@SLN . 4-50

@SQRT. 4-50

@STRING. 4-51

@SUBSTRING . 4-51

@SYD . 4-52

@TAN . 4-53

@TERM . 4-53

@TIME . 4-54

@TIMEVALUE . 4-54

@TRIM . 4-55

@UPPER . 4-55

@VALUE. 4-55

@WEEKBEG . 4-56

@WEEKDAY. 4-56

@YEAR. 4-57

@YEARBEG . 4-57

@YEARNO . 4-58

@LEFT . 4-58

@LENGTH . 4-59

@LICS. 4-59

@LN . 4-70

@LOG. 4-70

@LOWER . 4-71

@MEDIAN. 4-71

@MICROSECOND . 4-72

@MID . 4-72

@MINUTE. 4-73

@MOD . 4-73

@MONTH . 4-73

@MONTHBEG . 4-74

@NOW . 4-74
x SQL Language Reference

@NULLVALUE . 4-74

@PI . 4-75

@PMT. 4-76

@PROPER . 4-76

@PV . 4-77

@QUARTER. 4-77

@QUARTERBEG . 4-78

@RATE. 4-78

@REPEAT . 4-79

@REPLACE . 4-79

@RIGHT . 4-80

@ROUND . 4-80

@SCAN. 4-81

@SDV . 4-81

@SECOND . 4-82

@SIN. 4-82

@SLN . 4-83

@SQRT. 4-83

@STRING. 4-84

@SUBSTRING . 4-84

@SYD . 4-85

@TAN . 4-86

@TERM . 4-86

@TIME . 4-87

@TIMEVALUE . 4-87

@TRIM . 4-88

@UPPER . 4-88

@VALUE. 4-88

@WEEKBEG . 4-89

@WEEKDAY. 4-89

@YEAR. 4-90

@YEARBEG . 4-90
SQL Language Reference xi

@YEARNO . 4-91

5 SQL Reserved Words 5-1

SQL Reserved Words . 5-2

6 Referential Integrity. 6-1

About referential integrity . 6-2

Sample service database 6-2

The benefits of referential integrity 6-2

Components . 6-3

Primary key. 6-3

Foreign key . 6-7

Parent and child tables . 6-11

Parent and child rows . 6-12

Self-referencing tables and rows 6-12

Delete-connected tables 6-13

How to create tables with referential constraints. . . . 6-15

Using the CREATE TABLE statement 6-15

Using the ALTER TABLE statement. 6-16

Creating a primary index. 6-16

Reporting referential integrity 6-16

Implications for SQLBase operations 6-18

INSERT. 6-18

UPDATE . 6-18

DELETE . 6-19

DROP . 6-20

SELECT . 6-21

Cycles of dependent tables. 6-21

INSERT implications. 6-23

DELETE implications . 6-23

Delete-connected table restrictions 6-27

SQLTalk commands and referential integrity 6-30

Customizing SQLBase error messages 6-30

Editing the error messages. 6-31
xii SQL Language Reference

Primary key error messages. 6-32

Foreign key error messages 6-32

Service database tables . 6-33

7 Procedures and Triggers. 7-1

What is a procedure? . 7-2

Why use procedures?. 7-2

How stored procedures are different from
 stored commands . 7-3

Format of a procedure. 7-4

Name . 7-4

Parameters . 7-5

Local variables . 7-6

Actions . 7-7

Data types supported in procedures 7-9

Boolean. 7-10

Date/Time . 7-10

Number . 7-10

Sql Handle . 7-11

String . 7-11

Long String . 7-11

Window Handle. 7-12

File Handle . 7-12

System constants supported in procedures 7-12

Using SAL statements. 7-13

Break . 7-13

Call . 7-14

If, Else, and Else If . 7-14

Loop . 7-15

On <procedure state>. 7-15

Return . 7-24

Set . 7-25

Trace. 7-25
SQL Language Reference xiii

When SqlError . 7-26

While. 7-28

Comments . 7-28

Operators . 7-29

Continuation lines and concatenation. 7-29

How to generate, store, execute and drop
procedures . 7-30

Generating a procedure 7-30

Storing a procedure . 7-36

Executing a procedure . 7-37

Dropping a procedure . 7-38

Debugging a procedure 7-38

Security. 7-39

SAL functionality in SQLBase 7-39

Related SQLTalk commands 7-41

Using SQL/API functions with procedures 7-41

Using procedures with Centura Team Developer
 applications . 7-43

Default for Result Sets in Stored Procedures . . . 7-43

Calling a SQLBase Procedure 7-43

Error handling . 7-45

Procedure examples . 7-48

Example 1 - Procedure IF/Else statement 7-48

Example 2- Using SQL handles and ON
 statements . 7-49

Example 3 - Doing a fetch 7-50

Example 4 - Calling a stored procedure from
within another procedure 7-51

Triggers . 7-54

What is a trigger? . 7-54

Error handling in triggers 7-56

8 External Functions . 8-1

What is an External Function? 8-2
xiv SQL Language Reference

Why use external functions?. 8-2

Security. 8-4

How to declare external functions 8-4

Function name . 8-5

Library. 8-6

Parameters and return data types 8-6

External Name . 8-7

Callstyle . 8-9

Execution Mode . 8-9

Using external data types . 8-10

Parameters and External Data types 8-10

Providing external data types 8-10

Numeric and boolean data types 8-11

String data type. 8-12

Date/Time data types . 8-14

Other external data types 8-15

Calling External Functions . 8-17

Building a 16-bit DLL . 8-18

Pre-loading DLLs . 8-18

Specifying external functions within stored
 procedures. 8-19

Specifying external functions for export to
 the DLL . 8-20

Calling SAL functions as external functions 8-20

Developing external functions 8-20

Choosing an Execution Mode for Win32 8-20

Executing in separate process 8-21

Testing and debugging external functions 8-24

Modifying external function definitions 8-24

Alter external function . 8-24

Drop external function. 8-24

Error Handling . 8-25

Exception Handling. 8-25
SQL Language Reference xv

System Catalog tables for external functions 8-26

SQLBase-supplied scripts and DLLs 8-26

Scripts and DLLs for 32-bit systems 8-26

Scripts and DLLs for 16-bit systems 8-27

External function example. 8-27

A SAL Functions. .A-1

SqlClearImmediate .A-2

SqlClose .A-2

SqlCommit. .A-3

SqlConnect .A-4

SqlDisconnect .A-5

SqlDropStoredCmd .A-5

SqlError .A-6

SqlExecute .A-6

SqlExists .A-7

SqlFetchNext. .A-7

SqlFetchPrevious .A-8

SqlFetchRow. .A-9

SqlGetErrorPosition .A-10

SqlGetErrorText .A-11

SqlGetModifiedRows. .A-11

SqlGetParameter .A-12

SqlGetParameterAll .A-15

SqlGetResultSetCount .A-16

SqlGetRollbackFlag .A-17

SqlImmediate .A-17

SqlOpen .A-18

SqlPrepare .A-19

SqlPrepareAndExecute. .A-20

SqlRetrieve .A-21

SqlSetIsolationLevel .A-21

SqlSetLockTimeout .A-22

SqlSetParameter. .A-23

SqlSetParameterAll .A-23

SqlSetResultSet .A-24

SqlStore .A-25

Glossary. Glossary-1

Index . Index-1
SQL Language Reference xvii

. You
ra

SQL Language Reference
Preface

This manual is a reference guide for the SQL commands supported in SQLBase
can use the SQL commands documented in this manual with the following Centu
products:

• SQLTalk

• Team Developer

• SQL/API

• SQLGateways and SQLRouters

• SQLConsole

Consult the manual for the specific product you are using for more information.
SQL Language Reference xix

Preface

sing
/

e of
 data,
.

sary
Who should read this manual
This manual is intended for:

• Application Developers

Application developers build client applications that access databases u
Centura frontend products like SQLTalk, Team Developer, and the SQL
API.

• Database Administrators (DBAs)

Database Administrators perform day-to-day operation and maintenanc
the database. They design the database, create database objects, load
control access, perform backup and recovery, and monitor performance

• End Users

End users use SQL to query and change data.

This manual assumes you have:

• Knowledge of relational databases and SQL.

Note: This manual is not intended to be a SQL tutorial.

Summary of chapters
This manual is organized in the chapters in the table below. There is also a glos
and index.

1 Introduction to SQL Shows the SQL command categories and features.

2 SQL Elements Explains the concepts needed to use SQL.

3 SQL Command
Reference

Describes each SQL command. Arranged alphabetically.

4 SQL Function Reference Lists SQL reserved words.

5 SQL Reserved Words Lists SQL reserved words.

6 Referential Integrity Describes SQLBase’s implementation of referential integrity.

7 Procedures and Triggers Describes SQLBase’s implementation of procedures and
triggers.

8 Optimizing SQL
Statements

Describes how to optimize SQL statements for SQLBase
performance.

Appendix A Provides the description, syntax, and examples for SAL
functions supported by SQLBase procedures.
xx SQL Language Reference

Syntax diagrams

ser
Syntax diagrams
This manual uses syntax diagrams to show how to enter commands.

The syntax for the CREATE INDEX command is used here as an example.

Read the syntax diagram from left to right and top to bottom.

The line with the command name (CREATE) is the main line of the command.
Mandatory keywords and arguments (such as INDEX or ON table name) appear on
the main line or a continuation of the main line.

This example diagram could generate the commands shown in these examples:

CREATE UNIQUE INDEX EMP_IDX ON EMP (EMPNO);

CREATE INDEX ORDER_IDX ON ORDERS (ORDERNO, ORDERDATE);

Note that example statements in this manual can appear in bold to distinguish u
entries from a system response:

ROWCOUNT EMP;

5 ROWS IN TABLE

UNIQUE CLUSTERED HASHED

ASC

(

PCTFREE integer constant SIZE integer constant ROWS

ON table name column name(

DESC

CREATE INDEX index name

,

SQL Language Reference xxi

Preface
The following table shows the syntax diagram symbols used in this manual.

Symbol Description

A double arrow pointing right means the
start of a command.

A single arrow pointing right means a
continuation line of a command.

The double arrow pointing left means the
end of a command.

Optional clauses and keywords (such as
UNIQUE) hang off the main or continua-
tion lines.

If there is an optional item with alternate
choices, the choices are in a vertical list.
In this example, ASC and DESC are alter-
nate non-mandatory options. ASC is
underlined, which means it is the default
and can be omitted.

If an item is mandatory, the first alterna-
tive is on the main line (this example is
from the UPDATE command).

When you can repeat arguments of the
same type (such as a list of column
names), an arrow pointing downward is
suspended above the argument. A delim-
iter or operator on this line shows what
separates each argument (such as commas
separating column names).

UNIQUE

ASC

DESC

view name

table name

(

(

,

column name
xxii SQL Language Reference

Syntax diagrams

rst
Notation conventions
The table below show the notation conventions that this manual uses.

Notation Explanation

You A developer who reads this manual

User The end-user of applications that you write

bold type Menu items, push buttons, and field names. Things that you select.
Keyboard keys that you press.

Courier 9 Builder or C language code example

SQL.INI

MAPDLL.EXE

Program names and file names

Precaution Warning:

Vital
information

Important:

Supplemental
information

Note:

Alt+1 A plus sign between key names means to press and hold down the fi
key while you press the second key

TRUE

FALSE

These are numeric boolean constants defined internally in Builder:

Constant Value Meaning

TRUE 1 Successful, on, set

FALSE 0 Unsuccessful, off, clear
SQL Language Reference xxiii

Preface

s

he
,

, and

om/

ng
Online
Other helpful resources
Centura Books Online. The Centura document suite is available online. This
document collection lets you perform full-text indexed searches across the entire
document suite, navigate the table of contents using the expandable/collapsible
browser, or print any chapter. Open the collection by selecting the Centura Book
Online icon from the Start menu or by double-clicking on the launcher icon in the
program group.

Centura Online Help. This is an extensive context-sensitive online help system. T
online help offers a quick way to find information on topics including menu items
functions, messages, and objects.

World Wide Web. Centura Software’s World Wide Web site contains information
about Centura Software Corporation’s partners, products, sales, support, training
users. The URL is http://www.centurasoft.com.

To access Centura technical services on the Web, go to http:/www.centurasoft.c
support. This section of our Web site is a valuable resource for customers with
technical support issues, and addresses a variety of topics and services, includi
technical support case status, commonly asked questions, access to Centura’s
Newsgroups, links to Shareware tools, product bulletins, white papers, and
downloadable product updates.

For information on training, including course descriptions, class schedules, and
Certified Training Partners, go to http://www.centurasoft.com/training.

Send comments to...
Anyone reading this manual can contribute to it. If you have any comments or
suggestions, please send them to:

Technical Publications Department
Centura Software Corporation
975 Island Drive
Redwood Shores, CA 94065

or send email, with comments or suggestions to:

techpubs@centurasoft.com
xxiv SQL Language Reference

SQL Language Reference
Chapter 1

Introduction to SQL

This chapter introduces SQL and its implementation in SQLBase.
SQL Language Reference 1-1

Chapter 1 Introduction to SQL

ccess

mand

oes

 one

 not
e
 and

ittle
 the

ng at
l

ging
.

lish

atory.

e,
that
 that

g
What is SQL?
SQL (Structured Query Language) is a complete set of commands that lets you a
a relational database. SQL is pronounced sequel or ess-que-ell.

SQL is the standard interface for many relational databases. It has a simple com
structure for data definition, access, and manipulation.

SQL was intended to be used with programming languages, so standard SQL d
not have commands for interactive screen dialogue, or for more than very crude
report formatting.

SQL is set-oriented. You can perform a command on a group of data rows or on
row.

SQL is non-procedural. When you use SQL you specify what you want done, not how
to do it. To access data you need only to name a table and the columns; you do
have to describe an access method. For example, a single command can updat
multiple rows in a database without specifying the row's location, storage format,
access format.

SQL has several layers of increasing complexity and capability. End users with l
computer experience can use SQL's basic features while programmers can use
advanced features they need.

SQL history
SQL began with a paper published in 1970 by E.F. Codd, a mathematician worki
the IBM Research Laboratory in San Jose, California. In this paper, “A Relationa
Model of Data for Large Shared Data Banks” (Communications of the ACM, Vol. 13,
No. 6, June 1970) Codd formulated the principles of a relational system for mana
a database and described a relational algebra for organizing the data into tables

Four years later, another important paper followed: “SEQUEL: A Structured Eng
Query Language” (Proceedings of the 1974 ACM SIGMOD Workshop on Data
Description, Access and Control, May 1974) by D.D. Chamberlin and R.F. Boyce.
Both its authors were (like Codd) researchers at IBM's San Jose Research Labor
Their paper defined a language (the ancestor of SQL) designed to meet the
requirements of Codd's relational algebra.

Two years after that, Chamberlin and others developed a version of the languag
SEQUEL/2, and shortly after that IBM built a prototype system called System R
implemented most of its features. Around 1980 the name changed to SQL. Note
today SQL is often pronounced “sequel.”

Both the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) have committees dedicated to establishin
1-2 SQL Language Reference

What is SQL?

wn as

Here

he

ters.

 it for
nds

d

lable
 an

, you

e
ample,

s,
and reviewing SQL standards. The most recent standard released for SQL is kno
SQL-92.

Why is SQL used?
SQL's features make it the most widely-used language for relational databases.
are a few reasons:

• Acceptance

The American National Standards Institute (ANSI) has approved SQL. T
International Standards Organization (ISO) and the U.S. Department of
Defense also support SQL. A version of SQL is available on most compu

• Power

SQL is powerful. SQL is a complete database language, so you can use
data definition, data control, and transaction management. SQL comma
are simple to use in their basic form, but they have the flexibility to do
complex operations.

• Ease of use

People can easily access and manipulate data without becoming involve
with the physical organization and storage complexities of that data.

How you use SQL
You can use SQL in two different ways:

• Interactively through an interface program.

• Embedded in a programming language such as C or SAL (Centura’s Sca
Application Language), or in a client application such as a report writer or
application generator.

SQL is not a programming language or even an interactive language. To use SQL
work through an interface that is part of a proprietary SQL implementation.

You execute SQL commands through a program that provides the interface to th
database server and handles things that SQL was not designed to handle. For ex
Centura’s SQLTalk product handles communications (through a communications
library) with the database server when you give SQL commands.

Application end users access the database through business application program
without the need for prior database knowledge.
SQL Language Reference 1-3

Chapter 1 Introduction to SQL

ess
 need

 in

cure
e SQL
Who uses SQL?

End users
End users issue SQL commands to retrieve, insert, update, or delete data either
through an interactive command interface or a client application.

Application developers
Developers write programs containing SQL commands to allow end users to acc
SQLBase data without having to know how the data is accessed. The developers
to know how to write SQL commands and embed them within a program written
C, COBOL, or SAL (Centura’s Scalable Application Language).

DBAs
Database administrators (DBAs) use SQL commands to define the database, se
data from unauthorized access, and change data definitions as needed. They us
commands to query and report on the database.

Types of SQL commands
With SQL you can:

• Create tables in the database.

• Store data.

• Retrieve data.

• Change data and change the structure of underlying tables.

• Combine and calculate data.

• Provide security.

The SQL commands are grouped into these categories.

Data definition commands (DDL)
These commands create database objects such as tables or views.

CREATE DATABASE
CREATE DBAREA
CREATE EXTERNAL FUNCTION
CREATE INDEX
CREATE STOGROUP
CREATE SYNONYM
CREATE TABLE
CREATE TRIGGER
CREATE VIEW
PROCEDURE
1-4 SQL Language Reference

What is SQL?

 be

, or
 data
he

led a

cify

ety.
SQL DROP commands exist for most of these objects, which allow the object to
deleted.

Data manipulation commands (DML)
These commands add, update, or delete data.

DELETE
INSERT
UPDATE

Data query commands (DQL)
The SELECT command retrieves data.

SQL lets you build complex queries with relational operators (such as >, <, =, >=
<>) that enable you to express a search condition. A query can use a join to pull
from different tables and correlate it by matching on a common row that is in all t
tables.

The input to one query can be the output of another query. A nested query is cal
subselect.

Queries can be nested within INSERT, UPDATE, and DELETE commands to spe
the scope of the operation.

Transaction control commands
These commands ensure data integrity when changing data. They ensure that a
logically-related sequence of actions that accomplish a particular result in an
application (a logical unit of work) are either performed or cancelled in their entir

COMMIT
ROLLBACK
SAVEPOINT

Data administration commands
These commands help you analyze system performance and operations.

AUDIT MESSAGE
START AUDIT
STOP AUDIT
SQL Language Reference 1-5

Chapter 1 Introduction to SQL

ate

Data control commands
In addition to the data definition language (DDL) commands that allow you to cre
and maintain database objects, the following data control commands include the
following maintenance tasks:

• Assigning users to databases and tables.

• Altering database object definitions

• Maintaining databases and partitions

ALTER DATABASE
ALTER DBAREA
ALTER EXTERNAL FUNCTION
ALTER PASSWORD
ALTER STOGROUP
ALTER TABLE
ALTER TRIGGER
CHECK DATABASE
CHECK INDEX
CHECK TABLE
COMMENT ON
DBATTRIBUTE
DEINSTALL DATABASE
GRANT
GRANT EXECUTE ON
INSTALL DATABASE
LABEL
LOAD
LOCK DATABASE
REVOKE
REVOKE EXECUTE ON
ROWCOUNT
SET DEFAULT STOGROUP
UNLOAD
UNLOCK DATABASE
UPDATE STATISTICS
1-6 SQL Language Reference

What are SQL objects?

tual

Example of a SQL command
The following example shows a SQL query both in conversational English and ac
SQL syntax.

Some other examples of SQL commands are:

SELECT LNAME FROM EMP;
CREATE TABLE FRIENDS (NAME CHAR(15));
SELECT * FROM EMP, EMPSAL

WHERE EMP.EMPNO = EMPSAL.EMPNO;
ALTER TABLE FRIENDS RENAME TABLE FOLKS;
DROP TABLE FOLKS;

What are SQL objects?
With SQL, you can create and use the following SQL objects that allow you to
organize and maintain your data:

• Databases

• Tables

• Columns

• Indexes

• Views

• Synonyms

• Stored commands

• Stored procedures

• External functions

• Triggers

English Give me a list of everyone who works at the Albany location who
has the same job as someone who works at the Utica location.

SQL SELECT LNAME, FNAME, EMPNO
FROM EMP WHERE LOC = ‘ALBANY’
AND JOB IN
(SELECT JOB FROM EMP
WHERE LOC = ‘UTICA’);
SQL Language Reference 1-7

Chapter 1 Introduction to SQL

e to

h a
 stop
e data

ific

t the

 you

 the
 time
oice
n of

e

 a
Database
A database is a set of SQL objects. When you define a database you give a nam
an eventual collection of tables and associated indexes.

A single database can contain all the data associated with one application or wit
group of related applications. Collecting data into one database lets you start or
access to all the data in one operation and grant authorization for access to all th
as a unit.

Tables
A database contains one or more tables. Each table has a name and contains a spec
number of columns (vertical) and unordered rows (horizontal). Each column in a row
is related in some way to the other columns in the same row.

Each column has a name and a data type. Each column contains a data value a
intersection of a row and a column.

In theory, no row in a table should be a duplicate of any other row. For instance, if
define a table of sales orders, the columns might be ORDER_DATE,
CUSTOMER_ID, PRODUCT_CODE, and QUANTITY.

If a customer orders 10 widgets one day and then orders another 10 widgets on
same day, there would be 2 duplicate rows in the table. You could either store the
when the order was placed, or have a unique sequence number (such as an inv
number) to identify each order. In each case there will be a column or combinatio
columns which is different for each order, and so uniquely identifies it.

A join retrieves rows from more than one table. This operation is called a join
because the rows retrieved from the different tables are joined on one or more
columns that appear in two or more of the tables.

A table can have a primary key which is a column or a group of columns whose valu
uniquely identifies each row. Columns of other tables may be foreign keys, whose
values must be equal to values of the primary key of the first table. The rule that

Column

CUST_NO CONTACT CREDIT

Row

======== ======= =======
46372986
12162344
98121735
55421888
89923942 S. Jones

B. Harty
G. Handle
R. Vince
E. Smith

$ 550.00
$2000.00
$ 580.00
$1500.00
$3000.00
1-8 SQL Language Reference

What are SQL objects?

e an

 the
le.

LBase

h

 A

e a
ome

w,
oes
 table

 their

ss a
anted
's
 can
value of a foreign key must appear as a value of some specific table is called a
referential constraint.

SQLBase uses SQL commands to add new columns to an existing table or mak
existing column wider. The change takes effect immediately and no database
reorganization is needed.

Indexes
An index is an ordered set of pointers to the data in a table, stored separately from
table. Each index is based on the values of data in one or more columns of a tab

Users accessing a table need not be aware that SQLBase is using an index. SQ
decides whether to use an index to access a table.

An index provides two benefits:

• Improves performance. Access to data is faster.

• Ensures uniqueness. A table with a unique index cannot have two rows wit
the same values in the column or columns that form the index key.

Views
A view is an alternate way of representing data that exists in one or more tables.
view can include all or some of the columns from one or more base tables. You can
also base a view on other views or on a combination of views and tables.

A view looks like a table and you can use it as though it were a table. You can us
view name in a SQL command as though it were a table name. You cannot do s
operations through a view, but you do not need to know that an apparent table is
actually a view.

A table has a storage representation, but a view does not. When you store a vie
SQLBase stores the definition of the view in the system catalog, but SQLBase d
not store any data for the view itself because the data already exists in the base
or tables.

A view lets different users view the same data in different ways. This allows
programmers, database administrators, and end users to see the data as it suits
needs.

Synonyms
A synonym is another name for a table, view, or external function. When you acce
table, view, or external function created by another user (once you have been gr
the privilege), you must fully-qualify the table name by prefixing it with the owner
name, unless a synonym for the table or view is available. If one is available, you
refer to the user’s table or view without having to fully qualify the name.
SQL Language Reference 1-9

Chapter 1 Introduction to SQL

e

L
se
 they
,
ess.

 they

. The

ou to
t
or
and

utes
ers on
,

ata
ent
Stored commands and procedures
A stored command is a compiled query, data manipulation command, or procedur
that is stored for later execution. SQLBase stores the command’s or procedure’s
execution plan as well, so subsequent execution is very fast.

A SQLBase procedure is a set of Scalable Application Language (SAL) and SQ
statements that is assigned a name, compiled, and optionally stored in a SQLBa
database. Procedures reduce network traffic and simplify your applications since
are stored and processed on the server. They also provide more flexible security
allowing end users access to data which they otherwise have no privilege to acc

SQLBase procedures can be static or dynamic. Static procedures must be stored (at
which time they are parsed and precompiled) before they are executed. Dynamic
procedures contain dynamic embedded SQL statements, which are parsed and
compiled at execution time. For this reason, they do not have to be stored before
are executed.

SQLBase also provides preconstructed procedures as useful tools to help you
maintain your database. See Appendix B of the Database Administrator’s Guide for a
description of SQLBase-supplied procedures.

External functions
An external function is a user-defined function that resides in an “external” DLL
(Dynamic Link Library) that is invoked within a SQLBase stored procedure.
SQLBase accepts external functions in a language of your choice as C, C++, etc
SQLBase server converts data types of parameters that are declared in stored
procedures into their external representation.

Using external functions enhances the power of the SQLBase server, allowing y
achieve maximum flexibility and performance with minimal programming effort. I
extends the functionality of stored procedures with no impact on the application
the server. When external functions are called, they are dynamically plugged in
behave like built-in functions. For details, read Chapter 8, External Functions.

Triggers
A trigger activates a stored or inline procedure that SQLBase automatically exec
when a user attempts to change the data in a table. You create one or more trigg
a table, with each trigger defined to activate on a specific command (an INSERT
UPDATE, or DELETE). You can also define triggers on stored procedures.

Triggers allow actions to occur based on the value of a row before or after
modification. Triggers can prevent users from making incorrect or inconsistent d
changes that can jeopardize database integrity. They can also be used to implem
1-10 SQL Language Reference

System catalog tables

ment

s,

 the
bjects.

iews

referential integrity constraints. For details on referential integrity, read Chapter 6,
Referential Integrity.

For details on the trigger execution order before a single data manipulation state
is executed, read the Section DML Execution Model at the end of this chapter.

System catalog tables
For each database, there is a system catalog that contains tables created and
maintained by SQLBase. These tables contain information about the tables, view
columns, indexes, synonyms, external functions, and security privileges for the
database. The system catalog is sometimes called a data dictionary.

When you create, change, or drop a database object, SQLBase changes rows in
system catalog tables that describe the object and tell how it is related to other o

A system catalog contains the name, size, type, and valid values of each column
stored in a table. A system catalog also holds information about the tables and v
that exist in the database and how they are accessed. A user can query the data
dictionary tables just like any other table.

Read the Database Administrator’s Guide for information on the system catalog
tables.

SQL command processing
There are four basic phases of SQL command processing:

1. Parse:

• Check that the command is formulated correctly.

• Break the statement into components for the optimizer.

• Verify names of columns and tables in the system catalog.

2. Optimize:

• Replace view column names and table names with real names.

• Gather statistics on data storage from the system catalog.

• Identify possible access paths.

• Calculate the cost of each alternate path.

• Choose the best path.

For details on the SQLBase Optimizer, read the following section.

3. Generate execution code:

• Produce an application plan for execution.
SQL Language Reference 1-11

Chapter 1 Introduction to SQL

ase

ex

data

,
iate

ation
r
ML

udes
4. Execute the command.

For details on the execution model of any DML statement, read DML Execution
Model on page 1-12.

Optimizer
In SQLBase, you specify the data you want through a SQL command and SQLB
determines how the data will be accessed by using the optimizer. SQLBase chooses
an access path based upon the available indexes, catalog statistics, and the
composition of the SQL command.

There are several basic choices:

• Index access without reading the data table.

If all the needed data is in an index, this is the most efficient access.

• Index access in addition to reading the data table.

In this situation, the qualifier of the command is matched against an ind
and only qualified rows are read from the table. There are cases where
SQLBase uses an index although data in the index does not match the
specified in the qualifier of the command.

• Table scan.

All pages and rows will be read.

There are many variations of the options listed. If a query involves several tables
processing can be complex and involve internal sorting and creation of intermed
result tables which are transparent to the user.

DML Execution Model
SQLBase performs a number of validation checks before executing data manipul
statements (INSERT, UPDATE, or DELETE). Following is the execution order fo
data validation, trigger execution, and integrity constraint checking for a single D
statement:

1. Check for number of bind data.

2. Validate values if they are part of the statement (that is, not bound). This incl
null value checking, data type checking (such as numeric), etc.

3. Perform security checks.

4. If a trigger is defined, execute BEFORE statement trigger.

5. Loop for each row affected by the SQL statement.

For each row, perform the following actions this order
1-12 SQL Language Reference

SQL command processing

a
).

.

 this
• Validate values if they are bound in. This includes null value checks, dat
type checking, and size checking (for example, character string too long

Note that size checking is performed even for values that are not bound

• Fire BEFORE ROW trigger.

• Perform checks for duplicate values.

• Perform referential integrity checks on invoking DML.

• Execute INSERT/UPDATE/DELETE.

• Fire AFTER ROW trigger.

6. Execute AFTER statement trigger.

Note: A trigger itself can cause DML to be executed, which will apply to the steps shown in
model.
SQL Language Reference 1-13

SQL Language Reference
Chapter 2

SQL Elements

This chapter describes the following SQL elements:

• Names

• Data types

• Constants

• System keywords

• Database sequence objects

• Functions

• Expressions

• Predicates

• Search conditions

• Bind variables
SQL Language Reference 2-1

Chapter 2 SQL Elements

nd

 (#,
core
can

s
igit.

 this

ble

hort

sitive.
e

tem
ame
case.
Names
A name is called an identifier in SQL. User names, table names, column names, a
index names are examples of identifiers.

An identifier can be an ordinary identifier or a delimited identifier.

• An ordinary identifier begins with a letter or one of the special characters
@ or $). The rest of the name can include letters, numeric digits, unders
(_) and special characters. An exception is a database identifier, which
only start with an alphabetic character, and contain only alphanumeric
characters.

• A delimited identifier can contain any character including special character
such as blanks and periods. Also, a delimited identifier can start with a d
A delimited identifier is case-sensitive.

Delimited identifiers must be enclosed in double quotes:

"7.g identifier"

SQL reserved words can be used as identifiers if they are delimited, but
is not recommended.

If a delimited identifier contains double quotes, then two consecutive dou
quotes ("") are used to represent one double quote (").

Names are long or short identifiers, or identifiers qualified by other identifiers. The
maximum length of a long identifier is 18 characters. The maximum length of a s
identifier is 8 characters.

Names of database objects (such as a table or column) are generally case-insen
Identifiers such as passwords or user names are usually case-sensitive. Read th
following section, Types of names on page 2-3, which describes the different
SQLBase identifiers; a name is case-insensitive unless stated otherwise.

Note: Even though a name may be case-insensitive, it is stored in upper-case in the sys
catalog. For example, a query on the SYSADM.SYSTABLES table must specify the table n
in uppercase, unless you enclose it in single quotes, even though you created it in lower

Examples of names
Examples of names are:

CHECKS
AMOUNT_OF_$
:CHKNUM
$500
2-2 SQL Language Reference

Names

 of
plicit
"NAME & NO."
#CUSTOMER
:3

Types of names
The following objects have names:

• Authorization ID

• Columns

• Commands

• Correlations

• Databases

• External functions

• Indexes

• Passwords

• Bind Variables

• Commands

• Stored Procedures

• Synonyms

• Tables

• Triggers

• Views

Authorization ID (user name)
This is a short identifier that designates a user. Authorization ID is also called user
name in this manual. The system keyword USER contains the user name.

An authorization ID is an implicit part of all database object names. To name a
database object explicitly, add the authorization ID and a period to the beginning
the identifier. For example, the table name CUST created by user JOE has the ex
name JOE.CUST. The implicit name CUST is used most often.

A user name is case-sensitive.

Examples of authorization IDs are JOE and USER1.
SQL Language Reference 2-3

Chapter 2 SQL Elements

e and

must

es

 the
.

Column name
This is a qualified or unqualified long identifier that names a column of a table or
view.

The qualified form is preceded by a table name, a view name, or correlation nam
a period (.).

Examples of column names are EMPNO and EMPLOYEES.EMPNO.

Correlation name
This is a long identifier that designates a table or view within a command.

Examples of correlation names are X and TEMP.

Database name
This is a short identifier that designates a database.

Database names can only contain alphanumeric characters (A-Z, a-z, 0-9), and
start with a letter.

Do not specify an extension for a database name. For example, demo.xyz is invalid.
SQLBase automatically assigns a database name extension of .dbs. SQLBase will
store a database called DEMO in a file named demo.dbs.

Examples of database names are DEMO and COMPANY.

External function name
This is an unqualified ordinary long identifier (maximum 64 characters) that nam
an external function. An example is MyFunc().

A function name must start with an alpha upper or lowercase letter. It cannot be
same as procedure, or a name used in any of the SQLBase aggregate functions

column name

table name

view name

correlation name
2-4 SQL Language Reference

Names

er

itive.

 An

ver,

igits
Index name
This is a qualified or unqualified long identifier that names an index.

The qualified form is preceded by an authorization ID and a period.

An unqualified index name is implicitly qualified by the authorization ID of the us
who gave the command.

Examples are EMPX and JOE.EMPX.

Password
This is a short identifier that is a password for an authorization ID. It is case-sens

Examples are PWD1 and X2381.

Procedure name
This is a qualified or unqualified long ordinary identifier that names a procedure.
example is JOE.PROC.

A procedure name can be different from the name under which it is stored. Howe
a procedure name cannot be the same name as an external function name.

Bind variable name
Bind variable names in a SQL command must always be ordinary identifiers or d
preceded by a colon (:).

Command name
This is a long identifier that designates a user-defined command. An example is
QUERY1.

Synonym name
This is a long identifier that designates a table or view. A synonym can be used
wherever a table name or view name can be used to refer to a table or view.

An example of a synonym is EASY.

Table name
This is a qualified or unqualified long identifier that names a table.

index name

authorization ID
SQL Language Reference 2-5

Chapter 2 SQL Elements

r

r
An unqualified table name is implicitly qualified by the authorization ID of the use
who created the table.

The qualified form is preceded by an authorization ID and a period.

Examples are EMP and JOE.EMP.

Trigger name
This is a qualified or unqualified long ordinary identifier that names a trigger. An
example is JOB_UPDT.

View name
This is a qualified or unqualified long identifier that designates a view.

An unqualified view name is implicitly qualified by the authorization ID of the use
who gave the command.

The qualified form is preceded by an authorization ID and a period.

Examples of view names are MYEMP and DEPT10.MYEMP.

Summary of naming requirements
The following table lists the naming requirements for any type of name.

Type of Identifier
Maximum

Length
Qualifiable?

Authorization ID 8 No

Bind Variable 18 N/A

Column 18 Yes

Command 18 Yes

table name

authorization ID

view name

authorization ID
2-6 SQL Language Reference

Data types

. A

ue of
Data types
The general data types that SQLBase uses to store data are:

• Character

• Numeric

• Date and time

The data type determines the following information:

• The value and length of the data as stored in the database.

• The display format when the data is displayed.

The data type for a column is specified in the CREATE TABLE command.

Null values
A null value indicates the absence of data. Any data type can contain a null value
null value has no storage.

Null is not equivalent to zero or to blank; it is the same as unknown. A value of null is
not greater than, less than, or equivalent to any other value, including another val
null. To retrieve a field on a null match, the NULL predicate must be used.

NULL is equal to NULL when you insert two of them into a uniquely constrained
column.

Correlation 18 No

Database 8 No

External function 64 No

Index 18 Yes

Password 8 No

Procedure 18 Yes

Synonym 18 No

Table 18 Yes

Trigger 18 Yes

View 18 Yes

Type of Identifier
Maximum

Length
Qualifiable?
SQL Language Reference 2-7

Chapter 2 SQL Elements

cter

lare

ou can
ple,

rators
Empty strings have a null value.

Read the section, Search conditions on page 2-24 to understand more about how nulls
are treated.

Character data types
A character string is a sequence of letters, digits, or special characters. All chara
data is stored in SQLBase as variable-length strings.

For DB2 SQL compatibility, SQLBase allows several alternative keywords to dec
the same data type.

An empty string has a null value.

All character data types can store binary data.

Character data is stored as case-sensitive. To search for case-insensitive data, y
issue a SELECT statement with the @UPPER or @LOWER functions. For exam
the following query returns only upper-case SMITHS:

SELECT LNAME FROM EMP
WHERE @UPPER(LNAME) = 'SMITH';

CHAR (or VARCHAR)
A length must be specified for this data type. The length determines the maximum
length of the string. The length cannot exceed 254 bytes.

You can use CHAR columns in comparison operations with other characters or
numbers and, and also in most functions and expressions. Wild-card search ope
can be used in the LIKE predicate for character-only comparisons.

This data type is defined in the system catalog as CHAR and VARCHAR.

Examples:

CHAR (11)
VARCHAR(25)
CHAR(10)
2-8 SQL Language Reference

Numeric data types

sed
ot

field
base
ace.

s the

o
ated,
r,
cated

f
LONG VARCHAR (or LONG)
This data type stores strings of any length. The difference between a CHAR
(VARCHAR) and a LONG (LONG VARCHAR) data type is that a LONG type can
store strings longer than 254 bytes, and is not specified with a length attribute.

Both text and binary data can be stored in LONG VARCHARs. However, only
character data can be retrieved through SQLTalk.

LONG VARCHAR columns can be stored, retrieved, or modified, but cannot be u
in a comparison operation in a WHERE clause. LONG VARCHAR columns cann
be used in expressions or in most functions.

You can use LONG VARCHAR as a BLOBS equivalent.

You can store a bitmap file as a LONG field. SQLBase stores the entire file in the
with no compression, which means that all of the file’s data is present in the data
file. If the bitmap file is large, you can store it outside the database file to save sp
To do this, store only the file name in the database, and use a program to acces
bitmap file through its stored file name.

A LONG datatype is stored as a linked list of pages. Since it is variable length, n
space is pre-allocated. This means that if no data is entered, no pages are alloc
and if data is entered, only enough pages to hold the long are allocated. Howeve
there is a minimum allocated space of one page for non-null values. Space is allo
by page.

Example:

LONG VARCHAR

Numeric data types
SQLBase allows these numeric data types:

SQLBase uses its own internal representation of numbers described in the SQL/API
Reference Manual. Data is cast on input and output to conform to the restrictions o
the data type.

Exact Data Types Approximate Data Types

DECIMAL (or DEC)
INTEGER (or INT) SMALLINT

DOUBLE PRECISION
NUMBER
FLOAT
REAL
SQL Language Reference 2-9

Chapter 2 SQL Elements

a
ate

 and

est

n

mber
 are

 as in

 the
ber,
igits.
Precision and scale are maintained internally by SQLBase:

• Precision refers to the total number of allowable digits

• Scale refers to the number of digits to the right of the decimal point.

Numbers with up to 15 decimal digits of precision can be stored in the exact dat
types. Numbers in the range of 1.0e-99 to 1.0e+99 can be stored in the approxim
data types.

SQLBase supports integer arithmetic. For example:

INTEGER / INTEGER = INTEGER

Number columns can be used in any comparison operations with other numbers
can occur in all functions and expressions.

NUMBER
NUMBER is a superset of all the other numeric data types and supports the wid
range of precision and scale (up to the maximum allowed by SQLBase numeric
types). The NUMBER data type supports up to 22 precision digits.

Example:

NUMBER

Use NUMBER in either of the following situations:

• You do not need to control precision or whole numbers.

• You do need SQLBase to automatically give you the largest precisio
available.

DECIMAL (or DEC)
This data type is associated with a particular scale and precision. Scale is the nu
of fractional digits and precision the total number of digits. If precision and scale
not specified, SQLBase uses a default precision and scale of 5,0.

Use the DECIMAL data type when you need to control precision and scale, such
currency.

The position of the decimal point is determined by the precision and the scale of
number. The scale, which is the number of digits in the fractional part of the num
cannot be negative or greater than the precision. The maximum precision is 15 d

This data type can store a maximum of 15 digits. The valid range is:

-999999999999999 to +999999999999999
2-10 SQL Language Reference

Numeric data types

ble

bers

ively,
Another way to express the range is to say that the value can be -n to +n, where the
absolute value of n is the largest number that can be represented with the applica
precision and scale.

The DEC notation is compatible with DB2.

Following are some DECIMAL examples:

DECIMAL (8,2)
DECIMAL (5,0) (same as INTEGER precision)
DECIMAL
DEC

SQLBase truncates input values to the precision of the column definition. For
example:

• Entering 29.994 in a DECIMAL(10,2) stores 29.99.

• Entering 29.995 in a DECIMAL(10,2) also stores 29.99.

SQLBase truncates decimals as DB2 does with 2 exceptions:

• Floating point numbers that are used as bind variables.

• For positive numbers that contain more than 21 digits and negative num
that contain than 19 digits, SQLBase rounds up the last digit.

Calculating precision for addition/subtraction
For two numbers A and B with precision and scale of (p1,s1) and (p2,s2) respect
the following rules calculate the precision and scale for subtraction and division.

Precision:

Scale:

Precision of result (A+B) or
(A-B)

= The minimum value of either the maximum
precision of SQLBase (15) or the following
equation:

max(p1-s1, p2-s2) + max(s1, s2) +1

Scale of result (A+B) or (A-
B)

= The maximum value of the two scales s1 and s2.
SQL Language Reference 2-11

Chapter 2 SQL Elements

e

ively,
Calculating precision for division
For division, the following rules calculate the precision and scale of the result.

Precision:

Scale:

For example, if you have the following two columns:

D1 DECIMAL (10,2)
D2 DECIMAL (10,2)

and you divide D1 by D2, you get the following precision and scale:

precision= 15
scale= 15 - 10 + 2 - 2 = 5

Some functions change the maximum precision. For example, SUM changes th
maximum precision to 15. Therefore, this equation:

SUM(D1)/SUM(D2)

results in the following precision and scale:

precision=15
scale=15 - 15 + 2 - 2 = 0

Calculating for multiplication
For two numbers A and B with precision and scale of (p1,s1) and (p2,s2) respect
the following rules calculate the precision and scale.

Precision:

Scale:

Precision of
result

= Maximum precision
of SQLBase (15)

Scale
of
result

= Maximum
precision

- Precision
of first
input
number

+ Scale of
first input
number

- Scale of
second
input
number

Precision of product
(A*B)

= The minimum value of either the maximum precision of
SQLBase (15) or the sum of the precisions (p1 + p2)

Scale of product
(A*B)

= The minimum value of either the maximum precision of
SQLBase (15) or the sum of the scales (s1 + s2)
2-12 SQL Language Reference

Numeric data types

uses

MAL

For example, if you have the following two columns:

D1 DECIMAL (10,2)
D2 DECIMAL (10,2)

and you multiply D1 by D2, then you get the following precision and scale:

precision = min(15, 20) = 15
scale= min (15, 4) = 4

Some functions change the maximum precision. For example, the SUM function
the following rule:

precision = min(15, max(p1-s1, p2-s2) + max(s1, s2) + 1)
scale = max(s1,s2)

So, for the following sum:

SUM(D1)*SUM(D2)

you get the following precision and scale:

precision=min(15, max (8, 8) + max (2,2)+ 1)= min (15, 11)=11
scale= max(2,2) = 2

Currency
SQLBase does not have a specific CURRENCY data type, so you can use DECI
instead. A suggested setting is DECIMAL (15,2).

INTEGER (or INT)
This data type has no fractional digits. Digits to the right of the decimal point are
truncated.

An INTEGER can have up to 10 digits of precision:

-2147483648 to +2147483647

The INT notation is compatible with DB2.

Examples:

INTEGER
INT

SMALLINT
This data type has no fractional digits. Digits to the right of the decimal point are
truncated. Use this number type when you need whole numbers.

A SMALLINT can have up to 5 digits of precision:

-32768 to +32767
SQL Language Reference 2-13

Chapter 2 SQL Elements

t
uld

ion
le-

ers.
SQLBase does not store a SMALLINT value relative to the size of a 16- or 32-bi
integer, but approximates it with the same number of digits. C programmers sho
check for overflow.

Example:

SMALLINT

DOUBLE PRECISION
This data type specifies a column containing double-precision floating point
numbers.

Example:

DOUBLE PRECISION

FLOAT
This data type stores numbers of any precision and scale.

A FLOAT column can also specify a precision:

FLOAT (precision)

If the specified precision is between 1 to 21 inclusive, the format is single-precis
floating point. If the precision is between 22 and 53 inclusive, the format is doub
precision floating point.

Note: Although, SQLBase allows you specify a precision up to 53, the actual maximum
supported precision is 22.

If the precision is omitted, double-precision is assumed.

Examples:

FLOAT
FLOAT (20)
FLOAT (53)

REAL
This data type specifies a column containing single-precision floating point numb

Example:

REAL
2-14 SQL Language Reference

Date/Time data types

o use
-0000

The

1899.

arch

ate

lt of
Date/Time data types
SQLBase supports these data types for date and time data:

• DATETIME (or TIMESTAMP)

• DATE

• TIME

You can use date columns in comparison operations with other dates. You can als
dates in some functions and expressions. The supported range of dates is 01-jan
through 31-dec-9999.

Internally, SQLBase stores all date and time data in its own floating point format.
internal floating point value is available through an application program API call.

This format interprets a date or time as a number with the form:

DAY.TIME

DAY is a whole number that represents the number of days since December 30,
December 30, 1899 is 0, December 31, 1899 is 1, and so forth.

TIME is the fractional part of the number. Zero represents 12:00 AM.

March 1, 1900 12:00:00 PM is represented by the floating point value 61.5 and M
1, 1900 12:00:00 AM is 61.0.

Anywhere a date/time string can be used in a SQL command, a corresponding
floating point number can also be used.

SQLTalk and SQLBase provide extensive support for date/time values. Read the
section Date/Time values on page 2-33 for more information.

DATETIME (or TIMESTAMP)
This data type is used for columns which contain data that represents both the d
and time portions of the internal number.

You can input DATETIME data using any of the allowable date and time formats
listed for the DATE and TIME data types.

When a part of an input date/time string is omitted, SQLBase supplies the defau
0, which converts to December 30, 1899 (date part) 12:00:00 AM (time part).

TIMESTAMP can be used instead of DATETIME for DB2 compatibility.

Examples:

DATETIME
TIMESTAMP
SQL Language Reference 2-15

Chapter 2 SQL Elements

he

On

On

The time portion of DATETIME has resolution to the second and microsecond. T
time portion of TIMESTAMP has resolution to the microsecond.

DATE
This data type stores a date value. The time portion of the internal number is 0.
output, only the date portion of the internal number is retrieved.

Example:

DATE

TIME
This data type stores a time value. The date portion of the internal number is 0.
output, only the time portion of the internal number is retrieved.

Example:

TIME

TIME has resolution to the second.

Data type conversions
This section describes how SQLBase converts data types.

Data type conversions in assignments
SQLBase is flexible in the data types it accepts for assignment operations:

Source Data
Type

Target Data
Type

Comment

Character Numeric Source value must form a valid numeric value (only
digits and standard numeric editing characters).

Numeric Character Single quotes are not needed.

Date/Time Numeric

Numeric Date/Time

Date/Time Character Single quotes are not needed.

Character Date/Time Source value must form a valid date/time value.
2-16 SQL Language Reference

Constants

the
 the

dard

the

 as:

 or
Data type conversions in functions
Usually, functions accept any data type as an argument if the value conforms to
operation that function performs. SQLBase will automatically convert the value to
required data type.

For example, in functions that perform arithmetic operations, arguments can be
character data types if the value forms a valid numeric value (only digits and stan
numeric editing characters).

For date/time functions, an argument can be a character or numeric data type if
value forms a valid date/time value.

Constants
A constant (also called a literal) specifies a single value. Constants are classified

• String constants.

• Numeric constants.

• Date and time constants.

String constants
A string is a sequence of characters. A string constant must be enclosed in single
quotes (apostrophes) when used in a SQL command.

To include a single quote in a string constant, use two adjacent single quotes.

Numeric constants
A numeric constant refers to a single numeric value.

A numeric constant is specified with digits. The value can include a leading plus
minus sign and a decimal point.

A numeric constant can be entered in E notation.

Date/Time constants
Date and time values can be used as constants. Read the section Date/Time values on
page 2-33 for more information.
SQL Language Reference 2-17

Chapter 2 SQL Elements

olumn

a
Examples of constants

System keywords
Certain keywords have values that can be used in some commands in place of c
names or constants. These special keywords are:

Constant
Type

Example Explanation

Character
String

'CHICAGO' Character string must be enclosed in single quotes.

'DON''T' To include a quote character as part of a character
string, use two consecutive single quotes.

'' Two consecutive single quotes with no intervening
character represents a null value.

'1492' If digits are enclosed in quotes, it is assumed to be
character string and not a number.

Numeric 2580 Digits not enclosed in quotes are assumed to be
numeric values.

1249.57 Numeric constant with decimal point.

-1249 Leading plus or minus signs may be used on
numerics.

4.00E+7 E-notation can be used to express numeric values.

Date/time 10-27-94 Date/time constants do not need to be quoted.

27-Oct-1994

NULL The absence of a value. NULL can be used as a
constant in a select list or in a search condition. For
example:

SELECT LNAME FROM EMP
WHERE DEPTNO IS NULL;

ROWID The internal address of a row. ROWID can be used
instead of a column name in a select list or in a search
condition.

SELECT ROWID FROM EMP
WHERE HIREDATE > 01-JAN-1994;
2-18 SQL Language Reference

System keywords

d by

ted

e
SQLBase also provides these keywords:

• date/time keywords, such as:

SYSDATETIME
SYSDATE
SYSTIME
SYSTIMEZONE

Read the Section Date/Time values on page 2-33 for more information.

• database sequence object keywords:

CURRVAL
NEXTVAL

Read the section Database sequence objects on page 2-20 for more
information

Using SYSDBTRANSID keyword
SYSDBTRANSID is an unsigned 4-byte numeric value representing the current
transaction ID under which the SQL command was executed. Like other system
keywords, you can specify SYSDBTRANSID in a SQL expression in place of a
constant or column name. The current transaction ID, which is the value returne
SYSDBTRANSID, remains the same throughout the life of the transaction.

For example, assume you want to “capture” and store the transaction ID associa
with the following UPDATE statement:

UPDATE EMPLOYEES SET SALARY = 100000 WHERE NAME = ‘JOHN’;
The following INSERT statement inserts the UPDATE’s transaction ID into a tabl
called MYHISTORYTABLE:

INSERT INTO MYHISTORYTABLE
(transid,time,changed_by,employee_name,new_salary)

USER The authorization ID of the current user. USER
can be specified instead of a constant in a select list or in
a search condition.

CREATE VIEW MYTABLES AS
SELECT * FROM SYSADM.SYSTABLES

WHERE CREATOR = USER;

SYSDBTRANSID The current transaction ID of the SQL command.
SYSDBTRANSID can be specified instead of a constant
or column name. Read the following section Using
SYSDBTRANSID keyword for more details.
SQL Language Reference 2-19

Chapter 2 SQL Elements

ntial
ID of

Base

nce

rder.

en a
base is
d

o

 the

hey can

e
nce

ns.
ntial.
SELECT SYSDBTRANSID, SYSTIME, USER, NAME, SALARY FROM EMPLOYEES
WHERE NAME = ‘JOHN’;

Although SYSDBTRANSID never decreases, you may not necessarily see seque
transaction IDs for sequential transactions. For instance, if you get a transaction
20004 for one transaction, you may get an ID of 20010 for the next transaction,
instead of 20005. This depends on the nature of the transaction; often times SQL
has to do several internal transactions for each user transaction. The internal
transactions also get their own transaction IDs. All IDs are unique.

Database sequence objects
SYSDBSequence is the name of the Database Sequence Object provided in
SQLBase. A Database Sequence Object is an object inherently built into the
SQLBase database that can be accessed by any database user for generating
sequential numeric values. You can use sequences for automatically generating
primary key values. When used as a primary key in a table, the generated seque
numbers also provide a useful way of ordering the rows in the entry sequence o

Using SYSDBSequence
SYSDBSequence is a permanent persistent object in SQLBase. It is created wh
SQLBase database is created and remains as part of the database until the data
dropped. It is persistent through reorganization of databases and can be migrate
using the LOAD and UNLOAD database commands.

Initial value of the SYSDBSequence is 0 at the time of database creation and
increases by 1 with no practical upper limit.

To access SYSDBSequence object values in SQL statements, use these pseud
columns:

• NEXTVAL: Obtains the next available sequence number

• CURRVAL: Obtains the sequence number last retrieved.

These pseudo columns let you obtain the current and incremented next value of
SYSDBSequence object as you would for regular table columns in some DML
statements. Since the sequence number are generated independent of tables, t
be used across multiple tables or in general DML statement.

Although SYSDBSequence number never decrease, you may not necessarily se
sequential numbers for sequential transactions. For instance, if you get a seque
number of 1000 for one transaction, you may get a number of 1005 for the next
sequence, instead of 1001. This occurs since NEXTVAL is used by all transactio
Sequence numbers are always unique and ascending but not necessarily seque
2-20 SQL Language Reference

Database sequence objects

AL

t all
t.

ent
 the

e.
 you

tion
.

 by
one
the
her

eturns

r both
t.

ce
ers can
You must qualify CURRVAL and NEXTVAL with the database sequence name
SYSDBSequence. For example:

SYSDBSequence.CURRVAL
or

SYSDBSequence.NEXTVAL

You can use SYSDBSequence by accessing its value with CURRVAL and NEXTV
pseudo columns in these places:

• SELECT list of a SELECT statement

• VALUES clause of an INSERT statement

• SET clause of an UPDATE statement

The following semantic rules apply for the usage of sequence numbers. Note tha
of the following semantics rules apply for the single execution of a SQL statemen

• First reference to NEXTVAL returns the sequence’s initial value. Subsequ
references to NEXTVAL increment the sequence value by 1 and returns
new value.

• Any reference to CURRVAL always returns the sequence’s current valu
Before you use CURRVAL for the sequence in your transaction session,
must first increment the sequence with NEXTVAL otherwise an “un-
initialized currval” error will be returned.

• Once a NEXTVAL is generated, it can be accessed in the same transac
session till the next NEXTVAL is requested from that transaction session

• One transaction session can never see the sequence number generated
another transaction session. Once a sequence number is generated by
transaction, that transaction can continue to access that value by using
CURRVAL, regardless of whether the sequence is incremented by anot
transaction.

• You can only increment the SYSDBSequence once in a single SQL
statement.

• If a statement contains more than one reference to NEXTVAL for
SYSDBSequence, SQLBase increments the sequence value once and r
the same value for all occurrences of NEXTVAL in that statement.

• If a statement contains references to both CURRVAL and NEXTVAL,
SQLBase increments the sequence once and returns the same value fo
CURRVAL and NEXTVAL, regardless of their order within the statemen

• Two transactions can concurrently increment the sequence; the sequen
number each transaction sees may have gaps because sequence numb
be generated by the other transactions.
SQL Language Reference 2-21

Chapter 2 SQL Elements

loyee

er
Examples
This example increments the SYSDBSequence and uses its value for a new emp
inserted into the employee table:

INSERT INTO emp
VALUES (SYSDBSequence.nextval, ‘John’, SYSDATE);

The following example adds a new order with the next order number to the mast
order table and then adds suborders with this number to the detail order table.

INSERT INTO master_order(orderno, customer, orderdate)
VALUES (SYSDBSequence.nextval, ‘John’, SYSDATE);

INSERT INTO detail_order(orderno, part, quantity)
VALUES (SYSDBSequence.currval, ‘HUBCAP’, 1);

INSERT INTO detail_order(orderno, part, quantity)
VALUES (SYSDBSequence.currval, ‘SPARKPLUG’, 4);

INSERT INTO detail_order(orderno, part, quantity)
VALUES (SYSDBSequence.currval, ‘MUFFLER’, 1);

Expressions
An expression is:

• An item that yields a single value.

• A combination of items and operators that yield a single value.

An item can be any of the following:

• A column name.

• A constant.

• A bind variable.

• The result of a function.

• A system keyword.

• Another expression.
2-22 SQL Language Reference

Expressions

e
The form of an expression is:

If you do not use arithmetic operators, the result of an expression is the specified
value of the term. For example, the result of 1+1 is 2; the result of the expression
AMT (where AMT is a column name) is the value of the column.

Null values in expressions
If any item in an expression contains a null value, then the result of evaluating th
expression is null (unknown or false).

String concatenation operator (||)
This operator (||) concatenates two or more strings:

string || string

The result is a single string.

For example, if the column PLACE contains the value "PALO ALTO", then the
following example returns the string "was born in PALO ALTO".

' was born in '|| PLACE

The following example prefixes everyone’s name with “Mr.”:

SELECT 'Mr. '||LNAME FROM EMP;

constant

((

column name

function

expression

bind variable

system keyword

||
/

*
+

-

SQL Language Reference 2-23

Chapter 2 SQL Elements

ion.

ing
hese
Precedence
The following precedence rules are used in evaluating arithmetic expressions:

• Expressions in parentheses are evaluated first.

• The unary operators (+ and -) are applied before multiplication and divis

• Multiplication and division are applied before addition and subtraction.

• Operators at the same precedence level are applied from left to right.

Examples of expressions
The following table lists some sample expressions:

Search conditions
A search condition in a WHERE clause qualifies the scope of a query by specify
the particular conditions that must be met. The WHERE clause can be used in t
SQL commands:

• SELECT

• DELETE

• UPDATE

A search condition contains one or more predicates connected by the logical
(Boolean) operators OR, AND, and NOT.

AMOUNT * TAX Column arithmetic.

(CHECKS.AMOUNT * 10) - PAST_DUE Nested arithmetic with
columns.

HIREDATE + 90 Column and constant
arithmetic.

SAL + MAX(BONUS) Function with column
arithmetic.

SAL + :1 Bind variable with column
arithmetic.

SYSDATETIME + 4 Date/time system keyword
arithmetic.
2-24 SQL Language Reference

Search conditions

ection

bined

 is

n) is

e
 and
in an
s
The types of predicates that can be used in a search condition are discussed in s
Predicates on page 2-27.

The specified logical operators are applied to each predicate and the results com
according to the following rules:

• Boolean expressions within parentheses are evaluated first.

• When the order of evaluation is not specified by parentheses, then NOT
applied before AND.

• AND is applied before OR.

• Operators at the same precedence level are applied from left to right.

A search condition specifies a condition that is true, false, or unknown about a given
row or group. NOT (true) means false, NOT (false) means true and NOT (unknow
unknown (false). AND and OR are shown in the following truth table.

Assume P and Q are predicates. The first two columns show the conditions of th
individual predicates P and Q. The next two columns show the condition when P
Q are evaluated together with the AND operator and the OR operator. If an item
expression in a search condition is null, then the search condition is evaluated a
unknown (false).

P Q P and Q P or Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

predicate

NOT

OR

AND
SQL Language Reference 2-25

Chapter 2 SQL Elements

r

ue of

b. 1,
Using indexes with the OR predicate
SQLBase will use indexes with the OR predicate in the following situations:

• WHERE column IN (literal constants)

• WHERE column IN (literal constants) AND (boolean expression)

• WHERE column operator constant1 OR column operator constant2..

• WHERE (column operator constant1 OR column operator constant2..) AND
(boolean expression)

Nulls and search conditions
If a search condition specifies a column that might contain a null value for one o
more rows, be aware that such a row is not retrieved, because a null value is neither
less than, equal to, nor greater than the value specified in the condition. The val
a null is unknown (false).

To select values from rows that contain null values, use the NULL predicate
(explained later in this chapter):

WHERE column name IS NULL

SQLBase does not distinguish between a NULL and zero length string on input.
Consider the following command that inserts a zero-length string:

INSERT INTO X VALUES (‘’);

The following command returns not only the null rows, but also the row with the
zero-length string:

SELECT X FROM X WHERE X IS NULL;

Examples of search conditions
This returns rows for employees who are in department 2500.

SELECT * FROM EMP WHERE DEPTNO = 2500;

This returns rows for employees who are in department 2500 and were hired Fe
1994, or returns rows for employees who are programmers.

SELECT * FROM EMP WHERE (DEPTNO = 2500
AND HIREDATE = ‘01-FEB-1994’) OR JOB = 'Programmer';

Unknown False False Unknown

Unknown Unknown Unknown Unknown

P Q P and Q P or Q
2-26 SQL Language Reference

Predicates

rue,

 be
The following WHERE clauses are equivalent.

SELECT * FROM EMP WHERE NOT
(JOB = 'Programmer' OR HIREDATE = '01-FEB-1994');

SELECT * FROM EMP WHERE
JOB != 'Programmer' AND HIREDATE ! = '01-FEB-1994';

Predicates
A predicate in a WHERE or HAVING clause specifies a search condition that is t
false, or unknown with respect to a given row or group of rows in a table.

Predicates use operators, expressions, and constants to specify the condition to
evaluated.

These types of predicates are described in this section:

• Relational

• BETWEEN

• NULL

• EXISTS

• LIKE

• IN

Relational predicate

There are two types of relational predicates:

• Comparison relational predicate

• Quantified relational predicate

((subselect

=expression expression
!=
<>
>
!>>

!<

<=
>=

ANY/SOME

ALL
SQL Language Reference 2-27

Chapter 2 SQL Elements

),
ed:

1, 2,

b) is

NG

n
 are

y the
ually.
Comparison Relational Predicate
A comparison relational predicate compares a value to another value based on
standard relational operators. The basic form of a comparison predicate is two
expressions connected by a relational operator:

The following are examples of comparison predicates:

SELECT * FROM EMP WHERE EMPNO = ‘50642’;
SELECT * FROM EMP WHERE HIREDATE <= '1-Jan-1994';

Note: If you omit the keyword ALL or ANY (or SOME which can be used in place of ANY
the comparison relational predicate must return one row, or this error message is display
“Subselect resulted in multiple rows.”

For example, if you have a table GRADES that contains a column RANK with the values
and 3, the following statement is not allowed since no rows are returned:

X >= (SELECT RANK FROM GRADES WHERE RANK >= 4)

Quantified relational predicate
A quantified relational predicate compares the first expression value to a collection of
values which result from a subselect command.

A SELECT command that is used in a predicate is called a subselect or subquery. A
subselect is a SELECT command that appears in a WHERE clause of a SQL
command.

You can use the NOT operator in place of the symbol (!). For example, NOT (a=
the same as a!=b.

You cannot use an ORDER BY clause in a subselect. Also, you cannot use a LO
VARCHAR column in a subselect.

ANY/SOME. You can use the ANY keyword as a test with one of the compariso
operators. SQLBase also allows the SOME keyword as a alternate for ANY; they
interchangeable.

The ANY test compares a single test value to a column of data values produced b
subquery. SQLBase compares the test value to each value in the column individ
If any of the comparisons is TRUE, the entire ANY test is TRUE.

A > B

col1 != col2
2-28 SQL Language Reference

Predicates

t

ould

e in a
LL

ies.
The following table lists the rules describing results of the ANY test when the tes
value is compared to the column of subquery results:

Be careful when using the ANY keyword, since it involves an entire set of
comparisons, not just one. Consider the following syntax:

WHERE X < ANY (SELECT Y)

It’s easy to read this line as “where X is less than any select Y”. However, you sh
read the line as “where, for some Y, X is less than Y”.

ALL. Like the ANY keyword, the ALL keyword is a quantified relational test used
with the comparison operators. It compares a single test value to each data valu
column, one at a time. If all of the individual comparisons are TRUE, the entire A
test is TRUE.

Examples of subqueries. Here are some examples of subselects and subquer

SALARY is not equal to the average salary:

SELECT * FROM EMPSAL WHERE SALARY != (SELECT
AVG(SALARY) FROM EMPSAL);

SELECT * FROM EMPSAL WHERE SALARY <> (SELECT
AVG(SALARY) FROM EMPSAL);

SALARY is greater than the average salary:

SELECT * FROM EMPSAL WHERE
SALARY > (SELECT AVG(SALARY) FROM EMPSAL);

SALARY is less than the average salary:

SELECT * FROM EMPSAL WHERE
SALARY < (SELECT AVG(SALARY) FROM EMPSAL);

SALARY is greater than or equal to any salary:

SELECT * FROM EMPSAL WHERE
SALARY >= ANY(SELECT SALARY FROM EMPSAL);

Comparison Test Value ANY search value

TRUE for at least one of the data values in the column TRUE

FALSE for every data value in the column FALSE

Not TRUE for any data value in the column, but is NULL for one
or more of the data values.

NULL

Subquery produces empty column of query results. FALSE
SQL Language Reference 2-29

Chapter 2 SQL Elements

EN

alue
BETWEEN predicate
The BETWEEN predicate compares a value with a range of values. The BETWE
predicate is inclusive.

The following line shows a BETWEEN example:

SELECT * FROM EMPSAL WHERE
SALARY BETWEEN 30000 AND 60000;

NULL predicate
The NULL predicate tests for null values.

The following line shows a NULL example:

SELECT * FROM EMP WHERE DEPTNO IS NULL;

EXISTS predicate
The EXISTS predicate tests for the existence of certain rows in a table.

This example retrieves all the rows from the EMP table if a salary matches the v
stored in bind variable :1.

SELECT * FROM EMP WHERE EXISTS (SELECT * FROM EMPSAL
WHERE SALARY= :1)
\
70000
/

expression BETWEEN expression AND expression

NOT

column name IS NULL

NOT

EXISTS (subselect)

NOT
2-30 SQL Language Reference

Predicates

self.

lues
LIKE predicate
The LIKE predicate searches for strings that match a specified pattern. The LIKE
predicate can only be used with CHAR or VARCHAR data types.

The underscore (_) and the percent (%) are the pattern-matching characters:

The backslash (\) is the escape character for percent (%), underscore (_), and it

The following examples show examples of LIKE predicates.

True for any name with the string 'son' anywhere in it.

SELECT * FROM EMP WHERE LNAME LIKE '%son%';

True for any 2-character job code beginning with 'M'.

SELECT * FROM EMP WHERE JOB LIKE 'M_';

Returns all rows where the value in the JOB column is 'A24%'.

SELECT * FROM EMP WHERE JOB LIKE 'A24\%';

Returns all rows where the value in the JOB column begins with 'A24%'

SELECT * FROM EMP WHERE JOB LIKE 'A24\%%';

IN predicate
The IN predicate compares a value to a collection of values. The collection of va
can be either listed in the command or the result of a subselect.

If there is only one item in the list of values, parentheses are not required.

_ Matches any single character.

% Matches zero or more characters.

column name

NOT

LIKE USER

string constant

program variable
SQL Language Reference 2-31

Chapter 2 SQL Elements

ts.

tions
The following examples show IN predicates.

SELECT * FROM EMP
WHERE DEPTNO IN (2500,2600,2700);

SELECT * FROM EMP
WHERE EMPNO NOT IN (SELECT EMPNO FROM EMPSAL WHERE
SALARY< 40000);

SELECT * FROM EMP
WHERE @LEFT (LNAME, 1) IN ('J', 'M', 'D');

SELECT * FROM EMP
WHERE LNAME NOT IN (:1,:2,’Jones’)
\
Johnson, Smith
/

Functions
A function returns a value that is derived by applying the function to its argumen

SQLBase has many functions that manipulate strings, dates and numbers. Func
are classified as:

• Aggregate functions

• String functions

• Date and time functions

• Logical functions

• Special functions

• Math functions

• Finance functions

The functions are described in Chapter 4, SQL Function Reference.

expression

NOT

IN (subselect)

expression

bind variable((

,

constant

USER
2-32 SQL Language Reference

Date/Time values

ll
e

The
ate/

 of a
single
Case

ar;
Date/Time values
This section describes SQL date and time values, including SQLBase year 2000
(Y2K) support.

Entering date/time values
Although SQLBase stores dates and times in its own internal format, it accepts a
conventional date and time input formats, including ISO, European, and Japanes
Industrial Time.

Input for a date or time column is a string that contains date or time information.
input string has a date portion and/or a time portion, depending on whether the d
time is a DATE, a TIME or a DATETIME.

A forward slash (/), hyphen (-) or period (.) are used as the delimiter for the parts
date, as shown in the diagram on the next page. You must be consistent within a
command. A colon (:) or a period (.) are both accepted as the delimiter for times.
is ignored by SQLBase when entering months. Either a space or a hyphen can
separate the date portion from the time portion.

Letter combinations used in the formats below have the following meanings.

Year and century values
SQLBase accepts date/time values in either of the following string formats:

• 4-digit string yyyy, which represents a 2-digit century value and a 2-digit ye
for example, 1996.

• 2-digit string yy, which represents a 2-digit year; for example, 96.

 yy or yyyy
 (read the next section, Year and century
values for details)

Year

mm (entered with numbers, for example, 01)

mon (spelled out, for example, jan)

Month

dd Day

hh Hours

mi Minutes

ss Seconds

999999 Microseconds
SQL Language Reference 2-33

Chapter 2 SQL Elements

. To
e

ther

ity
st a
rmines
By default, SQLBase always stores 2-digit century values as the current century
change the default setting, you can specify 1 (one) as the value for the SQLBas
keyword centurydefaultmode in the server section of SQL.INI. When set to 1,
SQLBase applies the algorithm reflected in the following table to determine whe
the year is in the current, previous, or, next century.

Examples:

• Assume the current year is 1996:

If 05 is entered, the computed date is 2005
If 89 is entered, the computed date is 1989

• Assume current year is 2014:

If 05 is entered, the computed date is 2005
If 34 is entered, the computed date is 2034
If 97 is entered, the computed date is 1997

• Assume current year is 2065:

If 05 is entered, the computed date is 2105
If 70 is entered, the computed date is 2070

Note: Enabling the 2-digit century is a SQLBase feature and has no impact on connectiv
routers. If you are using a Centura developed application or a SQL/API application again
non-SQLBase database, read the database documentation for information on how it dete
year/century values.

When last 2-digits of
current year are:

When 2-digit entry is 0-49 When 2-digit entry is 50-99

0-49 The input date is in the
current century

The input date is in the
previous century

50-99 The input date is in the next
century

The input date is in the
current century
2-34 SQL Language Reference

Date/Time values

ed.

 be

ns
Date/time input formats
Valid input formats for date/time values are:

A time string can contain an AM or PM designation. The default is AM. SQLBase
recognizes military time (24 hour clock) on input if the AM/PM parameter is omitt

Some examples of date/time input strings are:

12-JAN-94

12/jan/1994 12:15

01-12-94 12

01/12/94 12:15:20

Date/time system keywords
Certain system keywords return a date/time values. These system keywords can
used in expressions to specify an interval of a specified type.

The keyword values for SYSDATETIME, SYSDATE, SYSTIME, and
SYSTIMEZONE are set at the beginning of execution of a command.

The following table lists system keywords and their meaning. An asterisk (*) mea
that the keyword is DB2 compatible.

System Keyword Meaning

SYSDATETIME
CURRENT TIMESTAMP *
CURRENT DATETIME *

Current date and time.

dd.mm.yyyy

dd-mon-yy

dd/mon/yy

mm-dd-yy

mm-dd-yyyy

yyyy-mm-dd

00:00:00
hh
hh:mi

hh:mi:ss:999999
hh:mi:ss

AM
PM

mm/dd/yy

dd-mon-yyyy

dd/mon/yyyy

mm/dd/yyyy
SQL Language Reference 2-35

Chapter 2 SQL Elements
Resolution for time keywords
The table below show the resolution in seconds for the time keywords.

The following command shows an example of a date/time system keyword:

INSERT INTO CALLS (DATE) VALUES (SYSDATETIME)

SYSDATE
CURRENT DATE *

Current date.

SYSTIME
 CURRENT TIME *

Current time.

SYSTIMEZONE
CURRENT TIMEZONE *

Timezone interval in days. For example,
SYSTIMEZONE=.025 means 6 hours.

MICROSECOND[S] Time in microseconds.

SECOND[S] Time in seconds.

MINUTE[S] Time in minutes.

HOUR[S] Time in hours.

DAY[S] Time in days.

MONTH[S] Time in months.

YEAR[S] Time in years.

Time Keyword Resolution

CURRENT TIME
CURRENT DATETIME

Seconds
(hh:mm:ss)

SYSDATE
TIMESYSTIME
CURRENT TIMESTAMP

Microseconds
(hh:mm:ss:999999)

SECOND[S] Seconds
(ss)

MICROSECONDS Microseconds
(ss:999999)

System Keyword Meaning
2-36 SQL Language Reference

Date/Time values

rval
.

:

 was

ows:

 is a

tities

e
Time zones
The keyword SYSTIMEZONE returns the time zone for the system as a time inte
in days. For example, if SYSTIMEZONE returns 0.25, the time interval is 6 hours

The time interval is the difference between local time and Greenwich Mean Time

TIMEZONE interval = LOCAL TIME - GMT
This interval is set with the timezone keyword in sql.ini. The default value is 0
(Greenwich Mean Time).

For instance, GMT is 5 hours later than EST (Eastern Standard Time). If the time
5:00 A.M. EST, then

TIMEZONE interval = 5 - 10 = -5
TIMEZONE= -5

To get the current time in GMT, use the following expression:

(SYSTIME - SYSTIMEZONE)

Date/Time expressions
Addition or subtraction operators can be applied to dates. The results are as foll

• Date + Number (of days) is DATETIME.

• Date - Number (of days) is DATETIME.

• Date - Date is a number (of days).

Note that if you add or subtract a non-date/time value to or from DATE, the result
DATETIME. To make the result a DATE, use an expression like this:

Date + Number DAYS

where Number is a numeric value.

The system keywords that represent time intervals (such as MONTH or
MICROSECOND) can be added to or subtracted from other date and time quan
to get new date and time quantities.

For example, the following expression yields a new DATETIME value.

SYSDATETIME + 3 MINUTES

If you do not specify the type of interval, the number is assumed to be DAYS. Th
following example adds one day to the current date.

SYSDATE + 1

You could also use the expression:

SYSDATE + 1 DAY
SQL Language Reference 2-37

Chapter 2 SQL Elements

 and
in
arch

r
 day

,

 row

that
Only a constant can precede a date/time keyword.

Microseconds, seconds, minutes, hours, and days behave like numbers. MONTH
YEAR intervals however, are special cases since they do not have a fixed value
terms of the number of days in the month or year. February has 28 or 29 days, M
has 30; a year can be 365 or 366 days.

Use the following rules for MONTH and YEAR intervals:

• MONTH and YEAR intervals can only be added to or subtracted from a
DATE or a DATETIME quantity.

Valid: (SYSDATE + 3 DAYS) + 1 YEAR
Invalid:SYSDATE + (3 DAYS + 1 YEAR)

• When MONTHs are added, the month number (and if necessary the yea
number) is incremented. If the day represents a day beyond the last valid
for the month and year, it is adjusted to be a valid date.

• SQLBase ignores fractional parts of MONTHs and YEARs. For example
SQLBase would ignore the fraction part .5 of MONTHS in the following
command:

SELECT DISTINCT SYSDATETIME, SYSDATETIME + 1.5
MONTHS FROM SYSTABLES

Examples of date/time expressions
The following table lists some sample date/time expressions and their results:

Joins
A join pulls data from different tables and compares it by matching on a common
that is in all the tables.

You cannot perform an operation with the CURRENT OF clause on a result set
you formed with a join.

The following example demonstrates a join.

Date/Time Expression Result

31-Jan-1993 + 1 MONTH 28-Feb-1993

20-Jan-1993 + 1 MONTH 20-Feb-1993

3 1-Jan-1993 + 1 MONTH - 1 MONTH 28-Jan-1993
2-38 SQL Language Reference

Joins

ble.
s:

er,
ey
 in

Example:

The primary key for a table is a value that has a match in another ta
For example, the following CUSTOMER table contains these column
name and address. Also, each customer has a unique identifying
number.

There is another table called ORDERS that contains the order numb
order date, and sales rep for each order. The table also includes a k
that contains the customer number. This is the same number that is
the CUSTOMER table.

You can join customer information with order information without
unnecessary data repetition.

The following SQL command uses these tables to find the name and
order numbers of the sales made by Tom.

SELECT NAME, ORDERNO FROM
CUSTOMER, ORDERS WHERE
CUSTOMER.CUSTNO = ORDERS.CUSTNO
AND SALES REP = ‘Tom’;

CUSTNO NAME ADDRESS

1 ABC INC. 13 A St.

2 XYZ INC. 1 B St.

3 A1 INC. 12 C St.

CUSTNO ORDERNO ORDERDATE SALES REP

1 3001 01-JUL-94 Jill

1 3002 03-JUL-94 Jill

1 3003 06-JUL-94 Tom

2 3004 06-JUL-94 Tom

3 3005 07-JUL-94 Jill
SQL Language Reference 2-39

Chapter 2 SQL Elements

re

ree

NO,

sible
ified

 the
 had
This produces the following result:

Types of joins
SQLBase supports the following types of joins:

• Equijoins

• Outer joins

• Self joins

• Non-equijoins

Equijoin
The following query matches customer names and order numbers. Two tables a
used: CUSTOMER and ORDERS.

SELECT NAME, ORDERNO FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTNO = ORDERS.CUSTNO;

Each result row contains the customer name and an order number. If customer
number 1 made three orders, three rows would result. The single customer row
containing the customer's name and number would be "joined" to each of the th
order rows.

The ORDERS rows are related to the CUSTOMER using the key column, CUST
which appears in both the CUSTOMER table and the ORDERS table.

This type of search condition, which specifies a relationship between two tables
based on an equality, is called an equijoin.

Cartesian product
Specifying a join condition as a relational predicate in the search condition is
necessary to avoid a Cartesian product. A Cartesian product is the set of all pos
rows resulting from a join of more than one table. For example, suppose we spec
the previous query as follows:

SELECT NAME, ORDERNO FROM CUSTOMER, ORDERS;

The result would be the product of the number of rows in the customer table and
number of rows in the orders table. If CUSTOMER had 100 rows, and ORDERS

NAME ORDERNO

ABC Inc. 3003

XYZ Inc. 3004
2-40 SQL Language Reference

Joins

 an

ade

hing

ch

 of

 must

e

mers

dds
 this

outer
t
,
500 rows, the Cartesian product would be every possible combination, or 50,000
rows, which is probably not the desired result.

The correct way to get each customer and order listed (a set of 500 rows) is with
equijoin, as follows:

SELECT NAME, ORDERNO FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTNO = ORDERS.CUSTNO;

Outer join
In the previous example of the equijoin, the search condition specified a join on
customers and orders. What happens if customer NEWACCOUNT has not yet m
an order? The above query does not retrieve that customer.

An outer join produces a result that joins each row of one table with either a matc
row or a null row of another table. The result includes all the rows of one table
regardless of whether they have a match with any of the rows of the table to whi
they are being joined.

Outer join semantics. In the WHERE clause, add a plus sign (+) to the join column
the table that might not have rows to satisfy the join condition.

SQLBase supports an outer join on only one table per SELECT statement, and it
be a one-way outer join. You cannot add the plus sign (+) to both sides of the join
condition. You can, however, specify an outer join on more than one column of th
same table, like this example:

SELECT t1.col1, t2.col1, t1.col2, t2.col2
FROM t1, t2
WHERE t1.col1 = t2.col1 (+)
AND t1.col2 = t2.col2 (+);

The next example lists customer names and their order numbers, including custo
who have made no orders.

SELECT CUSTOMER.CUSTNO, NAME FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTNO = ORDERS.CUSTNO(+);

When SQLBase sees the plus sign (+) after ORDERS.CUSTNO, it temporarily a
an extra row containing all null values to the ORDERS table. SQLBase then joins
null row to rows in the CUSTOMER table which do not have matching orders.
Therefore, all customer numbers are retrieved.

SQLBase adheres to both the ANSI and industry standard implementation of an
join. According to the ANSI standard, the correct semantics of an outer join mus
display all the rows of one table that meet the specified constraints on that table
regardless of the constraints on the other table.
SQL Language Reference 2-41

Chapter 2 SQL Elements

ples

do
ates
Oracle Outer Join. If you need to use the Oracle-style outer join result, you can
specify the oracleouterjoin keyword in the relevant server section of your sql.ini file.
For example, if you are using the SQLBase Server for Windows NT, specify
oracleouterjoin in the [dbntsrv] section:

[dbntsrv]
oracleouterjoin=1
The following example shows how the two standards differ in output. These exam
use the following tables and SELECT statement:

Table A (a int) Table B (b int)
--------------- ---------------
1 1
2 2
3 3
4
5

SELECT a, b
FROM A, B
WHERE A.a = B.b (+)
AND B.b IS NULL;

The ANSI standard gives the following result:

a b
--- ---
1
2
3
4
5

Using the ORACLE style outer join yields a different result:

a b
--- ---
4
5

Self join
A self join lets you join a table to itself, as though it was two separate tables. To
this, the self-join table is given a correlation name. The example below finds all d
on which more than one order was placed:

SELECT A.ORDERNO, A.ORDERDATE
FROM ORDERS A, ORDERS B
WHERE A.ORDERDATE = B.ORDERDATE
AND A.ORDERDATE <> B.ORDERNO;
2-42 SQL Language Reference

Subqueries

B. An

ction

ality.
E).

fully
ed to
se

uery
 This

d a
s, in

d as a

NG
The ORDERS table is treated as two tables, using the correlation names A and
order date is retrieved from correlation table A. Then this order date is used as a
search condition for table B.

This same information can be retrieved using a subquery. Read the following se
Subqueries on page 2-43 for more information.

Non-equijoin
A non-equijoin joins tables to one another based on comparisons other than equ
Any of the relational operators can be used, (such as >, <, !=, BETWEEN, or LIK

The following example specifies a join using the BETWEEN operator.

SELECT NAME, ORDERNO, ORDERDATE
FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTNO = ORDERS.CUSTNO
AND ORDERDATE BETWEEN 01-JUL-94 AND 30-SEP-94;

Number of joins
SQLBase allows you to join 10 tables in a select statement. However, think care
before you join this many tables. With each table added in a JOIN, the time need
process the statement increases. Having 10 tables in a join can slow the databa
performance considerably.

A carefully designed database model should rarely need to join 10 tables in a
statement. Instead of using this many tables, reconsider your database design.

Subqueries
SQL is recursive. The input to one query can be the output of another query. A q
can be nested within another SQL command to define the scope of a command.
nested query is called a subquery.

A subquery is a search condition that is a nested SELECT command (also calle
subselect). The subquery specifies a result table from one or more tables or view
the same manner as any other SELECT. Each result row of the subselect is use
basis for qualifying a candidate result row in the outer select.

You cannot use an ORDER BY clause in a subquery. Also, you cannot use a LO
VARCHAR in a subquery.
SQL Language Reference 2-43

Chapter 2 SQL Elements

rom

In the
uted

f

bles
to be

iated

ra’s
les.
Examples of subqueries
For example, find all the orders that were placed on the same day as the order f
customer number 2.

SELECT ORDERNO, ORDERDATE FROM ORDERS
WHERE ORDERDATE = (SELECT ORDERDATE FROM ORDERS
WHERE CUSTNO = 2);

First, the order date of customer number 2 is retrieved and this value is used to
complete the search condition of the main or outer query. In this example, the
subquery was executed once to retrieve a single value used by the main query.
following SELECT command, called a correlated subquery, the subquery is exec
once for each candidate row in the main query.

For example, find all employees whose salary is larger than the average salary o
other employees.

SELECT * FROM EMPSAL WHERE
SALARY (SELECT AVG (SALARY) FROM EMPSAL);

Bind variables
A bind variable refers to a data value associated with a SQL command. Bind varia
associate (bind) a syntactic location in a SQL command with a data value that is
used in that command.

Bind variables can be used wherever a data value is allowed:

• WHERE clause.

• VALUES clause in an INSERT command.

• SET clause of in UPDATE command.

Bind variable names start with a colon (:). The name can be:

• The name of a variable that is declared in a program (such as :ARG1).

• A number that refers to the relative position among the data items assoc
with the SQL command (such as :1, :2, :3).

Read the manual for the client application that you are using (such as the Centu
SQL/API, SQLTalk, or Team Developer) for the details on how to use bind variab
2-44 SQL Language Reference

and.

SQL Language Reference
Chapter 3

SQL Command
Reference

This chapter contains the syntax, description, and examples of each SQL comm
This chapter is organized alphabetically by command name.
SQL Language Reference 3-1

Chapter 3 SQL Command Reference
SQL command summary

Command Function

ALTER DATABASE Changes storage group or log for
database.

ALTER DBAREA Changes the size of a database area.

ALTER EXTERNAL FUNCTION Changes an external function definition.

ALTER PASSWORD Changes a password.

ALTER STOGROUP Adds or drops a database area from a
storage group.

ALTER TABLE Changes the description of a table.

ALTER TABLE (error messages) Makes error messages specific to a
particular referential integrity violation.

ALTER TABLE (referential
integrity)

Adds or drops primary and foreign keys.

ALTER TRIGGER Enables and disables triggers defined on
tables.

AUDIT MESSAGE Writes a message string to an audit file.

CHECK DATABASE Checks database for integrity.

CHECK INDEX Checks specified index for integrity.

CHECK TABLE Checks specified table for integrity.

COMMENT ON Replaces or adds a comment to the
description of a table, view, column, or
external function in the system catalog.

COMMIT Ends a logical unit of work and commits
database changes made by it.

CREATE DATABASE Physically creates a database.

CREATE DBAREA Creates a database area.

CREATE EXTERNAL FUNCTION Creates an external function.

CREATE INDEX Creates an index on a table.

CREATE STOGROUP Creates a storage group.
3-2 SQL Language Reference

SQL command summary
CREATE SYNONYM Defines an alternate name for a table,
view, or external function.

CREATE TABLE Defines a table.

CREATE TRIGGER Creates a trigger.

CREATE VIEW Defines a view of one or more tables or
views.

DBATTRIBUTE Sets database-specific attributes

DEINSTALL DATABASE Takes a database off the network, making
it unavailable to users.

DELETE Deletes one or more rows from a table.

DROP DATABASE Physically deletes a database.

DROP DBAREA Physically deletes a database area.

DROP EXTERNAL FUNCTION Deletes an external function.

DROP INDEX Removes an index.

DROP STOGROUP Deletes a storage group.

DROP SYNONYM Deletes a synonym.

DROP TABLE Physically deletes table from the
database.

DROP TRIGGER Deletes a trigger.

DROP VIEW Deletes a view.

GRANT (database authority) Grants database authority or privileges.

GRANT (table privileges) Grants one or more specified privileges
for a table or view.

GRANT EXECUTE ON Grants execute privilege on stored
procedures and external functions to
other users.

INSERT Inserts one or more rows into an existing
table.

INSTALL DATABASE Puts a database on the network, making it
accessible to users.

Command Function
SQL Language Reference 3-3

Chapter 3 SQL Command Reference
LABEL Adds or changes labels in catalog
descriptions

LOAD Loads one or more tables into a database.

LOCK DATABASE Places an exclusive lock on the database,
preventing connections from other users.

PROCEDURE: Creates a procedure.

REVOKE Revokes database authority or privileges.

REVOKE EXECUTE ON Revokes a user’s execute privilege on a
stored procedure or external function.

ROLLBACK Terminates a logical unit of work and
backs out database changes made during
the last transaction.

ROWCOUNT Counts the number of rows in a table.

SAVEPOINT Assigns a checkpoint within a
transaction.

SELECT Queries tables or views.

SET DEFAULT STOGROUP Specifies the default storage group.

START AUDIT Starts a database audit.

STOP AUDIT Stops a database audit.

UNLOAD Unloads a database to an external file.

UNLOCK DATABASE Releases the exclusive lock on the
database from the LOCK DATABASE
command.

UPDATE Updates the values of columns in a table
or view.

UPDATE STATISTICS Updates the statistics for an index in a
table.

Command Function
3-4 SQL Language Reference

ALTER DATABASE

s

ase
ALTER DATABASE

This command changes the storage group for a database or its log files. ALTER
DATABASE only affects future allocations of space. Existing databases or log file
are not moved or affected.

Clauses
database name
The name of the database to be changed.

STOGROUP
Changes the storage group for a database.

LOG
Changes the storage group for the database's log files.

stogroup name
The name of the storage group to be changed. A storage group is a list of datab
areas, which are similar to files or a partition.

Example
ALTER DATABASE ACCTPAY STOGROUP ACCTDEPT;

See also
CREATE DATABASE
CREATE STOGROUP
DELETE STOGROUP

ALTER DATABASE database name STOGROUP stogroup name

LOG
SQL Language Reference 3-5

Chapter 3 SQL Command Reference

f a
ALTER DBAREA

This command changes the size of a database area. When increasing the size o
database area, available space is checked at the time of the operation.

Clauses
dbarea name
The name of the database area to be changed.

SIZE megabytes
The size of the database area in megabytes.

Example
ALTER DBAREA ACCT1 SIZE 10;

See also
ALTER DATABASE
CREATE DBAREA
DROP DBAREA

ALTER EXTERNAL FUNCTION

ALTER DBAREA dbarea name SIZE megabytes

LIBRARY library-name

ALTER EXTERNAL FUNCTION function name

EXTERNAL NAME external-name

CALLSTYLE

EXECUTE IN

CDECL

PASCAL/STDCALL

SAME THREAD

SEPARATE PROCESS
3-6 SQL Language Reference

ALTER EXTERNAL FUNCTION

 not

e.

 that

ame

ecial

al

ng
 DLL.

e

name

oke

sult
Use this command to alter an external function. You must have DBA authority to
execute this command.

This command allows you to alter those properties of an external function that do
invalidate dependent objects. Those properties are library name, external name,
callstyle, and execution mode.

Each clause in this command is optional, but you must at least specify one claus

Clauses
function name
Specify the name of the external function that you want to alter. This is the name
refers to the function within SQLBase.

LIBRARY library-name
Specify the dynamic linked library (DLL) name if you want to change the existing
library name where the function resides. You must provide a fully qualified path n
for the file, or else be sure the PATH environment variable is set to point to the
location of the file in your operating system.

Specify the library name as a string with up to 254 characters. You can include sp
characters in the string. If the library name contains spaces, you must delimit the
name in single quotes (for example, ‘lib name’).

EXTERNAL external-name
Specify this clause if you want to change the external name or provide an extern
name for the function. An external name lets you create a function name that
references the function in a DLL by another name. Thus, the function has a calli
name that is separate from the name used to reference the same function in the

Specify the external name as a string with up to 254 characters. You can include
special characters in the string. The external name is case-sensitive and must b
identical to the exported function name in the DLL.

Note that if you do not supply an external name, the function name is the same
that is used in the DLL.

CALLSTYLE
Specify this clause if you want to change the compiler style that is required to inv
the external function. For details, read Chapter 9, External Functions.

Note: Be sure to specify the correct callstyle for your platform. An incorrect callstyle can re
in server failure.
SQL Language Reference 3-7

Chapter 3 SQL Command Reference

lls.

s.

e

ed
PASCAL/STDCALL

PASCAL applies only to 16-bit platforms and is the call style for Windows API ca
STDCALL applies only to 32-bit platforms and is the call style for all 32-bit
Windows API calls.

CDECL
This is the default compiler callstyle and applies to both 16-bit and 32-bit platform

EXECUTE IN
Specify this clause only if you are using a 32-bit platform and want to change th
execution mode to SAME THREAD or SEPARATE PROCESS.

For details on execution mode, read Chapter 9, External Functions.

Examples
CREATE EXTERNAL FUNCTION MYFUNC

LIBRARY TEST.DLL;
ALTER EXTERNAL FUNCTION MYFUNC

LIBRARY MYFUNC.DLL;

See also
CREATE EXTERNAL FUNCTION
DROP EXTERNAL FUNCTION

ALTER PASSWORD

This command changes your password.

The password is stored in the system catalog and can be read by a user with
SYSADM or DBA privileges. Note that passwords are encrypted when transmitt
across a network.

Clauses
old password
Your current password.

TO new password
The new password you wish to implement.

ALTER PASSWORD old password TO new password
3-8 SQL Language Reference

ALTER STOGROUP

nly
 or
Examples
ALTER PASSWORD OLDSTUFF TO NEWSTUFF;

See also
GRANT
REVOKE

ALTER STOGROUP

This command changes the storage group for a database area. The command o
affects future allocations of space. Existing databases or log files are not moved
affected.

Clauses
stogroup name
A storage group is a list of database areas.

ADD dbarea name
Adds a database area to the storage group.

DROP dbarea name
Drops a database area from the storage group.

Example
ALTER STOGROUP ACCTDEPT ADD ACCT4;

ALTER STOGROUP ACCTDEPT DROP ACCT4;

See also
CREATE STOGROUP
DROP STOGROUP

ALTER STOGROUP stogroup name dbarea name

DROP

ADD
SQL Language Reference 3-9

Chapter 3 SQL Command Reference

re not
r if

, you

EATE
ALTER TABLE

Use this command to perform the following functions:

• Add, drop, or modify a column.

• Rename a column or table.

Views that reference dropped or renamed columns or tables are automatically
dropped. Views that reference modified columns are also dropped.

Precompiled commands that reference dropped or renamed columns or tables a
dropped. Such precompiled commands could become invalid and return an erro
executed.

You must have the ALTER privilege on the table to execute this command.

You cannot alter tables that have triggers defined on them. If you need to do this
must drop the triggers, alter the table, and then create the triggers for the table.

Like all DDL commands, this command locks system tables while executing.

Clauses
ADD
This adds a column to a table. Columns are defined the same way as in the CR
TABLE command. Read the section Data types on page 2-7 for more information.

Adding a column does not effect existing views or precompiled commands.

ALTER TABLE table name

(size)

DROP column name

,

ADD column name data type

NOT NULL

NOT NULL WITH DEFAULT

RENAME column name new name

,

TABLE new name

MODIFY column name

data type (length)

NOT NULL WITH DEFAULT

NOT NULL

NULL

,

3-10 SQL Language Reference

ALTER TABLE

 add
mple,

ength.

LL.

alue
e
You can add columns to user tables or to system catalog tables. However, if you
columns to system catalog tables, they are not maintained by SQLBase. For exa
UNLOAD will ignore any user-defined columns in a system catalog table.

ADD is the default clause if no clause is specified.

DROP
This removes a column from a table. If the column has data, the data is lost.

You cannot drop any of the following:

• An indexed column.

• A column belonging to a primary or foreign key.

• System defined columns in the system catalog.

MODIFY
This changes the attributes for a column.

You can increase the length of a character column, but you cannot decrease the l
You specify the data type when you increase the length of a character column.

You cannot change the data type of a column.

You cannot change the length of a numeric column.

NULL
This removes a NOT NULL attribute for a column.

NOT NULL
This adds a NOT NULL attribute to a column that currently accepts nulls.

If the column contains NULL values, you cannot redefine the column as NOT NU

You cannot modify system-defined columns in the system catalog.

NOT NULL WITH DEFAULT
This clause prevents a column from containing null values and allows a default v
other than the null value. The default value used depends on the data type of th
column, as follows:

Data Type Default Value

Numeric 0 (zero)

Date/Time Current date/time

Character Blank
SQL Language Reference 3-11

Chapter 3 SQL Command Reference

s

mns

EMP
The NOT NULL WITH DEFAULT clause causes an INSERT to use the above
defaults. SQLBase puts a 'D' in the NULLS columns of the SYSCOLUMNS table
and treats it like a NOT NULL field.

The ALTER TABLE command does not allow the addition of a column defined as
NOT NULL if rows of data already exist. The ALTER TABLE command does allow
a new column defined as NOT NULL WITH DEFAULT to be added if no rows of
data exist for the specified table.

To add columns defined as NOT NULL or NOT NULL WITH DEFAULT when row
of data already exist, do the following steps:

1. Add the column with ALTER TABLE, but do not specify a NOT NULL or NOT
NULL WITH DEFAULT clause.

2. Update the values in the new column to some value other than NULL.

3. Change the column to NOT NULL or NOT NULL WITH DEFAULT with the
ALTER TABLE command.

The NOT NULL WITH DEFAULT clause is compatible with DB2.

RENAME
This renames a table or column. System catalog tables and system-defined colu
in the system catalog cannot be renamed.

Examples
Add a new column called JOB that contains a maximum of 20 characters to the
table:

ALTER TABLE EMP ADD JOB VARCHAR(15);

Increase the size of the column JOB to 40 characters and make it a NOT NULL
column:

ALTER TABLE EMP
MODIFY JOB VARCHAR(40) NOT NULL;

Drop the columns JOB and HIREDATE.

ALTER TABLE EMP DROP JOB, HIREDATE;

Change the name of EMP to EMPLOYEE.

ALTER TABLE EMP RENAME TABLE EMPLOYEE;

Add the NOT NULL attribute to the HIREDATE column:

ALTER TABLE EMP MODIFY HIREDATE NOT NULL;

Now drop the NOT NULL attribute:

ALTER TABLE EMP MODIFY HIREDATE NULL;
3-12 SQL Language Reference

ALTER TABLE (Error Messages)

ou
,

error

ROP
Drop the primary key:

ALTER TABLE EMP DROP PRIMARY KEY;

See also
CREATE TABLE
DROP TABLE

ALTER TABLE (Error Messages)

To make error messages specific to a particular violation of referential integrity, y
can edit the error.sql file and use ALTER TABLE statements. For more information
read Chapter 6, Referential Integrity.

Clauses
ADD
This adds a specific error message for referential integrity. You must include an
number from the error.sql file.

DROP
This deletes a specific error message. Do not enter the user error number for a D
command.

MODIFY
This modifies the error message number for referential integrity.

USERERROR error number
This specifies the error number in the error.sql file. You can modify the error.sql file
to add an appropriate error message.

'DELETE_PARENT'
This specifies that a deletion failed because there were dependent rows in the
dependent table.

ALTER TABLE table name ADD

MODIFY

DROP

USERERROR error number

FOR ‘DELETE_PARENT’

‘UPDATE_DEPENDENT’

‘UPDATE_PARENT’

‘INSERT_DEPENDENT’

OF PRIMARY KEY

FOREIGN KEY key name
SQL Language Reference 3-13

Chapter 3 SQL Command Reference

rent

nt

rks
'UPDATE_PARENT'
This specifies that an update failed because there were dependent rows in the
dependent table (dependent on the values to be updated).

'INSERT_DEPENDENT'
This specifies that an insertion failed because there was no parent row in the pa
table.

'UPDATE_DEPENDENT'
This specifies that an update failed because there was no parent row in the pare
table for the new set of values.

Example
A user may attempt to delete the employee number of an employee who still wo
for the company. You can avoid this problem by editing the error.sql file:

20000 xxx xxx Employee number cannot be deleted while employee
still works for this company.

Then, use the ALTER TABLE statement to add the new error message:

ALTER TABLE EMP ADD USERERROR 20000 FOR 'DELETE_PARENT’ OF
PRIMARY KEY;

If a user now attempts to delete the employee number, the new error message
appears:

DELETE FROM EMP where EMPNO = 1234;

Error: Employee number cannot be deleted while employee still
works for this company.

See also
CREATE TABLE
3-14 SQL Language Reference

ALTER TABLE (Referential Integrity)

 is

tion
mary

able.
e
the

and

EX
ALTER TABLE (Referential Integrity)

When you use ALTER TABLE with referential constraints, you can add or drop
primary and foreign keys. For more information, read Chapter 6, Referential
Integrity.

Clauses
(ADD)/DROP
You do not specify ADD since it is the default, but you must specify DROP if this
your intention.

Before dropping the primary key, consider the effect this will have on the applica
programs. The programs must then enforce referential constraints without the pri
key.

PRIMARY KEY
In a database with referential integrity, this adds or drops the primary key of the t
If you drop the primary key, the table continues to exist with a unique index on th
same list of columns (if the table has a unique index). The relationship between
tables is dropped if the table has a dependent.

To drop the primary key, you must have the ALTER privilege on both the parent
dependent tables.

The following rules apply to primary keys:

• If a table has a primary key, you must also create a unique index on the
primary key columns to make the table complete. See the CREATE IND
command for more information.

ALTER TABLE table name

DROP

column name

,

PRIMARY KEY

,

DROP

column(

(

,

REFERENCES
KEY name

parent

name
table

ON RESTRICT
DELETE

FOREIGN

CASCADE

SET NULL

(

(

foreign

name
key
SQL Language Reference 3-15

Chapter 3 SQL Command Reference

es.

ey

ow
y

n

is is

T
 or

all

 is

the

 as

nd

l
se
• The primary key format must obey the following rules:

• Cannot contain more than 16 columns.

• Sum of the column length attributes cannot be greater than 255 byt

• Cannot contain LONG or LONG VARCHAR columns.

• You cannot use an UPDATE WHERE CURRENT clause with a primary k
column.

• In a self-referencing row, you cannot update the primary key value. If a r
is a self-referencing row, its foreign key value is the same as its primary ke
value.

• The values of the primary key must be unique; no two rows of a table ca
have the same key values.

• A table can have only one primary key.

• The primary key can be made up of one or more columns in a table. Th
called a composite primary key. Separate the columns with a comma.

• Each column in the primary key must be classified with the NOT NULL
constraint. However, you should not use the NOT NULL WITH DEFAUL
option unless the primary key column(s) has a data type of TIMESTAMP
DATETIME.

• An updateable view defined on a table with a primary key must include
columns of the primary key. Although this is only required if you use the
view in an INSERT statement, the resulting unique identification of rows
also useful if the view is used for updating, deleting, or selecting.

If you try to insert a row into a view that does not contain values for all of
primary key columns, the following message appears:

NOT ENOUGH NON-NULL VALUES

This message appears because all the primary key columns are defined
NOT NULL (since a primary key cannot contain NULL values).

FOREIGN KEY
This adds or drops a foreign key to an existing table. The values in the foreign a
primary keys must conform with referential integrity. Otherwise, the command is
rejected. To drop a foreign key, you must have the ALTER privilege on both the
parent and dependent tables.

Before you drop a foreign key, consider carefully the effect this will have on
application programs. Dropping a foreign key drops the corresponding referentia
relationship and delete rule. Without the foreign key, programs must enforce the
constraints.
3-16 SQL Language Reference

ALTER TABLE (Referential Integrity)

ust

ign
er,

n

s.

t
 key.

og

n

.

he

t
The following rules apply to foreign keys:

• Matching columns. A foreign key must contain the same number of
columns as the primary key. The data types of the foreign key columns m
match those of the primary key on a one-to-one basis, and the matching
columns must be in the same order.

However, the foreign key can have different column names and default
values. It can also have NULL attributes. If an index is defined on the fore
key columns, the index columns can be in ascending or descending ord
which may be different from the order of the primary key index.

• Using primary key columns. A column can belong to both a primary and
foreign key.

• Foreign keys per table. A table can have any number of foreign keys.

• Number of foreign keys. A column can belong to more than one foreig
key.

• Number of columns. A foreign key cannot contain more than 16 column

• Parent table. A foreign key can only reference a primary key in its paren
table. This parent table must reside in the same database as the foreign

• NULL values. A foreign key column value can be NULL. A foreign key
value is NULL if any column in the foreign key is NULL.

• Privileges. You must grant ALTER authority on a table to all users who
need to define that table as the parent of a foreign key.

• System catalog table. The foreign key cannot reference a system catal
table.

• Views. A foreign key cannot reference a view.

• Self-referencing row. In a self-referencing row, the foreign key value ca
only be updated if it references a valid primary key value. If a row is a self-
referencing row, its foreign key value is the same as its primary key value

foreign key name
You can assign a name to the foreign key to identify it. This name is called a
constraint name. If you do not specify a name yourself, SQLBase generates a
constraint name from the name of the first foreign key column.

A foreign key constraint name can have up to 18 characters. This means that if t
first foreign key column name is more than 18 characters, you must assign a
constraint name yourself that does violate this limit. Otherwise, SQLBase will no
create the foreign key.
SQL Language Reference 3-17

Chapter 3 SQL Command Reference

ust

aints.

ng the

dent

 in
If there are multiple foreign keys referencing the same table, each foreign key m
have a unique name. This ensures that every referential constraint is uniquely
identified by a table name/constraint name combination.

REFERENCES
This identifies the parent table in a relationship and defines the necessary constr
The REFERENCES clause must accompany the FOREIGN KEY clause.

ON DELETE
This specifies the DELETE rules for the table.

The DELETE rules are optional.

The default is RESTRICT.

DELETE rules are only used to define a foreign key.

CASCADE
This deletes the selected rows first, and then deletes the dependent rows, honori
delete rules of their dependents.

RESTRICT
This specifies that a row can be deleted if no other row depends on it. If a depen
row exists in the relationship, the delete will fail.

SET NULL
This specifies that for any delete performed on the primary key, matching values
the foreign key are set to null.

Examples
Add a foreign key to the EMPSAL table:

ALTER TABLE EMPSAL

FOREIGN KEY (EMPNO) REFERENCES EMP

ON DELETE RESTRICT;

Add a primary key to the EMPLOYEE table:

ALTER TABLE EMP

PRIMARY KEY (EMPNO);

See also
CREATE TABLE
3-18 SQL Language Reference

ALTER TRIGGER

TER
BA

led,
d,
hen

t

.

er-
s on

 that
tion,
ALTER TRIGGER

This command enables or disables triggers defined on tables. To execute the AL
TRIGGER command, you must be the owner of the table, or have SYSADM or D
authority.

A database trigger has a status of either enabled or disabled. If a trigger is enab
SQLBase fires the trigger when an activating DML statement is issued. If disable
SQLBase does not fire the trigger when an activating DML statement is issued. W
you create a trigger with the CREATE TRIGGER command, SQLBase enables i
automatically.

The ALTER TRIGGER does not change the definition of an existing trigger. It
updates the status of the existing trigger. To redefine a trigger, you must drop the
trigger with the DROP TRIGGER command, and then create it with the CREATE
TRIGGER command.

You may need to disable triggers on tables for the following reasons:

• To bypass errors in which a trigger refers to an object that is unavailable

• To load a large database without firing triggers so the load can proceed
quickly.

• To reload a database.

Warning: Do NOT disable triggers on replicate tables.SQLBase replication uses a trigg
based mechanism to capture changes to replicate tables; therefore, if you disable trigger
replicate tables, the RSA cannot track changes made to them.

As an alternative to using this command, SQLBase provides a stored procedure
lets you easily disable or enable all triggers defined on a table. For more informa
read Triggers on page 7-54.

Clauses
trigger name
The name of the trigger to be enabled or disabled.

ALTER TRIGGER trigger name ENABLE

DISABLE
SQL Language Reference 3-19

Chapter 3 SQL Command Reference

ou

nd

 to all
You can provide a fully-qualified trigger name by prefixing the creator’s name. If y
omit the creator’s name, the current user is assumed to be the creator.

ENABLE
Enables the trigger.

DISABLE
Disables the trigger.

Example
ALTER TRIGGER JOB_UPDT DISABLE;

See also
CREATE TRIGGER
DROP TRIGGER

AUDIT MESSAGE

Use this command to write a message in all or specified audit files. This comma
requires either a cursor or server handle.

In the audit file, a message follows this record layout:

998,datetime,database,username,clientname,audit message

Clauses
message string
This is the message to be included in the audit file. It can be no longer than 254
characters, and must be enclosed in single quotes.

TO auditname
This is the name of the audit created with START AUDIT. SQLBase writes the
message to the audit file associated with this audit identifier.

This clause is optional. If you do not enter an audit name, the message is written
active audits.

TO auditname
AUDIT MESSAGE 'message string '
3-20 SQL Language Reference

CHECK DATABASE

lk:

ing

s

ge list

or this

K
Examples
The following example is issued from a SQL script that you can run from SQLTa

AUDIT MESSAGE 'Start SQL script';

CHECK DATABASE

This command performs integrity checks on the entire database. Integrity check
consists of the following:

• Checking the integrity of the system and group free space data structure

• Checking the system data and allocation structures

• Verifying the table row count against the actual number of rows

• Cross-checking each index against its base table

• Checking the integrity of each row and index page

• Ensuring that each page is part of an allocated structure or is on a free pa

This command reads and places a shared lock on every page of the database. F
reason, you should run CHECK DATABASE only when there are no concurrent
updates being performed.

If your database is very large, this can be a time-consuming operation. A CHEC
DATABASE command is equivalent to the following command sequence:

CHECK DATABASE SYSTEM ONLY;
CHECK INDEX <each user index>;
CHECK TABLE <each user table> WITHOUT INDEXES;

or:

CHECK DATABASE SYSTEM ONLY;
CHECK TABLE <each user table>;

Clauses
SYSTEM ONLY
Verify only system-defined tables and indexes; ignore user-created tables and
indexes.

Integrity checking consists of:

SYSTEM ONLY
CHECK DATABASE
SQL Language Reference 3-21

Chapter 3 SQL Command Reference
• Checking the integrity of the table free space data structures

• Checking the system data and allocation structures

Example
CHECK DATABASE;

See also
REORGANIZE
3-22 SQL Language Reference

CHECK INDEX

tifies
Base

es not

CHECK INDEX

Use this command to perform an integrity check on a specific index. Integrity
checking consists of:

• Checking the integrity of index pages

• Cross-checking each index against its base table

You must specify the index name as creator.indexname. If you omit the creator
portion of the name, it defaults to your username.

If SQLBase finds an integrity violation, it stops the integrity check and reports an
error to the user. If the problem occurred on a user-defined object, SQLBase iden
the name of the object. If the problem occurred on a system-defined object, SQL
provides either a description of the object or the name of the object.

Read the SET ERRORLEVEL documentation in the SQLTalk Command Reference
for an explanation of the error message detail that SQLBase displays.

Examples
CHECK INDEX EMP_IDX;

CHECK TABLE

Use this command to perform an integrity check on a specific table. Indexes
associated with the table are also checked.

You can specify a view name instead of a table name. In this case, SQLBase do
check the row data pages or any user-defined indexes of the underlying table or
tables. Only system indexes related to the view are checked.

You must specify the table or view name as creator.tablename. If you omit the creator
portion of the name, it defaults to your username.

CHECK INDEX index name

CHECK TABLE table name
WITHOUT INDEXES
SQL Language Reference 3-23

Chapter 3 SQL Command Reference

ject,

.

es:

ter
Integrity checking consists of:

• Verifying the table row count against the actual number of rows

• Cross-checking each index against its base table

• Checking the integrity of each row and index page

If SQLBase finds an integrity violation, it stops the integrity check and reports an
error to the user. If the problem occurred on a user-defined object, SQLBase
identifies the name of the object. If the problem occurred on a system-defined ob
SQLBase provides either a description of the object or the name of the object.

Read the SET ERRORLEVEL documentation in the SQLTalk Command Reference
for an explanation of the error message detail that SQLBase displays.

Clauses
WITHOUT INDEXES
Prevent SQLBase from verifying any indexes associated with the specified table

Examples
CHECK TABLE EMP;
CHECK TABLE EMP WITHOUT INDEXES;

COMMENT ON

This command places a comment in the REMARKS column of the following tabl
SYSTABLES, SYSCOLUMNS, or SYSEXTFUN. A comment can be added for a
table, view, column, or external function.

You must have ALTER privileges on the table to use this command.

In SQLTalk, the REMARKS column is not displayed on the screen unless you en
the command COLUMN 4 WIDTH 20.

COMMENT ON

view-name.column-name

TABLE

table-name.column-nameCOLUMN

table name

view name

IS ‘string constant’

EXTERNAL FUNCTION function-name
3-24 SQL Language Reference

COMMIT

s
ng

as
The COMMENT ON command is like the LABEL ON command. The difference i
that the REMARKS columns (maintained by COMMENT ON) is 254 characters lo
while the LABEL column (maintained by LABEL ON) is 30 characters long.

Clauses
TABLE table name or view name
This specifies the name of a table to which to add a comment.

COLUMN table name.column name or view name.column name
This specifies the name of a column to which to add a comment.

TABLE table name or view name
This specifies the name of a table to which to add a comment.

EXTERNAL FUNCTION function name
This specifies the name of an external function to which to add a comment.

IS 'string-constant '
The comment cannot be longer than 254 characters (maximum length of a
VARCHAR column). The comment must be enclosed in single quotes.

Examples
COMMENT ON TABLE EMP

IS 'CONTAINS EMPLOYEE PERSONAL INFORMATION';

COMMENT ON COLUMN EMP.JOB
IS 'CONTAINS JOB TITLE FOR EMPLOYEE';

COMMENT ON EXTERNAL FUNCTION MYFUNC
IS 'CONTAINS MYFUNC INFORMATION';

See also
LABEL ON

COMMIT

This command ends the current transaction (logical unit of work). A transaction h
one or more SQL commands that must either all be executed or none at all.

COMMIT

WORK TRANSACTION <id> FORCE
SQL Language Reference 3-25

Chapter 3 SQL Command Reference

ds
n or

blish
uent
ot

Also,
nds.

ation

2

lve
e is
This command commits all changes made to the database since either the last
COMMIT or ROLLBACK, or the initial user connection, if there were no comman
issued. This command commits the work for all cursors that the SQLTalk sessio
application has connected to the database.

Connecting to a database causes an implicit commit of a transaction. After
establishing this connection to the database, SQLBase issues a COMMIT to esta
the starting point of the first transaction in the logging system. However, subseq
connections to other cursors are not specifically database connections, and do n
cause SQLBase to issue a COMMIT or activate any transaction control devices.
they do not alter the flow of the current transaction and destroy compiled comma

The COMMIT operation applies to all SQL commands including data definition
commands (CREATE, DROP, ALTER) and data control commands (GRANT,
UPDATE, DELETE).

Locks are always released after a COMMIT except when cursor-context preserv
is on.

Any user with CONNECT authority can execute this command.

Clauses
WORK
This is a noise word that can be coded, but it has no effect. It is provided for DB
compatibility.

TRANSACTION <ID> FORCE
This clause forces a manual COMMIT of an in-doubt distributed transaction.
Generally, the automatic recovery feature of the commit server daemon will reso
all transactions; you should only force a COMMIT as a last resort. The <ID> valu
the transaction’s global ID in the SYSPARTTRANS table.

Only COMMIT a transaction that has a status of COMMITTING.

Examples
COMMIT; (signals end of transaction and start of new one)

<SQL Command ...>

<SQL Command ...>

<SQL Command ...>

COMMIT; (commits previous three SQL commands)

See also
ROLLBACK
SAVEPOINT
3-26 SQL Language Reference

CREATE DATABASE

single
d by

 to

 for

e

ase

g
CREATE DATABASE

This command physically creates and installs a database. If you are not using a
engine SQLBase product, SQLBase creates the database on the server specifie
the last SET SERVER command, and installs the database on the network.

About new databases
SQLBase creates a new database in the first directory on the dbdir path or in the
current directory if dbdir is not specified. SQLBase also adds the dbname keyword
sql.ini.

In SQLBase, a database contains a database file placed in a subdirectory. The
database file must have the extension .dbs, for example, demo.dbs. The name of the
subdirectory must be the same as the database file name without the extension,
example, \demo.

Usually the database sub-directory is placed in the centura directory. This is the
default, but you can change to any location using the dbdir keyword in SQL.INI.

SQLBase expects the name of the .dbs file to be exactly the same as the name of th
subdirectory.

Note: The above rules only apply to non-partitioned databases.

Clauses
database name
The name of the new database to be created. The maximum length of the datab
name is 8 characters. Unlike other ordinary identifiers, you cannot use special
characters in a database name, and the first letter must be alphabetic.

Do not specify an extension for a database name, such as demo.xyz. SQLBase
automatically assigns a database name extension of .dbs. SQLBase will store a
database called demo in a file named demo.dbs. These rules do not affect partitioned
databases.

Do not specify the name main for your database, since this is used to store control
information for partitioned databases. Also, do not specify the name of an existin
server for your database.

CREATE DATABASE database name

IN stogroup name

LOG TO stogroup name
SQL Language Reference 3-27

Chapter 3 SQL Command Reference

rned

 for the

t
dinary

ance
e log
If a database file with the same name already exists (and the PAUSE option is tu
ON), SQLTalk prompts you with the message:

Database file already exists. Overwrite it (Y/N)?

This lets you decide if you really want to remove the existing database.

IN stogroup name
You can specify a storage group for the database and a separate storage group
log. If you do not specify a storage group, the default storage group in the main
database is used if one exists. If either the main database does not exist or you do no
specify a default storage group, the database is created and allocated like an or
single-file database.

LOG TO stogroup name
You can place the log file on a disk separate from the database for better perform
and integrity. If you specify a database storage group, but not one for the log, th
file space is allocated using the database storage group.

Examples
CREATE DATABASE SAMPLE;

CREATE DATABASE ACCTPAY IN ACCTDEPT
LOG TO ACCTDEPT;

See also
CREATE DBAREA
CREATE STOGROUP
DROP DATABASE
INSTALL DATABASE
SET SERVER
3-28 SQL Language Reference

CREATE DBAREA

he
are

 by
o not

eing
ze
ified

d the

t to

CREATE DBAREA

This command physically creates a database area of a specified size either on t
server or in a raw partition. Commands or characters enclosed in brackets ([])
optional.

The default size for a database area is 1 megabyte. The maximum size is limited
available disk space. If you are creating a database area on a raw device, you d
need to specify the size.

An error message appears if the file already exists or the disk space is already b
used for another database area. An error also appears if a file of the specified si
cannot be created or if the actual size of the raw device is smaller than the spec
size of the area.

This command requires either an existing Centura directory or a valid setting for the
DBDIR parameter.

Clauses
dbarea name
The name of the new database area that you create. The maximum length of the
database area name is 18 characters.

AS filename/raw device
Allows you to create a database area in a specified filename or raw device. If the
filing system in use allows embedded blanks, you must use single quotes aroun
filename or raw device.

SIZE megabytes
Allows you to specify the size of the database area in megabytes. Do not attemp
create a database area which is larger than the actual amount of free disk space
available on the specified device.

Example
CREATE DBAREA ACCT1 AS PAYROLL SIZE 5;

CREATE DBAREA dbarea name

AS [‘]filename[‘] / [‘]raw device [‘]

SIZE megabytes
SQL Language Reference 3-29

Chapter 3 SQL Command Reference
See also
ALTER DBAREA
DROP DBAREA
DROP DATABASE
INSTALL DATABASE

CREATE EXTERNAL FUNCTION

CREATE EXTERNAL FUNCTION function name

LIBRARY

(RETURNS

external type

()

library-name

(EXTERNAL NAME external-name

(CALLSTYLE PASCAL/STDCALL

CDECL

(EXECUTE IN SEPARATE PROCESS

SAME THREAD

(

external type

()PARAMETERS

,

3-30 SQL Language Reference

CREATE EXTERNAL FUNCTION

sides

l
n
e

r

ithin
ey can

 (a -

erved.

a.

e

on

me
Use this command to create an external function, a user-defined function that re
in an “external” DLL (Dynamic Link Library) invoked within a SQLBase stored
procedure.

DBA authority is required to create external functions.

If a user is granted execute with creator privileges on a procedure that calls externa
functions, then the user does not need execute privileges on any external functio
invoked within the procedure. Only the CREATOR of the procedure needs to hav
execute privileges on the external function.

If the user is granted execute with grantee privileges on a stored procedure, the use
must also have execute privileges on the external functions invoked within the
procedure. For details on setting up security for external functions, see the Database
Administrator’s Guide.

Read Chapter 9, External Functions for more information on creating external
functions.

Clauses
function name
Specifies the name of the function. This is the name that refers to the function w
SQLBase. Function names are similar to other database object names, except th
be up 64 characters in length.

Unless specified within double quotes, a function name must start with an alpha
z) character. By default, the characters are uppercased.

You must specify a function name in double quotes if the name contains special
characters or starts with a non-alpha character.

Note that if you enclose the name in double quotes, the case of the name is pres

Please note the following restrictions:

• Function names cannot be the same as procedure names and vice vers

• Functions names cannot be the same name used in any of the SQLBas
aggregate functions (for example, min, max, avg, etc., or any functions
beginning with the @ symbol, such as @ASIN, @ATAN, @CHAR, etc.)

• Function names cannot begin with SQL.

• If the external name is not used in the function definition, then the functi
name must match the exported name in the DLL.

• If the external name is used in the function definition, then the external na
must match the exported name in the DLL.
SQL Language Reference 3-31

Chapter 3 SQL Command Reference

n. If
e, or

tails,

ach

o use

ust
ent

limit

DLL
 name

e
PARAMETERS
Specify this clause if you want to define input parameters to the external functio
there are no parameters for the external function, omit the PARAMETERS claus
provide empty parentheses () in the declaration.

The data type for parameters tells SQLBase the format (both size and pass by
reference value) to use when passing data to the external function.

The external type typically corresponds to a standard Microsoft data type. For de
read Chapter 9, External Functions.

To specify an external data type with more than one input parameter, separate e
entry by a comma. For example:

. . .

PARAMETERS (int, lpint, boolean)

...;

RETURNS
Specify this clause if you want to define return values to the external function. If
there is no return type from the external function, omit the RETURNS clause, or
provide empty parentheses () in the declaration.

The external data type tells SQLBase the format (both size and pass by value) t
when returning a value to an external function. The external type typically
corresponds to a standard Microsoft data type. For details, read Chapter 9, External
Functions.

LIBRARY library-name
Specify the dynamic linked library (DLL) name where the function resides. You m
provide a fully qualified path name for the file, or else be sure the PATH environm
variable is set to point to the location of the file in your operating system.

Specify the library name as a string with up to 254 characters. You can include
special characters in the string. If the library name contains spaces, you must de
the name in single quotes (for example, ‘lib name’).

EXTERNAL external-name
Specify this clause if you want to provide an external name for the function. An
external name lets you create a function name that references the function in a
by another name. Thus, the function has a calling name that is separate from the
used to reference the same function in the DLL.

Specify the eternal name as a string with up to 254 characters. You can include
special characters in the string. The external name is case-sensitive and must b
identical to the exported function name in the DLL.
3-32 SQL Language Reference

CREATE EXTERNAL FUNCTION

name

oke

sult

ls.
s

s.

Note that if you do not supply an external name, the function name is the same
that is used in the DLL.

CALLSTYLE
Specify this clause if you want to change the compiler style that is required to inv
the external function. For details, read Chapter 9, External Functions.

Note: Be sure to specify the correct callstyle for your platform. An incorrect callstyle can re
in server failure.

PASCAL/STDCALL

PASCAL applies only to 16-bit platforms and is the callstyle for Windows API cal
STDCALL applies only to 32-bit platforms and is the callstyle for all 32-bit Window
API calls.

CDECL
This is the default compiler callstyle and applies to both 16-bit and 32-bit platform

EXECUTE IN
Specify this clause only if you are using a 32-bit platform and want to change the
execution mode to SAME THREAD or SEPARATE PROCESS.

For details on execution mode, read Chapter 9, External Functions.

Examples
CREATE EXTERNAL FUNCTION MYFUNC

PARAMETERS (int, lpint)
RETURNS ()
LIBRARY myfunc.dll
EXECUTE IN SAME THREAD;

See also
ALTER EXTERNAL FUNCTION
DROP EXTERNAL FUNCTION
SQL Language Reference 3-33

Chapter 3 SQL Command Reference

imize
xes

pty
ys run
lect
cs are

CREATE INDEX

This command creates an index on one or more columns of a table. Indexes opt
data retrieval since the data can be found without scanning an entire table. Inde
can also force unique data values in a column.

If an index is created on an empty table, the statistics reflect that the index is em
and SQLBase does not use the index in the queries. Therefore, be sure to alwa
UPDATE STATISTICS after the table is populated so the statistics accurately ref
the data. (You can create indexes at any time. When an index is created, statisti
gathered regarding the index and its associated values.)

There is no limit on the number of indexes per table.

You cannot update the key of a clustered hash index.

Like all DDL commands, this command locks system tables while executing.

If you create a table with a primary key with CREATE TABLE, you must create a
unique index on the primary key’s columns.

Index size
The maximum number of columns in an index cannot exceed 16. If this limit is
reached, SQLBase issues an error message.

CREATE

UNIQUE CLUSTERED HASHED

INDEX index name

ON table name (

(column name

DESC

ASC

,

PCTFREE integer constant SIZE integer value

BUCKETS

ROWS
3-34 SQL Language Reference

CREATE INDEX

eater

is 12

sults
The maximum size of an index key is:

Note that SQLBase issues an error message if an index key size has a length gr
than 255.

The length of each column depends on its data type. For example, a CHAR(10)
column is 10 bytes; any numeric column is 12 bytes; and any date/time column
bytes.

Consider the following columns:

LASTNAME CHAR20)
FIRSTNAME CHAR(20)
MI CHAR(1)

Create the concatenated index:

LASTNAME CHAR(20)
FIRSTNAME CHAR(20)
MI CHAR(1)

41

The following calculation shows the size of the index key:

Since this length is less than 255, it is valid.

As another example, consider the index on the following single column:

LARGECHAR(249)

The index is 249. Adding the number of columns and the sum of their lengths re
in the following sum:

This length is not allowed, since 256 > 255.

You must have the INDEX privilege on the table to execute this command.

6 + number of
columns in
index

+ sum of
lengths of all
columns in
index

<= 255

6 + 3 + 41 = 50

6 + 1 + 249 = 256
SQL Language Reference 3-35

Chapter 3 SQL Command Reference

a
 can

 the
umn
TE

ion

nction
pper
Functions in Indexes
An index can be created for one or more column values resulting from applying
function to the column. Functions for an index cannot be nested. Not all functions
be used to create an index.

Indexes created in this manner are used when the respective function is used in
WHERE clause. For functions which have arguments in addition to the table col
(such as @SUBSTRING), all arguments must agree exactly between the CREA
INDEX and WHERE clause invocations in order for the index to be used.

A case-insensitive index results from applying the @UPPER or @LOWER funct
to the column in the CREATE INDEX command. When you query a column
containing names that were entered using mixed case, and use the respective fu
in the WHERE clause to constrain the query, the rows returned include those in u
and lower case.

The following functions are allowed in CREATE INDEX.

@CHAR @QUARTER

@CODE @QUARTERBEG

@DATEVALUE @RIGHT

@DAY @SECOND

@HOUR @STRING

@LEFT @SUBSTRING

@LENGTH @TIMEVALUE

@LICS @TRIM

@LOWER @UPPER

@MICROSECOND @VALUE

@MID @WEEKBEG

@MINUTE @WEEKDAY

@MONTH @YEAR

@MONTHBEG @YEARBEG

@PROPER @YEARNUM
3-36 SQL Language Reference

CREATE INDEX

st

 is

ering).
s a
ey

true:

es
ed. A

ted.

ven

f rows
he

Clauses
index name
Each index name is a long identifier prefixed by an implicit qualifier which is the
authorization-id of the index creator. The index name (including the qualifier) mu
be unique within a database.

table name
View names cannot be used in the creation of an index.

UNIQUE
This keyword enforces unique key values within the table. It specifies that no
combination of indexed columns in the table can be identical. If this uniqueness
property is violated during index creation, or during an insert or update, an error
returned.

CLUSTERED HASHED
This clause stores the data rows in locations based on the key hash value (clust
A clustered hashed index speeds random access to rows in a table. If a table ha
unique key that identifies each row, declaring a clustered hashed index on that k
usually allows rows to be accessed with 1 disk read.

SQLBase uses a clustered hash index when both of the following situations are

• All of the key columns are in the WHERE clause

• The columns only use the equals (=) condition, such as C1=10.

If this clause is not specified, a B-tree (non-clustered) index is created.

The table can grow or shrink, but clustered hashed indexes are intended for tabl
which are static or where an upper bound for the size of the table can be specifi
clustered hashed index can be specified for a non-unique key, but access only
improves if there are relatively few rows for each key value.

Only one clustered hashed key can be created for a table, and it cannot be upda

A CREATE INDEX command that specifies a clustered hashed index must be gi
after the CREATE TABLE command and before any data is added to the table.

You cannot drop and then recreate a clustered hashed index on an empty table i
existed previously but were then deleted. You must first drop and then recreate t
table before you recreate the index.

ASC
DESC
This specifies whether the index is in ascending or descending order. ASC is the
default order. This clause is only relevant for B-tree indexes.
SQL Language Reference 3-37

Chapter 3 SQL Command Reference

in

0%. If

at
dex is

ies

the
the
 is too

ad of
d

s
e

shed
, and

fy
mn
PCTFREE integer constant
The PCTFREE (percent free) clause specifies how much free space to allocate
each index entry when the index is initially built. After the index is built, key
insertions and deletions can make the actual free space vary between 0% and 5
not specified, the default free space is 10%.

The PCTFREE keyword is followed by a number (between 0 and 99 inclusive) th
specifies the percentage of free space to be left in each index entry when the in
first built.

Normal values are 0-50%. Specifying 90-99% makes a binary index tree (2 entr
per page) which results in the maximum height B-tree. This degrades retrieval
performance.

This clause is ignored for a CLUSTERED HASHED index.

SIZE integer constant
Specify this clause in conjunction with either ROWS or BUCKETS. This controls
"expected" size of the index and is specified as a number of rows or buckets. If
size is too small, overflow pages are used and performance degrades. If the size
large, overflow pages are not used, but disk space is wasted. This clause is only
relevant for clustered hashed indexes.

You must specify this clause if you specify the CLUSTERED HASHED clause.

ROWS
Use this clause in conjunction with the SIZE integer value clause to specify the
number of rows to store a clustered hashed index. If you use SIZE..ROWS inste
SIZE...BUCKETS, SQLBase calculates the actual number of primary buckets an
round up to the nearest prime number for the hash based on the number of row
specified, the size of the row from the sum of all declared column widths, and th
SQLBase page size.

BUCKETS
Use this clause in conjunction with the SIZE integer value clause to directly specify
the number of primary bucket pages to store clustered hashed index and data.
SQLBase allocates primary buckets in SQLBase pages to store the clustered ha
index and its data. The primary buckets are the direct entries into the hash table
require only one I/O for access. SQLBase will round up the specified BUCKETS
value to the nearest prime number to obtain better hash distribution.

The number of pages for the primary buckets is stored in the
SYSADM.SYSINDEXES.PRIMPAGECOUNT column. However, when you speci
the clustered hashed index in buckets, the SYSADM.SYSINDEXES.IXSIZE colu
containing the number of ROWS can be null.
3-38 SQL Language Reference

CREATE INDEX

used
reby
Examples
Create an index named HIRE_IDX using the HIREDATE column.

CREATE INDEX HIRE_IDX ON EMP (HIREDATE);

Create a concatenated index composed of LNAME and FNAME.

CREATE INDEX NAME_IDX ON EMP (LNAME, FNAME);
Create a descending index on the EMP_IDX column of the EMP table. Disallow
duplicate part numbers.

CREATE UNIQUE INDEX EMP_IDX ON EMP (EMPNO DESC);

This example illustrates the creation and use of a case insensitive index.

CREATE INDEX LN_IDX ON EMP (@UPPER(LNAME));

In the above example, an upper case index is created for LNAME. This index is
when the @UPPER function is specified in the WHERE clause of a SELECT, the
using case insensitive sort order and using the index. The following example
illustrates this.

SELECT LNAME FROM EMP WHERE
@UPPER(LNAME) = 'JONES' ORDER BY 1;

NAME
====
JONES
Jones
jones

3 Rows Selected

Create an index on the first 3 characters of a column.

CREATE INDEX CODE_IDX ON EMP
(@LEFT(DEPTNO, 3));

The select command that uses this index must agree with the definition of
CODE_IDX.

Get all the rows for people in the ‘250’ division.

SELECT * FROM EMP WHERE
@LEFT(DEPTNO,3) = '250';

See also
CREATE TABLE
SQL Language Reference 3-39

Chapter 3 SQL Command Reference

 areas

ge
CREATE STOGROUP

This command creates a storage group. If the volumes containing the database
are not mounted, an error occurs when you try to create a database.

Clauses
stogroup name
This names the storage group that you create. The maximum length of the stora
group name is 18 characters.

USING dbarea name
This is a list of database areas. Database areas must already exist.

Example
CREATE STOGROUP ACCTDEPT USING ACCT1, ACCT2;

See also
ALTER STOGROUP
DROP STOGROUP

CREATE STOGROUP stogroup name

USING

,

dbarea-name
3-40 SQL Language Reference

CREATE SYNONYM

red
s
t

r
u

g
s are

ym.

cal
CREATE SYNONYM

This command defines an alternate name for a table, view, external function, sto
command, or stored procedure. Alternate names let you reference another user'
tables, views, external functions, stored commands, or stored procedures withou
having to use the qualified name (auth-id.table-name or auth-id.external function-
name).

You can create synonyms for a table, view, external function, stored command, o
stored procedure, if you own the given object. If you own an external function, yo
can also grant/revoke execute privileges on that function. If execute authority is
granted on a synonym for a function, the base name is inserted into the
SYSOBJAUTH table.

Synonyms for tables are stored in the SYSADM.SYSSYNONYMS system catalo
table. Synonyms for external functions, stored commands, and stored procedure
stored in the SYSADM.SYSOBJSYN system catalog table.

Synonyms used in a command can only be executed by the creator of the synon

If you create a local synonym with the same name as a PUBLIC synonym, the lo
definition overrides the public definition.

When an external function, stored command, or stored procedure is invoked,
SQLBase looks for the function in this order of precedence:

• functions owned by the creator of the invoking object

• private synonyms

CREATE
PUBLIC

SYNONYM synonym-name

FOR object name

EXTERNAL FUNCTION

PROCEDURE

COMMAND

TABLE
SQL Language Reference 3-41

Chapter 3 SQL Command Reference

d

 or

ion,

tored
table,

red

ather
es

and,

 The
name,
 in

 a
• public synonyms

Clauses
PUBLIC
This allows you to access the table, external function, stored command, or store
procedure through the synonym without fully qualifying the object name with the
authorization-id of the owner.

You must own the table, external function, stored command, or stored procedure
be a DBA or SYSADM to create a PUBLIC synonym.

You must have the appropriate privileges on the underlying table, external funct
stored command, or stored procedure to access it through a PUBLIC synonym.

synonym name
The synonym is named in the same manner as a table, view, external function, s
command, or stored procedure. It must not be the same as any other synonym,
view, external function, stored command, or stored procedure that you own. The
same rules for naming tables, views, external functions, stored command, or sto
procedure also apply to synonyms.

You can create synonyms for tables called “TABLE”, “EXTERNAL”,
“COMMAND”, or “PROCEDURE.”

Note: The called name of an external function can be the synonym name for the function r
than the actual function name. The SYSDEPENDENCIES catalog maintains dependenci
between a stored procedure and the called name of an external function.

object name
The name of an object type can be a table, view, external function, stored comm
or stored procedure. The table-name can name an existing view or table in the
database. The view-name must name an existing view or table in the database.
external function name, stored command name, or stored procedure name must
respectively, an existing external function, stored command, or stored procedure
the database.

TABLE
If the object type is omitted, the default is TABLE.

EXTERNAL FUNCTION
You must specify EXTERNAL FUNCTION after the FOR keyword when creating
synonym for an external function.
3-42 SQL Language Reference

CREATE SYNONYM

for

m

ype
COMMAND
You must specify COMMAND after the FOR keyword when creating a synonym
a stored command.

PROCEDURE
You must specify PROCEDURE after the FOR keyword when creating a synony
for a stored procedure.

Examples
CREATE PUBLIC SYNONYM SN2 FOR EXTERNAL FUNCTION MYFUNC;

CREATE SYNONYM SN2 FOR EXTERNAL FUNCTION MYFUNC;

Note that in the following examples, since no object type is included, the object t
defaults to TABLE.

CREATE SYNONYM ES FOR USER1.EMPSAL;

CREATE SYNONYM ES FOR EMPSAL;

CREATE PUBLIC SYNONYM ES FOR SYSADM.EMPSAL;

See also
CREATE TABLE
CREATE EXTERNAL FUNCTION
GRANT EXECUTE ON
REVOKE EXECUTE ON
SQL Language Reference 3-43

Chapter 3 SQL Command Reference

mum

 of a
ires

as the

 the
CREATE TABLE

This command creates a table with the specified columns. You can define a maxi
of 253 columns for each table. You must have RESOURCE, SYSADM, or DBA
authority to execute this command.

When you use CREATE TABLE with referential constraints, you should define a
foreign key with the same specifications as the primary key of the parent table. A
referential constraint defines the rules for a relationship between the primary key
parent table and a foreign key of a dependent table. A referential constraint requ
that for each row in a dependent table, the value of the foreign key must appear
primary key of a row in the parent table.

You must designate the parent table name when you define the foreign key. This
parent table must have a primary key and a primary index. You can also specify
delete rule of the referential constraint. The default rule is RESTRICT.

Like all DDL commands, this command locks system tables while executing.

CREATE TABLE table name

column name

column(

(

,

REFERENCES
KEY name

parent

name
table

ON RESTRICT
DELETE

FOREIGN

CASCADE

SET NULL

(data type

NOT NULL

PRIMARY KEY column name(

(

,

IN
database name.

tablespace name

IN DATABASE database name

PCTFREE integer constant

key name

NOT NULL WITH DEFAULT

(
3-44 SQL Language Reference

CREATE TABLE

d
y

#, @

t be a
in a

d in
Clauses
table name
A fully-qualified SQL table name has the form:

authorization-id. table-name

The authorization-id is a qualifier denoting the creator of the table. The combine
authorization-id.table name must form a unique name which does not identify an
existing table, view, or synonym in the database.

When you create a table, if you do not specify the authorization-id, your default
authorization-id is automatically prefixed to the table name.

column name
A column name must begin with a letter (A through Z and the special characters
and $) and must not exceed 18 characters.

A fully-qualified column name has the form:

table name. column name

You can use the unqualified column name when you define the table, and it mus
long identifier (18 characters maximum). Each column name must be unique with
table.

data type
A column can be one of the following data types. These data types are describe
the section Data types on page 2-7.

CHAR (length)
VARCHAR (length)
DECIMAL [(precision, scale)]
FLOAT
INTEGER
LONG VARCHAR
NUMBER
SMALLINT
DATE
DATETIME
TIME
TIMESTAMP

Columns defined as CHAR or VARCHAR require a length attribute.

Columns defined as DECIMAL have a default size attribute of 5,0; any other
precision and scale must be declared in parentheses.
SQL Language Reference 3-45

Chapter 3 SQL Command Reference

ites
ent
ach

eys:

EX

es.

ey

ow
y

n

is is

T
 or

all

 is

the

 as
SQLBase does not allocate the full space for a row when it is inserted with null
columns. An application that inserts a row with uninitialized columns and later wr
values to those columns will expand the row with extent pages. To avoid the ext
pages, the application should write blank-filled columns on the first INSERT of e
row.

PRIMARY KEY
This creates the primary key for the table. The following rules apply to primary k

• If a table has a primary key, you must also create a unique index on the
primary key columns to make the table complete. See the CREATE IND
command for more information.

• The primary key format must obey the following rules:

• Cannot contain more than 16 columns.

• Sum of the column length attributes cannot be greater than 255 byt

• Cannot contain LONG or LONG VARCHAR columns.

• You cannot use an UPDATE WHERE CURRENT clause with a primary k
column.

• In a self-referencing row, you cannot update the primary key value. If a r
is a self-referencing row, its foreign key value is the same as its primary ke
value.

• The values of the primary key must be unique; no two rows of a table ca
have the same key values.

• A table can have only one primary key.

• The primary key can be made up of one or more columns in a table. Th
called a composite primary key. Separate the columns with a comma.

• Each column in the primary key must be classified with the NOT NULL
constraint. However, you should not use the NOT NULL WITH DEFAUL
option unless the primary key column(s) has a data type of TIMESTAMP
DATETIME.

• An updateable view defined on a table with a primary key must include
columns of the primary key. Although this is only required if you use the
view in an INSERT statement, the resulting unique identification of rows
also useful if the view is used for updating, deleting, or selecting.

If you try to insert a row into a view that does not contain values for all of
primary key columns, the following message appears:

NOT ENOUGH NON-NULL VALUES

This message appears because all the primary key columns are defined
NOT NULL (since a primary key cannot contain NULL values).
3-46 SQL Language Reference

CREATE TABLE

 the

EX.

th

h

ust

ign
er,

n

s.

t
 key.

og
If you decide later to change the order of the primary key columns, you must use
following steps:

1. Run ALTER TABLE (referential integrity) and drop the primary key.

2. Drop the primary index with DROP INDEX.

3. Recreate a unique index on the new primary key columns with CREATE IND

4. Run ALTER TABLE (referential integrity) again to re-add the primary key wi
the new column order.

FOREIGN KEY
This specifies the foreign key for a table. Every value in a foreign key must matc
some value in the primary key from which the foreign key column originates.

The parent table must have a unique index on the primary key.

The following rules apply to foreign keys:

• Matching columns. A foreign key must contain the same number of
columns as the primary key. The data types of the foreign key columns m
match those of the primary key on a one-to-one basis, and the matching
columns must be in the same order.

However, the foreign key can have different column names and default
values. It can also have NULL attributes. If an index is defined on the fore
key columns, the index columns can be in ascending or descending ord
which may be different from the order of the primary key index.

• Using primary key columns. A column can belong to both a primary and
foreign key.

• Foreign keys per table. A table can have any number of foreign keys.

• Number of foreign keys. A column can belong to more than one foreig
key.

• Number of columns. A foreign key cannot contain more than 16 column

• Parent table. A foreign key can only reference a primary key in its paren
table. This parent table must reside in the same database as the foreign

• NULL values. A foreign key column value can be NULL. A foreign key
value is NULL if any column in the foreign key is NULL.

• Privileges. You must grant ALTER authority on a table to all users who
need to define that table as the parent of a foreign key.

• System catalog table. The foreign key cannot reference a system catal
table.

• Views. A foreign key cannot reference a view.
SQL Language Reference 3-47

Chapter 3 SQL Command Reference

n

.

the

t

ust

aints.

ues,

a 'D'
L
• Self-referencing row. In a self-referencing row, the foreign key value ca
only be updated if it references a valid primary key value. If a row is a self-
referencing row, its foreign key value is the same as its primary key value

key name
You can assign a name to the foreign key to identify it. This name is called a
constraint name. If you do not specify a name yourself, SQLBASE generates a
constraint name from the name of the first foreign key column.

A foreign key constraint name can have up to 18 characters. This means that if
first foreign key column name is more than 18 characters, you must assign a
constraint name yourself that does violate this limit. Otherwise, SQLBase will no
create the foreign key.

If there are multiple foreign keys referencing the same table, each foreign key m
have a unique name. This ensures that every referential constraint is uniquely
identified by a table name/constraint name combination.

REFERENCES
This identifies the parent table in a relationship and defines the necessary constr
The REFERENCES clause must accompany the FOREIGN KEY clause.

NOT NULL
If you declare a column NOT NULL, it requires data to be present in the column
every time a row is added to the table. If omitted, the column can contain null val
and its default value is the null value.

NOT NULL WITH DEFAULT
The NOT NULL WITH DEFAULT clause prevents a column from containing null
values and allows a default value other than the null value.

The default value used depends on the data type of the column, as follows:

The NOT NULL WITH DEFAULT clause causes the INSERT to insert the above
defaults. If the column is not specified in the INSERT command, SQLBase puts
in the NULLS columns of the SYSCOLUMNS table and treats it like a NOT NUL
field.

The NOT NULL WITH DEFAULT clause is compatible with DB2.

Data Type Default Value

Numeric 0 (zero)

Date/Time Current date/time

Character One blank
3-48 SQL Language Reference

CREATE TABLE

le with

ng the

dent

 in

ee

 of
s are

n, the
es

IN DATABASE database name
IN [database name] tablespace name
SQLBase accepts these clauses but ignores them. The IN clauses are compatib
DB2.

ON DELETE
This specifies the DELETE rules for the table.

The DELETE rules are optional.

The default is RESTRICT.

DELETE rules are only used to define a foreign key.

CASCADE
This deletes the selected rows first, and then deletes the dependent rows, honori
delete rules of their dependents.

RESTRICT
This specifies that a row can be deleted if no other row depends on it. If a depen
row exists in the relationship, the delete will fail.

SET NULL
This specifies that for any delete performed on the primary key, matching values
the foreign key are set to null.

PCTFREE integer constant
This sets the free space left in each table row when it is first filled. The default fr
space is 10 percent.

If you plan to expand rows later by adding more columns or increasing the width
existing columns, this feature leaves space for expansion so that extension page
not needed.

Also, for small, heavily-accessed tables where page locking can cause contentio
PCTFREE option can force fewer rows to be assigned to each page which reduc
contention.

The PCTFREE value must be between 0 and 99.

Examples
Create a table EMP for storing employee data and EMPSAL for keeping a salary
history.

CREATE TABLE EMP

(EMPNO INTEGER NOT NULL,
LNAME VARCHAR(15),
FNAME CHAR(10),
SQL Language Reference 3-49

Chapter 3 SQL Command Reference

nce
DEPTNO SMALLINT,
HIREDATE DATE,
JOB VARCHAR (15));

CREATE TABLE EMPSAL

(EMPNO INTEGER NOT NULL,
SALARY DECIMAL(5,9,2),
REVIEW LONGVARCHAR;

Create a table that allows the foreign key EMPNO in the EMPSAL table to refere
EMPNO in the EMP table, with a DELETE CASCADE rule.

CREATE TABLE EMP
(EMPNO INT NOT NULL,
LNAME VARCHAR(15),
FNAME CHAR(10),
DEPTNO SMALLINT,
HIREDATE DATE,
JOB VARCHAR (15)
PRIMARY KEY (EMPNO));

CREATE UNIQUE INDEX EMP_IDX ON EMP (EMPNO);

CREATE TABLE EMPSAL (EMPNO INTEGER, SALARY DECIMAL (9,2),
REVIEW LONG VARCHAR,
FOREIGN KEY (EMPNO) REFERENCES EMP
ON DELETE CASCADE);

See also
ALTER TABLE
CREATE INDEX
DELETE
UPDATE
3-50 SQL Language Reference

CREATE TRIGGER

 even
er
CREATE TRIGGER

This command creates a trigger on a table. You cannot define a trigger on a view
if the view is based on a single table.You must be the owner of the table, or a us
with SYSADM or DBA authority, to create a trigger on the table. For a general
description of triggers and their use, read Chapter 7, Procedures and Triggers.

CREATE TRIGGER trigger name

ON table name

BEFORE

AFTER

INSERT

DELETE

UPDATE

OF

,

trigger column name

REFERENCING OLD

NEW

AS
old values
table name NEW

AS
new values
table name

AS
new values
table name OLD

AS
old values
table name

FOR EACH

ROW

STATEMENT

(EXECUTE stored procedure name

INLINE

parameters

())

parameters

 procedure text)()

ORDER sequence
number
SQL Language Reference 3-51

Chapter 3 SQL Command Reference

RT,

d

e user
dure,

ed

r,
nt
s

 is

L

g

 the
will

ML
SQL
.

vant
r. In
You can define up to sixteen triggers for each combination of table, event (INSE
UPDATE, DELETE), time (BEFORE and AFTER), and frequency (FOR EACH
ROW and FOR EACH STATEMENT).For details, read the section “BEFORE an
AFTER” under Clauses on page 3-57.

Because triggers can be activated by any user’s attempt to INSERT, UPDATE, or
DELETE data, no privileges are required to execute them. When a trigger is
activated, the action statements are executed on behalf of the table owner, not th
who activates the trigger. However, to create a trigger which uses a stored proce
one of the following conditions must be true:

• You have SYSADM or DBA authority.

• You own the table and the stored procedure,

or

• You own the table and have been granted execute authority for the stor
procedure.

If you have either SYSADM or DBA authority and create a table for another use
SQLBase assumes that unqualified names specified in your TRIGGER stateme
belong to the user. For example, assume you execute the following command a
SYSADM:

CREATE TRIGGER A.TRIG BEFORE UPDATE on EMP...

Since table EMP is unqualified, SQLBase assumes that the qualified table name
A.EMP, not SYSADM.EMP.

Triggers do not need a commit from the invoking transaction in order to fire; DM
statements by themselves cause triggers to fire.

If a procedure returns a non-zero value to a trigger, the trigger causes its invokin
DML command to fail with the error message associated with the return code in
error.sql. For example, if you have an INSERT trigger that calls a procedure, and
procedure returns 906 to the trigger, the INSERT command invoking the trigger
fail with error code 906 (Invalid table name). However, any commands in the
transaction prior to the (failed) invoking DML statement are not rolled back.

Note: Triggered SQL statements are a part of the invoking transaction. If the invoking D
statement fails due to either the trigger or another error generated outside the trigger, all
statements within the trigger are rolled back along with the failed invoking DML command

It is the responsibility of the invoking transaction to commit or rollback any DML
statements executed within the trigger’s procedure. However, this becomes irrele
if the DML command invoking the trigger fails as a result of the associated trigge
3-52 SQL Language Reference

CREATE TRIGGER

rigger
d,
le,
_A)

Base
eate
u

ures

own

y a

TE/
this situation, any DML statements executed within that trigger’s procedure are
automatically rolled back.

In certain situations, SQLBase allows you to drop a table that has a dependent t
or stored procedure defined on it. SQLBase does not issue a warning, but instea
during execution, issues a runtime error that the table does not exist. For examp
assume you create two tables, A and B. You then create an update trigger (TRIG
on table A that calls a stored procedure (SP_A) to insert data into table B.

If you attempt to drop table B, SQLBase accepts your DROP TABLE command
without warning you that TRIG-A is a dependent object of table B. If you go on to
update table A, the trigger issues a runtime error that table B does not exist. SQL
rolls back the command and does not permit you to update table A until you recr
table B or drop the trigger. Note that similar behavior in this example occurs if yo
drop stored procedure SP_A.

SQLBase also issues an error when you attempt to load triggers or static proced
that reference dropped or altered objects. To prevent the error:

• Recreate any referenced object that you drop, or

• Restore any referenced object you changed back to its original state (kn
by the procedure or trigger).

Following are restrictions to note when creating triggers:

• You cannot alter a table that has a trigger defined on it.

• You cannot create a trigger on a system catalog table.

• If a a DML statement updates a row that causes a trigger to be fired, you
cannot update the same row again within that trigger.

In the following example a trigger updates a row that was just inserted b
DML statement and causes SQLBase to generate an error:

CREATE TABLE EMP (c1 int);

CREATE TRIGGER TRIG1 after insert on EMP
(EXECUTE inline (EMP.rowid)
PROCEDURE P1

string: RowIdentifier

Action
call SqlImmediate('update EMP set \

(c1 = c1 + 5 where EMP.rowid =: RowIdentifier'))

for each row;

If you use a trigger to perform such actions like the one in the previous
example, SQLBase returns error 848 (“Row being processed for a DELE
SQL Language Reference 3-53

Chapter 3 SQL Command Reference

eive

s. You
ase

ng to

ich

s in
sing

ion.

W

RT

OR
ch

 the

der
UPDATE was modified by triggered actions”) when the invoking DML is
executed.

For restrictions on setting default/derived column values when using rec
parameters in triggered stored procedures, read Using receive parameters on
page 3-55.

Triggers and Procedures
Triggers can call stored procedures and cause SQLBase to execute other trigger
can nest triggers up to 8 levels deep. If a trigger gets into an infinite loop, SQLB
detects this recursive action when the 8-level nesting maximum is reached and
returns an error to the user. For example, you could activate a trigger by attempti
insert into the table T1 and the trigger could call a stored procedure which also
attempts to insert into T1, recursively activating the trigger.

If a set of nested triggers fails at any time, SQLBase rolls back the command wh
originally activated the triggers.

By defining a trigger to a procedure, you can set default or derived column value
INSERT and UPDATE operations. When you create the trigger for this purpose u
the CREATE TRIGGER command, the trigger must comply with these rules:

• The trigger must be executed BEFORE the INSERT or UPDATE operat

You can modify column values only with a BEFORE...ROW trigger.
Because the column value must be set before the INSERT or UPDATE
operation, using the AFTER...ROW trigger to set column values is
meaningless. Note also that the DELETE operation does not apply to
modifying column values.

• For an UPDATE operation, the REFERENCING clause must contain a NE
column value for modification.

Note that it is meaningless to modify the OLD column value. For an INSE
operation, all values are new by default.

• The trigger must be specified with the FOR EACH ROW clause.

Column values cannot be passed to triggers that are specified with the F
EACH STATEMENT clause. Note that you must change the default whi
is FOR EACH STATEMENT.

• You must pass the column you want to modify as a receive parameter to
procedure that is triggered. See examples in section that follows.

Note when using procedure logic, the column value may be modified un
some conditions, or left the same under other conditions.
3-54 SQL Language Reference

CREATE TRIGGER

mn

tic
Using receive parameters

When you set default/derived column values when using receive parameters in
triggered stored procedures, note these restrictions:

• Only columns can be used for receive parameters.

• Delete triggers cannot use receive parameters.

• After triggers cannot use receive parameters.

• Old column values cannot be passed as receive parameters.

In this example, a trigger modifies a column value from null to five.

CREATE TABLE t1 (c1 int);

CREATE TRIGGER tg1 before insert on t1
(EXECUTE inline (c1)
PROCEDURE p1 static
parameters

receive number : n
actions

set n = 5)
for each row;

insert into t1 values (null);

This next example applies the same rule as the first example when setting a colu
with derived values. In the example, column c3 is set to the sum of the other two
columns.

CREATE TRIGGER tg1 before insert on t1

(EXECUTE inline (c1, c2, c3)
PROCEDURE p1 static
parameters

number : c1
number : c2
receive number: c3

actions
set c3 = c1 + c2)

for each row;

General restrictions

Following are general restrictions when creating triggers with stored or inline
procedures:

• You cannot use dynamic stored procedures with triggers.

• A trigger cannot call a non-stored procedure. You must always store sta
procedures with the STORE command.
SQL Language Reference 3-55

Chapter 3 SQL Command Reference

e

gered
ify

ifies
use.

ince
use
n

n

g
 can
s

ou

ent

ired.
re
 set
• You cannot pass SQL @ functions as parameters to procedures that ar
referenced by triggers.

• You cannot pass expressions and constants as receive parameters to trig
procedures. Only columns can be passed as receive parameters to mod
their values.

• It is recommended that you not define a trigger to a procedure that mod
any table referenced in a DML statement with a subselect or WHERE cla
For example:

DELETE FROM T1 WHERE C1 > 3

In the example, note that a triggered procedure cannot modify Table T1 s
it is referenced by the WHERE clause. The actions of the trigger can ca
the subselect or WHERE clause of the invoking DML statement to retur
unpredictable results.

Triggers and Referential Integrity
Triggers are useful for implementing referential integrity constraints that are not
supported by standard declarative SQLBase referential integrity (described in
Chapter 6, Referential Integrity). For example, you can use triggers to implement a
UPDATE CASCADE or UPDATE SET NULL constraint.

You can also use triggers to enforce DELETE constraints instead of implementin
SQLBase declarative referential integrity DELETE constraints. For example, you
specify a delete rule for each parent/dependent relationship. This delete rule tell
SQLBase what to do when a user tries to delete a row of the parent table.

Be aware, however, that SQLBase does not perform cycle or conflict checks if y
use triggers to enforce referential integrity rules instead of using the SQLBase
declarative referential integrity feature. Also be aware, that if you want to implem
UPDATE CASCADE using triggers, you must remove the referential integrity
constraints you have defined since the UPDATE statement is not allowed.

The following actions summarize the order of operation for referential integrity
checks:

1. BEFORE STATEMENT trigger

2. Referential integrity check to see if a particular DML is allowed

3. BEFORE ROW trigger

4. Referential integrity operation (delete cascade, set null or restrict) that is requ
For example, in a delete cascade referential integrity, the dependent rows a
deleted, or in a update set null referential integrity, the dependent rows will be
null.

5. DML (update, delete)
3-56 SQL Language Reference

CREATE TRIGGER

ses
one

n
rity

 do

RT,

ers

n,
ou

the
6. AFTER ROW trigger

7. AFTER STATEMENT trigger

This matrix describes what triggers can be created on a table with the following
declarative referential integrity rules:

* This is “NO” only if the column list referenced in the trigger definition contains a
column which is all or a part of the foreign key for that table.

Clauses
trigger name
The name of the trigger. This can contain up to 18 characters.

BEFORE or AFTER
Specify whether to execute the trigger before or after the data modification (the
invoking DML statement). In some circumstances, the BEFORE and AFTER clau
are interchangeable. However, there are some situations where you should use
clause instead of the other:

• Using the BEFORE clause is more efficient than the AFTER clause whe
performing data validation such as domain constraint and referential integ
checking.

• The AFTER clause can provide additional processing of table rows which
not yet exist but become available from the invoking DML statement.
Conversely, it can also confirm data deletion after the invoking DELETE
statement.

You can define up to sixteen triggers for each combination of table, event (INSE
UPDATE, DELETE), time (BEFORE and AFTER), and frequency (FOR EACH
ROW and FOR EACH STATEMENT). For example, you can define sixteen trigg
for each BEFORE EACH STATEMENT, BEFORE EACH ROW, AFTER EACH
ROW, and AFTER EACH STATEMENT, providing a total of 64 triggers. In additio
if you provide INSERT, UPDATE, and DELETE triggers to these combinations, y
can have a total maximum of 192 triggers.

The following example shows trigger tgibr01 defined BEFORE INSERT ON table t1
FOR EACH ROW. You can define 15 more CREATE TRIGGER statements with

Declarative RI
Constraint Type

INSERT
TRIGGER

DELETE
TRIGGER

UPDATE
TRIGGER

On Delete Cascade Yes No Yes

On Delete Restrict Yes Yes Yes

On Delete Set Null Yes Yes *No
SQL Language Reference 3-57

Chapter 3 SQL Command Reference

vent,
DER

r

e

r
same combination. You can define for example triggers tgibr02 through tgibr15 with
inline procedures Pibr02 through Pibr15.

CREATE TRIGGER tgibr01 BEFORE INSERT ON t1
(EXECUTE INLINE()
PROCEDURE Pibr01 STATIC
LOCAL VARIABLES

NUMBER n1
NUMBER n2

ACTIONS
ON PROCEDURE EXECUTE

set n2 = 11101
call SQLImmediate('insert into t2 values (:n2) ')
)

FOR EACH ROW

Note that if more than one trigger is created on the same combination of table, e
time, and frequency, be sure to use the ORDER clause. If you do not use the OR
clause, SQLBase randomly assigns a firing order for the set of triggers.

The BEFORE and AFTER clauses have different implications and advantages fo
each DML operation. Here are some examples:

UPDATE BEFORE Can be used to verify that updated data adheres to integrity
constraint rules before performing an UPDATE. If you use
the REFERENCING NEW AS new values tablename
clause of the CREATE TRIGGER command with the
BEFORE UPDATE clause, then the updated values are
accessible to the triggered SQL statements.

In the trigger, you can set default column values or derived
column values before performing an UPDATE. The column
to be modified must be passed as a receive parameter to th
triggered procedure. Read the section Triggers and
Procedures on page 3-54.

AFTER Can be used to perform operations on data just updated. Fo
example, you can compile new projected regional sales
figures after updating the address of one of your large
distributors following a recent move.

If you use the REFERENCING OLD AS old values
tablename clause of the CREATE TRIGGER command
with the AFTER UPDATE clause, then the values that
existed prior to the invoking update are accessible to the
triggered SQL statements.
3-58 SQL Language Reference

CREATE TRIGGER

nd

t you

e to

se the
rder.

L

e

.

s

e-
d

Commits and autocommits from the invoking transaction of INSERT, UPDATE, a
DELETE statements on tables which have triggers occur after trigger-related
processing.

INSERT
Specify that the trigger is to be activated by an INSERT on the table.

Loading data is considered inserting.

DELETE
Specify that the trigger is to be activated by a DELETE on the table.

UPDATE

Specify that the trigger is to be activated by an UPDATE on the table.

You cannot reference the same column by more than one update trigger.

SQLBase allows you to recursively update the same table, and does not preven
from recursively updating the same row.

If multiple update triggers are defined on a table, you can use the ORDER claus
specify the firing order for the set of triggers. If you do not specify the ORDER
clause, SQLBase decides a random order in which to execute them. Be sure to u
ORDER clause when you create triggers that depend on a particular execution o

INSERT BEFORE Can be used to verify that inserted data adheres to integrity
constraint rules before performing an INSERT. Column
values passed as parameters are visible to the triggered SQ
statements but the inserted rows are not.

In the trigger, you can set default column values or derived
column values before performing an INSERT. The column
to be modified must be passed as a receive parameter to th
triggered procedure. Read the section Triggers and
Procedures on page 3-54.

AFTER Can be used to perform operations on the data just inserted
For example, after inserting a customer’s order, you can
calculate the total price of all the items ordered to see
whether it exceeds the customer’s credit limit.

Both column values passed as parameters and inserted row
are visible to the triggered SQL statements.

DELETE BEFORE Can be used to perform operations based on the soon-to-b
deleted data. Both column values passed as parameters an
deleted rows are visible to the triggered SQL statements.

AFTER Can be used to confirm the deletion of data. Column values
passed as parameters are visible to the triggered SQL
statements, but the deleted rows are not.
SQL Language Reference 3-59

Chapter 3 SQL Command Reference

 the

res
ates

hich

QL

ble’s

want
g

ber

 a
ence

ime,
d to
e,

0
SQLBase does not detect situations where the actions of different triggers cause
same data to be updated. For example, assume two update triggers on different
columns, Col1 and Col2, of the table Tbl1. When you attempt to UPDATE all the
columns of Tbl1, the two triggers are activated. Both triggers call stored procedu
which update the same column, Col3 of a second table, Tbl2. The first trigger upd
Tbl2.Col3 to 10 and the second trigger updates Tbl2.Col3 to 20.

Likewise, SQLBase does not detect situations where the result of an UPDATE w
activates a trigger conflicts with the actions of the trigger itself. For example,
consider the following SQL statement:

UPDATE t1 SET c1 = 10 WHERE c3 = 5;

If the trigger activated by this UPDATE then calls a procedure that contains the S
statement:

UPDATE t1 SET c1 = 7 WHERE c1 = 10;

the result of the UPDATE which activated the trigger is overwritten.

Note: This example can lead to recursive trigger execution and should be avoided.

OF trigger column name
Activates the trigger when a user attempts to update the specified columns.

Each column can appear in at most one BEFORE and one AFTER trigger.

If you do not specify one or more column names, SQLBase assumes all of the ta
columns.

ORDER sequence number

Use this clause in conjunction with a sequence number to specify the order you
a given set of triggers to be fired. The order for each set is specified in ascendin
order. For example, a BEFORE row action trigger with the number 0 is the first
trigger to be fired for the row BEFORE the action; the trigger with the order num
of 999 is the last to be fired.

If you omit the order clause for a trigger, SQLBase randomly assigns the trigger
sequence number (400 through 599) that does not conflict with any existing sequ
number assignments. From that number on, the ordering remains valid.

You can define a maximum of 16 triggers for each combination of table, event, t
and frequency. In the case of UPDATE triggers, the limit is applied without regar
the column list specification. If you define more than one trigger for the same tim
event and frequency, you must specify a different order number for each trigger.

Valid values for the ORDER clause sequence number are 0 through 399 and 60
through 999.
3-60 SQL Language Reference

CREATE TRIGGER

n

NT
hat

you
s

 the
t of

st

s to

atic.
REFERENCING
Use this clause only when defining a trigger on an UPDATE operation. The
REFERENCING clause provides you with a way to reference both the old colum
values and the new updated column values by aliasing the table on which the
UPDATE operation takes place.

You cannot specify both a REFERENCING clause and a FOR EACH STATEME
clause in the trigger definition. Because there may be multiple rows or no rows t
meet the criteria, there is no one single value for SQLBase to use.

If you specify neither the old values table name nor the new values table name,
SQLBase decides the values by trigger action time depending on whether you
specified that the trigger should execute before or after the data modification. If
specified that the trigger should execute before data modification, SQLBase assume
old values. If you specified that the trigger should execute after data modification,
SQLBase assumes new values.

OLD AS old values table name NEW AS new values table name
This is a subclause of the REFERENCING clause. It allows you with to reference
values of columns both before and after an UPDATE operation. It produces a se
old and new values which can be passed to an inline or stored procedure which
contains logic used to evaluate these parameter values. An example is domain
constraint checking.

Use the OLD AS clause to alias the table’s column values as they existed before the
UPDATE. Use the NEW AS clause to alias the table’s column values as they exi
after the UPDATE.

You cannot use the same name for the old values table name and the new values table
name.

NEW AS new values table name OLD AS old values table name
This is a subclause of the REFERENCING clause. It provides you with the mean
reference the values of columns both before and after an UPDATE operation.

Use the NEW AS clause to alias the table’s column values after the UPDATE. Use the
OLD AS clause to alias the table’s column values as they existed before the UPDATE.

You cannot use the same name for the new values table name and the old values table
name.

(EXECUTE...)
This command executes a stored or inline procedure. The procedure must be st
SQL Language Reference 3-61

Chapter 3 SQL Command Reference

that

to

 only
 can
ate

in the

tored

UE

ven
stored procedure (parameters)
INLINE (parameters) procedure text
A stored procedure is a previously-compiled and named set of SQL statements
can contain flow control language. Read Chapter 7, Procedures and Triggers for
detailed information on stored procedures. The procedure requires parenthesis
indicate a parameter set, even if the parameter set is empty.

Bind variables cannot be passed as parameters.

Columns of LONG VARCHAR data type are not supported. This means that you
cannot pass a LONG VARCHAR column as a parameter to a procedure. You can
pass column names (of the table associated with the trigger) and constants. You
pass rowids as parameters. You cannot pass aggregate functions or non-aggreg
functions (those that begin with an “@”).

Instead of specifying a stored procedure name, you can also type in an inline
procedure here. If the procedure expects input, you can pass parameter values
(parameters) part of the command line.

If the procedure returns a non-zero return code, the trigger nullifies its invoking
INSERT, UPDATE, or DELETE command, and the command fails with the error
message associated with that return code.

An ON PROCEDURE FETCH statement is executed only if it contains receive
parameters.

When a procedure is called by a trigger, SQLBase returns a runtime error if the s
procedure contains any of these commands:

COMMIT
ROLLBACK
SAVEPOINT
SET ISOLATION

FOR EACH STATEMENT or ROW
Specify whether the stored procedure should be executed on a
per-row or per-statement basis. FOR EACH STATEMENT is the default.

A trigger defined with a FOR EACH ROW clause is activated only when the
WHERE clause of an INSERT, UPDATE, or DELETE statement evaluates to TR
and one or more rows qualify.

A trigger defined with a FOR EACH STATEMENT clause is always activated
whenever a user attempts to INSERT, UPDATE, or DELETE a row of the table (e
if no rows qualify for the operation’s WHERE clause).
3-62 SQL Language Reference

CREATE TRIGGER

he

,
 called

n the

NT
hat
ation.

lled by

he
For example, assume you define the following trigger:

CREATE TRIGGER trg_update
AFTER UPDATE ON t1 REFERENCING OLD AS oldt1
NEW AS newt1 (EXECUTE sp1 (oldt1.c1, oldt1.c2, newt1.c1,
newt1.c2)) FOR EACH ROW;

If you attempt to update the table and no rows meet the conditions specified in t
UPDATE statement’s WHERE clause, SQLBase does not execute sp1.

Now assume that you defined the trigger with a FOR EACH STATEMENT clause
and the trigger called a procedure sp2 that inserts an aggregate total into a table
SUMMARY:

CREATE TRIGGER trg_update AFTER UPDATE ON t1 (EXECUTE sp2())
FOR EACH STATEMENT;

If you attempt to update the table t1 and no rows meet the conditions specified i
UPDATE statement’s WHERE clause, SQLBase still executes sp2.

You cannot specify both a REFERENCING clause and a FOR EACH STATEME
clause in the trigger definition. Because there may be multiple rows or no rows t
meet the criteria, there is no one single value that SQLBase can use for the evalu

You cannot pass column names as parameters to stored or inline procedures ca
a trigger with a FOR EACH STATEMENT clause.

INSERT statements with multiple bind value rows are treated as multiple insert
statements. This is important to remember when you use the FOR EACH
STATEMENT clause. For example, FOR EACH STATEMENT clause considers t
following INSERT statements as three INSERT statements:

Insert into T1 values (:1)
 \
 1
 2
 3
 /

Examples
These trigger examples use the following tables EMP and JOB:

CREATE TABLE EMP (EMP_NO integer,
EMP_NAME varchar(18), EMP_SALARY decimal(8,2),

EMP_JOB_NO integer);

CREATE TABLE JOB (JOB_NO integer,
JOB_DESC varchar(18), JOB_MIN_SALARY decimal(8,2),
JOB_MAX_SALARY decimal(8,2));

INSERT INTO JOB values (:1,:2,:3,:4)
SQL Language Reference 3-63

Chapter 3 SQL Command Reference

or a

s

 job
\
102,Programmer, 40000,55000
103,Junior Programmer,30000,45000
/

The triggers call a stored procedure SALARY_RULE2 which validates a salary f
given job classification.

STORE SALARY_RULE2
PROCEDURE: SALARY_RULE2 static
Parameters
 Number: nJob
 Number: nSalary
Local Variables
 Sql Handle: hSql
 Number: nFetchStatus
 Number: nMax
 Number :nMin
Actions
 Call SqlConnect(hSql)
Call SqlPrepare(hSql,'SELECT JOB_MAX_SALARY,\

JOB_MIN_SALARY from JOB \
where JOB_NO = :nJob into :nMax, :nMin')

Call SqlExecute(hSql)
Call SqlFetchNext(hSql, nFetchStatus)
Call SqlDisconnect(hSql)

! If the salary is out of range, return the user-defined
! error code 20000 to the SQL statement which invokes the
! trigger.

If nSalary < nMin
Return 20000

Else if nSalary > nMax
Return 20000

Else
Return 0;

INSERT. The following trigger is invoked when you run INSERT. The trigger call
SALARY_RULE2. This procedure checks to see that the inserted values fall in a
range established by SALARY_RULE2.

CREATE TRIGGER EMP_ISRT before insert on EMP
(EXECUTE SALARY_RULE2 (EMP.EMP_JOB_NO, EMP.EMP_SALARY)
for each row;

The following insert fails because 25000 does not fall in the salary range for this
number.

SINSERT INTO EMP values (1, 'Bill Bates', 25000, 103);
3-64 SQL Language Reference

CREATE TRIGGER

jobs

s insert

e job

tial
able)

fined
This example corrects the salary so that the insert will succeed:

INSERT into EMP values (1, 'Bill Bates', 30000, 103);
COMMIT;

UPDATE. This next trigger checks the salary of an employee who are changing
to verify that the employees’ salaries are within the salary range of the newly-
assigned job. This update trigger uses the same stored procedure as the previou
trigger.

CREATE TRIGGER JOB_UPDT
before update of EMP_JOB_NO on EMP
referencing old as OLD_EMP new as NEW_EMP
(execute SALARY_RULE2
(NEW_EMP.EMP_JOB_NO, NEW_EMP.EMP_SALARY))
for each row;

This update fails because the employee does not have the salary required for th
classification

UPDATE EMP set EMP_JOB_NO = 102 where EMP_NO = 1;

DELETE. This trigger invokes an inline stored procedure which provides referen
integrity checking. It ensures no rows can be deleted from the JOB table (parent t
without first checking the dependent EMP table for dependent rows. If the inline
procedure detects dependent rows, it returns user-defined error code 20001 (de
in error.sql) to the trigger, which causes the invoked DELETE to fail with error
20001.

CREATE TRIGGER JOB_DELETE before delete on JOB
(execute inline (JOB.JOB_NO)

PROCEDURE: RI_RULE static
Parameters

Number: nJobNo
Local Variables

Boolean: bExists
Actions

Call SqlExists('SELECT EMP_JOB_NO from EMP \
where EMP_JOB_NO = :nJobNo', bExists)

! User defined error code in error.sql
! You cannot delete record(s) from the JOB table that
! have dependent record(s) in the EMP table

If bExists
Return 20001

Else
Return 0

)

SQL Language Reference 3-65

Chapter 3 SQL Command Reference

tively
 more

ame
rived

and

e

r,

owing
for each row;

The delete trigger will not allow this referential integrity violation.

DELETE FROM JOB where JOB_NO = 103;

See also
ALTER TRIGGER
DROP TRIGGER

CREATE VIEW

This command creates a view on one or more tables or views.

By granting certain privileges on a view instead of on base tables, you can selec
restrict access to the data in the base tables. See GRANT (Table Privileges) for
information.

You can modify tables through a view only if the view references a single table n
in the FROM clause of the SELECT command, and the view columns are not de
from a function or arithmetic expression.

If you create the view from a table join, or it has derived columns, it is read-only
you cannot update the underlying tables through it.

To create a view, you must possess the corresponding SELECT privileges on th
columns of the base tables that comprise the view.

If you have either SYSADM or DBA authority and create a table for another use
SQLBase assumes that unqualified names specified in your CREATE VIEW
statement belong to the user, not you. For example, assume you execute the foll
command as SYSADM:

CREATE VIEW view name

column name

,

AS select

WITH CHECK OPTION

(

(

3-66 SQL Language Reference

CREATE VIEW

lified

,
er

ing

iew.
es as

cur
u

 the

y of
CREATE VIEW A_PAYAS
SELECT FNAME, LNAME, SALARY
FROM EMP, EMPSAL...

Since tables EMP and EMPSAL are unqualified, SQLBase assumes that the qua
table name is A.EMP and A.EMPSAL, not SYSADM.EMP and
SYSADM.EMPSAL.

Like all DDL commands, this command locks system tables while executing.

Be aware that creating views can significantly increase the size of your database
since each view generally adds 20-40k to the database. Views that reference oth
views can be even larger.

Clauses
view name
The view name has the form:

authorization ID.view-name

The view name, including the authorization ID, must not be the name of an exist
view in the database.

column name
Specify column names if you want to give different names to the columns in the v
If you do not specify column names, the columns of the view have the same nam
those of the result table of the SELECT command.

If the results of the SELECT command have duplicate column names (as can oc
with a join), or if a column is derived from a function or arithmetic expression, yo
must give names to all the columns in the view. The new column names have to
appear in parenthesis after the view name.

SELECT
A SELECT command defines the view. The view has the rows that would result if
SELECT command were executed. See the description of SELECT for an
explanation of this clause.

You cannot use the ORDER BY clause in a view definition.

A view is considered read-only and cannot be updated if its definition involves an
these:

• A FROM clause that names more than one table or view

• A DISTINCT keyword

• A GROUP BY clause

• A HAVING clause
SQL Language Reference 3-67

Chapter 3 SQL Command Reference

view
w

H

ames

ince
ea

gh

n

1994.

ond
• An aggregate function

WITH CHECK OPTION
This causes all inserts and updates through the view to be checked against the
definition and rejected if the inserted or updated row does not conform to the vie
definition. If the clause is omitted, then no checking occurs.

If a view is read-only, or if the SELECT command includes a subselect, the WIT
CHECK OPTION must not be specified. If the view definition allows updates to
some columns, the WITH CHECK OPTION applies only to the updates.

Examples
This view is the result of a two-table join, and is therefore read only. Since the
column names of the view are not specified, they are the same as the column n
in the underlying table.

CREATE VIEW PAY AS
SELECT FNAME, LNAME, SALARY
FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO;

The next view example has different column names than the underlying table.

The creator of the view does not have to be the creator of the underlying table, s
the fully-qualified table name is used. Using the fully-qualified name is a good id
when creating views if the views will be used by a variety of users.

Since this view references only one table, you could update the EMP table throu
this view, given the proper privileges.

CREATE VIEW STARTDATES (FIRST, LAST, DOH) AS SELECT
FNAME, LNAME, HIREDATE FROM EMP;

This next view contains a column (TOTSAL) which is derived from the applicatio
of an aggregate function. This makes it read only.

CREATE VIEW DEPT_SAL (DEPT, TOTSAL) AS
SELECT DEPTNO, SUM(SALARY) FROM EMP, EMPSAL WHERE
EMP.EMPNO = EMPSAL.EMPNO GROUP BY DEPTNO;

This view uses the WITH CHECK OPTION clause. Any update of the column
ORDERDATE is checked to make sure the value is a date later than the July 5,

CREATE VIEW WEEK2 AS
SELECT * FROM ORDERS
WHERE ORDERDATE > = 05-JUL-94
WITH CHECK OPTION;

The following view is created from two base tables, with one column from the sec
table appearing twice, but from different rows.
3-68 SQL Language Reference

DBATTRIBUTE

d to

ied

on.
. For

can
ations

n be

alue
olon.
CREATE VIEW MYVIEW
(POSITION, ARG1,ADESCRIPT, ARG2, BDESCRIPT) AS SELECT
TABLE1.POSITION, TABLE1.ARG1,A.DESCRIPT AS ADESCRIPT,
TABLE1.ARG2, B.DESCRIPT AS BDESCRIPT
FROM TABLE1, TABLE2 A, TABLE2 B
WHERE TABLE1.ARG1=A.CODE AND TABLE1.ARG2=B.CODE;

See also
CREATE TABLE
SELECT

DBATTRIBUTE

Note: This command is provided for informational purposes only. You should never nee
use this command.

This command sets database specific parameters by initializing them to a specif
value. Note that this command is intended for SQLBase internal use only and is
required for the SQLBase Unload/Load utility when it performs database migrati
Currently the supported parameters are SYSDBSequence and SYSDBTRANSID
details on these parameters, read Chapter 2, SQL Elements.

Warning: If you are using this command at all, exercise extreme caution. Although you
compile and execute it like any other SQL command, you may experience serious complic
and problems with data integrity.

Clauses
parameter name
The name of the database specific parameter. SQLBase currently supports
SYSDBSequence and SYSTRANSID. Either one or both of these parameters ca
specified. A value must be assigned to the parameter.

value
The value of the specified database parameter. Note that parameter name and v
are separated by a space. Each parameter-value pair must be separated by a c

DBATTRIBUTE (

(parameter name value

,

SQL Language Reference 3-69

Chapter 3 SQL Command Reference

base
base

se

t SET
Example
DBATTRIBUTE (SYSDBSequence 1000, SYSDBTRANSID 2000);

DEINSTALL DATABASE

This command removes the database name from the network (removes the data
name from the list of names for which the server is listening) and makes the data
inactive. It updates the dbname keyword in sql.ini by deleting the database’s name.

This command does not physically delete the database, but it makes the databa
unavailable to users.

You cannot DEINSTALL a database that is open (a database that has a user
connected).

This command deinstalls the database on the server that you specified by the las
SERVER command.

To bring the database back online, use INSTALL DATABASE.

Clauses
database name
The name of the database to deinstall.

Example
DEINSTALL DATABASE CUSTOMER;

See also
CREATE DATABASE
DROP DATABASE
INSTALL DATABASE
SET SERVER (SQLTalk command)

DEINSTALL DATABASE database name
3-70 SQL Language Reference

DELETE

t
f the

ame

me

 or

 are

or-
DELETE

This command deletes one or more rows from a single table or view. All rows tha
satisfy the search condition are deleted from either the table, or the base table o
specified view.

You must possess the DELETE privilege on a table to execute this command.

Clauses
table name
Any table name can be specified for which the user has delete privileges. The n
cannot identify a system table.

view name
Any view name can be specified for which the user has delete privileges. The na
cannot identify a read-only view.

correlation name
A correlation name can be used within a search condition to designate the table
view.

WHERE search condition
The search condition qualifies a set of rows for deletion.

A DELETE command with this clause is called a "searched DELETE."

If you do not specify a search condition, all the rows in the specified table or view
deleted.

Read the section Search conditions on page 2-24 for more information.

WHERE CURRENT OF cursor name
A DELETE command with this clause is called a "positioned DELETE" or a "curs
controlled DELETE."

This type of update requires two open cursors:

CURRENT OF cursor name

WHERE

DELETE FROM table name
view name correlation name

search condition
SQL Language Reference 3-71

Chapter 3 SQL Command Reference

nces

T

tion.
• Cursor 1 is associated with a SELECT command. The current row refere
the row of the most recent fetch.

• Cursor 2 is associated with the DELETE command.

A cursor-name must be associated with cursor 1 before this command can be
executed.

You can only use a CURRENT OF clause if all of the following are true for the
corresponding SELECT command:

• The cursor must be named or be in result set mode.

• The SELECT command cannot contain joins, GROUP BY, DISTINCT, SE
functions, UNION, or ORDER BY.

• Any subselect in the SELECT command must satisfy the previous condi

Examples
This command deletes employee 1234 from the EMP table.

DELETE FROM EMP WHERE EMPNO = 1234;

Delete employees in department 2500 from the EMPSAL table.

DELETE FROM EMPSAL
WHERE EMPNO IN
(SELECT EMPNO FROM EMP
WHERE DEPTNO = 2500);

Delete all rows from the table.

DELETE FROM ORDERS;

Delete the row referenced by the current fetch, using the cursor named
EMPCURSOR.

SET SCROLL ON;
SET CURSORNAME EMPCURSOR;
PREPARE SELECT * FROM EMPSAL;
PERFORM;
SET SCROLLROW 0;
FETCH 1;
CONNECT 2;

DELETE FROM EMPSAL WHERE CURRENT OF EMPCURSOR;

See also
CREATE TABLE
SET CURSORNAME (SQLTalk command)
3-72 SQL Language Reference

DROP DATABASE

T
also

e is
DROP DATABASE

This command physically deletes the entire database directory for a database
including all associated transaction log files on the server specified by the last SE
SERVER command. If the log is redirected, the log directory for the database is
completely removed.

If the database is active, DROP DATABASE also automatically DEINSTALLs a
database; it deletes the database name from the network and also the sql.ini file.

You cannot drop a database that has any users connected to it.

Clauses
database name
The name of the database to be dropped.

Example
DROP DATABASE ACCTPAY;

See also
CREATE DATABASE
DEINSTALL DATABASE
INSTALL DATABASE
SET SERVER

DROP DBAREA

This command physically deletes the entire database area if none of its file spac
currently allocated.

Clauses
dbarea name
The name of the database area to delete.

DROP DATABASE database name

DROP DBAREA dbarea name
SQL Language Reference 3-73

Chapter 3 SQL Command Reference

M

nal

n a
rcing

e
ple,
Example
DROP DBAREA ACCT1;

See also
ALTER DATABASE
CREATE DATABASE
CREATE DBAREA
SET DEFAULT STOGROUP

DROP EXTERNAL FUNCTION

This command removes the specified external function from the database.

An external function can only be dropped by its creator or by a user with SYSAD
or DBA authority.

A system catalog table, SYSDEPENDENCIES, maintain dependencies between
dependent objects and determinant objects. If a stored procedure calls an exter
function, the stored procedure is the dependent object of the external function, since
its existence depends on the external function. The external function is the
determinant object, since it determines the existence of the stored procedure.

The SYSDEPENDENCIES table contains one row for each dependency betwee
stored procedure and an external function. SQLBase checks this table when enfo
rules for the DROP EXTERNAL FUNCTION clause options. For details on the
SYSDPENDENCIES tables, refer to Appendix A, System Catalog Tables, of the
Database Administrator’s Guide.

Clauses
function name
Specify the name of the external function that you want to delete.

RESTRICT
This is the default option for dropping the external function. RESTRICT allows th
DROP command to fail if the external function is a determinant object. For exam

DROP EXTERNAL FUNCTION function name

RESTRICT

CASCADE

FORCE
3-74 SQL Language Reference

DROP INDEX

ant

r
e

 not
ndent
tem

hich
.

if a procedure invokes the external function, the external function is the determin
object.

CASCADE
This option drops all dependent objects associated with the external function. Fo
example, if a procedure invokes the external function, this option also causes th
procedure to be dropped.

Note: When using the CASCADE options, be aware of the implications of dropping the
external function and its dependent objects.

FORCE
This option drops the external function even if it is a determinant object, but does
drop any dependent objects. If the FORCE option is specified and there are depe
objects, the objects are marked invalid. You can check the SYSCOMMANDS sys
catalog table for invalid dependent objects.

For example, if a procedure invokes the external function, the external function w
is a determinant object is dropped. The procedure remains, but is marked invalid

Examples
DROP EXTERNAL FUNCTION FORCE;

See also
CREATE EXTERNAL FUNCTION
ALTER EXTERNAL FUNCTION

DROP INDEX

This command removes the specified index from the database.

Precompiled commands that reference the dropped index are not automatically
dropped.

An index can only be dropped by its creator or by a user with SYSADM or DBA
authority.

Like all DDL commands, this command locks system tables while executing.

DROP INDEX index name
SQL Language Reference 3-75

Chapter 3 SQL Command Reference

rm

tence
If you drop a table’s primary index, the table is incomplete and you cannot perfo
tasks such as inserting or deleting data.

Clauses
index name
This removes the index. Indexes on system tables cannot be dropped. The exis
of views and tables are not affected.

Example
DROP INDEX EMP_IDX;

See also
CREATE INDEX
3-76 SQL Language Reference

DROP STOGROUP

 and it
ce
DROP STOGROUP

This command deletes the storage group if it is not being used by any database
is not the default storage group. This command does not affect any existing spa
allocations for databases or logs.

Clauses
stogroup name
The name of the storage group to be deleted.

Example
DROP STOGROUP ACCTDEPT;

See also
ALTER DATABASE
CREATE DATABASE
CREATE STOGROUP
SET DEFAULT STOGROUP

DROP SYNONYM

This command removes the specified synonym from the database.

Precompiled commands that reference the dropped synonym are not automatically
dropped.

DROP STOGROUP stogroup name

DROP SYNONYM synonym name
PUBLIC

TABLEFOR

EXTERNAL FUNCTION

PROCEDURE

COMMAND
SQL Language Reference 3-77

Chapter 3 SQL Command Reference

A

r to

, read

ped.

is a

type
A synonym can only be dropped by its creator or by a user with SYSADM or DB
authority.

If a synonym for an external function is dropped explicitly, all procedures that refe
the synonym still remain, but are invalidated. If a synonym is dropped implicitly
because the external function is dropped, all synonyms are dropped. For details
DROP EXTERNAL FUNCTION on page 3-74.

Clauses
PUBLIC
This removes the PUBLIC synonym. Views based on the synonym are also drop

synonym
This removes the synonym. Views based on the synonym are also dropped.

FOR TABLE, EXTERNAL FUNCTION, COMMAND, or PROCEDURE
This clause identifies the object type of the synonym. If omitted, the object type
table by default. You must specify the keyword EXTERNAL FUNCTION in the
FOR clause when dropping an external function synonym. You must specify the
keyword COMMAND in the FOR clause when dropping a stored command
synonym. You must specify the keyword PROCEDURE in the FOR clause when
dropping a stored procedure synonym.

Examples
DROP SYNONYM SN1 FOR EXTERNAL FUNCTION MYFUNC;

Note that in the following examples, since no object type is included, the object
defaults to TABLE.

DROP SYNONYM ES;

DROP PUBLIC SYNONYM ES;

See also
CREATE SYNONYM
3-78 SQL Language Reference

DROP TABLE

 This
 the
table

 a
a

ed
DROP TABLE

This command removes the specified table from the database.

Precompiled commands that reference the dropped tables are not automatically
dropped.

A table can only be dropped by its creator or by a user with SYSADM or DBA
authority.

In a database with referential constraints, dropping a table drops its primary key.
also drops any foreign keys in other tables that reference the parent table. When
parent table of the relationship is dropped, or when the primary key of the parent
is dropped, the referential constraint is also dropped.

DROP TABLE drops all constraints in which the table is a parent or dependent.
Dropping a table is not the same as deleting all its rows. Instead, when you drop
table, you also drop all the relationships in which the table is involved, either as
parent or dependent. This can affect application programs that depend on the
existence of a parent table, so use caution with the DROP TABLE command.

Like all DDL commands, this command locks system tables while executing.

When you drop a table, any triggers defined on that table are also dropped.

Clauses
table name
This clause drops the following:

• The specified table.

• All synonyms and indexes defined for the table.

• All privileges granted on the table.

• Any views whose definition depends either partially or wholly on the dropp
table.

• Any triggers defined on that table.

System tables cannot be dropped.

Examples
DROP TABLE EMP;

DROP TABLE table name
SQL Language Reference 3-79

Chapter 3 SQL Command Reference

a

rop

n
See also
CREATE TABLE
CREATE VIEW

DROP TRIGGER

Use this command to remove the specified trigger from the database. Dropping
trigger disables it.

You must be the owner of a table, or a user with SYSADM or DBA authority, to d
a trigger from the table.

Example
DROP TRIGGER trg_insert;

See also
CREATE TRIGGER

DROP VIEW

This command removes the specified view from the database.

Precompiled commands that reference the dropped view are not automatically
dropped.

An view can only be dropped by its creator or by a user with SYSADM or DBA
authority.

Like all DDL commands, this command locks system tables while executing.

Clauses
view name
This removes the view from the system catalog. Also, any views whose definitio
depends either partially or wholly on the dropped view are also dropped. All
privileges on the views are also removed.

DROP TRIGGER trigger name

DROP VIEW view name
3-80 SQL Language Reference

GRANT (Database Authority)

eir

n
users.
.

e
t can

ntil

s
T
Example
DROP VIEW WEEK2;

See also
CREATE VIEW

GRANT (Database Authority)

This form of the GRANT command assigns users of the database and assigns th
authority level. Authority level means the types of operations a user can perform
(such as logging on, creating tables, or creating users).

A different form of the GRANT command assigns privileges for individual tables.

This form of the GRANT command can only be given by SYSADM. SYSADM ca
create new users and change the authority levels and table privileges of existing
This is the highest authority level and it is preassigned by SQLBase to SYSADM

A user cannot be granted SYSADM authority. The username SYSADM cannot b
changed and there can only be one SYSADM for a database. The only thing tha
be changed for SYSADM is the password.

If you GRANT a user the RESOURCE or DBA authority, it does not take effect u
the next time the user connects.

When a database is unloaded, the GRANT statements are unloaded. Password
remain encrypted in the UNLOAD file and cannot be used other than in a GRAN
CONNECT TO statement using the encrypted keyword.

,

GRANT RESOURCE

CONNECT TO

DBA

TO

auth id

,

auth id

IDENTIFIED BY password

,

password

,

ENCRYPTED
SQL Language Reference 3-81

Chapter 3 SQL Command Reference

o a
rved

se

 any

se

 any
Clauses
<authority levels>
The following authority levels can be granted by SYSADM:

authorization id
The authorization-id is the username that gives a user authorization to connect t
database. The authorization-id SYSADM is preassigned by the system and rese
for the SQLBase "superuser."

IDENTIFIED BY password
This is required only when granting CONNECT authority to a user and is the phra
used to introduce the new user's encrypted password.

password
A GRANT CONNECT command must include a password. The password can be
valid SQL short identifier. To change the password of a user, grant that user
CONNECT authority with the new password.

ENCRYPTED password
This is required only when granting CONNECT authority to a user and is the phra
used to introduce a user's password, as encrypted by an UNLOAD.

password
A GRANT CONNECT command must include a password. The password can be
valid SQL short identifier. To change the password of a user, grant that user
CONNECT authority with the new password.

CONNECT This authority level must be granted before any other. It
allows the user to log onto the database and exercise any of
the privileges assigned for specific tables. The IDENTIFIED
BY clause is required for granting CONNECT.

RESOURCE This gives a user the right to create tables, to drop those
tables, and to grant, modify or revoke privileges to those
tables for valid users of the database. A user with
RESOURCE authority automatically has all privileges on
tables that he or she has created.

DBA This level of authority automatically assigns all privileges on
any table in the database to a user, including the right to grant,
modify, or revoke the table privileges of any other user in the
database. However, a DBA cannot create new users or change
a password or authority level of an existing user. These
privileges are restricted to SYSADM.
3-82 SQL Language Reference

GRANT (Database Authority)

) is
nge

e
ent.

EAN
When a database is first created, the original creator of the database (SYSADM
always identified by the password SYSADM. The owner of the database can cha
the password to a private password before granting authority to any other user.

The password is stored in the system catalog and can be read by a user with
SYSADM or DBA authority.

If the GRANT CONNECT command is issued using the ENCRYPTED clause, th
password is given as encrypted, for example, when unloaded in a GRANT statem
Note that passwords are encrypted when transmitted across a network.

Examples
Create two new users, JOE and JEAN. JOE is given the password SWAN and J
is given the password EAGLE.

GRANT CONNECT TO JOE, JEAN
IDENTIFIED BY SWAN, EAGLE;

Give Jean the privilege to CREATE tables.

GRANT RESOURCE TO JEAN;

Give Joe DBA privilege, which includes RESOURCE privileges.

GRANT DBA TO JOE;

Change SYSADM's password.

GRANT CONNECT TO SYSADM
IDENTIFIED BY CONDOR;

See also
GRANT (Table Privileges)
REVOKE
SQL Language Reference 3-83

Chapter 3 SQL Command Reference

 for

he

he
h
GRANT (Table Privileges)

This form of the GRANT command gives a user one or more specified privileges
a table or view.

You cannot GRANT the INDEX and ALTER privileges on views.

Table privileges can be granted by any user who has the authority to do so.

• A user with DBA authority can grant privileges on any tables or views in t
database.

• A user with RESOURCE authority (but without DBA authority) can grant
privileges only on tables created by him or on views that are based
completely on tables created by him.

• A user with only CONNECT authority cannot grant privileges. Nor does
have privileges to any tables or views unless he is explicitly granted suc
privileges with a GRANT command.

A different form of the GRANT command assigns privileges for a database.

view-name

GRANT ALL

INSERT

SELECT

DELETE

INDEX

ALTER

UPDATE

,

column name

ON

,

table name

PUBLIC

,

auth id

(

(

,

TO
3-84 SQL Language Reference

GRANT (Table Privileges)

 so
 of

e

e

ame

CT
The system catalog tables are owned by the creator of the database (SYSADM)
their name must be prefixed with the authorization-id SYSADM. For a description
the system catalog tables, read the Database Administrator’s Guide.

Clauses
<privilege>
The following privileges can be assigned.

Note that you cannot GRANT the INDEX or ALTER privileges for a view. You
should GRANT these privileges directly on the base tables.

table name
Table names (including an implicit qualifier) must identify a table that exists in th
database.

view name
View names (including any implicit qualifier) must identify a view that exists in th
database.

column name
This is a column in the tables or views specified in the ON clause. Each column n
must be unqualified and each column name must be in every table or view identified
in the ON clause.

authorization id
The authorization-id must refer to a user who has been granted at least CONNE
authority to the database.

Privilege Description

SELECT Select data from a table or view.

INSERT Insert rows into a table or view.

DELETE Delete rows from a table or view.

UPDATE Update a table and (optionally) update only the specified
columns.

INDEX Create or drop indexes for a table.

ALTER Alter a table.

ALL Exercise all the above for a table.
SQL Language Reference 3-85

Chapter 3 SQL Command Reference

 and
PUBLIC
This means all users. By granting a privilege to PUBLIC, it means that all current
future users have the specified privilege on the table or view.

Examples
Give Jean privilege to read (SELECT from) the EMPSAL table and change
(UPDATE) two columns, SALARY and REVIEW.

GRANT SELECT, UPDATE(SALARY,REVIEW)
ON EMPSAL TO JEAN;

Give JOE global privileges on the tables EMP and EMPSAL.

GRANT ALL ON EMP, EMPSAL TO JOE;

Allow all users (PUBLIC) to read SYSADM.SYSTABLES.

GRANT SELECT ON SYSADM.SYSTABLES TO PUBLIC;

See also
GRANT (Database Authority)
REVOKE (Database Privileges)
REVOKE (Table Privileges)

GRANT EXECUTE ON

Use this command to grant execute privilege on stored procedures or external
functions to other users.

PROCEDURE

,

,

GRANT EXECUTE ON object name

TO userid

PUBLIC WITH CREATOR

GRANTEE

PRIVILEGES

EXTERNAL FUNCTION
3-86 SQL Language Reference

GRANT EXECUTE ON

A.

l

ure,
 the
ternal

 user

e

er.

t the
 the

ity to
Privilege can only be granted by the owner of the stored procedure or by the DB
The clause WITH CREATOR OR GRANTEE PRIVILEGES does not apply to
external functions.

Privileges on an external function are checked at procedure compile and retrieva
time.

Note: If a user has been granted EXECUTE with CREATOR privileges on a stored proced
then the user does not need EXECUTE privileges on any external function invoked within
procedure. Only the creator of the procedure needs to have EXECUTE privileges on the ex
functions.

If a user has been granted EXECUTE with GRANTEE privileges on a stored procedure, the
must also have EXECUTE privileges on an external function invoked with the procedure.

Ownership of Runtime Results

If a stored procedure or external function creates a table at runtime, SQLBase
determines the table’s owner based on the privileges of the user executing the
procedure or external function.

If the user was granted creator’s execute privilege, then the creator of the procedur
or external function is the table’s owner.

If the user was granted grantee’s execute privilege, then the user is the table’s own

If the procedure or external function references the USER keyword, SQLBase
interprets that to mean the user executing the procedure or external function, no
procedures’s or external function creator (regardless of the privileges granted to
user).

Clauses
object name

The name of an existing stored procedure or external function.

PROCEDURE
If object name is omitted, the default object type is PROCEDURE.

EXTERNAL FUNCTION
If the object name is an external function, you must specify EXTERNAL
FUNCTION as the object type.

TO userid or PUBLIC

The authorization ID of a user who has been granted at least CONNECT author
the database.
SQL Language Reference 3-87

Chapter 3 SQL Command Reference

ure.

s not
t is
Specifying PUBLIC grants all current and future users access to the stored proced

WITH CREATOR or GRANTEE PRIVILEGES

This clause applies only to procedures. Specify whether the user being granted
privileges is to have the creator’s (owner’s) privileges or the grantee’s (his own)
privileges while the stored procedure function executes.

Example
This example grants all users execute privilege on the pr_pres stored procedure.
Users assume the data access privileges of the creator, by default.

GRANT EXECUTE ON pr_pres TO PUBLIC;

The following example grants two users execute privilege on the pr_pres stored
procedure. The users access the data using their own privileges.

GRANT EXECUTE ON pr_pres TO user1, user2 WITH GRANTEE
PRIVILEGES;

INSERT

This command inserts rows of data into a table or view. For a view, the rows are
inserted into the base table.

If inserting a row causes a unique index to become non-unique, or if the row doe
satisfy the definition of a view that has the WITH CHECK OPTION, then the inser
not allowed.

,

INSERT INTO table-name

VALUES constant

subselect

view-name ,

(

(column name

(

(

bind variable
ADJUSTING cursor name

system keyword
3-88 SQL Language Reference

INSERT

ited

rting

ign

 a

y is
 a
ere

the

for

OT
You must possess INSERT privileges on the table to execute this command.

SQLBase itself does not restrict the number of records you can insert; this is lim
only by the amount of available disk space.

If the database has referential constraints, use the following guidelines when inse
data into a parent table with a primary key:

• Do not enter non-unique values for the primary key.

• Insert only non-null values for any column of the primary key.

• Set LONG VARCHAR to a bind variable.

Use the following guidelines when inserting data into a dependent table with fore
keys:

• Each non-null value inserted into a foreign key column must be equal to
value in the primary key.

• The entire foreign key is regarded as null if any column in the foreign ke
null. The INSERT statement does not perform any referential checks for
NULL foreign key, and will therefore successfully complete (as long as th
are no unique index violations).

• An INSERT into either the parent table or dependent table will not work if
index enforcing the primary key of the parent table has been dropped
(resulting in an incomplete table).

Read Chapter 6, Referential Integrity for more information.

All new data inserted into the table receives an exclusive lock.

Clauses
INTO
table name
Table names (including any qualifier) must reference a table that exists in the
database. You cannot insert into system catalog tables.

column name
This is one or more column names in the specified table or view for which you
provide insert values. You can name the columns in any order.

If you omit the column list, you are implicitly using a list of all the columns, in the
order they were created in the table or view, and must therefore provide a value
each column.

You cannot omit a column name or insert NULL data into a column defined as N
NULL.
SQL Language Reference 3-89

Chapter 3 SQL Command Reference

e

To
the

m

 The
.
data
ble.
 the

u to

RT a

ect.

nd
view name
View names (including any qualifier) must reference a view that exists in the
database but they cannot be any system catalog views.

VALUES
This clause contains one row of column values to be inserted. The values can b
constants, bind variables, or system keywords.

Separate the column values with commas. Do not put a space before or after the
comma.

To embed characters such as commas, surround the string with double quotes.
embed double quotes, enclose the string with additional single quotes. Refer to
next section for an example.

SQLBase will convert the values to the target data type wherever possible.

System keywords such as NULL, USER, SYSTIME, SYSDATE, SYSDATETIME
cannot be used with inserts that use bind variables. However, you can enter the
directly, as shown in the following example:

insert into T1 values (SYSDATETIME);

subselect
This clause inserts the rows of a result table produced by a SELECT command.
number of columns retrieved must match the number of columns being inserted
Similarly, the rows of the select must match the create definition with respect to
types and length of data. SQLBase attempts data type conversions where possi
You can use a self-referencing INSERT here; in other words, you can insert from
same table in this subselect clause.

You cannot use an ORDER BY clause in a subselect.

You cannot use a UNION clause in a subselect. However, you can create a view
containing a UNION, and use the view in the subselect statement. This allows yo
insert values from a SELECT statement that contains a UNION.

ADJUSTING cursor name
This clause is used for result set programming. This clause allows a user to INSE
row without invalidating the current result set.

INSERTed rows are added to the end of the result set and the database.

You cannot perform a multi-row insert with an ADJUSTING clause and a subsel

You cannot perform an insert with an ADJUSTING clause and a subselect with a
join.

You cannot use the ADJUSTING clause on a join. The join uses a virtual table, a
SQLBase cannot hold its place with a table held in memory.
3-90 SQL Language Reference

INSERT

.

a
Examples
This SQL command inserts one complete row into the EMP table.

INSERT INTO EMP VALUES (1001,‘Carver’,‘Dan’,2500,01-
APR-1994, ‘Manager’);

If all columns in the row are not being filled, you must specify the column names

INSERT INTO EMP (EMPNO,LNAME,FNAME,HIREDATE)
(1002,’Murphy’,’Bill’,17-APR-1994);

The following example inserts double quotes in a string.

INSERT INTO EMP VALUES (1003,’Johnson’,’Bob ”Bo”’,
2500,01-FEB-1994, ‘Analyst’);

This command uses bind variables to insert multiple rows of data.

INSERT INTO EMP VALUES (:1,:2,:3,:4,:5,:6)
\
1004,Drape,Jane,2600,01-FEB-1994,Programmer
1005,Foghorn,Ellen,2500,01-FEB-1994, Programmer
/

Use a subquery to derive rows for insertion.

CREATE TABLE RDEMP
(RDNO INTEGER,
RDLNAME CHAR(15),
RDFNAME CHAR(10);

INSERT INTO RDEMP (RDNO, RDLNAME, RDFNAME) SELECT
EMPNO, LNAME,FNAME FROM EMP
WHERE DEPTNO = 2500';

The following example uses SQLTalk commands in an ADJUSTING clause and
result set.

SET CURSORNAME MYCUR;
SET SCROLL ON;
SELECT * FROM EMP;
SET SCROLLROW 1;
FETCH 2;

A different cursor is used to INSERT, preserving the result set.

CONNECT SAMPLE 2;

INSERT into result set.

INSERT INTO EMP (EMPNO,LNAME) VALUES (1006,' Bush')
ADJUSTING MYCUR;
SQL Language Reference 3-91

Chapter 3 SQL Command Reference

base

ER
Return to the result set cursor.

USE 1;

Since the result set is unaffected, we can fetch without reissuing the SELECT.

FETCH 3;

See also
SELECT
SET CURSORNAME (SQLTalk command)

INSTALL DATABASE

This command assumes that the specified database exists and installs the data
name on the network, adding a dbname keyword in sql.ini, and making the database
accessible to users.

The database is installed on the server specified by the last SQLTalk SET SERV
command.

Clauses
database name
The name of the database to be installed.

Example
INSTALL DATABASE CUSTOMER;

See also
DEINSTALL DATABASE
DROP DATABASE
INSTALL DATABASE
SET SERVER

INSTALL DATABASE database name
3-92 SQL Language Reference

LABEL

les,

the
t in

s
ng

d
inition

umn
LABEL

This command adds or replaces labels in the system catalog descriptions of tab
views, columns (or sets of columns), or external functions.

The system catalog can maintain a comment on every table, view, or column in
SYSTABLES or SYSCOLUMNS tables. The LABEL command places a commen
the LABEL column of the following tables: SYSTABLES, SYSCOLUMNS, or
SYSEXTFUN tables.

The COMMENT ON command is like the LABEL ON command. The difference i
that the REMARKS columns (maintained by COMMENT ON) is 254 characters lo
while the LABEL column (maintained by LABEL ON) is 30 characters long.

The LABEL column can be retrieved through an API call.

Adding labels for more than one column
Do not specify the keywords TABLE, or COLUMN. Give the table, view name an
then, in parentheses, specify the label for each column. Separate each label def
with a comma.

Clauses
ON TABLE table name
You can use this to specify the name of a table that you want to add a LABEL col
for.

LABEL ON

view-name.column-name

TABLE

table name

table-name.column-nameCOLUMN

(

(

,

view name

table name

view name

IS ‘string constant’

EXTERNAL FUNCTION function-name

column name IS 'string constant'

,

SQL Language Reference 3-93

Chapter 3 SQL Command Reference

mn

 a

 a

d a

g
nd it
ON TABLE view name
You can use this to specify the name of a view that you want to add a LABEL colu
for.

ON COLUMN table name.column name
You can use this to specify the name of a column in a table that you want to add
LABEL column for.

ON COLUMN view name.column name
You can use this to specify the name of a column in a view that you want to add
LABEL column for.

ON EXTERNAL FUNCTION function name
You can use this to specify the name of an external function that you want to ad
LABEL column for.

IS 'string constant '
You can use this to specify the comment. It can be up to 30 characters.

Examples
LABEL ON TABLE EMP IS 'CONTAINS EMP. INFO.';
LABEL ON COLUMN EMP.DEPTNO IS 'CONTAINS DEPARTMENT NUMBER.';
LABEL ON EMP (DEPTNO IS 'CONTAINS DEPARTMENT NUMBER.',

HIREDATE IS 'STARTING DATE');

The following example selects all labels from the SYSCOLUMNS system catalo
table. Note that you must enclose the column name (LABEL) in double-quotes a
must be in upper-case:

SELECT NAME, TBNAME, "LABEL" FROM SYSCOLUMNS;

See also
COMMENT ON
3-94 SQL Language Reference

LOAD

al file

or to
L,

r

 to
e
bout

e

to
LOAD

This command loads database information such as tables or data from an extern
into the current database.

You can use the LOAD command to restore data from an unloaded backup file,
enter data into the database from an external file. The external file can be in SQ
ASCII or DIF format. You can create the file either manually or with the UNLOAD
command. ASCII files contain only data. DIF files can contain either data only, o
both data and tables.

You can load (and unload) to the server but not to the client from within a stored
command or procedure.

The external file can be split into segments, which allows you to load information
databases that might exceed single disk or system unit limits. It also lets you tak
advantage of available space that is spread out over several disks. Information a
the file segments is contained in a load control file.

SQLBase does not issue a COMMIT operation to the database before executing th
LOAD command. If AUTOCOMMIT is on, this command does not turn it to off
before executing. Make sure that BULK is not set to ON if AUTOCOMMIT is set
ON.

A LOAD operation retains all AUTORECOMPILE settings.

LOAD SQL

DIF

ASCII table name

table name

ON CLIENT

SERVER

LOG 'logfile name' START AT line

CONTROL 'file name '

'file name'

CONTROL 'file name '

'file name '

COMPRESS

CONTROL 'file name '

'file name '
SQL Language Reference 3-95

Chapter 3 SQL Command Reference

e

g.

d

ures,
rrect

own

 that
t

 or

ning
 you

le. It

. If
If you have changed the SYSADM password, a subsequent UNLOAD and LOAD
operation retains these new settings. To enhance security of the passwords in th
external unload file, it is recommended that you do one of the following:

• Store the external unload file in an access-protected location on disk.

• Compress the unload file using the UNLOAD command’s COMPRESS
clause.

This command does not perform any referential integrity checks before executin
The checks are turned back on after the LOAD operation completes.

During the LOAD operation, if any ALTER TRIGGER commands exist in the loa
file, they are automatically processed.

Note if objects were dropped or altered that are referenced by triggers or proced
SQLBase issues errors when it encounters the missing or changed object. To co
or prevent the error:

• Recreate any reference object that is dropped, or

• Restore any referenced object you changed back to its original state (kn
by the procedure or trigger)

When you specify the load file name, enclose it in single quotes ('). This ensures
the file name is processed correctly, even if the client and server are on differen
platforms.

Do not edit the load files manually. If you try to add commands such as COMMIT
ROLLBACK to the file, the load will fail.

To improve load performance, set an exclusive lock on the database first by run
LOCK DATABASE. This prevents users from connecting to the database. When
are finished, run UNLOCK DATABASE.

Read the Database Administrator’s Guide for more information on loading and
unloading.

Clauses
SQL
This specifies that the load file is in SQL format and was probably created by an
UNLOAD command.

A SQL format file contains the CREATE TABLE and CREATE INDEX data
definition commands along with corresponding INSERT commands for each tab
does not contain the other two data manipulation commands, DELETE and
UPDATE. The CREATE TABLE and CREATE INDEX commands are optional
depending on whether you specified the DATA option in the UNLOAD command
you specified the ALL option in the UNLOAD command, the SQL file does not
contain any other database objects.
3-96 SQL Language Reference

LOAD

urs
s; if
ates

d

 the

 are
,

), a
from a
If the load file contains INSERT commands only, the tables into which loading occ
must exist in the database. The opposite is true for the data definition command
the load file includes data definition commands (such as CREATE), SQLBase cre
the tables and associated indexes are created for you, so the tables cannot yet exist.

LOAD SQL file-name is equivalent to running the file as a script.

The data rows are inserted using bind variables.

When unloading, SQLBase converts binary data to ASCII characters. SQLBase
marks the converted binary data with a tilde (~) character. If you want to LOAD a
tilde character as data, mark it like this:

~HO~

Loading DB2 Tables
SQLTalk writes a line with $datatypes in UNLOADed tables in SQL format. The
$datatypes keyword provides data type mapping for compatibility with DB2. A
subsequent LOAD works for either DB2 or SQLBase.

SQLTalk allows "--" (two hyphens) in columns 1 and 2 of lines. This makes unloa
files produced by SPUFI (SQL Preprocessor Using File Input) on a mainframe
compatible with SQLTalk. When SQLTalk sees "--" in columns 1 and 2, it ignores
line and assumes it is a comment.

Also, SQLBase interprets the "¬" operator (the not symbol for DB2) as a "!" (the not
operator in SQLBase).

ASCII
This specifies a load file that contains input data organized in ASCII format. You
must specify the name of the table into which the data is loaded.

Files produced with this format cannot create database objects.

You can only specify one load table.

ASCII format is similar to the data format in SQL except that the character fields
always delimited by double quotes ("). To enter a double quote character as data
precede it with a back slash: "He said, \"Hi.\""

DIF
The load file must contain input data organized in Data Interchange Format (DIF
common format for spreadsheets and databases. Only one table can be loaded
single DIF file.

The rules governing loading a file in DIF format depend on whether the file was
UNLOADed with or without the DATA option.
SQL Language Reference 3-97

Chapter 3 SQL Command Reference

the
 the
uring

lies
me

ly)

me
efix

in the
DIF file unloaded with DATA option
The table from which the data was UNLOADed must exist. Data is then LOADed
into this table. It does not matter if you specify the table name in the LOAD
command or not.

DIF file unloaded without DATA option
The table must not currently exist. The DIF file tries to create the table named on
UNLOAD and rolls back if the table exists. However, the table name specified for
LOAD DIF command does not have to be the same as the table name specified d
the UNLOAD command.

file name
The name of an existing file from which loading occurs. If you are using the file
name with the ON SERVER clause, be sure to provide the volume name if it app
to your SQLBase Server environment. The following example specifies the volu
name on a Netware Server:

db:\demo\acct1

table name
The name of the table into which you loaded data from an ASCII or DIF (data on
file.

COMPRESS
Use this option to load information from a compressed external file. SQLBase
decompresses the information when it loads it.

This option is not valid for a DIF or ASCII file.

CONTROL
Use this clause with the load control file name to load data from a file split into
multiple segments.

If you specify CONTROL, SQLBase automatically creates the load control file
during the UNLOAD command execution, and puts this load control file in the sa
file directory as the unload control file. The load control file uses the same file pr
as the unload file segments, and is appended with a .lcf suffix.

If you do not supply a path, SQLBase assumes that the load control file resides
default directory (for example, \Centura).

The load control file follows this syntax:

FILEPREFIX <filename prefix>
DIR <destination dir>
DIR <destination dir>
3-98 SQL Language Reference

LOAD

t:

ing

le

hout
 (for
e
line
e

e

 on
This file provides the following information:

The following example shows a load control file for the Windows NT environmen

Example:

FILEPREFIX dbs
DIR c:\unldir\
DIR d:\unldir\
DIR e:\unldir\

In this example, there are three file segments with the following characteristics:

• a segment called c:\unldir\dbs.1

• a second segment called d:\unldir\dbs.2

• a third segment called e:\unldir\dbs.3

There is no SIZE parameter in this load control file. The name of this control file
itself is dbs.lcf. SQLBase loads the information from these three segments accord
to their listed order.

Note: For a NetWare Server, be sure to specify the fully qualified volume name for the fi
segments. For example: db:\demo\dbs.1

You should use the SQLBase-generated load control file whenever possible, wit
making changes. However, if you need to create new file or edit the existing one
example, if you unloaded the information from a non-SQLBase database, or hav
since moved the file segments to new directories since the UNLOAD), use an on
editor. The file must be in ASCII format, and strictly follow the syntax shown in th
example.

ON CLIENT
ON SERVER
This clause specifies whether the source file for the load is on the client or on th
server. The default is ON CLIENT.

If you are loading information from multiple file segments, they must either reside
or be accessible from the same machine as the load control file.

Parameter Description

FILEPREFIX The prefix of the file segment names used for
the load.

DIR The destination directory where the load file
segments reside.
SQL Language Reference 3-99

Chapter 3 SQL Command Reference

base

 fix
at

e.

g the

n

line

that

le
You cannot use the ON CLIENT clause with either a SQLBase procedure or
SQLWindows program; with these two applications, you must use ON SERVER.

LOG
Use this option to automatically create a message log file. This message log file
documents activities occurring during the load, and also any errors. The log files
contain a timestamp for each action, summary information on the number of data
objects loaded, and a statement confirming at the load completed successfully.

Errors are logged along with the line number where the error occurred. After you
the error, use this line number with the START AT option to restart the load at th
point in the source file.

The default is no message log file.

If you do not specify a path for the message log file, SQLBase creates it in the
Centura home directory (for example, \Centura). If the client and server are on
different machines, SQLBase creates the message log file on the server machin

You must specify this option to review any messages SQLBase generates durin
load operation. SQLBase does not send these messages to the screen.

START AT
For SQL or ASCII (not DIF) format files, use this option to start the load operatio
from a specific line in the load input file. To find the line number where the error
occurred, use the message log generated with the LOG clause.

The line number for the START AT clause for a DDL statement must be the first
of the DDL command. For an INSERT, the line number for the START AT clause
must be either the first line of the INSERT command or one of the line numbers
corresponds to a row of data you are inserting.

Note that with segmented loads, the line numbers are cumulative in the load file
segments. To restart a segmented load from a specific line number, you must
determine yourself in which file segment the specified line number is located.

Examples
Load the SQL formatted external file located at the client:

LOAD SQL emp.sql;

Load the ASCII formatted external file located at the client, and load it into a tab
called EMP:

LOAD ASCII emp.asc EMP;

Load the DIF formatted external file located at the client, and load it into a table
called EMP:

LOAD DIF emp.dif EMP;
3-100 SQL Language Reference

LOCK DATABASE

 a

 log

to a

s.

r

r

. Note
e of

 lock
Load the DIF formatted external file located at the client:

LOAD DIF emp.dif;

Load the SQL formatted external file located at the server, and log messages to
message log file located at the server:

LOAD SQL db.unl ON SERVER LOG db.log;

Load the SQL formatted external file located at the server using a control file and
messages to a message log file located at the server:

LOAD SQL CONTROL dbs.lcf ON SERVER LOG db.log;

Restart the load at the line of failure (101) using a control file and log messages
message log file:

LOAD SQL CONTROL dbs.lcf ON SERVER LOG db.log START AT 101;

Load the DIF formatted external file located at the server, and load it into a table
called T1:

LOAD DIF t1.unl t1 ON SERVER;

LOCK DATABASE

This command exclusively locks the database you are currently connected to,
preventing access by other users. This command requires at least DBA privilege

When you issue this command, SQLBase prevents any new connections to the
database by other users, and waits the default time-out amount (300 seconds) fo
other user connections to terminate. You can change this timeout value either by
changing the value of the locktimeout configuration keyword or by running the SET
TIMEOUT command. If the timeout limit is reached before all the concurrent use
sessions terminate, you receive an error.

When your session becomes the only session active after you issue LOCK
DATABASE, you have an exclusive lock on the entire database. You can acquire
additional connections to the database yourself, but no other users can connect
that the lock is an exclusive lock; this command does not give you any other typ
lock on the database.

The user associated with the current session, not the transaction, receives the
exclusive lock. This means that when SQLBase performs a commit, the database

LOCK DATABASE
SQL Language Reference 3-101

Chapter 3 SQL Command Reference

n
lerate
high

is not automatically released. You must either run UNLOCK DATABASE or
disconnect your session to release the exclusive lock.

Issuing LOCK DATABASE before and UNLOCK DATABASE after a load operatio
can noticeably improve performance. You can also use database locking to acce
other database operations which require a long time to complete, or for which a
degree of concurrency control is not necessary, such as index maintenance and
referential integrity updates.

Example
The following example shows how you can improve a LOAD command’s
performance by issuing LOCK DATABASE and UNLOCK DATABASE.

CONNECT ACCTSDB1 SYSADM/SYSADM;
LOCK DATABASE;
LOAD SQL accts.unl;
UNLOCK DATABASE;

PROCEDURE:

PROCEDURE: procedure name

PARAMETERS [CR/LF]

LOCAL VARIABLES

ACTIONS

STATIC

DYNAMIC

input parameter declaration

input/output parameter declaration

[CR/LF]

[CR/LF]

local variable declaration

[CR/LF] flow control command

statement block [CR/LF]
3-102 SQL Language Reference

PROCEDURE:

and

er
n your

,
r

and.

dure.
Use this command to create a procedure. The procedure can only access table
views accessible to the creator.

If you have either SYSADM or DBA authority and create an object for another us
to be used in a procedure, SQLBase assumes that unqualified names specified i
PROCEDURE statement belong to the user.

For example, if your procedure references a table called EMP created for user A
SQLBase assumes that the qualified table name is A.EMP, not SYSADM.EMP o
DBA.EMP.

Procedures cannot perform SQL commands that require a SET SERVER comm
These SQL commands are:

CREATE DATABASE
DROP DATABASE
CREATE STOGROUP
DELETE
INSTALL DATABASE
DEINSTALL DATA

Read Chapter 7, Procedures and Triggers for more information on procedures.

Clauses
procedure name
The name of the procedure, which can contain up to 18 characters.

“PROCEDURE” is valid as a procedure name.

STATIC
DYNAMIC
A procedure is either dynamic or static. Dynamic is the default. Read the section
Static versus dynamic procedures on page 7-32 for detailed information on both these
clauses.

PARAMETERS
Specify this clause if you want to define input or input/output parameters in the
procedure. Parameters provide you with a way to pass data to and from a proce

CR/LF
A carriage return or line feed character.
SQL Language Reference 3-103

Chapter 3 SQL Command Reference

r the

olon

e is
input parameter declaration
Specify the data type and name of each input parameter in this form. A colon afte
data type is optional.

input/output parameter declaration (Receive)
Specify the data type and name of each input/output parameter in this format. A c
after the data type is optional.

LOCAL VARIABLES
Specify this clause if you want to define local variables in the procedure. Local
variables provide temporary storage locations.

local variable declaration
Specify the data type and name of each local variable. A colon after the data typ
optional.

BOOLEAN variable name

NUMBER

WINDOW HANDLE

DATE/TIME

STRING

LONG STRING

NUMBER

DATE/TIME

BOOLEAN variable nameRECEIVE

STRING

WINDOW HANDLE

LONG STRING
3-104 SQL Language Reference

PROCEDURE:

ed.

ou
line.

e
ACTIONS
This clause introduces the section in which you include statements to be execut

flow control command
Specify one of the following Scalable Application Language (SAL) statements. Y
can also specify a comment with an exclamation point (!) at the beginning of the
Read Chapter 7, Procedures and Triggers for a detailed description of each
statement.

statement block
Specify the statements to execute. For a discussion of statement blocks, read th
section Actions on page 7-7.

STRING

DATE/TIME

BOOLEAN variable name

LONG STRING

NUMBER

WINDOW HANDLE

FILE HANDLE

SQL HANDLE

BREAK

CALL

IF [ELSE]

LOOP

ON

RETURN

SET

WHEN SQLERROR

TRACE

WHILE
SQL Language Reference 3-105

Chapter 3 SQL Command Reference

as
Example
CREATE TABLE T1 (c1 integer, c2 integer);
INSERT into T1 values (1000, 2000);

PROCEDURE: P1
Parameters

Receive Number: nOutput1
Receive Number: nOutput2

Local Variables
Sql Handle: hSqlCur1
Sql Handle: hSqlCur2
Number: nInd

Actions
On Procedure Startup

Call SqlConnect(hSqlCur1)
Call SqlConnect(hSqlCur2)

On Procedure Execute
Call SqlPrepare(hSqlCur1, 'Insert into T1 values (7,8)')
Call SqlPrepare(hSqlCur2, 'Select c1, c2 \

 from T1 into :nOutput1, :nOutput2')
Call SqlExecute(hSqlCur1)
Call SqlExecute(hSqlCur2)

On Procedure Fetch
If NOT SqlFetchNext(hSqlCur2, nInd)

Return 1
Else

Return 0
On Procedure Close

Call SqlDisconnect(hSqlCur1)
Call SqlDisconnect(hSqlCur2)

\
,,
/

REVOKE (Database Authority)

This form of the REVOKE command removes the authority level of a user who h
previously been granted authority for a database.

REVOKE authority level FROM

,

auth id
3-106 SQL Language Reference

REVOKE (Database Authority)

er.

til
Only a user with SYSADM authority can revoke the DBA authority of another us

If you REVOKE a user's RESOURCE or DBA authority, it does not take effect un
the next time the user connects.

Clauses
<authority level>
The authority levels DBA, RESOURCE and CONNECT can be revoked by
SYSADM.

Examples
REVOKE CONNECT FROM JOE, JEAN;

REVOKE RESOURCE FROM JEAN;

See also
GRANT (Database Authority)
GRANT (Table Privileges)
REVOKE (Table Privileges)

Privilege Description

SYSADM This authority level cannot be removed. It is assigned by the
system when the database is created.

DBA Revoking this authority means the user can no longer create
or drop tables, or grant or revoke privileges from users.
However, the user retains CONNECT privilege; this privilege
cannot be revoked. All tables and views previously created by
this user remain.

RESOURCE Revoking this authority means the user no longer has the right
to create or drop tables. However, the user retains CONNECT
authority. Previously-created tables and views remain.

You can revoke CONNECT privilege from a user with
RESOURCE authority.

CONNECT Revoking this authority means that the user is no longer
authorized to access the database. All privileges on tables and
views must be revoked from a user before revoking
CONNECT authority. CONNECT authority cannot be
revoked while a user owns tables.
SQL Language Reference 3-107

Chapter 3 SQL Command Reference

ers

e can
REVOKE (Table Privileges)

This form of the REVOKE command revokes privileges previously granted to us
for a table or view.

Any user with the appropriate GRANT (Table Privileges) authority for a table can
revoke the privileges for the corresponding tables or views. The creator of a tabl
revoke privileges on it.

Clauses
<privilege>
The following privileges can be revoked.

Privilege Description

SELECT Select data from a table or view.

INSERT Insert rows into a table or view.

view-name

REVOKE ALL

INSERT

SELECT

DELETE

INDEX

ALTER

UPDATE

,

column name

ON

,

table name

PUBLIC

,

auth id

(

(

,

FROM
3-108 SQL Language Reference

REVOKE (Table Privileges)

he

e

for
iews.

at

hat

 and
ON table name
Table names (including any implicit qualifier) must identify a table that exists in t
database.

ON view name
View names (including any implicit qualifier) must identify a view that exists in th
database.

column name
If you specify more than one table or view, and UPDATE privileges are revoked
selected columns, then each column named must be in the specified tables or v

FROM authorization id
The authorization id must refer to a valid user who currently has the privileges th
are being revoked.

FROM PUBLIC
This keyword signifies all users. By revoking a privilege from PUBLIC, it means t
all current users have the specified privilege revoked.

Examples
Prevent Jean from reading the EMPSAL table or updating the columns SALARY
REVIEW.

REVOKE SELECT, UPDATE(SALARY,REVIEW) ON EMPSAL FROM
JEAN;

Revoke all privileges on EMP and EMPSAL from JOE.

REVOKE ALL ON EMP, EMPSAL FROM JOE;

Prevent users from reading the system catalog table SYSTABLES.

REVOKE SELECT ON SYSADM.SYSTABLES
FROM PUBLIC;

DELETE Delete rows from a table or view.

UPDATE Update a table and (optionally) update only the specified
columns.

INDEX Create or drop indexes for a table.

ALTER Alter a table.

ALL All of the above for a table.

Privilege Description
SQL Language Reference 3-109

Chapter 3 SQL Command Reference

rnal

ction

ge on
See also
GRANT (Database Authority)
GRANT (Table Privileges)
REVOKE (Database Authority)

REVOKE EXECUTE ON

This command revokes a user’s execute privilege on a stored procedure or exte
function.

Privilege can only be revoked by the owner of the stored procedure/external fun
or by the DBA.

Clauses
object name

The name of the stored procedure or external function.

PROCEDURE
If object name is omitted, the default for the object type is PROCEDURE.

EXTERNAL FUNCTION
If you are specifying an external function name, you must specify EXTERNAL
FUNCTION as the object type.

FROM userid or PUBLIC

The authorization ID of one or more users who had been granted execute privile
the stored procedure or external function.

PROCEDURE

,

,

REVOKE EXECUTE ON object name

FROM userid

PUBLIC

EXTERNAL FUNCTION
3-110 SQL Language Reference

ROLLBACK

m all

 two

 at all.

on.

he

es

,
Specify PUBLIC to revoke access privileges to the stored procedure or external
function and underlying tables and views from all current and future users.

Example
This example revokes execute privileges on the PR_PRES stored procedure fro
users. Note since no object type is included, the object type defaults to
PROCEDURE.

REVOKE EXECUTE ON PR_PRES FROM PUBLIC;

This example revokes execute privilege on the PR_PRES stored procedure from
users.

REVOKE EXECUTE ON PR_PRES FROM USER1, USER2;

ROLLBACK

This command ends the current transaction (logical unit of work). A transaction
contains one or more SQL commands that must either all be committed or none

When you issue a ROLLBACK command, SQLBase aborts the current transacti
This restores the database either to the state it was in at the last COMMIT or
ROLLBACK, or if none has been previously given, since the user connected to t
database. The rollback applies to the work done for all cursors that the SQLTalk
session or the application has connected to the database.

If you set PRESERVECONTEXT to ON for the current cursor, SQLBase preserv
the cursor context after a user-initiated ROLLBACK if both of the following are true:

• The application is in Release Locks (RL) isolation level

• No data definition language (DDL) operation was performed

Note SQLBase does not preserve the cursor context after a system-initiated
ROLLBACK, such as a deadlock, timeout, etc.

A ROLLBACK applies to all SQL commands including data definition (CREATE,
DROP, ALTER) and data manipulation commands (GRANT, REVOKE, UPDATE
INSERT).

If you have CONNECT authority, you can execute the ROLLBACK command.

TRANSACTION <id> FORCE

ROLLBACK

savepoint identifier
SQL Language Reference 3-111

Chapter 3 SQL Command Reference

oint.

 an

lve

tion
QL
A ROLLBACK destroys a compiled command unless you set cursor context
preservation on.

Clauses
savepoint identifier
If you specify the savepoint identifier, the transaction is rolled back to that savep
A savepoint is marked within a transaction by the SAVEPOINT command.

If the specified savepoint does not exist, the entire transaction is rolled back and
error is returned.

If you use the same savepoint identifier again, a ROLLBACK to that savepoint
identifier will cause a rollback to the later savepoint.

Rolling back to a savepoint does not release locks. Rolling back without specifying a
savepoint does release locks.

TRANSACTION <ID> FORCE
This clause forces a manual ROLLBACK of an in-doubt distributed transaction.
Generally, the automatic recovery feature of the commit server daemon will reso
all transactions; you should only force a ROLLBACK as a last resort. The <ID>
value is the transaction’s global ID in the SYSADM.SYSPARTTRANS table.

Example
In the following example, the COMMIT statement signals the end of one transac
and the start of another. The ROLLBACK command undoes the three previous S
commands.

COMMIT;

<SQL Command>

<SQL Command>

<SQL Command>

ROLLBACK ;

See also
COMMIT
SAVEPOINT
3-112 SQL Language Reference

ROWCOUNT

et,

fied
rned.

CK to
ROWCOUNT

This command returns the number of rows in a table.

The difference between this command and the SQLTalk SHOW ROWCOUNT
command is that SHOW ROWCOUNT displays the number of rows in a result s
not a table.

Clauses
tablename
The name of the table.

Example
Show how many rows are in the EMP table:

ROWCOUNT EMP;

5 ROWS IN TABLE

SAVEPOINT

This command assigns a savepoint within the current transaction.

The ROLLBACK command can optionally specify a savepoint identifier. If an
identifier is specified, the transaction is rolled back to that savepoint. If the speci
savepoint does not exist, the entire transaction is rolled back and an error is retu

The diagram on the next page illustrates the use of the SAVEPOINT command.

Rolling back to a savepoint does not release locks. Rolling back without specifying a
savepoint does release locks. A SAVEPOINT for one transaction does not affect a
SAVEPOINT on another transaction.

If you are using distributed actions, the SAVEPOINT applies to all the databases
which participate in that transaction. For example, if a user is connected to both
database A and database B and sets a SAVEPOINT on database B, a ROLLBA
that SAVEPOINT will rollback actions on both databases.

ROWCOUNT tablename

SAVEPOINT savepoint identifier
SQL Language Reference 3-113

Chapter 3 SQL Command Reference

 in

in
ent
en).

ed
Clauses
savepoint identifier
The savepoint is identified by a long identifier that be can be up to 18 characters
length.

If the same savepoint-identifier is specified twice in SAVEPOINT commands with
the same transaction, the transaction will rollback to the location of the most-rec
savepoint when the ROLLBACK command is given (the first savepoint is forgott

Example
This example shows the COMMIT, ROLLBACK, and SAVEPOINT commands us
in a C program.

/* Example of savepoint use */

/* Start of application is an implicit begin
/* transaction */
for (;;)
{
/* Process 1st screen */
/* If non-fatal error encountered processing 1st screen,

rollback work done so far and reprocess 1st screen. */
if non_fatal_error

{
 sqlcex(cur, "ROLLBACK", 0);
 continue;
}

}

SAVEPOINT second_savepoint_id

ROLLBACK second_savepoint_id

ROLLBACK first_savepoint_id

ROLLBACK

SAVEPOINT first_savepoint_id

start of transaction

COMMIT
3-114 SQL Language Reference

SAVEPOINT
/* 1st screen successfully processed. Set SAVEPOINT so we
don't have to reprocess 1st screen if subsequent
errors are encountered. */

sqlcex(cur, "SAVEPOINT screen1", 0);
for (;;)
{

 /* Process 2nd screen */

/* If non-fatal error encountered processing 2nd */
/* screen,rollback work done so far for 2nd screen */
/* and reprocess 2nd */screen. */

if non_fatal_error
{

sqlcex(cur, "ROLLBACK screen1", 0);
continue;

}
}
sqlcex(cur, "COMMIT");

See also
COMMIT
ROLLBACK
SQL Language Reference 3-115

Chapter 3 SQL Command Reference
SELECT

,

,

SELECT expression

,

DISTINCT

ALL name =

expression

AS name

FROM table name
view name correlation name

WHERE search-condition

GROUP BY

column name

integer constant

HAVING search condition

,

ORDER BY

column name

integer constant

ASC

DESC

,

FOR UPDATE OF column name
3-116 SQL Language Reference

SELECT

.

ther

and.

s.

hat

, the
ues an
This command finds, retrieves, and displays data. It specifies the following
information:

• The tables or views in the database which are searched to find the data

• The conditions for the search.

• The sequence in which the data is output.

SELECT commands are recursive; they can be nested within the main SELECT
clause. A nested SELECT command is called a subquery. You can select from o
tables in the subquery.

The result of a SELECT is a set of rows called a result table which meets the
conditions specified in the SELECT command.

You must have SELECT privileges on the tables and views to execute this comm

Clauses
ALL
The default for a SELECT is to retrieve ALL rows.

DISTINCT
This suppresses duplicate rows.

You cannot use the DISTINCT keyword to SELECT LONG VARCHAR data type

You cannot use a DISTINCT keyword while in restriction mode.

You cannot perform an operation with the CURRENT OF clause on a result set t
you formed with the DISTINCT keyword.

expression
This is a select list that contains expressions that are separated by commas. An
expression can be:

• A column name

• A constant

• A bind variable

• The result of a function

• A system keyword

A maximum of 255 expressions are allowed in the list. Read the section Expressions
on page 2-22 for more information.

If you are using the concatenate operator (||) to concatenate two or more strings
result of the concatenation cannot be greater than 254 characters. SQLBase iss
error message if the resulting string size is greater than 254 characters.
SQL Language Reference 3-117

Chapter 3 SQL Command Reference

mns

ple,

e of
elect
ich
e

E

e is

.

 of
 the

he

once
lf or
alify
A select list is usually a list of columns from one or more tables.

An asterisk (*) is a wildcard search operator that represents the entire set of colu
in the tables or views specified in the FROM clause. You can also specify all the
columns in a single table if '*' is qualified with the desired table name. For exam
the command

SELECT TAB1.*, COL1 FROM TAB1, TAB2;

Returns all of the columns in table TAB1 and the single column COL1 from table
TAB2.

Each column name in the select list must unambiguously identify a column in on
the tables or views named in the FROM clause. If a result set is derived from a s
list of columns from more than one table or view, any column name in the list wh
is the same in two tables must be qualified by the table name to make it a uniqu
name.

SELECT CUSTOMER.CUSTNO, ORDERNO FROM CUSTOMER, ORDERS WHER
CUSTOMER.CUSTNO = ORDERS.CUSTNO;

In this example, the name CUSTNO appears in the CUSTOMER table and the
ORDERS table. It therefore must be qualified to make it unambiguous within the
SQL command.

The select list can only contain aggregate functions when the GROUP BY claus
used, or when the select list consists entirely of aggregate functions.

name = expression
expression AS name
Both of these formats assign a name that is used as a column heading in the output
For example:

SELECT CUSTOMER_NUMBER=CUSTNO FROM CUSTOMER;

FROM
The FROM clause contains the names of the tables or views from which the set
resulting rows are formed. Each name must identify a table or view that exists in
database.

A correlation name can be assigned for the table or view immediately preceding t
name. Each correlation name in a FROM clause must be unique.

Correlation names are required when a search condition is executed more than
for the same table or view in a single SQL command (as in joining a table to itse
in correlated subqueries, described below). They provide a shorthand way to qu
column names.
3-118 SQL Language Reference

SELECT

ate

ions

the

ect
sed

mn

 the
te set

lary,
ijoin

hat
The above SQL command can be written using the correlation name C to design
CUSTOMER and O to designate ORDERS:

SELECT C.CUSTNO, ORDERNO FROM CUSTOMER C, ORDERS O
WHERE C.CUSTNO = O.CUSTNO;

WHERE search condition
The WHERE clause specifies a search condition for the base tables or views.

The search condition of the WHERE clause cannot contain any aggregate funct
(unless part of a subselect). Read the section Search conditions on page 2-24 for more
information.

You cannot use a LONG VARCHAR column in a subselect search condition.

GROUP BY
The GROUP BY clause groups the result rows of the query in sets according to
columns named in the clause.

If the column by which a grouping occurs is an expression (but not an aggregate
function), you must specify a number that indicates its relative position in the sel
list only if the expression contains more than one column. If only one column is u
in the expression, it can be used in the GROUP BY.

Aggregate functions, since they yield one value, cannot be grouping columns.

The result of a grouping is the set of rows for which all values of the grouping colu
are equal. NULL values in a grouping column are treated as a separate group.

If a GROUP BY clause is specified, each column in the select list must be listed in
GROUP BY clause or each column in the select list must be used in an aggrega
function that yields a single value.

The following example finds the total salary for each department, the average sa
the number of people in each department. It illustrates a GROUP BY and an equ
(for getting the department name).

SELECT DEPTNO, SUM(SALARY), AVG(SALARY), COUNT(SALARY)
FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO
GROUP BY DEPTNO;

You cannot use GROUP BY while in restriction mode.

You cannot perform an operation with the CURRENT OF clause on a result set t
you formed with a GROUP BY clause.
SQL Language Reference 3-119

Chapter 3 SQL Command Reference

 a

e.

only

d on
ER

elect

ent

that
les

ring
ER
HAVING search condition
The HAVING clause allows a search condition for a group of rows resulting from
GROUP BY or grouping columns. If a grouping column is an expression that is not
an aggregate function (such as SAL*10), it cannot be used in the HAVING claus

Using the example for the GROUP BY clause, we are only interested in the
departments where the average salary is greater than 30000.

SELECT DEPTNO, SUM(SALARY), AVG(SALARY), COUNT(SALARY)
FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO
GROUP BY DEPTNO HAVING AVG(SALARY) > 30000;

You cannot use a HAVING clause while in restriction mode.

The HAVING clause is useful to retrieve data that is grouped by one column, but
returns one row for each group based on the maximum of another column.

ORDER BY
This specifies the ordering, or sorting, of rows in a result table. Rows can be sorte
more than one column. The major sort is on the first column specified in the ORD
BY clause and the minor sorts are on the columns specified after that.

If the sort is on a column derived from a function or arithmetic expression, the
column must be specified by an integer that signifies its relative number in the s
list of the command.

Each column name (or number) can be optionally followed by ASC or DESC for
ascending or descending sort sequence. ASC is the default order.

You cannot use the ORDER BY clause in a SELECT command that is a compon
of a UNION of SELECT commands. You cannot use the ORDER BY clause in a
view definition.

You cannot perform an operation with the CURRENT OF clause on a result set
you formed with an ORDER BY clause, since ORDER BY creates virtual row tab
that do not include rowids.

You cannot use an ORDER BY clause while in restriction mode.

You cannot use an ORDER BY clause in a subselect.

You cannot use string functions in an ORDER BY clause. Instead, specify the st
function in the select list and then use the select list column number in the ORD
BY clause.
3-120 SQL Language Reference

SELECT

rt of

pdate
ed
ed if
nd

d

ct on

 a

y is

e of
FOR UPDATE OF
If you are using a named cursor, this locks parts of a table so that a subsequent
UPDATE or DELETE will not cause a deadlock between concurrent users. This
clause is compatible with DB2.

You can UPDATE columns in the column-name list. Those columns must be a pa
the table or view named in the FROM clause of the SELECT command.

When you use the FOR UPDATE OF clause, SQLBase uses update locks. An u
lock reduces the possibility of deadlocks. Update locks are compatible with shar
locks, but not with other update locks or exclusive locks. An update lock is releas
the transaction does not immediately follow the SELECT...FOR UPDATE comma
with an UPDATE or DELETE. This is in contrast to exclusive locks which are hel
until a COMMIT or ROLLBACK.

For the read repeatability (RR) and cursor stability (CS) isolation levels, the FOR
UPDATE OF clause uses update locks. The FOR UPDATE OF clause has no effe
read only (RO) or release lock (RL) isolation levels.

You can use the CURRENT OF clause in an UPDATE or DELETE command on
result set formed with the FOR UPDATE OF clause.

You cannot use the FOR UPDATE OF clause with the UNION or ORDER BY
clauses or with multi-table selects.

Examples
Select all rows from the CUSTOMER table.

SELECT * FROM CUSTOMER;

Make a list of the job titles.

SELECT DISTINCT JOB FROM EMP;

Display the employee number and monthly salary of people whose annual salar
greater than $40000.

SELECT EMPNO,SALARY/12 FROM EMPSAL
WHERE SALARY > 40000;

Find the minimum and average salary for each department.

SELECT DEPTNO, MIN(SALARY), AVG(SALARY)
FROM EMP, EMPSAL
WHERE EMP.EMPNO=EMPSAL.EMPNO
GROUP BY DEPTNO;

Find the total employees hired for each quarter. This command illustrates the us
an integer when using a function in a GROUP BY clause.
SQL Language Reference 3-121

Chapter 3 SQL Command Reference

e
SELECT @QUARTERBEG(HIREDATE), COUNT(EMPNO) FROM EMP
GROUP BY 1;

Get the employee information for people with the same job as Drape.

SELECT * FROM EMP
WHERE JOB IN
(SELECT JOB FROM EMP WHERE LNAME = 'Drape');

Find the orders where the price paid was equal to the list price.

SELECT * FROM ORDERS X
WHERE PRICE = (SELECT LISTPRICE FROM PARTS WHERE
PARTS.PNUM = X.PNUM);

Find an order so that you can update it.

SELECT * FROM ORDERS
WHERE CUSTNO=2 ORDER BY ORDERDATE;

Update the EMP database to show employees in department 2500.

SELECT LNAME FROM EMP WHERE DEPTNO = 2500 FOR UPDATE OF
JOB;

UPDATE EMP SET JOB = '?'
WHERE CURRENT OF EMPCURSOR;

FETCH 1;

LNAME
=========
Carver

UNION Clause

This clause merges the result of two or more SELECT commands. Any duplicat
rows are eliminated.

select command

,

ORDER BY integer constant

ASC

DESC

UNION
ALL
3-122 SQL Language Reference

SET DEFAULT STOGROUP

an be

hat

r
an

ary is

ases

 you
 be
Each result table must have the same number of columns. None of the columns c
LONG VARCHAR columns. Except for column names, the description of the
corresponding column in each table must be identical.

You cannot use UNIONS in restriction mode.

You cannot perform an operation with the CURRENT OF clause on a result set t
you formed with a UNION clause.

ALL
If this is specified, duplicate rows will not be eliminated. The result contains all the
rows selected. If ALL is used, it must be repeated for every SELECT command:

select-cmd-1 UNION ALL select-cmd2,
UNION ALL select-cmd-n.

ORDER BY
An ORDER BY clause sorts the final result set of rows from the UNION of two (o
more) tables. When an ORDER BY clause is used with a UNION, you must use
integer specifying the sequence number of the column in the select list.

Example
This command finds the employees from department 2500 and those whose sal
more than 50000.

SELECT EMPNO FROM EMP WHERE DEPTNO = 2500 UNION SELECT
EMPNO FROM EMPSAL WHERE SALARY> 50000;

SET DEFAULT STOGROUP

This command sets the default storage group. After a default name is given to a
storage group, all subsequent CREATE DATABASE commands will cause datab
to be partitioned.

Clauses
stogroup name
The name of the specified storage group. The storage group name is optional. If
omit the storage group name, the storage group is null. This allows databases to
created in the normal file system (non-partitioned).

SET DEFAULT STOGROUP

stogroup name
SQL Language Reference 3-123

Chapter 3 SQL Command Reference

dit
es

 the
 stop
tion
Example
SET DEFAULT STOGROUP ACCTDEPT;

See also
ALTER STOGROUP
CREATE STOGROUP
DROP STOGROUP

START AUDIT

This command starts an audit, and creates an entry in the appropriate section of the
configuration file (sql.ini). An audit collects various system and performance
information, and writes it to an audit file. You can also write a message to an au
file. For more details on the type of information collected, see the list of audit typ
and applicable categories in the Clauses section.

An audit remains active while the server is running. It stops when you shut down
SQLBase server, but restarts when you bring the server back up. To completely
an audit operation, use STOP AUDIT, or delete the audit entry from the configura
file (sql.ini).

You can have up to 32 active audit operations running concurrently. However, it
generally is not necessary to have more than one or two, since you can record

TO directory name

START AUDIT audit name

GLOBAL

PERFM

SIZE integer

,

CATEGORY

KEEP integerAPPEND integer

OVERWRITE integer
3-124 SQL Language Reference

START AUDIT

al

overy

in
L

ugh

when

long.

 not
from

ify a

d
different types of information within each audit. Also, be aware that each addition
audit operation can affect performance.

This command requires a server connection.

Clauses
GLOBAL
PERFM
Enter either GLOBAL or PERFM here. These are the audit types, and determine
which category options you access.

Enter GLOBAL for a global audit. A global audit includes information about the
entire SQLBase server, such as rejected logons, SQL security violations, and rec
operations.

Enter PERFM for a performance audit. This type of audit tracks how long a certa
operation takes, such as the length of time needed to compile and execute a SQ
statement.

You can start a global audit in conjunction with an active performance audit, altho
they must have different names.

The default is GLOBAL.

audit name
This is an identifier that names the current audit operation. Use this audit name
you stop the audit with STOP AUDIT, or write a message to the audit file with the
AUDIT MESSAGE command.

The audit name is a short identifier, and therefore can be up to eight characters

All concurrent audit names must be unique.

Audit files have the same name as the audit operation, with an extension .x, where x is
an ascending value. For example, starting an audit operation with the name myaudit
generates an audit file called myaudit.1.

Since the sequence of audit files is controlled by the file extension, you can
theoretically have up to 1000 audit files for each individual audit (though this may
be practical in real-time applications). The audit file extension sequence ranges
auditname. 1 to auditname.999. After auditname.999, the next file is called
auditname.0, and then wraps around to begin the sequence again with auditname.1.

TO directory name
Use this clause to specify a directory that contains audit files. If you do not spec
directory, SQLBase creates the audit files in the home directory specified by the dbdir
configuration keyword (for example, \Centura). The directory name can be enclose
in single quotes.
SQL Language Reference 3-125

Chapter 3 SQL Command Reference

 the
 new

e

e

ent

e if

it

t file
SIZE integer
Use this clause to specify the maximum size of each audit file, in kilobytes. When
file reaches the maximum size you specify, SQLBase automatically generates a
file. This means that if you specify a maximum size of 100 kilobytes for an audit
called myaudit, SQLBase automatically creates and starts writing output to myaudit.2
when myaudit.1 reaches 100 kilobytes.

The default is 1000 kilobytes (1 megabyte).

Specify zero (0) to turn off all file size checking. This causes SQLBase to produc
only one trace file of unlimited size.

APPEND integer
If you specify this clause, stop the audit with STOP AUDIT, and specify the sam
audit name again with START AUDIT, SQLBase continues to append audit
information to the audit file having the extension you specify.

For example, assume you run STOP AUDIT myaudit and see that SQLBase has
created four audit files, the last being myaudit.4. If you use the same name to start a
new audit with the following command:

START AUDIT myaudit APPEND 4;

SQLBase appends the records of the new myaudit operation to myaudit.4, even
though they are two separate audits.

KEEP integer
This clause tells SQLBase the number of old audit files to keep besides the curr
file. For example, if you specify a KEEP value of 2 for an audit called myaudit,
SQLBase automatically deletes myaudit.1 when it creates myaudit.4, since it can only
keep two old files (myaudit.2 and myaudit.3).

The default is one file.

OVERWRITE
If you specify this clause, SQLBase automatically overwrites an existing audit fil
it encounters one.

Unless you specify this clause, you cannot start an audit if there are existing aud
files with the same name. For example, if you try to run START AUDIT myaudit
without the OVERWRITE clause, and there is already an audit file called myaudit.1,
SQLBase returns an error message.

If SQLBase encounters an existing file later in the audit process, (for example,
myaudit.4), it automatically stops the audit and writes a message to the last audi
(myaudit.3).
3-126 SQL Language Reference

START AUDIT

s.
3 does

ords

a
CATEGORY integer
This clause identifies what types of information the audit operation records. The
category options depend on what type of audit you chose: GLOBAL or PERFM.

You can record information for multiple categories by separating them by comma
Each category is independent of the others. This means that choosing category
not also include information for 1 and 2.

This clause is optional. However, if you do not use it, SQLBase automatically rec
information for all categories of the audit type you chose.

GLOBAL type categories. The following table lists the valid categories for a
GLOBAL audit:

Category Data collected Description

1 Rejected logons Records unsuccessful login attempts. Useful to see if
user tried to access a restricted database.

2 Security violations Tells you if a user tried to access data without proper
privileges.

3
Valid logins/logoffs Records all valid logons, telling you when a user first

connected, and whether he/she disconnected. Use it to
find out what users were logged on.

4 Valid connects/disconnects Records CONNECT and DISCONNECT statements.

5
Database creates, drops,
installs, and deinstalls

Records CREATE DATABASE, DROP DATABASE,
INSTALL DATABASE, and DEINSTALL DATABASE
commands.

6 Recovery operations Records all ROLLBACK commands.

7 Backup and restore operations Records all BACKUP and RESTORE commands.

8 Database Lock Manager
deadlocks and timeouts

Records information about deadlocks and timeouts.

9 Table access information
(queries)

Tells you which users accessed which tables.

10 Table update information
(inserts, updates, and deletes)

Records database manipulation language commands
(DML), and which users issued the commands.
SQL Language Reference 3-127

Chapter 3 SQL Command Reference

ut to

 data
10

PERFM type categories. The following table lists the valid categories for a
PERFM type audit:

Examples
Start a global audit called auditall to record all information categories:

START AUDIT AUDITALL;

Start a performance audit to record long-running transactions, and write the outp
the \Centura directory:

START AUDIT PERFM LONGTRAN TO C:\CENTURA
CATEGORY 3;

Start a new global security audit to track rejected logons and attempts to access
without the proper authority. Overwrite any existing files for that audit, and keep
old audit files:

START AUDIT SECURITY KEEP 10 OVERWRITE CATEGORY 1,2;

Start and stop a performance trace called testing. Start a new performance audit with
the same name, and append the output to the last testing audit file (testing.3):

START AUDIT PERFM TESTING;
STOP AUDIT TESTING;
START AUDIT PERFM TESTING APPEND 3 OVERWRITE;

Category Data collected Description

1 Connects and Disconnects Tells you how long it takes users to connect to and
disconnect from a database

2 SQL command
compilation, execution,
storage, and retrieval.

Tells you how much time SQLBase takes to compile,
store, retrieve, and execute a particular SQL statement.

3 End of transaction. Tells you when a transaction ended, and how long the
transaction took. Useful for locating long-running
transactions.
3-128 SQL Language Reference

STOP AUDIT

ve
STOP AUDIT

This command stops either all or the specified audit operations. This command
requires a server connection.

This command removes the AUDIT entry in the server’s configuration file (sql.ini).

Clauses
audit name
This is the audit name. This is the name of the audit operation created with the
START AUDIT audit name clause.

This clause is optional. If you do not designate a specific audit operation, all acti
audit operations are stopped.

Examples
Stop all audit operations.

STOP AUDIT;

Stop only one audit operation called myaudit.

STOP AUDIT MYAUDIT;

audit name
STOP AUDIT
SQL Language Reference 3-129

Chapter 3 SQL Command Reference

 a
UNLOAD

This command dumps some or all of a database to an external file.

If you are unloading data only, you can unload to a SQL, ASCII, or DIF file.
Otherwise, SQLBase unloads information to a SQL formatted file.

You can unload (and load) to the server but not to the client from within a stored
command or procedure.

With the UNLOAD command, you can back up a database or transfer data from
database to another program through interchange formats.

UNLOAD SQL source table

DATA ALL

DATABASE

ALL

COMPRESS CONTROL 'file name' OVERWRITE

DATA OVERWRITE

SCHEMA

COMPRESS OVERWRITE

ON CLIENT

SERVER

LOG 'logfile name'

DIF

source table

DATA

'file name'

OVERWRITE

ASCII

source table

CONTROL 'file name'

'file name'

CONTROL 'file name'

'file name'

CONTROL 'file name'

'file name'
3-130 SQL Language Reference

UNLOAD

ws
m

ets

 this

o

 you

ou

e

s

n

res
You can split the unload file into segments that reside on multiple disks. This allo
you to unload information from a database that might exceed single disk or syste
unit limits, and also split an unload file into multiple files if you have smaller pock
of available disk space spread across different disks.

To restore database information from an external file, use the LOAD command.

If you are running UNLOAD with a control file for file segmentation, SQLBase
automatically creates a corresponding load control file in the same directory. Use
control file to reload the information with the LOAD command.

The control file you specify must contain sufficient valid segment specifications t
accommodate the total database size.

Note: SQLBase does not verify the existence of disk space availability for any of the files
create. Be sure that there is sufficient space in the directories you designate for the LOAD
command and for the control file.

You should run the UNLOAD command in the Read-Only isolation level so that y
do not lock out other users.

You cannot UNLOAD while in restriction mode.

LONG data type columns can only be unloaded in SQL format.

If you have changed the SYSADM password, a subsequent UNLOAD and LOAD
operation retains these new settings. To enhance security of the passwords in th
external unload file, it is recommended that you do one of the following:

• Store the external unload file in an access-protected location on disk.

• Compress the unload file using the UNLOAD command’s COMPRESS
clause.

The UNLOAD operation does not unload invalid stored commands or procedure

When triggers are encountered during the UNLOAD operation, the status of the
trigger is checked. If the trigger is disabled, the UNLOAD operation generates a
ALTER TRIGGER triggername DISABLE statement for that trigger, which
immediately follows the trigger’s CREATE TRIGGER statement. If the trigger is
enabled, the UNLOAD operation takes no action.

When you specify the unload file name, enclose it in single quotes ('). This ensu
that the file name is valid on both the client and server platforms.

Read the Database Administrator’s Guide for more information on loading and
unloading.
SQL Language Reference 3-131

Chapter 3 SQL Command Reference

rnal
ng
ns

s.

lso

LL

g
n 1.
Clauses
DATA
In the context of the SQL format, this means that only data is written to the exte
file and no CREATE TABLE or CREATE INDEX statements are written. Dependi
on whether the file format is SQL, ASCII or DIF, this can have varying implicatio
for the contents of the file.

SQL
This option causes the external file to be created with a series of SQL command

If you specify the DATA option in the command, the file contains only INSERT
commands followed by data rows.

If you do not specify the DATA option, the file also includes CREATE TABLE and
CREATE INDEX data definition commands along with corresponding INSERT
commands for each table. It does not contain any other database object if you a
specify the ALL clause.

The data rows associated with the INSERT command use bind variables.

When you use this option, multiple tables can be UNLOADed. You can specify A
to unload all the tables of the logged-in user.

SQLTalk writes a line with $datatypes in UNLOADed tables in SQL format. The
$datatypes keyword provides data type mapping for compatibility with DB2. A
subsequent LOAD works for either DB2 or SQLBase tables.

When unloading, SQLBase converts binary data to ASCII characters. SQLBase
marks the converted binary data with a tilde (~) character. If you want to LOAD a
tilde character as data, you must mark it as follows:

~HO~

A continuation character "\" (backslash) can be used in unload files while enterin
data or commands. The continuation character works anywhere except in colum

The following example shows lines from a sample SQL UNLOAD file:

INSERT INTO SYSADM.ELECTION VALUES(
:1,
:2,
:3,
:4)
\
$datatypes NUMERIC,CHARACTER,NUMERIC,CHARACTER
1796,"Pinckney T",59,"L",
...
1796,"Washington G",2,"L",
/

3-132 SQL Language Reference

UNLOAD

.

 is

Talk

you

e
are

n the
cted at
ASCII
If you specify this, the external file contains only data, organized in ASCII format
This is true even if you do not specify the DATA option.

You can only specify one source table.

You cannot unload LONG data type columns in ASCII.

The following example shows lines from a sample ASCII UNLOAD file:

1796,"Pinckney T",59,"L"
1796,"Burr A",30,"L"
1796,"Adams S",15,"L"
1796,"Ellsworth O",11,"L"
1796,"Clinton G",7,"L"
1796,"Jay J",5,"L"
1796,"Iredell J",3,"L"
1796,"Henry J",2,"L"
1796,"Johnson S",2,"L"
1796,"Washington G",2,"L"

DIF
If you specify this, the external file contains data organized in Data Interchange
Format (DIF) which is a common format for spreadsheets and databases.

Only one table can be unloaded in a single DIF file.

If you specify the DATA option, only the data in the table is written to the file. If it
not specified, the names of the table and columns are also written.

If the file is subsequently loaded into a database with the LOAD command, SQL
automatically creates the table and columns into which the data is loaded.

You cannot unload LONG data type columns in DIF.

file name
This is the name of the file into which unloading occurs. If the file already exists,
must specify the OVERWRITE clause. If you are using the file name with the ON
SERVER clause, be sure to provide the volume name if it applies to our SQLBas
Server environment. The following example specifies the volume name on a NetW
Server:

db:\demo\acct1

source table
This is the name of the table from which data is unloaded. The table must exist i
current database. The current database is the database to which you are conne
sign-on or with the most recent CONNECT or USE command.
SQL Language Reference 3-133

Chapter 3 SQL Command Reference

. This

s only

gged

and

into
e.
ame,

e

:

If you specify a source table list, you must separate the table names with blanks
is not applicable for ASCII and DIF formats.

The source table can also be a view or a synonym.

ALL
This option unloads all tables and indexes belonging to the connected user and i
applicable for the SQL format. It does not unload any other database objects.

DATABASE
This unloads the entire database to which the user is connected. You must be lo
on as SYSADM to give this command.

You can only use UNLOAD DATABASE for SQLBase databases.

SCHEMA
This is similar to the DATABASE parameter, but it unloads only DDL (Data
Definition Language) commands.

ALL
Use this command to unload all tables and indexes belonging to you. This comm
does not unload views and synonyms.

COMPRESS
Use this option to compress the data when you unload it.

This option is not valid for DIF or ASCII data files.

CONTROL filename
Use this clause with an unload control file name if you are unloading information
multiple file segments. SQLBase also generates a corresponding load control fil
The unload control file name cannot be the same name as the load control file n
since they both reside in the same directory.

If you do not specify a path, SQLBase assumes that the control file resides in th
default directory (for example, \Centura).

You create the unload control file with an online editor using the following syntax

FILEPREFIX <filename prefix>
DIR <destination dir> SIZE <maximum size of the unload

 segment file in megabytes>
DIR <destination dir>SIZE <maximum size of the unload

 segment file in megabytes>
3-134 SQL Language Reference

UNLOAD

r

This file provides the following information:

The following example shows an unload control file for the Windows NT
environment:

Example:

FILEPREFIX dbs
DIR c:\unldir\ SIZE 100
DIR d:\unldir\ SIZE 50
DIR e:\unldir\ SIZE 200

Note: For NetWare, you specify the fully qualified volume name for the file segments. Fo
example: db:\demo\dbs.1

During an UNLOAD operation, this control file tells SQLBase to unload database
information in the following order:

1. 100 megabytes of information to a file called c:\unldir\dbs.1

2. 50 megabytes of information to a file called d:\unldir\dbs.2

3. 200 megabytes to a file called e:\unldir\dbs.3

It also creates a load control file called dbs.lcf.

Parameter Description

FILEPREFIX The prefix of the file segment names used for the unload.

DIR The destination directory where the unload file segments
will reside.

SIZE Maximum file segment size in megabytes. You can
specify a null or integer value of 1 through 2048
megabytes. The control file must indicate a minimum
aggregate size to account for all the unload data.

Use the following to calculate the maximum number of
bytes you can allocate:

bytes = (size * 1048576)

which is the maximum file size common across most
systems.

The last unload file segments may not use the entire size
that you allocated.
SQL Language Reference 3-135

Chapter 3 SQL Command Reference

d

ad

nload

d the

te a
ple,
n on
ment

e log
OVERWRITE
This option allows you to overwrite an existing unload file. The default is NO
OVERWRITE.

ON CLIENT
ON SERVER
Use this clause to tell SQLBase where to create the destination file for the unloa
operation - on the client or the server machine. The default is ON CLIENT.

If you intend to use a control file, use this clause to tell SQLBase where the unlo
control file is. You can create the unload control file on either the client or server
machines, but it must be consistent with the ON SERVER or ON CLIENT
designations. As SQLBase unloads the database information, it generates the u
file segments on the same machine as this control file.

Note: Even though SQLBase creates the unload file segments on the same machine as the
unload control file (unless you are using connected network drives), the file segments an
control file can reside in different directories (including network drives) on that machine.

You cannot use the ON CLIENT clause with either a SQLBase procedure or
SQLWindows program; with these two applications, you must use ON SERVER.

LOG
Use this option to automatically create a message log file. If you do not designa
path for the log file, SQLBase creates it in the Centura home directory (for exam
\Centura. The log files contain a timestamp for each action, summary informatio
the number of database objects unloaded, any errors that occurred, and a state
confirming the load completed successfully.

The default is no log file.

If the client and server are on different machines, SQLBase creates the messag
file on the server machine.

Examples
Unload the EMP and DEPT (data only) tables in SQL format.

UNLOAD DATA SQL personnel.sql EMP DEPT;

Unload the EMP table (data only) in ASCII format.

UNLOAD ASCII emp.asc EMP;

Unload the EMP table in DIF format. Table and data are unloaded:

UNLOAD DIF table.unl EMP;
3-136 SQL Language Reference

UNLOCK DATABASE

erver:

h the

n
lerate
high

es
Unload all tables and indexes belonging to the user who issues the command:

UNLOAD ALL mytables.uld;

Unload the entire EMPLOYEE database:

UNLOAD DATABASE emp.uld;
UNLOAD COMPRESS DATA SQL db.unl ALL ON SERVER LOG db.log;
UNLOAD SQL table.unl OVERWRITE t1 t2;
UNLOAD COMPRESS DATABASE db.unl ON SERVER;
UNLOAD DIF table.unl;

Unload the entire database at the server using a control file located also at the s

UNLOAD DATABASE CONTROL contrl1.fil ON SERVER;

UNLOCK DATABASE

This command releases the exclusive lock acquired on the current database wit
LOCK DATABASE command. After you run this command, SQLBase allows
additional connections by other users again.

Issuing LOCK DATABASE before and UNLOCK DATABASE after a load operatio
can noticeably improve performance. You can also use database locking to acce
other database operations which require a long time to complete, or for which a
degree of concurrency control is not necessary, such as index maintenance and
referential integrity updates.

If you hold an exclusive lock on the database and disconnect your last database
connection before running UNLOCK DATABASE, SQLBase automatically releas
your exclusive database lock.

Example
The following example shows how you can improve a LOAD command’s
performance by issuing LOCK DATABASE and UNLOCK DATABASE.

CONNECT ACCTSDB1 SYSADM/SYSADM;
LOCK DATABASE;
LOAD SQL accts.unl;
UNLOCK DATABASE;

UNLOCK DATABASE
SQL Language Reference 3-137

Chapter 3 SQL Command Reference

ed on

ary

bles
ey a

 to a
ey of

e is

 and

ated.
UPDATE

This command updates the value of one or more columns of a table or view bas
the specified search conditions. You must possess the UPDATE privilege on the
columns of the table or view.

The UPDATE command (for referential integrity) updates tables with primary or
foreign keys. Any non-null foreign key values that you enter must match the prim
key for each relationship in which the table is a dependent.

If you are updating a parent table, you cannot modify a primary key for which
dependent rows exist. This would violate referential constraints for dependent ta
and would leave a row without a parent. In addition, you cannot give a primary k
null value.

In a database with referential integrity, the only UPDATE rule that can be applied
parent table is RESTRICT. This means that any attempt to update the primary k
the parent table is restricted to cases where there are no matching values in the
dependent table.

If an UPDATE against a table with a referential constraint fails, an error messag
returned.

When a record is updated, the fields being updated are removed from the record
new fields are added. If the new value’s data size is the same as the old size,
SQLBase overwrites the old field.

For more information on referential integrity, read Chapter 6, Referential Integrity.

Clauses
table name
This identifies an existing table.

System catalog tables can be named, but only-user defined columns can be upd

SET expression

UPDATE table name

=

,
view name correlation name

WHERE CHECK EXISTSsearch condition

CURRENT OF cursor name

column name

NULL
3-138 SQL Language Reference

UPDATE

ted

.

rm

ue or

on.

ed

led

nces
view name
This identifies an existing view.

You cannot UPDATE a view based on more than one table.

correlation name
The correlation name must be specified if the search condition involves a correla
subquery.

column name
This identifies the columns to be updated in the table or view.

Columns derived from an arithmetic expression or a function cannot be updated

If a view was specified with WITH CHECK OPTION, the updated row must confo
to the view definition.

SET
If the update value is specified as NULL, the column must have been defined to
accept null values.

If a unique index is specified on a column, the update column value must be uniq
an error results. Note that for a multi-column index, it is the aggregate value of the
index that must be unique.

If the update value is a string expression in which two or more strings are
concatenated, the resulting string size cannot exceed 254 characters.

WHERE search condition
The WHERE clause specifies the rows to be updated based on a search conditi

When this clause is used, it is called a “searched UPDATE.”

WHERE CURRENT OF cursor name
This clause causes the row at which a cursor is currently positioned to be updat
according to the specification of the SET clause.

When this clause is used, it is called a “positioned UPDATE” or a “cursor-control
UPDATE.”

This type of update requires two open cursors:

• Cursor 1 is associated with a SELECT command. The current row refere
the row of the most recent fetch.

• Cursor 2 is associated with the UPDATE command.

A cursor-name must be associated with cursor 1 before this command can be
executed.
SQL Language Reference 3-139

Chapter 3 SQL Command Reference

ing

T

vel

tion.
You can only use CURRENT OF if all of the following are true for the correspond
SELECT command:

• The cursor must be named or be in result set mode.

• The SELECT command cannot contain joins, GROUP BY, DISTINCT, SE
functions, or UNION.

• If the SELECT command contains an ORDER BY clause, the isolation le
must be RE (release lock).

• Any subselect in the SELECT command must satisfy the previous condi

CHECK EXISTS
This clause specifies to return an error if at least one row is not updated. This clause
can be used in any context, including in chained commands.

Examples
Change employee 1004’s salary.

UPDATE EMPSAL SET SALARY = 45000 WHERE EMPNO= 1004;

Give all employees in department 2500 a 10% raise.

UPDATE EMPSAL SET SALARY = SALARY*1.10
WHERE EMPNO IN (SELECT EMPNO FROM EMP WHERE DEPTNO =
2500);

Prefix all job titles with the letter P. Update every row in the table.

UPDATE EMP SET JOB= 'P'||JOB;

Update the row reference by the current fetch of cursor named FINDBUG.

UPDATE EMPSAL SET SALARY= 40000
WHERE CURRENT OF EMPCURSOR;

See also
CREATE TABLE
SELECT
SET CURSORNAME (SQLTalk command)
3-140 SQL Language Reference

UPDATE STATISTICS

 has
 have

ied
B

ics
lts of
ough
UPDATE STATISTICS

This command updates the statistics for an index, table, or database.

Generally, you should execute this command when more than 10% of your data
been modified or recently added, such as when the number of distinct key values
changed for an index.

To have your stored commands take advantage of statistics yielding better
performance, you can restore your commands and then run the SQLBase-suppl
RECOMPILE procedure. For more information on RECOMPILE, read Appendix
of the Database Administrator’s Guide.

You can run SET TIME ON to check the performance before and after the statist
have been updated. This command displays the time required to obtain the resu
SQL commands. The command does not show times for each function call, alth
it may calculate it that way.

UPDATE STATISTICS ON

TABLE table name

DATABASE

,

system catalog column name = expressionSET

INDEX index name

,
system catalog column name = expressionSET

,

DISTINCTCOUNT (index key) = expression
SQL Language Reference 3-141

Chapter 3 SQL Command Reference

 to
tes

l

 both
y
n

s.
ve

e,

or all

ption,

f the

 were

lumn
By using the SET clause, you can enter test values for index and table statistics
simulate a production environment, without using real data. This command upda
the data dictionaries with your test values as if you were using real data. The
SQLBase query optimizer then uses these new statistics to find the most optima
access strategy. To restore table and index statistics to actual values, run this
command again without using the SET clause.

Whether you are updating real or test values for statistics, this command updates
the internal dictionary (database control pages) as well as the external dictionar
(SYSADM catalogs). No database statistics are preserved when you unload, the
reload the database.

UPDATE STATISTICS has the following security rules:

• If you create an index or table, you have privileges to update its statistic
You cannot update statistics for an object you do not own unless you ha
DBA or SYSADM privileges.

• Only a user with SYSADM or DBA authority can update statistics for a
database.

• A user with DBA or SYSADM authority can update statistics on any tabl
index, or database.

Clauses
INDEX index name
Updates the statistics for the specified index.

TABLE table name
Updates both the table statistics for the specified table, and also index statistics f
indexes in that table.

DATABASE
Updates the statistics for all indexes and tables in the database. If you use this o
you cannot enter test statistics with the SET option.

SET
To enter user-modified statistics, use this clause in conjunction with either one o
following system catalog columns or the DISTINCTCOUNT index key clause.
SQLBase then updates the specified value in the system catalog, as if the values
real data.

system catalog column name=expression
Set a test value here for the system catalog column describing the index or table
specified in the ON clause. The value must evaluate to a constant. You enter a co
from either the SYSADM.SYSTABLES or SYSADM.SYSINDEXES table,
3-142 SQL Language Reference

UPDATE STATISTICS

he
depending on whether you are entering statistics for a table or index. SQLBase
updates the specified system catalog table with this value.

If you are updating statistics for a table, set a value for one of the following
SYSADM.SYSTABLES columns:

• ROWCOUNT

• PAGECOUNT

• ROWPAGECOUNT

• LONGPAGECOUNT

If you are updating statistics for an index, set a value for one of the following
SYSADM.SYSINDEXES columns:

• HEIGHT

• LEAFCOUNT

• CLUSTERCOUNT

• PRIMPAGECOUNT

• OVFLPAGECOUNT

• INDEXPAGECOUNT

Note: The PRIMPAGECOUNT and OVFLPAGECOUNT columns are applicable only to
clustered hashed indexes.

Read Appendix A in the Database Administrator’s Guide for complete descriptions
of these columns.

DISTINCTCOUNT (index key)
Use this clause to enter test values for the number of distinct index key values. T
value must be a constant.

The index key parameter is a valid prefix key of the index you specified with the
INDEX index name clause. The syntax for index key is:

column-name [, column-name] ...

See the following section for an example.
SQL Language Reference 3-143

Chapter 3 SQL Command Reference

d

ex
Example
The following example updates statistics on the CUSTOMER_ID index:

UPDATE STATISTICS ON INDEX CUSTOMER_ID;

The following example sets values for the ROWCOUNT, ROWPAGECOUNT, an
LONGPAGECOUNT columns in SYSADM.SYSTABLES for the EMPLOYEE
table. Other statistics are unaffected.

UPDATE STATISTICS ON TABLE employee
SET rowcount = 5000, rowpageount=200,
longpagecount = 0;

The following command sets some of the index statistics for the index
emp_name_indx on the table EMPLOYEE. This is a BTree index.

UPDATE STATISTICS ON INDEX emp_name_indx
SET height = 2, leafcount=100, clustercount = 200;

The following example updates statistics for an index key. Assuming that the ind
EMP_NAME_IDX is a two column key, with 5000 distinct values for the key
(LNAME, FNAME) and 4000 distinct values for (LNAME) only, the following
alternatives can be used to define the distinct value.

UPDATE STATISTICS ON INDEX EMP_NAME_IDX SET
DISTINCTCOUNT (LNAME, FNAME) = 5000;

UPDATE STATISTICS ON INDEX EMP_NAME_IDX SET
DISTINCTCOUNT(LNAME) = 4000;

or

UPDATE STATISTICS ON INDEX EMP_NAME_IDX SET
DISTINCTCOUNT(LNAME, FNAME) = 5000,
DISTINCTCOUNT(LNAME) = 4000;

See also
CREATE INDEX
SET TIME (SQLTalk command)
3-144 SQL Language Reference

ch

s.

re

SQL Language Reference
Chapter 4

SQL Function Reference

SQLBase has a set of functions for manipulating strings, dates and numbers. Ea
function is described in this chapter.

A function returns a value that is derived by applying the function to its argument

Functions are classified as:

• Aggregate functions

• String functions

• Date and time functions

• Logical functions

• Special functions

• Math functions

• Finance functions

SQLBase provides both DB2-compatible and other functions. Functions which a
extensions of DB2 and are not compatible with DB2 are prefixed with an "at sign"
(@).
SQL Language Reference 4-1

Chapter 4 SQL Function Reference

rms to
e to

dard

 the

ubset

ime
erts

eld
as 0.
Data type conversions in functions
In most cases, functions accept any data type as an argument if the value confo
the operation that function performs. SQLBase will automatically convert the valu
the required data type.

For example, in functions that perform arithmetic operations, arguments can be
character data types if the value forms a valid numeric value (only digits and stan
numeric editing characters).

For date/time functions, an argument can be a character or numeric data type if
value forms a valid date/time value.

Aggregate functions
An aggregate function computes one summary value from a group of values.

Aggregate functions can be applied to the data values of an entire table or to a s
of the rows in a table.

They may be nested up to two levels deep.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/t
value (only digits and standard editing characters). SQLBase automatically conv
the value to the required data type.

You cannot use aggregate functions while in restriction mode.

SQLBase supports the following aggregate functions:

AVG
COUNT
MAX
@MEDIAN
MIN
SUM
@SDV

String functions
String functions return information about character data types.

The output of a string function is always a string or a number. Some functions yi
TRUE or FALSE. TRUE is expressed as the number 1 and FALSE is expressed

You can nest string functions within one another, so that the output of the inner
function is used as an argument to the outer function.
4-2 SQL Language Reference

Date/Time functions

nd.
lumn

ime
SQLBase supports the following string functions:

@CHAR
@CODE
@DECODE
@EXACT
@FIND
@LEFT
@LENGTH
@LOWER
@MID
@NULLVALUE
@PROPER
@REPEAT
@REPLACE
@RIGHT
@SCAN
@STRING
@SUBSTRING
@TRIM
@UPPER
@VALUE

String functions cannot be used in an ORDER BY clause of the SELECT comma
Instead, specify the string function in the select list and then use the select list co
number in the ORDER BY clause.

Date/Time functions
These functions return information about date/time data values or return a date/t
result. SQLBase supports the following date/time functions:

@DATE
@DATETOCHAR
@DATEVALUE
@DAY
@HOUR
@MICROSECOND
@MINUTE
@MONTH
@MONTHBEG
@NOW
@QUARTER
@QUARTERBEG
SQL Language Reference 4-3

Chapter 4 SQL Function Reference

 the

fault
is

sults.

(only
vert
@SECOND
@TIME
@TIMEVALUE
@WEEKBEG
@WEEKDAY
@YEAR
@YEARBEG
@YEARNO

For date/time functions, an argument can be a character or numeric data type if
value forms a valid date/time value.

When a portion of the input date/time string is missing, SQLBase supplies the de
of 0, which converts to December 30, 1899 12:00:00 AM. Functions behaving th
way are @DATE, @DATEVALUE, @NOW, @TIME and @TIMEVALUE.

Math functions
These functions take single numeric values as arguments and return numeric re

The mathematical functions are similar to Microsoft C Library math functions.
Trigonometric functions are based on radians instead of degrees.

Arguments can be character data types if the value forms a valid numeric value
digits and standard numeric editing characters). SQLBase will automatically con
the value to the required data type.

SQLBase supports the following math functions:

@ABS
@ACOS
@ASIN
@ATAN
@ATAN2
@COS
@EXP
@FACTORIAL
@INT
@LN
@LOG
@MOD
@PI
@ROUND
@SIN
@SQRT
@TAN
4-4 SQL Language Reference

Finance functions

(only
s the

ns is
Finance functions
The finance functions are similar to Microsoft C Library math functions.

Arguments can be character data types if the value forms a valid numeric value
digits and standard numeric editing characters). SQLBase automatically convert
value to the required data type.

SQLBase supports the following finance functions:

@CTERM
@FV
@PMT
@PV
@RATE
@SLN
@SYD
@TERM

Logical functions
Logical functions return a value based on a condition. The result of these functio
always 1 or 0 (TRUE = 1, FALSE = 0).

SQLBase supports the following logical functions:

@IF
@ISNA

Special functions
These functions provide special capabilities.

@CHOOSE
@DECIMAL
@DECODE
@HEX
@LICS
SQL Language Reference 4-5

Chapter 4 SQL Function Reference
SQLBase function summary

Function Name Description

AVG Average of items.

COUNT Count of items.

MAX Maximum of items.

MIN Minimum of items.

SUM Sum of items.

@ABS Absolute value.

@ACOS Arc-cosine.

@ASIN Arc-sine.

@ATAN Two-quadrant arc-tangent.

@ATAN2 Four-quadrant arc-tangent.

@CHAR ASCII character for a decimal code.

@CHOOSE Select a value from a list based on a correlation.

@CODE ASCII decimal code of the first character in a string.

@COS Cosine.

@CTERM Compounding periods to earn a future value.

@DATE Convert to a date.

@DATETOCHAR Edit a date value.

@DATEVALUE Edit a date value.

@DAY Day of the month.

@DECIMAL Decimal value of a hexadecimal string.

@DECODE Returns a string, given an expression.

@EXACT Compare two strings.

@EXP Natural logarithmic base (e) raised to the x power.
4-6 SQL Language Reference

SQLBase function summary
@FACTORIAL Factorial.

@FIND Position within string1 that occurs in string2.

@FV Future value of a series of equal payments.

@HEX Hexadecimal string of a decimal number.

@HOUR Hour of the day.

@IF Test number and return 1 if TRUE or 2 if FALSE.

@INT Integer portion.

@ISNA Return TRUE if NULL.

@LEFT Left-most substring.

@LENGTH Length of a string.

@LICS Sort using international character set.

@LN Natural logarithm (base e) of (positive) x.

@LOG Positive base-10 logarithm of x.

@LOWER Upper-case to lower-case.

@MEDIAN Middle value in a set of items.

@MICROSECOND Microsecond value.

@MID Return a string, starting with the character at start-
position.

@MINUTE Minute of the hour.

@MOD Modulo (remainder) of x/y.

@MONTH Month of the year.

@MONTHBEG First day of the month.

@NOW Current date and time.

@NULLVALUE Return a string or number specified by y if x is NULL.

@PI Value Pi (π = 3.14159265).

@PMT Periodic payments needed to pay off loan principal.

Function Name Description
SQL Language Reference 4-7

Chapter 4 SQL Function Reference

r
@PROPER Convert first character of each word in a string to
uppercase and make other characters lowercase.

@PV Present value of a series of equal payments.

@QUARTER Number that represents the quarter.

@QUARTERBEG First day of the quarter.

@RATE Interest rate for an investment to grow to a future value.

@REPEAT Concatenates a string with itself for the specified numbe
of times.

@REPLACE Replace characters in a string.

@RIGHT Rightmost substring.

@ROUND Round a number.

@SCAN Search a string for a pattern.

@SDV Standard deviation.

@SECOND Second of the minute.

@SIN Sine.

@SLN Straight-line depreciation.

@SQRT Square root.

@STRING Convert a number to a string.

@SUBSTRING Return a portion of a string.

@SYD Sum-of-the-Years'-Digits depreciation.

@TAN Tangent.

@TERM Number of payment periods for an investment.

@TIME Return a date/time value given the hour, minute, and
second.

@TIMEVALUE Return a date/time value, given HH:MM:SS [AM or
PM].

@TRIM Strip leading and trailing blanks; compress multiple
spaces.

Function Name Description
4-8 SQL Language Reference

AVG

ment
(only
alue
AVG

This function returns the average of the values in the argument.

The data type of the argument may be numeric, date/time, or character. If an argu
is a character data type, the value must form a valid numeric or date/time value
digits and standard editing characters). SQLBase will automatically convert the v
to the required data type.

The data type of the result is numeric.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified,
duplicates are not eliminated.

Null values are ignored.

Example

SELECT AVG (SALARY) FROM EMPSAL;
This example finds the total salary for each department, the average salary, the
number of people in each department.

SELECT DEPTNO, SUM(SALARY), AVG(SALARY), COUNT(SALARY)
FROM EMP.EMPSAL WHERE EMP.EMPNO = EMPSAL.EMPNO GROUP BY
DEPTNO;

@UPPER Lower-case to upper-case.

@VALUE Convert a character string with digits to a number.

@WEEKBEG Monday of the week.

@WEEKDAY Day of the week.

@YEAR The year relative to 1900.

@YEARBEG First day of the year.

@YEARNO Calendar year.

Function Name Description

AVG

DISTINCT

ALL(

(expression
SQL Language Reference 4-9

Chapter 4 SQL Function Reference

ll

n

ime
COUNT

This function returns a count of items.

COUNT(*) always returns the number of rows in the table. Rows that contain nu
values are included in the count.

COUNT(column-name) returns the number of column values.

COUNT(DISTINCT column-name) filters out duplicate column values.

LONG VARCHARs can be counted.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified,
duplicates are not eliminated.

Example

How many rows are in each department of the EMP table?

SELECT DEPTNO, COUNT(*) FROM EMP
GROUP BY DEPTNO;

MAX

This function returns the maximum value in the argument, which is a set of colum
values.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/t

COUNT

(

(

expression
DISTINCT

(*)

MAX

DISTINCT

ALL(

(expression
4-10 SQL Language Reference

MIN

n

ment
(only
alue

value (only digits and standard editing characters). SQLBase will automatically
convert the value to the required data type.

The data type of the result is the same as the input argument.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Null values are ignored.

Example

This example finds the highest and the lowest salary.

SELECT MAX(SALARY), MIN(SALARY) FROM EMPSAL;

MIN

This function returns the minimum value in the argument, which is a set of colum
values.

The data type of the argument may be numeric, date/time, or character. If an argu
is a character data type, the value must form a valid numeric or date/time value
digits and standard editing characters). SQLBase will automatically convert the v
to the required data type.

The data type of the result is the same as the input argument.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Null values are ignored.

Example

This example finds the highest and the lowest salary.

SELECT MAX(SALARY), MIN(SALARY) FROM EMPSAL;

MIN

DISTINCT

ALL(

(expression
SQL Language Reference 4-11

Chapter 4 SQL Function Reference

umn

ime

SUM

This function returns the sum of the values in the argument, which is a set of col
values.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/t
value (only digits and standard editing characters). SQLBase will automatically
convert the value to the required data type.

The data type of the result is the same as the input argument.

The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Null values are ignored.

Example

Calculate the total salary.

SELECT SUM (SALARY) FROM EMPSAL;

This example totals the salary by department.

SELECT DEPTNO, SUM (SALARY), AVG (SALARY), COUNT
(SALARY) FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO GROUP BY DEPTNO;

@ABS

@ABS(x)

This function returns the absolute value of x.

expression

DISTINCT

ALLSUM (

(

4-12 SQL Language Reference

@ACOS

:

Example

The following expression returns 1.1:

@ABS(-1.1)

The following expression returns all column entries as positive (absolute) values

SELECT @ABS(IVAL) FROM GEOM;

@ACOS

@ACOS (X)

This function returns the arc-cosine of x in radians. x must be in the range [-1, 1].

Example

The following expression returns 1.47062891:

@ACOS(.1)

The following expression returns the arc-cosine of all PVAL column entries in the
GEOM table:

SELECT @ACOS(PVAL) FROM GEOM;

@ASIN

@ASIN(x)

This function returns the arc-sine of x in radians. x must be in the range [-1, 1].

Example

The following expression returns .100167421:

@ASIN(.1)

The following expression returns the arc-sine of all PVAL column entries in the
GEOM table:
SQL Language Reference 4-13

Chapter 4 SQL Function Reference

e

t be
SELECT @ASIN(PVAL) FROM GEOM;

@ATAN

@ATAN (x)

This function returns the arc-tangent of x in radians.

Example

The following expression returns .099668652:

@ATAN(.1)

The following expression returns the arc-tangent of all PVAL column entries in th
GEOM table:

SELECT @ATAN(PVAL) FROM GEOM;

@ATAN2

@ATAN2(x, y)

This function returns the arc-tangent of y/x.

The order of arguments is the opposite of C [atan2(y,x)]. The value of X may no
zero.

Example

The following expression returns .785398163:

@ATAN2(.1,.1)

The following expression returns the arc-tangent of all QVAL and PVAL column
entries in the GEOM table:

SELECT @ATAN2(PVAL,QVAL) FROM GEOM;
4-14 SQL Language Reference

@CHAR

et.

ctor-

s the
he
@CHAR

@CHAR (number)

This function returns the ASCII character for a decimal code. If the argument is
outside the ASCII character set range, results depend on the display character s

Example

The following expression returns the letter 'A':

@CHAR(65)

@CHOOSE

@CHOOSE (selector number, value 0, value 1, ..., value n)

This function selects a value from a list based on a correlation between the sele
number and the sequence number of a value in the list.

You must specify a selector-number and at least one value. A negative selector-
number maps to the first value in the list (value 0). If the selector number exceed
number of values in the list, the result is the last value in the list. Every value in t
list is cast to the data type of the first value (value 0).

Example

@CHOOSE(SEL_NUM, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’)

This example finds the day of the week on which each employee was hired.

Selector
number

Values

0 A

-1 A

2 C

12 G
SQL Language Reference 4-15

Chapter 4 SQL Function Reference

e

sent
SELECT @CHOOSE(@WEEKDAY(HIREDATE), 'Sat','Sun', 'Mon',
'Tue', 'Wed', 'Thu', 'Fri'), @YEAR(HIREDATE)
FROM EMP WHERE @YEARNO(HIREDATE) > 1990;

@CODE

@CODE(string)

This function returns the ASCII decimal code of the first character in a string.

Example

The following expression returns the number 65, which is the code for 'A':

@CODE('ABC')

@COS

@COS(x)

This function returns the cosine of x, where x is in radians.

Example

The following expression returns .995004165:

@COS(.1)

The following SQL statement returns the cosine of all PVAL column entries in th
GEOM table:

SELECT @COS(PVAL) FROM GEOM;

@CTERM

@CTERM(int, fv, pv)

This function returns the number of compounding periods to an investment of pre
value pv to grow to a future value fv, earning a fixed periodic interest rate int.
4-16 SQL Language Reference

@DATE

00

@CTERM uses this formula to compute the term:

Example

The following expression:

@CTERM(.10/12,20000,10000)

returns 83.5237559, which is the number of months it will take to double a $10,0
investment that earns a 10% annual interest rate compounded monthly.

@DATE

@DATE(year number, month number, day number)

This function converts the arguments to a date.

The data type of the result is date.

Example

The following expression returns 31-JAN-1996:

@DATE(1996,1,31)

@DATETOCHAR

@DATETOCHAR(date, picture)

This function accepts a DATE, TIME, or DATETIME data type value (specified in
date), applies the editing specified by picture and returns the edited value. For an
explanation of picture, see the SQLTalk COLUMN command.

The data type of the result is character.

ln (fv/pv) fv = future value
ln (1+int) pv = present value

int = periodic interest rate
ln = natural logarithm
SQL Language Reference 4-17

Chapter 4 SQL Function Reference

f a
yyyy

Example

This SQL statement returns a string in the form 05-07-96:

SELECT @DATETOCHAR(SYSDATETIME, 'dd-mm-yy') FROM ...

@DATEVALUE

@DATEVALUE(date string)

This function converts the argument to a date.

@DATEVALUE is like @DATE, except its argument is a date string, or a portion o
date string. It converts the date string in any standard date string form (dd-mon-
hh:mm:ss) to the date portion of the string.

The data type of the result is date.

Example

If a DATE column called APPT contains '18-JAN-1996 10:14:27 AM', then the
following expression returns 18-JAN-1996:

@DATEVALUE(APPT)

@DAY

@DAY(date)

This function returns a number between 1 and 31 that represents the day of the
month.

Example

If BIRTHDATE contains '12/28/46', then the following expression returns 28:

@DAY(BIRTHDATE)
4-18 SQL Language Reference

@DECIMAL

.
s

tch is
@DECIMAL

@DECIMAL(string)

This function returns the decimal equivalent for the given hexadecimal number.

Example

The following expression returns 10:

@DECIMAL('A')

@DECODE

@DECODE(expr, search1, return1, search2, return2, ..., [default])

If expr equals any search, this function returns the search’s corresponding return; if
not, it returns default. If default is omitted and there is no match, NULL is returned
The expr may be any data type; search must be the same type. The value returned i
forced to the same datatype as the first return.

Example

This returns employees’ names and their department name and number. If no ma
found, "Other" is returned:

SELECT LNAME, @DECODE (DEPTNO, 2500, ‘R&D’, 2600,
‘SALES’, ‘OTHER’), DEPTNO FROM EMP;

LNAME @DECODE(DEPTNO...)DEPTNO
Carver R&D 2500
Murphy OTHER 2400
Johnson R&D 2500
Drape SALES 2600
Foghorn R&D 2500
SQL Language Reference 4-19

Chapter 4 SQL Function Reference

.

@EXACT

@EXACT(string1, string2)

This function compares two strings or numbers.

If the strings are identical, the function returns 1; otherwise the function returns 0

This function is case sensitive.

Example

The following expression returns 0:

@EXACT('TRUDY', 'NOAH')

If the NAME column contains the value 'TRUDY', then the following expression
returns 1:

@EXACT('TRUDY', NAME)

The following expressions return 1:

@EXACT(2.3, 2.3)

@EXACT(3+4, 7)

@EXP

@EXP(x)

This function returns the natural logarithmic base (e) raised to the x power.

Example

The following expression returns 22026.4658:

@EXP(10)

The following SQL statement returns the natural logarithmic base of all PVAL
column entries in the GEOM table:

SELECT @EXP(PVAL) FROM GEOM;
4-20 SQL Language Reference

@FACTORIAL

he

acter
' is

long.
The following example raises 2 to the 10th power (2^10):

@EXP (10 * @LN(2))

@FACTORIAL

@FACTORIAL(x)

This function computes the factorial of the argument. The argument must be an
INTEGER (no decimal portion) and non-negative (>= 0). The upper limit is 69.

Example

The following expression returns 3628800:

@FACTORIAL(10)

The following SQL statement returns the factorial of all WVAL column entries in t
GEOM table:

SELECT @FACTORIAL(WVAL) FROM GEOM;

@FIND

@FIND(string1, string2, start position)

This function returns the position (offset) within string1 that occurs in string2. The
search begins with the character at start-pos in string2. If the pattern is not found, the
function returns -1.

The starting position represents an offset within a string argument. The first char
in a string is at position 0. For example, in the string 'RELATION', the character 'R
at position 0, the final character 'N' is at position 7, and the string is 8 characters
In other words, the last position in string1 is calculated by subtracting one from the
length of string1.

Example

The following expression returns 5:

@FIND('TRIPLETT', 'NOAH TRIPLETT', 0)
SQL Language Reference 4-21

Chapter 4 SQL Function Reference

ing
.

te
@FV

@FV(pmt, int, n)

This function returns the future value of a series of equal payments (pmt) earning
periodic interest rate (int) over the number of periods (n).

@FV uses this formula to compute the future value of an ordinary annuity:

Ordinary Annuity Example

The expression:

@FV(2000,.10,20)

returns $114,549.999, which is the value of an account after 20 years of deposit
$2,000 at the end of each year, at an annually compounded interest rate of 10%
Interest payments and deposits are transacted on the last day of each year.

Annuity Due Example

The following expression:

@FV(2000,.10,20) * (1+.10)

returns $126,004.999, which is the value of an annuity amount due annually. No
that this is 10% over the ordinary annuity calculated in the above example.

@HEX

@HEX(number)

This function returns the hexadecimal equivalent for the given decimal number.

pmt * (1 + int)n - 1 pmt = periodic payment
int int = periodic interest rate

n = number of periods
4-22 SQL Language Reference

@HOUR

 day.

type
Example

The following expression returns 'A':

@HEX(10)

@HOUR

@HOUR(date)

This function returns a number between 0 and 23 that represents the hour of the

Example

The following expression returns 15:

@HOUR(12/28/46 03:52:00 PM)

@IF

@IF(number, value1, value2)

This function tests number and returns value1 if it is TRUE (non-zero) or value2 if it
is FALSE (zero).

A non-zero argument evaluates to TRUE, and an argument of zero evaluates to
FALSE. A null value evaluates to FALSE. Each value in the list is cast to the data
of the first value.

Example

The following expression returns 'M' if TEST1 is non-zero, and 'F' if TEST1 is 0:

@IF(TEST1,'M','F')
SQL Language Reference 4-23

Chapter 4 SQL Function Reference

ies

 0
@INT

@INT(x)

This function returns the integer portion of x. If x is negative, the decimal portion is
truncated.

Example

The following expression returns 10:

@INT(10.2)

The following expression returns -3:

@INT(-3.7)

The following SQL statement returns the integer portion of all PVAL column entr
in the GEOM table:

SELECT @INT(PVAL) FROM GEOM;

@ISNA

@ISNA(argument)

This function returns 1 (TRUE) if the argument is NULL. Any other value returns
(FALSE). The argument can be any value, including a column value.

Example

The following expression returns 1:

@ISNA (NULL)

The following expression returns 0:

@ISNA('hello')
4-24 SQL Language Reference

@LEFT

st)

rs in

s

@LEFT

@LEFT(string, length)

This function returns a string for the specified length, starting with the first (leftmo
character in the string.

Example

The following expression returns 'P8':

@LEFT('P8-196', 2)

The following example shows how to use the @LEFT function in a SELECT
statement:

SELECT * FROMSYSCOLUMNS
WHERE @LEFT (TBNAME, 3) ! = ’SYS’;

@LENGTH

@LENGTH(string)

This function returns the length of a string. The length is the number of characte
the string.

You cannot use this function to find the length of a LONG VARCHAR column.

Example

If the value in the column EMPNAME is 'JOYCE', the following expression return
the number 5:

@LENGTH(EMPNAME)

The following example finds the entries in the EMP table where the length of the
LNAME column exceeds 10 characters.

SELECT EMPNO, @SUBSTRING (LNAME, 0, 10)
FROM EMP WHERE @LENGTH (LNAME) > 10
SQL Language Reference 4-25

Chapter 4 SQL Function Reference

 of
@LICS

@LICS(string)

This function uses an international character set for sorting its argument, instead
the ASCII character set. This is useful for sorting characters not in the English
language. The translation table for this character set is shown below.

Example

The following expression returns ‘NXTRI\’ @LICS ('Murphy')

SELECT @LICS(LNAME) FROM EMP ORDER BY 1;

Code Character Description

0 0 Ctrl @

1 1 Ctrl A

2 2 Ctrl B

3 3 Ctrl C

4 4 Ctrl D

5 5 Ctrl E

6 6 Ctrl F

7 7 Ctrl G

8 8 Ctrl H

9 9 Ctrl I

10 10 Ctrl J line feed

11 11 Ctrl K

12 12 Ctrl L form feed

13 13 Ctrl M return

14 14 Ctrl N

15 15 Ctrl O
4-26 SQL Language Reference

@LICS
16 16 Ctrl P

17 17 Ctrl Q

18 18 Ctrl R

19 19 Ctrl S

20 20 Ctrl T

21 21 Ctrl U

22 22 Ctrl V

23 23 Ctrl W

24 24 Ctrl X

25 25 Ctrl Y

26 26 Ctrl Z

27 27 [Esc]

28 28 FS

29 29 GS

30 30 RS

31 31 US

32 32 Space

33 33 !

34 34 "

35 35 #

36 36 $

37 37 %

38 38 &

39 39 Apostrophe

40 40 (

41 41)

Code Character Description
SQL Language Reference 4-27

Chapter 4 SQL Function Reference
42 42 *

43 43 +

44 44

45 45 -

46 46 .

47 47 /

48 48 0

49 49 1

50 50 2

51 51 3

52 52 4

53 53 5

54 54 6

55 55 7

56 56 8

57 57 9

58 58 :

59 59 ;

60 60 <

61 61 =

62 62 >

63 63 ?

64 64 @

65 65 A

66 66 B

67 67 C

Code Character Description
4-28 SQL Language Reference

@LICS
68 68 D

70 69 E

71 70 F

72 71 G

73 72 H

74 73 I

75 74 J

76 75 K

77 76 L

78 7 7 M

79 78 N

81 79 O

82 80 P

83 81 Q

84 82 R

85 83 S

87 84 T

88 85 U

89 86 V

90 87 W

91 88 X

92 89 Y

93 90 Z

99 91 [

100 92 \

101 93]

Code Character Description
SQL Language Reference 4-29

Chapter 4 SQL Function Reference
102 94 ^

103 95 _

104 96 `

65 97 a

66 98 b

67 99 c

68 100 d

70 101 e

71 102 f

72 103 g

73 104 h

74 105 i

75 106 j

76 107 k

77 108 l

78 109 m

79 110 n

81 111 o

82 112 p

83 113 q

84 114 r

85 115 s

87 116 t

88 117 u

89 118 v

90 119 w

Code Character Description
4-30 SQL Language Reference

@LICS
91 120 x

92 121 y

93 122 z

105 123 {

106 124 |

107 125 }

108 126 ~ (tilde)

109 127 DEL

110 128 Uppercase grave

111 129 Uppercase acute

112 130 Uppercase circumflex

113 131 Uppercase umlaut

114 132 Uppercase tilde

115 133

116 134

117 135

118 136

119 137

120 138

121 139

122 140

123 141

124 142

125 143

126 144 Lowercase grave

127 145 Lowercase acute

Code Character Description
SQL Language Reference 4-31

Chapter 4 SQL Function Reference
128 146 Lowercase circumflex

129 147 Lowercase umlaut

130 14 8 Lowercase tilde

131 149 Lowercase i without dot

132 150 Ordinal indicator

133 151 Begin attribute (display)

134 152 End attribute (display only)

135 153 Unknown character (display)

136 154 Hard space (display only)

137 155 Merge character (display)

138 156

139 157

140 158

141 159

142 160 Dutch Guilder

143 161 Inverted exclamation mark

144 162 Cent sign

145 163 Pound sign

146 164 Low opening double quotes

147 165 Yen sign

148 166 Pesetas sign

149 167 Section sign

150 168 General currency sign

151 169 Copyright sign

152 170 Feminine ordinal

153 171 Angle quotation mark left

Code Character Description
4-32 SQL Language Reference

@LICS
154 1 72 Delta

155 173 Pi

156 174 Greater-than-or-equals

157 175 Divide sign

158 176 Degree sign

159 177 Plus/minus sign

160 178 Superscript 2

161 179 Superscript 3

162 180 Low closing double quotes

163 181 Micro sign

164 182 Paragraph sign

165 183 Middle dot

166 184 Trademark sign

167 185 Superscript 1

168 186 Masculine ordinal

16 9 187 Angle quotation mark right

170 188 Fraction one quarter

171 189 Fraction one-half

172 190 Less-than-or -equals

173 191 Inverted question mark

65 192 Uppercase A with grave

65 193 Uppercase A with acute

65 194 Uppercase A with circumflex

65 195 Uppercase A with tilde

65 196 Uppercase A with umlaut

65 197 Uppercase A with ring

Code Character Description
SQL Language Reference 4-33

Chapter 4 SQL Function Reference
97 197 Uppercase A with ring

94 198 Uppercase AE with ligature

67 199 Uppercase C with cedilla

70 200 Uppercase E with grave

70 201 Uppercase E with acute

70 202 Uppercase E with circumflex

70 203 Uppercase E with umlaut

74 204 Uppercase I with grave

74 205 Uppercase I with acute

74 206 Uppercase I with circumflex

74 207 Uppercase I with umlaut

69 208 Uppercase eth (Icelandic)

80 209 Uppercase N with tilde

81 210 Uppercase O with grave

81 211 Uppercase O with acute

81 212 Uppercase O with circumflex

81 213 Uppercase O with tilde

81 214 Uppercase O with umlaut

80 215 Uppercase OE with diphthong

96 216 Uppercase O with slash

88 217 Uppercase U with grave

88 218 Uppercase U with acute

88 219 Uppercase U with circumflex

88 220 Uppercase u with umlaut

92 221 Uppercase Y with umlaut

98 222 Uppercase thorn (Icelandic)

Code Character Description
4-34 SQL Language Reference

@LICS
86 223 Lowercase German sharp s

65 224 Lowercase a with grave

65 225 Lowercase a with acute

65 226 Lowercase a with circumflex

65 227 Lowercase a with tilde

65 228 Lowercase a with umlaut

65 229 Lowercase a with ring

95 230 Lowercase ae with ligature

6 7 231 Lowercase c with cedilla

70 232 Lowercase e with grave

70 233 Lowercase e with acute

70 234 Lowercase e with circumflex

70 235 Lowercase e with umlaut

74 236 Lowercase i with grave

74 237 Lowercase i with acute

74 238 Lowercase i with circumflex

74 239 Lowercase i with umlaut

69 240 Lowercase eth (Icelandic)

80 241 Lowercase n with tilde

81 242 Lowercase o with grave

81 243 Lowercase o with acute

81 244 Lowercase o with circumflex

81 245 Lowercase o with tilde

81 246 Lowercase o with umlaut

80 247 Lowercase oe with diphthong

81 248 Lowercase o with slash

Code Character Description
SQL Language Reference 4-35

Chapter 4 SQL Function Reference
88 249 Lowercase u with grave

88 250 Lowercase u with acute

88 251 Lowercase u with circumflex

88 252 L owercase u with umlaut

92 253 Lowercase y with umlaut

174 254 Lowercase thorn (Icelandic)

Code Character Description
4-36 SQL Language Reference

@LN
@LN

@LN(x)

This function returns the natural logarithm (base e) of (positive) x. The log of a zero
or negative argument is handled as an overflow error.

Example

The following expression returns -2.3025851:

@LN(.1)

The following SQL statement returns the natural logarithm of all PVAL column
entries in the GEOM table:

SELECT @LN(PVAL) FROM GEOM;

@LOG

@LOG(x)

This function returns the (positive) base-10 logarithm of x. The log of a zero or
negative argument is handled as an overflow error.

Example

The following expression returns -1:

@LOG(.1)

The following SQL statement returns the natural logarithm of all PVAL column
entries in the GEOM table:

SELECT @LOG(PVAL) FROM GEOM;
SQL Language Reference 4-37

Chapter 4 SQL Function Reference

ues

ime
erts
 input

the
@LOWER

@LOWER(string)

This function converts upper-case alphabetic characters to lower-case. Other
characters are not affected.

Example

The following expression returns the string 'joyce':

@LOWER('JOYCE')

@MEDIAN

This function returns the middle value in a set of values. An equal number of val
lie above and below the middle value.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/t
value (only digits and standard editing characters). SQLBase automatically conv
the value to the required data type. The data type of the result is the same as the
argument.

@MEDIAN finds the middle value with this formula:

(n + 1) / 2

For example, if there are 5 items, then the middle item is the third:

(5 + 1) / 2 = 6 / 2 = 3

For example, if there are 6 items, then the middle item is between the third and
fourth:

(6 + 1) / 2 = 7 / 2 = 3.5

The median is the arithmetic average of the third and fourth values.

expression

DISTINCT

ALLMEDIAN (

(

4-38 SQL Language Reference

@MICROSECOND

sult
The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated. Be cautious when using DISTINCT because the re
may loose its statistical meaning.

Null values are ignored.

Example

This example finds the middle salary for department 2500.

SELECT @MEDIAN(SALARY) FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO AND DEPTNO=2500;

@MICROSECOND

@MICROSECOND(date)

This function returns the microsecond value in a DATETIME or TIME value. If a
microsecond quantity was not specified on input, zero is returned.

Example

The following expression returns 500000:

@MICROSECOND(12:44:01:500000)

@MID

@MID(string, start-pos, length)

This function returns a string of specified length from a string, starting with the
character at start-pos. This function is similar to @SUBSTRING, except that it
requires the third argument.

Example

The following expression returns the second character from a string, a '9':

@MID('P9-186', 1, 1)
SQL Language Reference 4-39

Chapter 4 SQL Function Reference

the

he
@MINUTE

@MINUTE(date)

This function returns a number between 0 and 59 that represents the minute of
hour.

Example

The following expression returns 52:

@MINUTE(12/28/46 03:52:00 PM)

@MOD

@MOD(x, y)

This function returns the modulo (remainder) of x/y. Division by zero is an overflow
error.

Example

The following expression returns 5:

@MOD(5,10)

The following SQL statement returns the remainder of all PVAL/WVAL column
entries in the GEOM table:

SELECT @MOD(PVAL,WVAL) FROM GEOM;

@MONTH

@MONTH(date)

This function returns a number between 1 and 12 that represents the month of t
year.
4-40 SQL Language Reference

@MONTHBEG

s

ystem

uld
Example

The following expression returns 10 which represents October:

@MONTH(25-OCT-96)

@MONTHBEG

@MONTHBEG(date)

This function returns the first day of the month represented by the date.

Example

If the value in BIRTHDATE is '16-FEB-1947', then the following expression return
01-FEB-1947:

@MONTHBEG(BIRTHDATE)

@NOW

@NOW

This function returns the current date and time. It returns the same value as the s
keyword SYSDATETIME.

For example, if the date and time is January 12, 1996, 3:15 PM, this function wo
return 12-JAN-1996 03:15:00 PM.

@NULLVALUE

@NULLVALUE(x, y)

This function returns one of the following values specified by y if x is null:

• string

• number
SQL Language Reference 4-41

Chapter 4 SQL Function Reference

ble

 but
• date (if the date is a constant. If you try to specify a date by a bind varia
such as 1:, the bind variable is read literally, since it is treated as a CHAR
value.)

The data type of the returned value is the same as the data type of the x argument.

SQLBase converts the second parameter (y argument) to the first parameter’s data
type (x argument). An error results if SQLBase cannot convert this correctly.

Example

The following example returns "N/A" when the column is null:

@NULLVALUE(FNAME, 'N/A')

The following SQL statement:

SELECT @NULLVALUE(DEPTNO,'NOT ASSIGNED') FROM EMP;

returns the string 'NOT ASSIGNED' if the DEPTNO column value is null, and
DEPTNO is a character column. If the column is numeric, the replacement value
must be a number. For example, the following SQL statement:

SELECT @NULLVALUE(DEPTNO,9999) FROM EMP;

returns 9999 if a null exists in the DEPTNO column. DEPTNO is a numeric data
type.

@PI

@PI

This function returns the value Pi (3.14159265). This function has no arguments
could be used as a numeric constant in a nested set of math functions.

Example

The following expression returns 31.4159265:

10 * @PI

The following SQL statement returns all PVAL column entries multiplied by the
value Pi in the GEOM table:

SELECT (PVAL) * @PI FROM GEOM;
4-42 SQL Language Reference

@PMT

an

nd
@PMT

@PMT(principal, interest, periods)

This function returns the amount of each periodic payment needed to pay off a lo
principal (prin) at a periodic interest rate (int) over a number of periods (n).

@PMT uses this formula:

Example

The following expression:

@PMT(50000,.125/12,30 * 12)

returns $533.628881 which is the value of a monthly mortgage payment for a
$50,000, 30-year mortgage at an annual interest rate of 12.5%.

@PROPER

@PROPER(string)

This function converts the first character of each word in a string to uppercase a
other characters to lower case.

The argument must be a CHAR or VARCHAR data type.

Example

The following expressions both return 'Johann Sebastian Bach':

@PROPER('JOHANN SEBASTIAN BACH')

@PROPER(‘johann sebastian bach’)

print * int prin = principal

(1 - (1 + int)-n) int = periodic interest rate

n = number of periods; term
SQL Language Reference 4-43

Chapter 4 SQL Function Reference

 of

@PV

@PV(pmt, int, n)

This function returns the present value of a series of equal payments (pmt) discounted
at periodic interest rate (int) over the number of periods (n).

This function is useful when trying to decide the best way to receive a payment
option, over time or immediately.

@PV uses this formula:

Ordinary Annuity Example

The following expression:

@PV(50000,.12,20)

returns $373,472.181 which is what $1,000,000 paid equally ($50,000 at the end
each year) over 20 years at 12% is worth today.

Annuity Due Example

The following expression:

@PV(50000,.12,20) * (1+.12)

returns $418,288.843, which is what $1,000,000 paid equally ($50,000 at the
beginning of each year) over 20 years at 12% is worth today.

@QUARTER

@QUARTER(date)

This function returns a number between 1 and 4 that represents the quarter. For
example, the first quarter of the year is January through March.

(1 - (1 + int)-n) pmt = periodic payment

pmt * int int = periodic interest rate

n = number of periods; term
4-44 SQL Language Reference

@QUARTERBEG
Example

The following expression returns 1, which represents the first quarter:

@QUARTER(12-MAR-96)

@QUARTERBEG

@QUARTERBEG(date)

This function returns the first day of the quarter represented by the date.

Example

The following expression returns 01-JUL-1776:

@QUARTERBEG(04-JUL-1776)

The following SQL statement displays the first day of the quarter in which each
employee was hired:

SELECT @QUARTERBEG (HIREDATE) FROM EMP;

@RATE

@RATE(fv, pv, n)

This function returns the interest rate for an investment of present value (pv) to grow
to a future value (fv) over the number of compounding periods (n).

@RATE uses this formula:

fv = future value

((fv/pv)(1/n)) - 1 pv = present value

n = number of periods; term
SQL Language Reference 4-45

Chapter 4 SQL Function Reference

his

a
Example

The following expression:

@RATE(18000,10000,5 * 12)

returns .009844587 which is the periodic (monthly) interest rate calculated for a
$10,000 investment for 60 months (5 years) with a maturity value of $18,000
(compounded monthly).

@REPEAT

@REPEAT(string, number)

This function concatenates a string with itself for the specified number of times. T
creates a string of pattern repetitions.

This function returns nulls if specified in a select list. However, it can be used in
WHERE clause and in other contexts.

Example

The following expression returns the value '$$$$$':

@REPEAT('$',5)

@REPLACE

@REPLACE(string1, start-pos, length, string2)

This function returns a string in which characters from string1 have been replaced
with characters from string2. The replacement string2 begins at start-pos, the
position at which characters of the specified length have been removed.

The first position in the string is 0.
4-46 SQL Language Reference

@RIGHT

Example

The following expression returns the value 'RALPH':

@REPLACE('RALF', 3, 1, 'PH')

@RIGHT

@RIGHT(string, length)

This function returns a specified number of characters starting from the end, or
rightmost part, of a string.

Example

The following expression returns '186':

@RIGHT('P4-186', 3)

@ROUND

@ROUND(x, n)

This function rounds the number x with n decimal places. The rounding can occur to
either side of the decimal point.

Example

The following expression returns 31.42:

@ROUND(@PI * 10,2)

The following expression returns 1200:

@ROUND(1234.1234,-2)

The following SQL statement returns the value of all PVAL column entries in the
GEOM table, rounded to 2 decimal places to the RIGHT of the decimal point.t:

SELECT @ROUND(QVAL,2) FROM GEOM;
SQL Language Reference 4-47

Chapter 4 SQL Function Reference

r

d to

the

ime
erts
The following SQL statement returns the value of all PVAL column entries in the
GEOM table, rounded to 2 decimal places to the LEFT of the decimal point:

SELECT @ROUND(QVAL,-2) FROM GEOM;

@SCAN

@SCAN(string, pattern)

This function searches a given string for a specified pattern and returns a numbe
indicating the numeric position of the first instance of the pattern.

This function returns null if the column being scanned is null.

The first position in the string is position 0. The match is performed without regar
case.

If the result is -1, it indicates no match was found.

The @SCAN function can perform a case-insensitive match on columns of type
CHAR, VARCHAR, and LONG VARCHAR.

Example

The following expression returns 1 as the start position of the character '-':

@SCAN('P-186', '-')

@SDV

This function computes the standard deviation for the set of values specified by
argument.

The data type of the argument may be numeric, date/time, or character. If an
argument is a character data type, the value must form a valid numeric or date/t
value (only digits and standard editing characters). SQLBase automatically conv
the value to the required data type.

expression

DISTINCT

ALL@SDV (

(

4-48 SQL Language Reference

@SECOND

teger

mn

the
The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Note that this function produces double precision, which is not the same as an in
value.

Example

The following SQL statement returns the standard deviation of the SALARY colu
in the table EMPSAL.

SELECT @SDV(SALARY) FROM EMPSAL;

@SECOND

@SECOND(date)

This function returns a number between 0 and 59 that represents the second of
minute.

Example

The following expression returns 58:

@SECOND(12/28/46 03:52:58)

@SIN

@SIN(x)

This function returns the sine of x, where x is in radians.

Example

The following expression returns .841470985:

@SIN(1)
SQL Language Reference 4-49

Chapter 4 SQL Function Reference

h
set.

ed
8
The following SQL statement returns the value of all PVAL column entries in the
GEOM table:

SELECT @SIN(PVAL) FROM GEOM;

@SLN

@SLN(cost, salvage, life)

This function returns the straight-line depreciation allowance of an asset for eac
period, given the base cost, predicted salvage value, and expected life of the as

@SLN uses this formula to compute depreciation:

Example

The following expression:

@SLN(10000,1200,8)

returns $1100, which is the yearly depreciation allowance for a machine purchas
for $10,000, with a useful life of 8 years, and a salvage value of $1200 after the
years.

@SQRT

@SQRT(x)

This function returns the square root of x (which must be zero or positive). The
square root of a negative argument is handled as an overflow error.

(c - s) c = cost of the asset

n s = salvage value of the asset

n = useful life of the asset
4-50 SQL Language Reference

@STRING

in

he
 start
, the

t
Example

The following expression returns 3.16227766:

@SQRT(10)

The following SQL statement returns the square root of all PVAL column entries
the GEOM table:

SELECT @SQRT(PVAL) FROM GEOM;

@STRING

@STRING(number, scale)

This function converts a number into a string with the number of decimal places
specified by scale. Numbers are rounded where appropriate.

Example

The following expression returns the character string '123.46':

@STRING(123.456, 2)

@SUBSTRING

@SUBSTRING(string, start-pos, length)

This function returns a desired portion of a string from a given argument string. T
substring starts at the specified start position and is of the specified length. If the
position and length define a substring that exceeds the actual length of the string
result is truncated to the actual length of the string. If the start position is beyond
length of the string, a null string ('') is returned. The first character in a string is a
start-pos 0.

The length parameter is optional.
SQL Language Reference 4-51

Chapter 4 SQL Function Reference

e

 off,

sset
 the
Example

The following expression returns 'SMITH':

@SUBSTRING('DR. SMITH', 4, 20)

The following example returns the first 10 characters of the LNAME column in th
EMP table where the length of the LNAME column exceeds 10 characters.

SELECT EMPNO, @SUBSTRING(LNAME, 0, 10) FROM EMP WHERE
@LENGTH(LNAME) > 10;

The function is nearly the same as @MID$ except that if the third argument is left
the function returns a string beginning with the start position.

The following expression returns ‘R. SMITH’:

@SUBSTRING (‘DR. SMITH’, 1)

@SYD

@SYD(cost, salvage, life, period)

This function returns the Sum-of-the-Years'-Digits depreciation allowance of an a
for a given period, given the base cost, predicted salvage value, expected life of
asset and specific period.

@SYD uses this formula to compute depreciation:

Example

The following expression:

@SYD(10000,1200,8,5)

(c - s) * (n - p + 1) c = cost of the asset

(n * (n + 1)/2) s = salvage value of the asset

p = period for which depreciation is being
computed

n = useful life of the asset
4-52 SQL Language Reference

@TAN

 the 8

e

returns $977.777778, which is the depreciation allowance for the fifth year for a
$10,000 machine with a useful life of 8 years, and a salvage value of $1200 after
years.

@TAN

@TAN(x)

This function returns the tangent of x, where x is in radians.

Example

The following expression returns .648360827:

@TAN(10)

The following SQL statement returns the tangent of all PVAL column entries in th
GEOM table:

SELECT @TAN(PVAL) FROM GEOM;

@TERM

@TERM(pmt, int, fv)

This function returns the number of payment periods for an investment, given the
amount of each payment pmt, the periodic interest rate int, and the future value fv of
the investment.

@TERM uses this formula to compute the term:

ln (1 + (fv * int/pmt)) pmt = periodic payment

ln (1 + int) fv = future value

int = periodic interest rate

ln = natural logarithm
SQL Language Reference 4-53

Chapter 4 SQL Function Reference

t the

om 0

ng
Example

The following expression:

@TERM(2000,.10,100000)

returns 18.7992455, which is the number of years it will take for an investment to
mature to an amount of $100,000. This is based on a yearly deposit of $2,000 a
end of each year to an account that earns 10% compounded annually.

@TIME

@TIME(hour, minute, second)

This function returns a time value given the hour, minute, and second. An hour is a
number from 0 to 23; a minute is a number from 0 to 59; a second is a number fr
to 59.

Example

The following expression returns 13:00:00:

@TIME(13,0,0)

@TIMEVALUE

@TIMEVALUE(time)

The function returns a time value, given a string in the form HH:MM:SS [AM or
PM]. If the AM or PM parameter is omitted, military time is used.

Example

If the CHAR column APPT contains '18-JAN-1994 10:14:27 AM', then the followi
expression returns 10:14:27:

@TIMEVALUE(APPT)
4-54 SQL Language Reference

@TRIM

tiple

ers

@TRIM

@TRIM(string)

This function strips leading and trailing blanks from a string and compresses mul
spaces within the string into single spaces.

Example

The following expression returns 'JOHN DEWEY':

@TRIM(' JOHN DEWEY ')

@UPPER

@UPPER(string)

This function converts lower-case letters in a string to upper-case. Other charact
are not affected.

Example

The following expression returns 'E.E. CUMMINGS':

@UPPER('e.e. cummings')

@VALUE

@VALUE(string)

This function converts a character string that has the digits (0-9) and an optional
decimal point or negative sign into the number represented by that string.
SQL Language Reference 4-55

Chapter 4 SQL Function Reference

is is
a

hat
Example

The following expression returns the number 123456 which will be interpreted
strictly as a numeric data type by any function to which it is passed:

@VALUE('123456')

@WEEKBEG

@WEEKBEG(date)

This function returns the date of the Monday of the week containing the date. Th
the previous Monday if the date is not a Monday, and the date value itself if it is
Monday.

Example

If the value in DATECOL is 01/FEB/94, then the following expression returns 31-
JAN-1994:

@WEEKBEG(DATECOL)

@WEEKDAY

@WEEKDAY(date)

This function returns a number between 0 and 6 (Saturday = 0 and Friday = 6) t
represents the day of the week.

Example

The following expression returns 1 which represents SUNDAY:

@WEEKDAY(12/28/86)
4-56 SQL Language Reference

@YEAR

 was

r
900

 was

The following SQL statement finds the day of the week on which each employee
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun','Mon',
'Tue', 'Wed', 'Thu', 'Fri'), @YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@YEAR

@YEAR(date)

This function returns a number between -1900 and +200 that represents the yea
relative to 1900. The year 1900 is 0, 1986 is 86, and 2000 is 100. Years before 1
are negative numbers and 1899 is -1.

Example

The following expression returns 23.

@YEAR(12/28/1923)

The following SQL statement finds the day of the week on which each employee
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun','Mon',
'Tue', 'Wed', 'Thu', 'Fri'), @YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@YEARBEG

@YEARBEG(date)

This function returns the first day of the year represented by the date.

Example

If the value in HIREDATE is '16-FEB-1996', then the following expression returns
01-JAN-1996:

@YEARBEG(HIREDATE)
SQL Language Reference 4-57

Chapter 4 SQL Function Reference

 was

st)
@YEARNO

@YEARNO(date)

This function returns a 4-digit number that represents a calendar year.

Example

If the column HISTORIC_DATE contains the value 04/JUL/1776, then the
expression returns 1776:

@YEARNO(HISTORIC_DATE)

The following SQL statement finds the day of the week on which each employee
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun','Mon',
'Tue', 'Wed', 'Thu', 'Fri'), @YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@LEFT

@LEFT(string, length)

This function returns a string for the specified length, starting with the first (leftmo
character in the string.

Example

The following expression returns 'P8':

@LEFT('P8-196', 2)

The following example shows how to use the @LEFT function in a SELECT
statement:

SELECT * FROMSYSCOLUMNS
WHERE @LEFT (TBNAME, 3) ! = ’SYS’;
4-58 SQL Language Reference

@LENGTH

rs in

s

 of
@LENGTH

@LENGTH(string)

This function returns the length of a string. The length is the number of characte
the string.

You cannot use this function to find the length of a LONG VARCHAR column.

Example

If the value in the column EMPNAME is 'JOYCE', the following expression return
the number 5:

@LENGTH(EMPNAME)

The following example finds the entries in the EMP table where the length of the
LNAME column exceeds 10 characters.

SELECT EMPNO, @SUBSTRING (LNAME, 0, 10)
FROM EMP WHERE @LENGTH (LNAME) > 10

@LICS

@LICS(string)

This function uses an international character set for sorting its argument, instead
the ASCII character set. This is useful for sorting characters not in the English
language. The translation table for this character set is shown below.

Example

The following expression returns ‘NXTRI\’ @LICS ('Murphy')

SELECT @LICS(LNAME) FROM EMP ORDER BY 1;

Code Character Description

0 0 Ctrl @

1 1 Ctrl A
SQL Language Reference 4-59

Chapter 4 SQL Function Reference
2 2 Ctrl B

3 3 Ctrl C

4 4 Ctrl D

5 5 Ctrl E

6 6 Ctrl F

7 7 Ctrl G

8 8 Ctrl H

9 9 Ctrl I

10 10 Ctrl J line feed

11 11 Ctrl K

12 12 Ctrl L form feed

13 13 Ctrl M return

14 14 Ctrl N

15 15 Ctrl O

16 16 Ctrl P

17 17 Ctrl Q

18 18 Ctrl R

19 19 Ctrl S

20 20 Ctrl T

21 21 Ctrl U

22 22 Ctrl V

23 23 Ctrl W

24 24 Ctrl X

25 25 Ctrl Y

26 26 Ctrl Z

27 27 [Esc]

Code Character Description
4-60 SQL Language Reference

@LICS
28 28 FS

29 29 GS

30 30 RS

31 31 US

32 32 Space

33 33 !

34 34 "

35 35 #

36 36 $

37 37 %

38 38 &

39 39 Apostrophe

40 40 (

41 41)

42 42 *

43 43 +

44 44

45 45 -

46 46 .

47 47 /

48 48 0

49 49 1

50 50 2

51 51 3

52 52 4

53 53 5

Code Character Description
SQL Language Reference 4-61

Chapter 4 SQL Function Reference
54 54 6

55 55 7

56 56 8

57 57 9

58 58 :

59 59 ;

60 60 <

61 61 =

62 62 >

63 63 ?

64 64 @

65 65 A

66 66 B

67 67 C

68 68 D

70 69 E

71 70 F

72 71 G

73 72 H

74 73 I

75 74 J

76 75 K

77 76 L

78 7 7 M

79 78 N

81 79 O

Code Character Description
4-62 SQL Language Reference

@LICS
82 80 P

83 81 Q

84 82 R

85 83 S

87 84 T

88 85 U

89 86 V

90 87 W

91 88 X

92 89 Y

93 90 Z

99 91 [

100 92 \

101 93]

102 94 ^

103 95 _

104 96 `

65 97 a

66 98 b

67 99 c

68 100 d

70 101 e

71 102 f

72 103 g

73 104 h

74 105 i

Code Character Description
SQL Language Reference 4-63

Chapter 4 SQL Function Reference
75 106 j

76 107 k

77 108 l

78 109 m

79 110 n

81 111 o

82 112 p

83 113 q

84 114 r

85 115 s

87 116 t

88 117 u

89 118 v

90 119 w

91 120 x

92 121 y

93 122 z

105 123 {

106 124 |

107 125 }

108 126 ~ (tilde)

109 127 DEL

110 128 Uppercase grave

111 129 Uppercase acute

112 130 Uppercase circumflex

113 131 Uppercase umlaut

Code Character Description
4-64 SQL Language Reference

@LICS
114 132 Uppercase tilde

115 133

116 134

117 135

118 136

119 137

120 138

121 139

122 140

123 141

124 142

125 143

126 144 Lowercase grave

127 145 Lowercase acute

128 146 Lowercase circumflex

129 147 Lowercase umlaut

130 14 8 Lowercase tilde

131 149 Lowercase i without dot

132 150 Ordinal indicator

133 151 Begin attribute (display)

134 152 End attribute (display only)

135 153 Unknown character (display)

136 154 Hard space (display only)

137 155 Merge character (display)

138 156

139 157

Code Character Description
SQL Language Reference 4-65

Chapter 4 SQL Function Reference
140 158

141 159

142 160 Dutch Guilder

143 161 Inverted exclamation mark

144 162 Cent sign

145 163 Pound sign

146 164 Low opening double quotes

147 165 Yen sign

148 166 Pesetas sign

149 167 Section sign

150 168 General currency sign

151 169 Copyright sign

152 170 Feminine ordinal

153 171 Angle quotation mark left

154 1 72 Delta

155 173 Pi

156 174 Greater-than-or-equals

157 175 Divide sign

158 176 Degree sign

159 177 Plus/minus sign

160 178 Superscript 2

161 179 Superscript 3

162 180 Low closing double quotes

163 181 Micro sign

164 182 Paragraph sign

165 183 Middle dot

Code Character Description
4-66 SQL Language Reference

@LICS
166 184 Trademark sign

167 185 Superscript 1

168 186 Masculine ordinal

16 9 187 Angle quotation mark right

170 188 Fraction one quarter

171 189 Fraction one-half

172 190 Less-than-or -equals

173 191 Inverted question mark

65 192 Uppercase A with grave

65 193 Uppercase A with acute

65 194 Uppercase A with circumflex

65 195 Uppercase A with tilde

65 196 Uppercase A with umlaut

65 197 Uppercase A with ring

97 197 Uppercase A with ring

94 198 Uppercase AE with ligature

67 199 Uppercase C with cedilla

70 200 Uppercase E with grave

70 201 Uppercase E with acute

70 202 Uppercase E with circumflex

70 203 Uppercase E with umlaut

74 204 Uppercase I with grave

74 205 Uppercase I with acute

74 206 Uppercase I with circumflex

74 207 Uppercase I with umlaut

69 208 Uppercase eth (Icelandic)

Code Character Description
SQL Language Reference 4-67

Chapter 4 SQL Function Reference
80 209 Uppercase N with tilde

81 210 Uppercase O with grave

81 211 Uppercase O with acute

81 212 Uppercase O with circumflex

81 213 Uppercase O with tilde

81 214 Uppercase O with umlaut

80 215 Uppercase OE with diphthong

96 216 Uppercase O with slash

88 217 Uppercase U with grave

88 218 Uppercase U with acute

88 219 Uppercase U with circumflex

88 220 Uppercase u with umlaut

92 221 Uppercase Y with umlaut

98 222 Uppercase thorn (Icelandic)

86 223 Lowercase German sharp s

65 224 Lowercase a with grave

65 225 Lowercase a with acute

65 226 Lowercase a with circumflex

65 227 Lowercase a with tilde

65 228 Lowercase a with umlaut

65 229 Lowercase a with ring

95 230 Lowercase ae with ligature

6 7 231 Lowercase c with cedilla

70 232 Lowercase e with grave

70 233 Lowercase e with acute

70 234 Lowercase e with circumflex

Code Character Description
4-68 SQL Language Reference

@LICS
70 235 Lowercase e with umlaut

74 236 Lowercase i with grave

74 237 Lowercase i with acute

74 238 Lowercase i with circumflex

74 239 Lowercase i with umlaut

69 240 Lowercase eth (Icelandic)

80 241 Lowercase n with tilde

81 242 Lowercase o with grave

81 243 Lowercase o with acute

81 244 Lowercase o with circumflex

81 245 Lowercase o with tilde

81 246 Lowercase o with umlaut

80 247 Lowercase oe with diphthong

81 248 Lowercase o with slash

88 249 Lowercase u with grave

88 250 Lowercase u with acute

88 251 Lowercase u with circumflex

88 252 L owercase u with umlaut

92 253 Lowercase y with umlaut

174 254 Lowercase thorn (Icelandic)

Code Character Description
SQL Language Reference 4-69

Chapter 4 SQL Function Reference
@LN

@LN(x)

This function returns the natural logarithm (base e) of (positive) x. The log of a zero
or negative argument is handled as an overflow error.

Example

The following expression returns -2.3025851:

@LN(.1)

The following SQL statement returns the natural logarithm of all PVAL column
entries in the GEOM table:

SELECT @LN(PVAL) FROM GEOM;

@LOG

@LOG(x)

This function returns the (positive) base-10 logarithm of x. The log of a zero or
negative argument is handled as an overflow error.

Example

The following expression returns -1:

@LOG(.1)

The following SQL statement returns the natural logarithm of all PVAL column
entries in the GEOM table:

SELECT @LOG(PVAL) FROM GEOM;
4-70 SQL Language Reference

@LOWER

ues

ment
(only
e to
ent.

he
@LOWER

@LOWER(string)

This function converts upper-case alphabetic characters to lower-case. Other
characters are not affected.

Example

The following expression returns the string 'joyce':

@LOWER('JOYCE')

@MEDIAN

This function returns the middle value in a set of values. An equal number of val
lie above and below the middle value.

The data type of the argument may be numeric, date/time, or character. If an argu
is a character data type, the value must form a valid numeric or date/time value
digits and standard editing characters). SQLBase automatically converts the valu
the required data type. The data type of the result is the same as the input argum

@MEDIAN finds the middle value with this formula:

(n + 1) / 2

For example, if there are 5 items, then the middle item is the third:

(5 + 1) / 2 = 6 / 2 = 3

For example, if there are 6 items, then the middle item is between the third and t
fourth:

(6 + 1) / 2 = 7 / 2 = 3.5

The median is the arithmetic average of the third and fourth values.

expression

DISTINCT

ALLMEDIAN (

(

SQL Language Reference 4-71

Chapter 4 SQL Function Reference

esult
The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated. Be cautious when using DISTINCT because the r
may loose its statistical meaning.

Null values are ignored.

Example

This example finds the middle salary for department 2500.

SELECT @MEDIAN(SALARY) FROM EMP, EMPSAL
WHERE EMP.EMPNO = EMPSAL.EMPNO AND DEPTNO=2500;

@MICROSECOND

@MICROSECOND(date)

This function returns the microsecond value in a DATETIME or TIME value. If a
microsecond quantity was not specified on input, zero is returned.

Example

The following expression returns 500000:

@MICROSECOND(12:44:01:500000)

@MID

@MID(string, start-pos, length)

This function returns a string of specified length from a string, starting with the
character at start-pos. This function is similar to @SUBSTRING, except that it
requires the third argument.

Example

The following expression returns the second character from a string, a '9':

@MID('P9-186', 1, 1)
4-72 SQL Language Reference

@MINUTE

he

e
@MINUTE

@MINUTE(date)

This function returns a number between 0 and 59 that represents the minute of t
hour.

Example

The following expression returns 52:

@MINUTE(12/28/46 03:52:00 PM)

@MOD

@MOD(x, y)

This function returns the modulo (remainder) of x/y. Division by zero is an overflow
error.

Example

The following expression returns 5:

@MOD(5,10)

The following SQL statement returns the remainder of all PVAL/WVAL column
entries in the GEOM table:

SELECT @MOD(PVAL,WVAL) FROM GEOM;

@MONTH

@MONTH(date)

This function returns a number between 1 and 12 that represents the month of th
year.
SQL Language Reference 4-73

Chapter 4 SQL Function Reference

s

ystem

uld
Example

The following expression returns 10 which represents October:

@MONTH(25-OCT-96)

@MONTHBEG

@MONTHBEG(date)

This function returns the first day of the month represented by the date.

Example

If the value in BIRTHDATE is '16-FEB-1947', then the following expression return
01-FEB-1947:

@MONTHBEG(BIRTHDATE)

@NOW

@NOW

This function returns the current date and time. It returns the same value as the s
keyword SYSDATETIME.

For example, if the date and time is January 12, 1996, 3:15 PM, this function wo
return 12-JAN-1996 03:15:00 PM.

@NULLVALUE

@NULLVALUE(x, y)

This function returns one of the following values specified by y if x is null:

• string

• number
4-74 SQL Language Reference

@PI

ble

must

ype.

 but

lue
• date (if the date is a constant. If you try to specify a date by a bind varia
such as 1:, the bind variable is read literally, since it is treated as a CHAR
value.)

The data type of the returned value is the same as the data type of the x argument.

SQLBase converts the second parameter (y argument) to the first parameter’s data
type (x argument). An error results if SQLBase cannot convert this correctly.

Example

The following example returns "N/A" when the column is null:

@NULLVALUE(FNAME, 'N/A')

The following SQL statement:

SELECT @NULLVALUE(DEPTNO,'NOT ASSIGNED') FROM EMP;

returns the string 'NOT ASSIGNED' if the DEPTNO column value is null, and
DEPTNO is a character column. If the column is numeric, the replacement value
be a number. For example, the following SQL statement:

SELECT @NULLVALUE(DEPTNO,9999) FROM EMP;

returns 9999 if a null exists in the DEPTNO column. DEPTNO is a numeric data t

@PI

@PI

This function returns the value Pi (3.14159265). This function has no arguments
could be used as a numeric constant in a nested set of math functions.

Example

The following expression returns 31.4159265:

10 * @PI

The following SQL statement returns all PVAL column entries multiplied by the va
Pi in the GEOM table:

SELECT (PVAL) * @PI FROM GEOM;
SQL Language Reference 4-75

Chapter 4 SQL Function Reference

oan

nd
@PMT

@PMT(principal, interest, periods)

This function returns the amount of each periodic payment needed to pay off a l
principal (prin) at a periodic interest rate (int) over a number of periods (n).

@PMT uses this formula:

Example

The following expression:

@PMT(50000,.125/12,30 * 12)

returns $533.628881 which is the value of a monthly mortgage payment for a
$50,000, 30-year mortgage at an annual interest rate of 12.5%.

@PROPER

@PROPER(string)

This function converts the first character of each word in a string to uppercase a
other characters to lower case.

The argument must be a CHAR or VARCHAR data type.

Example

The following expressions both return 'Johann Sebastian Bach':

@PROPER('JOHANN SEBASTIAN BACH')

@PROPER(‘johann sebastian bach’)

print * int prin = principal

(1 - (1 + int)-n) int = periodic interest rate

n = number of periods; term
4-76 SQL Language Reference

@PV

 of

@PV

@PV(pmt, int, n)

This function returns the present value of a series of equal payments (pmt) discounted
at periodic interest rate (int) over the number of periods (n).

This function is useful when trying to decide the best way to receive a payment
option, over time or immediately.

@PV uses this formula:

Ordinary Annuity Example

The following expression:

@PV(50000,.12,20)

returns $373,472.181 which is what $1,000,000 paid equally ($50,000 at the end
each year) over 20 years at 12% is worth today.

Annuity Due Example

The following expression:

@PV(50000,.12,20) * (1+.12)

returns $418,288.843, which is what $1,000,000 paid equally ($50,000 at the
beginning of each year) over 20 years at 12% is worth today.

@QUARTER

@QUARTER(date)

This function returns a number between 1 and 4 that represents the quarter. For
example, the first quarter of the year is January through March.

(1 - (1 + int)-n) pmt = periodic payment

pmt * int int = periodic interest rate

n = number of periods; term
SQL Language Reference 4-77

Chapter 4 SQL Function Reference
Example

The following expression returns 1, which represents the first quarter:

@QUARTER(12-MAR-96)

@QUARTERBEG

@QUARTERBEG(date)

This function returns the first day of the quarter represented by the date.

Example

The following expression returns 01-JUL-1776:

@QUARTERBEG(04-JUL-1776)

The following SQL statement displays the first day of the quarter in which each
employee was hired:

SELECT @QUARTERBEG (HIREDATE) FROM EMP;

@RATE

@RATE(fv, pv, n)

This function returns the interest rate for an investment of present value (pv) to grow
to a future value (fv) over the number of compounding periods (n).

@RATE uses this formula:

fv = future value

((fv/pv)(1/n)) - 1 pv = present value

n = number of periods; term
4-78 SQL Language Reference

@REPEAT

his

a
Example

The following expression:

@RATE(18000,10000,5 * 12)

returns .009844587 which is the periodic (monthly) interest rate calculated for a
$10,000 investment for 60 months (5 years) with a maturity value of $18,000
(compounded monthly).

@REPEAT

@REPEAT(string, number)

This function concatenates a string with itself for the specified number of times. T
creates a string of pattern repetitions.

This function returns nulls if specified in a select list. However, it can be used in
WHERE clause and in other contexts.

Example

The following expression returns the value '$$$$$':

@REPEAT('$',5)

@REPLACE

@REPLACE(string1, start-pos, length, string2)

This function returns a string in which characters from string1 have been replaced
with characters from string2. The replacement string2 begins at start-pos, the position
at which characters of the specified length have been removed.

The first position in the string is 0.
SQL Language Reference 4-79

Chapter 4 SQL Function Reference

o

Example

The following expression returns the value 'RALPH':

@REPLACE('RALF', 3, 1, 'PH')

@RIGHT

@RIGHT(string, length)

This function returns a specified number of characters starting from the end, or
rightmost part, of a string.

Example

The following expression returns '186':

@RIGHT('P4-186', 3)

@ROUND

@ROUND(x, n)

This function rounds the number x with n decimal places. The rounding can occur t
either side of the decimal point.

Example

The following expression returns 31.42:

@ROUND(@PI * 10,2)

The following expression returns 1200:

@ROUND(1234.1234,-2)

The following SQL statement returns the value of all PVAL column entries in the
GEOM table, rounded to 2 decimal places to the RIGHT of the decimal point.t:

SELECT @ROUND(QVAL,2) FROM GEOM;
4-80 SQL Language Reference

@SCAN

r

d to

the

ment
(only
e to
The following SQL statement returns the value of all PVAL column entries in the
GEOM table, rounded to 2 decimal places to the LEFT of the decimal point:

SELECT @ROUND(QVAL,-2) FROM GEOM;

@SCAN

@SCAN(string, pattern)

This function searches a given string for a specified pattern and returns a numbe
indicating the numeric position of the first instance of the pattern.

This function returns null if the column being scanned is null.

The first position in the string is position 0. The match is performed without regar
case.

If the result is -1, it indicates no match was found.

The @SCAN function can perform a case-insensitive match on columns of type
CHAR, VARCHAR, and LONG VARCHAR.

Example

The following expression returns 1 as the start position of the character '-':

@SCAN('P-186', '-')

@SDV

This function computes the standard deviation for the set of values specified by
argument.

The data type of the argument may be numeric, date/time, or character. If an argu
is a character data type, the value must form a valid numeric or date/time value
digits and standard editing characters). SQLBase automatically converts the valu
the required data type.

expression

DISTINCT

ALL@SDV (

(

SQL Language Reference 4-81

Chapter 4 SQL Function Reference

teger

mn

the
The keyword DISTINCT eliminates duplicates. If DISTINCT is not specified, then
duplicates are not eliminated.

Note that this function produces double precision, which is not the same as an in
value.

Example

The following SQL statement returns the standard deviation of the SALARY colu
in the table EMPSAL.

SELECT @SDV(SALARY) FROM EMPSAL;

@SECOND

@SECOND(date)

This function returns a number between 0 and 59 that represents the second of
minute.

Example

The following expression returns 58:

@SECOND(12/28/46 03:52:58)

@SIN

@SIN(x)

This function returns the sine of x, where x is in radians.

Example

The following expression returns .841470985:

@SIN(1)
4-82 SQL Language Reference

@SLN

et.

ed
8

uare
The following SQL statement returns the value of all PVAL column entries in the
GEOM table:

SELECT @SIN(PVAL) FROM GEOM;

@SLN

@SLN(cost, salvage, life)

This function returns the straight-line depreciation allowance of an asset for each
period, given the base cost, predicted salvage value, and expected life of the ass

@SLN uses this formula to compute depreciation:

Example

The following expression:

@SLN(10000,1200,8)

returns $1100, which is the yearly depreciation allowance for a machine purchas
for $10,000, with a useful life of 8 years, and a salvage value of $1200 after the
years.

@SQRT

@SQRT(x)

This function returns the square root of x (which must be zero or positive). The sq
root of a negative argument is handled as an overflow error.

(c - s) c = cost of the asset

n s = salvage value of the asset

n = useful life of the asset
SQL Language Reference 4-83

Chapter 4 SQL Function Reference

 in

he
 start
g, the

t
Example

The following expression returns 3.16227766:

@SQRT(10)

The following SQL statement returns the square root of all PVAL column entries
the GEOM table:

SELECT @SQRT(PVAL) FROM GEOM;

@STRING

@STRING(number, scale)

This function converts a number into a string with the number of decimal places
specified by scale. Numbers are rounded where appropriate.

Example

The following expression returns the character string '123.46':

@STRING(123.456, 2)

@SUBSTRING

@SUBSTRING(string, start-pos, length)

This function returns a desired portion of a string from a given argument string. T
substring starts at the specified start position and is of the specified length. If the
position and length define a substring that exceeds the actual length of the strin
result is truncated to the actual length of the string. If the start position is beyond
length of the string, a null string ('') is returned. The first character in a string is a
start-pos 0.

The length parameter is optional.
4-84 SQL Language Reference

@SYD

e

 off,

sset
the
Example

The following expression returns 'SMITH':

@SUBSTRING('DR. SMITH', 4, 20)

The following example returns the first 10 characters of the LNAME column in th
EMP table where the length of the LNAME column exceeds 10 characters.

SELECT EMPNO, @SUBSTRING(LNAME, 0, 10) FROM EMP WHERE
@LENGTH(LNAME) > 10;

The function is nearly the same as @MID$ except that if the third argument is left
the function returns a string beginning with the start position.

The following expression returns ‘R. SMITH’:

@SUBSTRING (‘DR. SMITH’, 1)

@SYD

@SYD(cost, salvage, life, period)

This function returns the Sum-of-the-Years'-Digits depreciation allowance of an a
for a given period, given the base cost, predicted salvage value, expected life of
asset and specific period.

@SYD uses this formula to compute depreciation:

Example

The following expression:

@SYD(10000,1200,8,5)

(c - s) * (n - p + 1) c = cost of the asset

(n * (n + 1)/2) s = salvage value of the asset

p = period for which depreciation is being
computed

n = useful life of the asset
SQL Language Reference 4-85

Chapter 4 SQL Function Reference

 the 8

e

e
returns $977.777778, which is the depreciation allowance for the fifth year for a
$10,000 machine with a useful life of 8 years, and a salvage value of $1200 after
years.

@TAN

@TAN(x)

This function returns the tangent of x, where x is in radians.

Example

The following expression returns .648360827:

@TAN(10)

The following SQL statement returns the tangent of all PVAL column entries in th
GEOM table:

SELECT @TAN(PVAL) FROM GEOM;

@TERM

@TERM(pmt, int, fv)

This function returns the number of payment periods for an investment, given th
amount of each payment pmt, the periodic interest rate int, and the future value fv of
the investment.

@TERM uses this formula to compute the term:

ln (1 + (fv * int/pmt)) pmt = periodic payment

ln (1 + int) fv = future value

int = periodic interest rate

ln = natural logarithm
4-86 SQL Language Reference

@TIME

t the

om 0

].

ng
Example

The following expression:

@TERM(2000,.10,100000)

returns 18.7992455, which is the number of years it will take for an investment to
mature to an amount of $100,000. This is based on a yearly deposit of $2,000 a
end of each year to an account that earns 10% compounded annually.

@TIME

@TIME(hour, minute, second)

This function returns a time value given the hour, minute, and second. An hour is a
number from 0 to 23; a minute is a number from 0 to 59; a second is a number fr
to 59.

Example

The following expression returns 13:00:00:

@TIME(13,0,0)

@TIMEVALUE

@TIMEVALUE(time)

The function returns a time value, given a string in the form HH:MM:SS [AM or PM
If the AM or PM parameter is omitted, military time is used.

Example

If the CHAR column APPT contains '18-JAN-1994 10:14:27 AM', then the followi
expression returns 10:14:27:

@TIMEVALUE(APPT)
SQL Language Reference 4-87

Chapter 4 SQL Function Reference

tiple

ters

l
@TRIM

@TRIM(string)

This function strips leading and trailing blanks from a string and compresses mul
spaces within the string into single spaces.

Example

The following expression returns 'JOHN DEWEY':

@TRIM(' JOHN DEWEY ')

@UPPER

@UPPER(string)

This function converts lower-case letters in a string to upper-case. Other charac
are not affected.

Example

The following expression returns 'E.E. CUMMINGS':

@UPPER('e.e. cummings')

@VALUE

@VALUE(string)

This function converts a character string that has the digits (0-9) and an optiona
decimal point or negative sign into the number represented by that string.
4-88 SQL Language Reference

@WEEKBEG

is is
a

at
Example

The following expression returns the number 123456 which will be interpreted
strictly as a numeric data type by any function to which it is passed:

@VALUE('123456')

@WEEKBEG

@WEEKBEG(date)

This function returns the date of the Monday of the week containing the date. Th
the previous Monday if the date is not a Monday, and the date value itself if it is
Monday.

Example

If the value in DATECOL is 01/FEB/94, then the following expression returns 31-
JAN-1994:

@WEEKBEG(DATECOL)

@WEEKDAY

@WEEKDAY(date)

This function returns a number between 0 and 6 (Saturday = 0 and Friday = 6) th
represents the day of the week.

Example

The following expression returns 1 which represents SUNDAY:

@WEEKDAY(12/28/86)
SQL Language Reference 4-89

Chapter 4 SQL Function Reference

 was

r
900

 was

The following SQL statement finds the day of the week on which each employee
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun','Mon',
'Tue', 'Wed', 'Thu', 'Fri'), @YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@YEAR

@YEAR(date)

This function returns a number between -1900 and +200 that represents the yea
relative to 1900. The year 1900 is 0, 1986 is 86, and 2000 is 100. Years before 1
are negative numbers and 1899 is -1.

Example

The following expression returns 23.

@YEAR(12/28/1923)

The following SQL statement finds the day of the week on which each employee
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun','Mon',
'Tue', 'Wed', 'Thu', 'Fri'), @YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;

@YEARBEG

@YEARBEG(date)

This function returns the first day of the year represented by the date.

Example

If the value in HIREDATE is '16-FEB-1996', then the following expression returns
01-JAN-1996:

@YEARBEG(HIREDATE)
4-90 SQL Language Reference

@YEARNO

ion

 was
@YEARNO

@YEARNO(date)

This function returns a 4-digit number that represents a calendar year.

Example

If the column HISTORIC_DATE contains the value 04/JUL/1776, then the express
returns 1776:

@YEARNO(HISTORIC_DATE)

The following SQL statement finds the day of the week on which each employee
hired.

SELECT @CHOOSE (@WEEKDAY(HIREDATE), 'Sat','Sun','Mon',
'Tue', 'Wed', 'Thu', 'Fri'), @YEAR(HIREDATE) FROM EMP
WHERE @YEARNO (HIREDATE) > 1990;
SQL Language Reference 4-91

SQL Language Reference
Chapter 5

SQL Reserved Words

This chapter lists the SQL reserved words.
SQL Language Reference 5-1

Chapter 5 SQL Reserved Words

t this
SQL Reserved Words
The following words are reserved in SQL.

You can use a reserved word as an identifier if it is enclosed in double quotes, bu
is not recommended.

@ABS @ACOS
@ASIN @ATAN
@ATAN2 @CHAR
@CHOOSE @CODE
@COS @CTERM
@DATE @DATETOCHAR
@DATEVALUE @DAY
@DECIMAL @DECODE
@EXACT @EXP
@FACTORIAL @FIND
@FULLP @FV
@HALFP @HEX
@HOUR @IF
@INT @ISNA
@LEFT @LENGTH
@LICS @LN
@LOG @LOWER
@MEDIAN @MICROSECOND
@MID @MINUTE
@MOD @MONTH
@MONTHBEG @NOW
@NULLVALUE @PI
@PMT @PROPER
@PV @QUARTER
@QUARTERBEG @RATE
@REPEAT @REPLACE
@RIGHT @ROUND
@SCAN @SDV
@SECOND @SIN
@SLN @SQRT
@STRING @SUBSTRING
@SYD @TAN
@TERM @TIME
@TIMEVALUE @TRIM
@UPPER @VALUE
@WEEKBEG @WEEKDAY
@YEAR @YEARBEG
5-2 SQL Language Reference

SQL Reserved Words
@YEARNO ABORTxxxDBSxxx
ACTIONS ADD
ADJUSTING AFTER
ALL ALTER
AND ANY
APPEND AS
ASC ASCII
AT ATTRIBUTE
AUDIT AUTHORITY
AVG BEFORE
BETWEEN BUCKETS
BY CALLSTYLE
CASCADE CATALOG
CATEGORY CDECL
CHAR CHARACTER
CHECK CLIENT
CLUSTERED COLAUTH
COLUMN COMMENT
COMMIT COMPRESS
COMPUTE CONNECT
CONTROL COUNT
CR CREATE
CREATOR CURRENT
CURRVAL DATABASE
DATEDATE DATETIME
DAY DAYS
DBA DBATTRIBUTE
DBAREA DEC
DECIMAL DEFAULT
DEINSTALL DELETE
DESC DIF
DIRECT DISABLE
DISTINCT DISTINCTCOUNT
DOUBLE DROP
DYNAMIC EACH
ENABLE EVENT
EVERY EXECUTE
EXISTS EXTERNAL
FLOAT FOR
FORCE FOREIGN
FROM FUNCTION
GLOBAL GRANT
GRANTEE GROUP
SQL Language Reference 5-3

Chapter 5 SQL Reserved Words
HASHED HAVING
HOUR HOURS
ID IDENTIFIED
IN INDEX
INDEXES INLINE
INSERT INSTALL
INT INTEGER
INTO IS
IXNAME KEEP
KEY LABEL
LF LIBRARY
LIKE LIMIT
LOAD LOCAL
LOCK LOG
LONG MAX
MESSAGE MICROSECOND
MICROSECONDS MIN
MINUTE MINUTES
MODIFY MONTH
MONTHS NAME
NEW NEXTVAL
NOT NULL
NUMBER OF
OFF OLD
ON ONLY
OPTION OR
ORDER OVERWRITE
PARAMETERS PASCAL
PASSWORD PCTFREE
PERFM POST
PRECISION PRIMARY
PRIVILEGES PROCEDURE
PROCESS PUBLIC
QUALIFIER RAISE
REAL REFERENCES
REFERENCING REL
RENAME RESOURCE
RESTRICT RETURNS
REVOKE ROLLBACK
ROW ROWCOUNT
ROWID ROWS
SAME SAVEPOINT
SCHEMA SECOND
5-4 SQL Language Reference

SQL Reserved Words
SECONDS SELECT
SEPARATE SERVER
SET SIZE
SMALLINT SQL
START STATEMENT
STATIC STATISTICS
STDCALL STOGROUP
SUM SYNCREATOR
SYNNAME SYNONYM
SYSDATE SYSDATETIME
SYSDBSEQUENCE SYSTIME
SYSTIMEZONE SYSDBTRANSID
TABAUTH TABLE
TBNAME THREAD
TIME TIMESTAMP
TIMEZONE TO
TRANSACTION TRIGGER
TYPE UNLOAD
UNION UNIQUE
UPDATE USER
USERERROR USING
VALUES VARCHAR
VARIABLES VIEW
WAIT WHERE
WITH WITHOUT
WORK YEAR
YEARS
SQL Language Reference 5-5

se

SQL Language Reference
Chapter 6

Referential Integrity

This chapter describes how referential integrity works, and how it affects SQLBa
commands, and its components.
SQL Language Reference 6-1

Chapter 6 Referential Integrity

.
ed in

led
ou

oes

ES

egrity

era

rity
the
About referential integrity
Referential integrity ensures that all references from one table to another are valid
This prevents problems from occurring when changes in one table are not reflect
another.

To illustrate the concept of referential integrity, assume that you have a table cal
ENGINEERS where you store information about service engineer employees. Y
need to add an engineer to a new office in this table:

INSERT INTO ENGINEERS (EMPL_NUM,NAME,REP_OFFICE,
TITLE,HIRE_DATE) VALUES (400,’Marv Epper’,50,
’Engineer’, 10/1/93,NULL);

There’s nothing inherently incorrect about this statement. However, if office 50 d
not yet exist, this record could potentially corrupt the data integrity.

Every office value in the ENGINEERS table should be a valid office in the OFFIC
table. This rule is called a referential integrity constraint.

Note that a valid reference is not the same as a correct reference. Referential int
does not correct a mistake such as assigning an engineer to the wrong office; it only
verifies that the office actually exists.

Sample service database
To demonstrate referential integrity, this chapter uses a small database for a cam
company’s service organization. This database contains the following tables:

• OFFICES

• ENGINEERS

• CUSTOMERS

• SERV_CALLS

• PRODUCTS

For a listing of the data in these tables, refer to the end of this chapter.

The benefits of referential integrity
Referential integrity is an important SQLBase feature. It takes care of data integ
and validation at the database level. For example, assume you need to enforce
following constraints in the sample service database:

• There can be only one manager per office.

• All employees must be associated with an office and manager.

• Each product has a manufacturer and product code.
6-2 SQL Language Reference

Components

 to
ns

nd

 and
ows.
L
• All customers have a service representative assigned to them.

SQLBase can take care of these referential integrity constraints; you do not have
code them yourself in your application program. SQLBase, not the user, maintai
and enforces the referential integrity rules.

Components
Referential integrity is the enforcement of all referential constraints. To understa
how referential integrity works, you first need to be familiar with its main
components:

• primary key

• foreign key

• parent/child table

• parent/child row

• self-referencing table/row

Primary key
A table’s primary key is the column or set of columns that uniquely identifies each
row. In the OFFICES table, the OFFICE column is the primary key. It is a unique
identifier since each office has a different number.

Primary key for OFFICES table

Primary keys ensure the integrity of the data. If the primary key is correctly used
maintained, every row is different from every other row, and there are no empty r
A table can have only one primary key. The primary key cannot contain any NUL
values, and must be unique.

OFFICE CITY REGION MGR
MAJ_

ACCOUNT

20 San Francisco Western 103 1050

40 New York Eastern 108 2500

10 Los Angeles Western 100 3000

30 Chicago Midwest 106 1001

Primary Key
SQL Language Reference 6-3

Chapter 6 Referential Integrity

e can

se

Each

.

Composite primary key
Sometimes, more than one column is necessary to uniquely define a row. A tabl
have a composite primary key containing multiple columns. For example, the
PRODUCTS table has a primary key containing two columns: MFR_ID and
PRODUCT_ID. Neither column could be a primary key by itself, but together, the
two columns uniquely identify each product.

Composite primary key for PRODUCTs example

Candidate keys
A table can have more than one unique identifier that qualifies as a primary key.
column that is a unique identifier for the table is called a candidate key, and each can
be the primary key.

A candidate key must obey the following rules:

• No two rows in the table can have the same value for the candidate key

MFR_ID PRODUCT_ID DESCRIPTION

ACR 101 Tripod

ACR 102 Tripod2

MRP 101 Long Angle Lens

LMA 4211 Automatic Camera

LMA 4310 Regular Focus 1

LMA 4516 Regular Focus 2

MRP 600 Lens

MRP 601 Shutter

WRS 24c Widget 1

WRS 25a Widget 2

Primary Key
6-4 SQL Language Reference

Components

ey

ry

ue
oes

he
t,

ble

 the

ays

u
 of
.

the

 as

 This
he
• The candidate key is not allowed to contain subsets that are unique. For
example, the composite key MFR_ID/PRODUCT_ID is not a candidate k
if either of its columns is also unique in the table.

You must choose yourself which candidate key is the primary key. The remaining
candidate keys are called alternate keys.

Guidelines for defining primary keys
The following rules are not required, but are good guidelines for creating a prima
key.

• Unique identifier. Create a primary key for every table that has a clear uniq
identifier, such as the OFFICE column in the OFFICES table. SQLBase d
allow you to create a table without a primary key. However, it is strongly
recommended that you never do this, except in the following situations:

• There are not any referential rules applied to the table.

• The table is not a parent table (see the following section on Components).

• The index maintenance overhead clearly outweighs the benefits of a
primary key.

• Permanent value. If there are child rows referencing the primary key (see t
following section on Components), a primary key value should be permanen
and not updateable.

 For example, at first glance the MGR or CITY columns in the OFFICES ta
could also be primary key candidates since they are currently unique.
However, if you open another office in the same city, or a manager leaves
company, the values in these columns would change. Neither of these
columns would work well as a primary key, since their values may not alw
be unique or permanent.

• Views. An updateable view defined on a table with a primary key must
include all columns of the primary key. Although this is only required if yo
use the view in an INSERT statement, the resulting unique identification
rows is also useful if the view is used for updating, deleting, or selecting

If you try to insert a row into a view that does not contain values for all of
primary key columns, the following message appears:

NOT ENOUGH NON-NULL VALUES

This message appears because all the primary key columns are defined
NOT NULL (since a primary key cannot contain NULL values).

• Number of columns. For composite primary keys, use only the minimum
number of columns necessary to ensure uniqueness of the primary key.
is because every foreign key referencing this primary key must include t
SQL Language Reference 6-5

Chapter 6 Referential Integrity

nly
.

t

e

es.

e

x is
re
d is

in an

 that

le. If
annot

 key
ary
same number of columns. For example, in the PRODUCTS table, you o
need the manufacturer number and product number, not the description

• NOT NULL WITH DEFAULT. When creating primary keys, you should no
use the NOT NULL WITH DEFAULT option unless the primary key
column(s) has a data type of TIMESTAMP or DATETIME.

The following rules are required when creating a primary key in SQLBase:

• Unique index. If a table has a primary key, you must also create a uniqu
index on the primary key columns to make the table complete. See the
following section Primary key index for more information.

• Format. The primary key format must obey the following rules:

• Cannot contain more than 16 columns.

• Sum of the column length attributes cannot be greater than 255 byt

• Cannot contain LONG or LONG VARCHAR columns.

• UPDATE WHERE CURRENT. You cannot use an UPDATE WHERE
CURRENT clause with a primary key column.

• Self-referenced rows. In a self-referencing row, you cannot update the
primary key value. For more information on self-referenced rows, see th
following section on Self-referenced rows.

Primary index
If a table has a primary key, you must also create a unique index on that table’s
primary key columns using the same column order as the primary key. This inde
called the primary index. A table can have only one primary index. If a table has mo
than one unique index created on the primary key columns, the first index create
the primary index.

The primary index can be in either ascending or descending order. The table is
incomplete state until you create the primary index. If the table is incomplete, you
cannot perform tasks such as inserting or retrieving data, or creating foreign keys
reference the primary key.

Because of these limitations, create the primary index soon after creating the tab
a primary index is dropped later, the table becomes incomplete again, and you c
perform any data operations on it until the primary index is recreated.

If you create the table first, and then modify the table later by adding the primary
with the ALTER TABLE statement, a unique index must already exist on the prim
key columns.
6-6 SQL Language Reference

Components

The

nces

ing a

o
Foreign key
A foreign key references a primary key in either the same or another table. The
OFFICE column of the OFFICES table is an example of a primary key. The
REP_OFFICE column of the ENGINEERS table is an example of a foreign key.
office value in the ENGINEERS table references the office value in the OFFICES
table.

Example of a foreign key

Before creating a foreign key, you must first create both the primary key it refere
and also a unique index on that primary key.

Naming a foreign key
Each foreign key has a constraint name. This name identifies the foreign key. For
example, a tokenized error message returns the constraint name when referenc
foreign key. The foreign key name is also required when you use the DROP
FOREIGN KEY clause of the ALTER TABLE statement.

The constraint name is assigned when the foreign key is created (with CREATE
TABLE or ALTER TABLE). You can assign the constraint name yourself; if you d

OFFICE CITY REGION

20 San
Francisco

Western

40 New York Eastern

10 Los Angeles Western

30 Chicago Midwest

EMP
NUM

NAME

100 Paul Atkins

104 Bob Smith

107 Murray
Rochester

102 Larry
Sanchez

101 Sheila
Brown

106 Sam Valdez

PrimaryForeign
key key

EMPL_
NUM

NAME
REP_

OFFICE

100 Paul
Atkins

10

104 Bob Smith 20

107 Murray
Rochester

30

102 Larry
Sanchez

10

101 Sheila
Brown

10

106 Sam
Valdez

10

PrimaryForeign
key key
SQL Language Reference 6-7

Chapter 6 Referential Integrity

y

that if
sign a
 not

ust

ns
ch
ns

ign
er,

y.

.

 key.

g

ed
not, SQLBASE generates a constraint name from the name of the first foreign ke
column.

A foreign key constraint name can have up to eighteen characters. This means
the first foreign key column name is more than eighteen characters, you must as
constraint name yourself that does not violate this limit. Otherwise, SQLBase will
create the foreign key.

If there are multiple foreign keys referencing the same table, each foreign key m
have a unique name. This ensures that every referential constraint is uniquely
identified by a table name/constraint name combination.

For example, you could create a foreign key on the OFFICE.MGR column, and
assign it a constraint name called HASMGR. If you do not assign the constraint
name, SQLBase assigns MGR as a default.

Foreign key guidelines
In SQLBase, a foreign key must obey the following rules:

• Matching columns. A foreign key must contain the same number of colum
as the primary key. The data types of the foreign key columns must mat
those of the primary key on a one-to-one basis, and the matching colum
must be in the same order.

However, the foreign key can have different column names and default
values. It can also have NULL attributes. If an index is defined on the fore
key columns, the index columns can be in ascending or descending ord
which may be different from the order of the primary key index.

• Using primary key columns. A column can belong to both a primary and
foreign key.

• Foreign keys per table. A table can have any number of foreign keys.

• Number of foreign keys. A column can belong to more than one foreign ke

• Number of columns. A foreign key cannot contain more than 16 columns

• Parent table. A foreign key can only reference a primary key in its parent
table. This parent table must reside in the same database as the foreign

• NULL values. A foreign key column value can be NULL. A foreign key
value is NULL if any column in the foreign key is NULL. See the followin
subsection on Foreign keys and NULL values for more information.

• Privileges. You must grant ALTER authority on a table to all users who ne
to define that table as the parent of a foreign key.

• System catalog table. The foreign key cannot reference a system catalog
table.
6-8 SQL Language Reference

Components

ing

d
.

d
ng
 for

L)

 has a

 can

hat

LL/
s,
• Views. A foreign key cannot reference a view.

• Self-referencing row. In a self-referencing row, the foreign key value can
only be updated if it references a valid primary key value. See the follow
section on Self-referencing tables for more information.

Foreign key indexes
SQLBase does not require an index on a foreign key, but an index can increase
database performance. A join with primary and foreign keys is fairly common, an
creating an index on the foreign key can improve the performance of these joins

SQLBase optimizes index checks by considering any index where a left-anchore
partial key matches the dependent key. In particular, this method of index checki
affects those referential integrity rules that involve locating dependent rows given
its parent key. Specifically,

• DELETE CASCADE (where dependent rows are located and deleted).

• DELETE SET NULL (where dependent rows are located and set to NUL

• DELETE RESTRICT (where dependent rows are located and if any are
found, deletion of the parent key is denied)

The following example shows you how SQLBase optimizes index checks.

Example:

Assume a parent table PT has a composite key (A, B) and a dependent table DT
dependent composite key (X,Y). The dependency rule between PT and DT is a
DELETE CASCADE, which means that when a row in PT is deleted, the
corresponding dependent rows in DB are also deleted.

In order to locate the dependent rows in DT, SQLBase checks if an index on DT
be used. SQLBase not only considers an index on columns (X, Y) of DT, but also
considers indexes defined on (X, Y, Z), (X, Y, A, B, C), etc. The closest matching
index is chosen to enforce the referential integrity rule.

Foreign keys and NULL values
A foreign key column can have a NULL value, unlike a primary key column. Even
though a NULL value does not match any value in a primary key, it satisfies the
referential integrity constraint. This is also true for a multiple-column foreign key t
contains part NULL/non-NULL values; SQLBase regards a foreign key value as
NULL if any of its column values is NULL.

It is strongly recommended that you do not allow a foreign key to have partial NU
non-NULL values. Either all of the foreign key columns should allow NULL value
or none at all.
SQL Language Reference 6-9

Chapter 6 Referential Integrity

ate

FR

 key

.

,
ore

RT
y’s
The following example with the PRODUCTS and SERV_CALLS tables demonstr
the problems with partial NULL foreign keys.

Example:

The composite key MFR_ID/PRODUCT_ID is a primary key in the PRODUCTS
table. The composite key MFR/PRODUCT is a foreign key in the SERV_CALLS
table referencing the PRODUCTS table.

Assume that the SERV_CALLS table allowed NULL values for the PRODUCT
column. This means that you can enter a non-NULL value for the SERV_CALL.M
column, and a NULL value in the SERV_CALL.PRODUCT column.

INSERT INTO SERV_CALLS VALUES (8000,
9-4-93,2000,103,’WRS’,NULL);

As a result, the row contains a foreign key value that does not match any primary
value in the PRODUCTS table.

Example of partial NULL/non-NULL foreign key

SET NULL delete rule. The same situation applies with a SET NULL delete rule
With this rule, deleting a row from the PRODUCTS table sets the
SERV_CALLS.PRODUCT column to NULL since it accepts a NULL value. Again
the row in the SERV_CALLS table does not match the PRODUCTS table. For m
information on SET NULL, read DELETE implications on page 6-26.

INSERT statement. With regards to referential integrity, SQLBase regards a row
with partial NULL/non-NULL values as NULL. Once a row is defined as NULL,
SQLBase does not perform any referential checks on it when you issue an INSE
statement.This means that SQLBase does not check the values in the foreign ke
non-NULL columns to see if they match any values in the parent table.

CALL_NUM CALL_DATE CUST REP MFR PRODUCT

8000 1993-00-04 2000 103 WRS

MFR_ID PRODUCT_ID DESCRIPTION

WRS 24c Widget 1

WRS 25a Widget 2

Primary key
Foreign key
6-10 SQL Language Reference

Components

Parent and child tables
Together, the primary key and foreign key create a parent/child relationship. The table
containing the primary key is the parent table, while the table containing the foreign
key is a child table. A child of a child is called a descendent.

In the following example, the PRODUCTS table is a parent of the SERV_CALLS
table.

Example of parent/child tables

To be a parent table, a table must have a primary key and primary index.

MFR_ID PRODUCT_ID DESCRIPTION

ACR 101 Tripod

ACR 102 Tripod2

MRP 101 Long Angle Lens

LMA 4211 Automatic Camera

LMA 4310 Regular Focus 1

LMA 4516 Regular Focus 2

MRP 600 lens

MRP 601 Shutter

WRS 24c Widget 1

WRS 25a Widget 2

CALL_NUM CALL_DATE CUST REP MFR PRODUCT

2133 1993-05-10 1000 102 ACR 102

6253 1993-05-02 3000 101 LMA 4516

7111 1993-05-09 1001 104 MRP 101

4250 1993-05-14 1050 109 MRP 101

Parent Table

PRODUCTS

Child Table
SQL Language Reference 6-11

Chapter 6 Referential Integrity

ild

child
CTS
s in

ign
Some tables have no parent or child tables. These are called independent tables.
Think carefully before using an independent table in your database design. Any
reference to this table is neither validated nor verified.

Parent and child rows
A row belonging to a parent table that is referred to by a row belonging to the ch
table is a parent row. The row that refers to it is a child row. The child row must have
at least one foreign key column value that is not NULL.

Example of parent/child rows with the PRODUCTS and SERV_CALLS tables

Not every row in a parent table is necessarily a parent row; it may not have any
rows that reference it. For example, on the previous page, the row in the PRODU
table whose description is Automatic Camera is not referenced by any of the row
the SERV_CALL table.

Likewise, if a row in a child table has a NULL foreign key, it is not a child row.

Self-referencing tables and rows
A table can be a child of itself. This is called a self-referencing table. A self-
referencing table contains both a foreign and primary key with matching values
within the same table.

An example of a self-referencing table is the ENGINEERS table, where the fore
key MGR (MANAGER) references the primary key EMPL_NUM.

MFR_ID PRODUCT_ID DESCRIPTION

ACR 102 Tripod2

CALL_NUM CALL_DATE CUST REP MFR PRODUCT

2133 1993-05-10 1000 102 ACR 102

child row

parent row
6-12 SQL Language Reference

Components

y

lf-

ey

),

ces

r
le
If a row is a self-referencing row, its foreign key value is the same as its primary ke
value. This section does not show a self-referencing row.

The following restrictions apply to self-referencing tables and rows:

• The DELETE rule must be CASCADE.

• An INSERT statement with a subquery can only insert one row into a se
referencing table.

• You cannot use a DELETE WHERE CURRENT OF statement.

• To update the primary key, you must use one of the following methods:

• Delete the row, and then reinsert it with the new primary and foreign k
values

OR

• Update the foreign key value to another value or NULL (if permitted
and then update the primary key value.

• You can only update the foreign key in a self-referencing row if it referen
a valid primary key.

Delete-connected tables
Tables are delete-connected if deleting a row in one table affects the other table. Fo
example, deleting an office from the OFFICES table affects the ENGINEERS tab
since each engineer is associated with an office.

Any table that is involved in a delete operation is delete-connected.

The following definitions apply to delete-connected tables:

EMPL_
NUM

NAME
REP_

OFFICE
TITLE

HIRE
DATE

MANAGER

100 Paul Atkins 10 Manager 1988-02-12

104 Bob Smith 20 Sen. Engineer 1992-09-05 103

107 Murray
Rochester

30 Sen. Engineer 1991-01-25 106

102 Larry Sanchez 10 Sen. Engineer 1989-06-12 100
SQL Language Reference 6-13

Chapter 6 Referential Integrity

at

bles
arent
his

nce

 4
• A self-referencing table is delete-connected to itself.

• A child table is always delete-connected to its parent table no matter wh
DELETE rule you specify.

• A table is delete-connected to its grandparent and great-grandparent ta
when the delete rule between the parent and grandparent, or the grandp
and the great-grandparent, is CASCADE. The following figure illustrates t
concept.

Delete-connected tables

In this figure, TABLE 4 is delete-connected to its grandparent table, TABLE 2, si
the delete rule between TABLE 2 and TABLE 3 is CASCADE. TABLE 4 is also
delete-connected to its great-grandparent table, TABLE 1, since the delete rule
between TABLE 1 and TABLE 2 is CASCADE. The delete rules between TABLE
and its parent, TABLE 3, do not affect these delete-connections.

For information on restrictions for delete-connected tables, read the section Delete-
connected table restrictions on page 6-27.

TABLE 1

TABLE 2

TABLE 4

TABLE 3

CASCADE

DON’T CARE

CASCADE

grandparent table

parent table

great-grandparent
table
6-14 SQL Language Reference

How to create tables with referential constraints

th

S

 with

r the

ng

gn
How to create tables with referential constraints
Use the CREATE TABLE or ALTER TABLE statement to create or alter tables wi
primary keys or foreign keys, and to establish referential constraints.

Using the CREATE TABLE statement
In the following example, the CREATE TABLE command creates the ENGINEER
table with a primary and foreign key:

CREATE TABLE ENGINEERS
(EMPL_NUM INTEGER NOT NULL,
NAME VARCHAR(24) NOT NULL,
REP_OFFICE INTEGER,
TITLE VARCHAR(15),
HIRE_DATE DATE NOT NULL,
MANAGER INTEGER,
PRIMARY KEY (EMPL_NUM),
FOREIGN KEY WORKSIN (REP_OFFICE)
REFERENCES OFFICES ON DELETE RESTRICT);

Issues for primary key
As a general rule, you should specify the primary key when you create the table
the CREATE TABLE statement, rather than adding the key later with the ALTER
TABLE statement.

Remember to create a unique index on the table after creating the primary key, o
table will be incomplete. Read the section on Creating a primary index on page 6-16.

Issues for foreign key
You can use CREATE TABLE to create a foreign key while creating the table.
Remember, however, that the foreign key must reference a table with an existing
primary key and primary index. In the example above, the foreign key WORKSIN
references the OFFICES table. The OFFICES table must already have an existi
primary key, and a primary index created on the primary columns.

To create a foreign key, you must have the ALTER privilege on both the table
containing the foreign key and the table containing the primary key.

When you create a foreign key, you can also specify a DELETE rule for the forei
key. If you do not specify the DELETE rule yourself, SQLBase assigns a default
DELETE rule of RESTRICT. Read the section DELETE implications on page 6-23
for more information.

You cannot specify an UPDATE rule.
SQL Language Reference 6-15

Chapter 6 Referential Integrity

fter
raints

ith

x

on
S

y

ate

on

Using the ALTER TABLE statement
You can use the ALTER TABLE statement to create a primary and foreign key a
you create the tables. Since the parent table must exist, some foreign key const
can only be defined with the ALTER TABLE statement, such as a self-reference.

To add the foreign key ISFOR to the SERV_CALLS table after creating the table w
CREATE TABLE, use this ALTER TABLE command:

ALTER TABLE SERV_CALLS FOREIGN KEY ISFOR
(MFR,PRODUCT) REFERENCES PRODUCTS ON DELETE
RESTRICT;

Before using ALTER TABLE to add a primary key, you must create a unique inde
on the primary key columns.

Creating a primary index
Since a table is incomplete until you create a primary index, create the index so
after creating the table. For example, to create the primary index for the OFFICE
table, enter the following command:

CREATE UNIQUE INDEX OFFICE_IDX ON OFFICES (OFFICE);

If you add the primary key later with ALTER TABLE, a unique index must alread
exist on the primary key columns.

If you are loading database information with the LOAD command, you should cre
the index after the load for performance reasons.

Reporting referential integrity
There are three SQLBase system catalog tables that contain referential integrity
information. For a description of the columns in these tables, read the appendix
System catalog tables.

• SYSADM.SYSFKCONSTRAINTS (Foreign key constraints)

This table contains information about a table’s foreign keys, such as the
constraint name, column(s) of the foreign key, and the parent table it
references.

SELECT * FROM SYSFKCONSTRAINTS
WHERE NAME=’SERV_CALLS’;
6-16 SQL Language Reference

Reporting referential integrity

h as

ific
lete

e
SYSADM.SYSFKCONSTRAINTS table

• SYSADM.SYSPKCONSTRAINTS (Primary key constraints)

This table contains information about a table’s primary key columns, suc
the column name of the primary key and the table name.

 SELECT * FROM SYSPKCONSTRAINTS WHERE
NAME=’PRODUCTS’;

SYSADM.SYSPKCONSTRAINTS table

• SYSADM.SYSTABCONSTRAINTS (Table constraints)

This table contains information about all constraints pertaining to a spec
table, such as the name and type of constraint (primary or foreign key), de
rule for a foreign key, and any customized user error messages (read th
section Customizing SQLBase error messages on page 6-30 for more
information).

SELECT * FROM SYSTABCONSTRAINTS WHERE
NAME=’SERV_CALLS’;

SYSADM.SYSTABCONSTRAINTS table

CREATOR NAME
CON-

STRAINT
FKCOLS
EQNUM

REFS
COLUMN

REFDTB
CREATOR

REFDTB
NAME

REFD
COLUMN

SYSADM SERV_CALLS ISFOR 1 MFR SYSADM PRODUCTS MFR_ID

SYSADM SERV_CALLS ISFOR 2 PRODUCT SYSADM PRODUCTS PRODUCT_ID

CREATOR NAME PKCOLSEQNUM COLNAME

SYSADM PRODUCTS 1 MFR_ID

SYSADM PRODUCTS 2 PRODUCT_ID

CREATOR NAME CONSTRAINT TYPE
DELETE

RULE
USRERR
INSDEP

USRERR
UPDDEP

USRERR
DELPAR

USRERR
UPDPAR

SYSADM SERV_CALLS ISFOR F R 0 0 0 0

SYSADM SERV_CALLS PRIMARY P 0 0 0 0
SQL Language Reference 6-17

Chapter 6 Referential Integrity

 This
E,

 or

lue

ign
ERT

 no

e

r
nces
ys.

d to

ate
Implications for SQLBase operations
Referential constraints have special implications for some SQLBase operations.
section describes how referential integrity affects the SQLBase INSERT, UPDAT
DROP, SELECT, and DELETE commands.

Views share the referential constraints of their base tables.

INSERT
SQLBase enforces the following rules when you insert data into a table with one
more foreign keys:

• Each non-null value you insert into a foreign key column must match a va
in the primary key.

• If any column in the foreign key is null, SQLBase regards the entire fore
key as null. SQLBase does not perform any referential checks on an INS
statement with a NULL foreign key.

• You cannot insert values into a parent or child table if the parent table is
longer complete (for example, if you dropped the primary index).

You can insert data into the parent table at any time without it affecting the child
table. For example, adding a new office to the OFFICES table does not affect th
ENGINEERS table.

UPDATE
If you are updating a child table, every non-NULL foreign key value that you ente
must match a valid primary key value in the parent table. If the child table refere
multiple parent tables, the foreign key values must all reference valid primary ke

The only UPDATE rule that can be applied to a parent table is RESTRICT. This
means that any attempt to update the primary key of the parent table is restricte
cases where there are no matching values in the child tables.

SQLBase enforces the following rules on an UPDATE statement:

• An UPDATE statement that assigns a value to a primary key cannot specify
more than one record.

• An UPDATE statement with a WHERE CURRENT OF clause cannot upd
a primary key, or columns of a view derived from a primary key.
6-18 SQL Language Reference

Implications for SQLBase operations

ign
 user
les:

ery

y

he
ot be
e

ast

ws

n

call
 the

y; in

data
DELETE
You can specify a delete rule for each parent/child relationship created by a fore
key in a SQLBase application. The delete rule tells SQLBase what to do when a
tries to delete a row from the parent table. You can specify one of three delete ru

• RESTRICT

• CASCADE

• SET NULL

If you execute a DELETE statement against a table, you cannot specify a subqu
that references the same table. For an example of this rule, see the section Delete-
connected table restrictions on page 6-27.

DELETE RESTRICT
This rule prevents you from deleting a row from the parent table if the row has an
child rows. You can delete a row if there are no child rows.

For the sample service database, a DELETE RESTRICT rule is appropriate for t
relationship between a service call and the product that is serviced. You should n
able to delete product information from the database if there are still open servic
calls against the product.

ALTER TABLE SERV_CALLS FOREIGN KEY
(MFR,PRODUCT) REFERENCES SERV_CALLS ON DELETE
RESTRICT;

If you do not specify a DELETE rule, RESTRICT is the default, since it has the le
potential for damage.

DELETE CASCADE
This rule specifies that when a parent row is deleted, all of its associated child ro
are automatically deleted from the child table(s). Deletions from the parent table
cascade to the child table. If any part of the delete fails, the whole delete operatio
fails. The delete is also propagated to descendent tables.

A DELETE CASCADE rule is appropriate for the relationship between a service
and the customer who is being serviced. You probably delete a customer row from
database only if the customer is inactive or ends its relationship with the compan
this case, all of the customer’s service calls should also be deleted.

ALTER TABLE SERV_CALLS FOREIGN KEY (CUST)
REFERENCES CUSTOMERS ON DELETE CASCADE;

Be careful using the CASCADE rule, since it can delete an extensive amount of
if it is used incorrectly.
SQL Language Reference 6-19

Chapter 6 Referential Integrity

as a

ll of

ome

p a

ur

ary
e of

ms

.

rent/

s

ique
DELETE CASCADE does not delete a parent row if a child or descendent row h
DELETE RESTRICT rule.

For a self-referencing table, CASCADE is the only DELETE rule allowed.

DELETE SET NULL
This rule specifies that when a parent row is deleted, the foreign key values in a
its child rows should automatically be set to NULL.

If an engineer leaves the company, any customers serviced by that engineer bec
the responsibility of an unknown engineer until they are reassigned.

ALTER TABLE CUSTOMERS FOREIGN KEY HASREP
(SERV_REP) REFERENCES ENGINEERS ON DELETE SET
NULL;

For a foreign key, you can use the SET NULL option only if at least one of the
columns of the foreign key allows NULL values. The default is RESTRICT.

DROP
Dropping a table drops both its primary key and any foreign keys. When you dro
parent table or its primary key, the referential constraint is also dropped.

Before you drop a primary or foreign key, consider the effect this will have on yo
application programs. Dropping a key drops the corresponding referential
relationship. It also drops the DELETE rule for a foreign key. In addition, the prim
key of a table is a permanent, unique identifier of the entities it describes, and som
your programs might depend on it. Without a primary or foreign key, your progra
must enforce these referential constraints.

Note that dropping a primary or foreign key is not the same as deleting its value

Use the ALTER TABLE statement to drop a primary or foreign key.

Dropping a primary key
If you have ALTER privilege on both the parent and child tables, you can drop a
primary key. The following example drops a primary key:

ALTER TABLE OFFICES DROP PRIMARY KEY;

This statement drops the primary key of the OFFICES table. It also drops the pa
child relationship with the ENGINEERS table.

If a user has ALTER privilege on a table, you cannot revoke this privilege if he ha
already created a foreign key that references that table.

Dropping a primary key does not drop the primary index. The index remains a un
index on the former primary key’s columns.
6-20 SQL Language Reference

Cycles of dependent tables

ble

S

ted by

CE
lso
Dropping a primary index
Dropping a primary index results in an incomplete table. To create a complete ta
definition, create another unique index on the columns of the primary key.

Referential constraints remain even if you drop the primary index.

Dropping a foreign key
The following SQL statement drops the foreign key ISFOR from the SERV_CALL
table:

ALTER TABLE SERV_CALLS
DROP FOREIGN KEY ISFOR;

To drop a foreign key, you must have ALTER privilege on both the parent and
dependent tables.

SELECT
Because a SELECT statement does not change actual data values, it is not affec
referential integrity.

Cycles of dependent tables
In the sample service database, the ENGINEERS table contains the REP_OFFI
column, which references the OFFICES.OFFICE column. The OFFICES table a
contains a foreign key on the MGR column, which references the
ENGINEERS.EMPL_NUM column.
SQL Language Reference 6-21

Chapter 6 Referential Integrity

o

 in
t you
Example of a referential cycle

Both tables have a foreign key that reference each other’s primary key. These tw
relationships form a referential cycle. This means that any given row in the
ENGINEERS table references a row in the OFFICES table, which refers to a row
the ENGINEERS table, and so on. This example shows a cycle of two tables, bu
can create cycles with more tables.

Engineers table

EMPL _
NUM

NAME
REP_

OFFICE

100 Paul Atkins 10

104 Bob Smith 20

107 Murray
Rochester

30

102 Larry
Sanchez

10

101 Sheila
Brown

10

106 Sam Valdez 30

Offices table

OFFICE CITY MGR

20 San Francisco 103

40 New York 108

10 Los Angeles 100

30 Chicago 106

Foreign
key

Primary
key

Primary
key

Foreign
key
6-22 SQL Language Reference

Cycles of dependent tables

For
ployee

ich
r 112

o

 this,

 is a

he

ach
INSERT implications
This kind of cyclical relationship can cause problems for an INSERT statement.
example, assume you have just hired a new senior engineer, Ronald Casey (em
112) who will be managing a new office in Boston (office 50)

INSERT INTO ENGINEERS (EMPL_NUM, NAME,
REP_OFFICE, TITLE, HIRE_DATE) VALUES
(112,’Ronald Casey’, 50,’Manager’,8-15-93);

INSERT INTO OFFICES VALUES
(50,’Boston’,’Eastern’,112, NULL);

The first insert into the ENGINEERS table fails, because it refers to office 50, wh
does not exist yet. Reversing the statements does not help either, since manage
does not exist yet.

To avoid this insert dilemma, at least one of the foreign keys in a referential cycle
must permit NULL values. You can then accomplish the two-row insertion with tw
INSERT and one UPDATE statements:

INSERT INTO ENGINEERS VALUES (112,’Ronald Casey’,
NULL,’Manager’,8-15-93,NULL);

INSERT INTO OFFICES VALUES
(50,’Boston’,’Eastern’,112,NULL);

UPDATE ENGINEERS
SET REP_OFFICE=50
WHERE EMPL_NUM=112;

DELETE implications
Referential cycles can also cause problems for a DELETE operation. To illustrate
this section uses the following three tables:

• OFFICES

• CUSTOMERS

• ENGINEERS

These three tables have a referential cycle relationship. The CUSTOMERS table
parent of the OFFICES table, OFFICES is a parent of ENGINEERS, and
ENGINEERS is a parent of CUSTOMERS.

The following three examples demonstrate what happens if you delete a row in t
CUSTOMERS table with different DELETE rules.

The following diagram shows the relationships between the tables if you create e
foreign key with the DELETE CASCADE rule.
SQL Language Reference 6-23

Chapter 6 Referential Integrity
Referential cycles with DELETE CASCADE

Using the CASCADE rule, the following delete cycle starts:

10

20

3000

1001

OFFICE MAJ_ACCOUNT

101

102

105

10

10

20

EMPL_NUM REP_OFFICE

1000

3000

1001

1050

101

102

101

105

CUST_NUM SERV_REP

OFFICES Table

CUSTOMERS Table

ENGINEERS Table

Foreign key

Foreign

Foreign
key

key

Primary
key

Primary
key

Primary
key

CASCADE

CASCADE

CASCADEStart
here
6-24 SQL Language Reference

Cycles of dependent tables

ts:

e

ach
1. Delete customer 3000 from the CUSTOMER table.

2. This deletes office 10 from the OFFICES table.

3. This deletes engineers 101 and 102 from the ENGINEERS table.

4. This deletes customers 1000 and 1001 from the CUSTOMERS table.

5. This deletes office 20 from the OFFICES table.

6. This deletes engineer 105 from the ENGINEERS table, and so on.

To break this cycle of cascaded deletes, SQLBase has the following requiremen

• In a cycle with only two tables, neither delete rule can be CASCADE.

• In cycles of more than two tables, at least one of the delete rules must b
RESTRICT or SET NULL.

These rules prevent a table from becoming delete-connected to itself.

The following diagram shows the relationships between the tables if you create e
foreign key with the DELETE RESTRICT rule.
SQL Language Reference 6-25

Chapter 6 Referential Integrity

 the

l
Referential cycles with DELETE RESTRICT

With this rule, you cannot delete any customers, since they are all parent rows in
other tables.

You should not specify the RESTRICT rule for all the relationships in a referentia
cycle, unless you want to prevent users from deleting any data.

10

20

3000

1001

OFFICE MAJ_ACCOUNT

101

102

105

10

10

20

EMPL_NUM REP_OFFICE

1000

3000

1001

1050

101

102

101

105

CUST_NUM SERV_REP

OFFICES Table

CUSTOMERS Table

ENGINEERS Table

Foreign key

Foreign

Foreign
key

key

Primary
key

Primary
key

Primary
key

RESTRICT

RESTRICT

Start
here

RESTRICT
6-26 SQL Language Reference

Cycles of dependent tables

 the

 the
y of a
ed

row

ou
ed

ot
. The
ed.

ths,
annot

l
Delete-connected table restrictions
The following restrictions apply to delete-connected tables.

• If a DELETE operation involves a table that is referenced in a subquery,
last delete rule in the path to that table must be RESTRICT.

A basic rule of SQL is that the result of an operation must not depend on
order in which rows of a table are accessed. That means that a subquer
DELETE statement cannot reference the same table that rows are delet
from.

For example, if there were no referential constraints, you could insert this
into the OFFICES table:

INSERT INTO OFFICES VALUES
(15,’ANYTOWN’,’MIDWEST’,333,NULL)

Of course, this enters an office with a non-existing manager. With no
referential constraints defined, you could delete this row. For example, y
could delete all rows from the OFFICES table whose manager is not list
correctly in the ENGINEERS table.

DELETE FROM OFFICES WHERE MGR NOT IN (SELECT
EMPL_NUM FROM ENGINEERS);

However, if you define a foreign key in the ENGINEERS table that
referenced the OFFICES table, the subquery breaks the rule that it cann
reference the same table that rows are deleted from (the OFFICES table)
results of this command depends on the order in which rows are access
SQLBase forces this statement to fail with an error message.

• If two tables are delete-connected via two or more distinct referential pa
the paths (or last part of the path) must have the same delete rule, and it c
be SET NULL.

The following figures illustrates this rule. The first shows valid referentia
structures with delete-connected tables:
SQL Language Reference 6-27

Chapter 6 Referential Integrity

. In
d the
Valid delete-connected structures

In this figure, all the referential structures have valid delete-connections
both structures, table 1 has identical delete rules on its relationships, an
last delete rule is not SET NULL.

TABLE 3

TABLE 1

TABLE 3 TABLE 4

TABLE 1

TABLE 2TABLE 2

CASCADE CASCADE CASCADE

RESTRICTRESTRICT RESTRICT

RESTRICT
6-28 SQL Language Reference

Cycles of dependent tables

s
elete
The following figure shows invalid structures:

Invalid referential structures

In Figure 1, table 1 has identical rules of SET NULL. In Figure 2, the last two rule
are not the same. In Figure 3, two tables are connected by two different types of d
rules.

TABLE 3

TABLE 1

TABLE 3 TABLE 4

TABLE 1

TABLE 2TABLE 2

CASCADE CASCADE CASCADE

CASCADESET NULL SET NULL

RESTRICT

TABLE 1

TABLE 2

RESTRICTCASCADE

Figure 1

Figure 3

Figure 2
SQL Language Reference 6-29

Chapter 6 Referential Integrity

ly
or

es
ata

is
are

 rules
ils

 there

rting
ad.

rting
 the

rting
py.
The problem with the SET NULL rule was discussed in the earlier subsection on
Foreign keys and NULL values in the Components section. Allowing SET NULL
rules in multiple paths could result in partial NULL/non-NULL foreign keys. By on
allowing CASCADE and RESTRICT, the child row is either deleted (CASCADE)
remains the same (RESTRICT).

SQLTalk commands and referential integrity
When running the following SQLTalk commands, keep in mind that SQLBase do
not enforce referential integrity during their execution. This means that all your d
must be valid before executing the commands.

Customizing SQLBase error messages
There are several error messages in SQLBase specific to referential integrity. Th
section shows how you can create new referential integrity error messages that
customized for certain tables.

Several default SQLBase messages appear when you violate referential integrity
For example, the following message appears when an insert into a child table fa
because there was no parent row in the parent table:

EXE UFV - unmatched foreign key values"

The following message appears when an update into a child table fails because
was no parent row in the parent table containing the new set of values:

"EXE UFV - unmatched foreign key values"

SQLTalk command Referential integrity impact

LOAD SQLBase turns off all referential integrity checks before sta
the load process, and turns the checks back on after the lo

CHECK DATABASE Does not check if any tables were in the Pending state, or
perform any other referential checks

REORGANIZE SQLBase turns off all referential integrity checks before sta
the reorganize process, and turns the checks back on after
reorganization.

COPY SQLBase turns off all referential integrity checks before sta
the copy process, and turns the checks back on after the co
6-30 SQL Language Reference

Customizing SQLBase error messages

s

as

ges by

:

r
the
s for

ssage

The following message appears when you attempt to delete a parent row that ha
associated child rows:

"EXE CDR - cannot delete row until all the dependent
rows are deleted"

The following message appears when you attempt to update a parent row that h
associated child rows:

"EXE CUR - cannot update row until all the dependent
rows are deleted"

To make these messages more specific, you can create new customized messa
editing the error message file, error.sql

Editing the error messages
To customize the error messages for referential integrity, use the following steps

1. Add the customized error message to the error.sql file.

2. Use the ALTER TABLE statement to associate the message with a particula
operation on a specific primary or foreign key. The following diagram shows
syntax of this command to add, drop, or modify user-defined error message
primary or foreign keys.

ALTER TABLE syntax

The USERERROR <error number> clause is the number associated with the me
in error.sql. If you are dropping an error message (DROP), do not enter the error
number with this clause.

You can create a customized error message for the following operations:

• deleting a parent row

• updating a parent row

ALTER TABLE table name ADD

MODIFY

DROP

USERERROR error number

FOR ‘DELETE_PARENT’

‘UPDATE_DEPENDENT’

‘UPDATE_PARENT’

‘INSERT_DEPENDENT’

OF PRIMARY KEY

FOREIGN KEY key name
SQL Language Reference 6-31

Chapter 6 Referential Integrity

e are

en
.

new

the

ble
ault
• inserting a child row

• updating a child row

You can customize one error message each per parent/child and child/parent
relationship. You can specify error messages for more than one child table if ther
multiple child/parent relationship.

To demonstrate how to create customized error messages, this section uses the
PRODUCTS and SERV_CALLS tables.

Primary key error messages
If a user attempts to delete a product from the PRODUCTS table that still has op
service calls associated with it, the DELETE fails with the default error message

DELETE FROM PRODUCTS WHERE MFR_ID='LMA'.
Error: EXE CDR - cannot delete row until all the dependent

rows are deleted

This message is not very helpful since it is so general. To customize it, create a
message in the error.sql file:

20000 xxx xxx Product cannot be deleted while there are
still open service calls on it.

Then, use the ALTER TABLE statement to add the new message:

ALTER TABLE PRODUCTS ADD USERERROR 20000 FOR
'DELETE_PARENT' OF PRIMARY KEY;

If a user now tries to delete a product that still has open service calls against it,
new message appears:

DELETE FROM PRODUCTS WHERE MFR_ID='LMA'.
Error: Product cannot be deleted while there are still open

service calls on it.

Foreign key error messages
In the following example, if a user attempts to insert a new service call into the ta
that does not reference a valid product, the command fails with the following def
error message:

INSERT INTO SERV_CALLS VALUES (2133,5-10-
93,1000,102,’PRR’,100,)

Error: EXE UFV unmatched foreign key values

To customize this message, create a new message in the error.sql file:

20001 xxx xxx Service call must reference a valid product
number.
6-32 SQL Language Reference

Service database tables

ns
Then, use the ALTER TABLE statement to add the new error message:

ALTER TABLE SERV_CALLS ADD USERERROR 20001 FOR
'INSERT_DEPENDENT' OF FOREIGN KEY ISFOR;

If a user now tries the same operation, the following error message appears:

INSERT INTO SERV_CALLS VALUES (2133,5-10-
93,1000,102,’PRR’,100);

Error: Service call must reference a valid product number.

Service database tables
This section shows the tables from the sample service database with their colum
and values.

OFFICES table

OFFICE CITY REGION MGR
MAJ_

ACCOUNT

20 San Francisco Western 103 1050

40 New York Eastern 108 2500

10 Los Angeles Western 100 3000

30 Chicago Midwest 106 1001

EMPL_
NUM

NAME
REP_

OFFICE
TITLE

HIRE
DATE

MANAGER

100 Paul Atkins 10 Manager 1988-02-12

104 Bob Smith 20 Sen. Engineer 1992-09-05 103

107 Murray
Rochester

30 Sen. Engineer 1991-01-25 106

102 Larry Sanchez 10 Sen. Engineer 1989-06-12 100

101 Sheila Brown 10 Engineer 1990-10-10 100

106 Sam Valdez 30 Manager 1990-04-20

105 Rob Jones 20 Engineer 1991-09-08 103

103 Anna Rice 20 Manager 1985-07-10
SQL Language Reference 6-33

Chapter 6 Referential Integrity
ENGINEERS table

CUSTOMERS table

SERV_CALLS table

108 Mary Adams 40 Manager 1988-08-10

109 Nancy Bonet 40 Sen. Engineer 1989-11-12 108

110 Richard Park 40 Engineer 1990-11-14 108

111 Dan Chester 40 Engineer 1987-03-22 111

CUST_NUM COMPANY
SERV_
REP

CREDIT_
LIMIT

1000 Acme Camera 101 5000

2500 Photo-1 Shop 110 3000

1001 Best Photography 106 1000

1050 Johnson’s Camera
Company

105 8050

2000 Sue’s Family Photo 103 5000

3000 1-Hour Quick Photo 102 3000

CALL_NUM CALL_DATE CUST REP MFR PRODUCT

2133 1994-05-10 1000 101 ACR 102

6253 1994-05-02 3000 102 LMA 4516

7111 1994-05-09 1001 106 MRP 600

4250 1994-05-14 1050 105 MRP 600

EMPL_
NUM

NAME
REP_

OFFICE
TITLE

HIRE
DATE

MANAGER
6-34 SQL Language Reference

Service database tables
PRODUCTS table

MFR_ID PRODUCT_ID DESCRIPTION

ACR 101 Tripod

ACR 102 Tripod2

MRP 101 Long Angle Lens

LMA 4211 Automatic Camera

LMA 4310 Regular Focus 1

LMA 4516 Regular Focus 2

MRP 600 Lens

MRP 601 Shutter

WRS 24c Widget 1

WRS 25a Widget 2
SQL Language Reference 6-35

ary to

SQL Language Reference
Chapter 7

Procedures and Triggers

This chapter describes procedures and provides you with the information necess
create procedures of your own. It covers the following topics:

• What is a procedure?

• Format of a procedure

• Data types supported in procedures

• System constants supported in procedures

• How to generate, store, and execute procedures

• Using SAL functions in procedures

• Error handling

• Procedure examples (contained in the \Centura\sp.sql directory)

• Triggers
SQL Language Reference 7-1

Chapter 7 Procedures and Triggers

L
se

 they

n.
ures.

e
re
es in

g
e

ever,
ided

d on
ly call

What is a procedure?
A SQLBase procedure is a set of Scalable Application Language (SAL) and SQ
statements that is assigned a name, compiled, and optionally stored in a SQLBa
database.

SQLBase procedures can be static or dynamic. Static procedures must be stored (at
which time they are parsed and precompiled) before they are executed. Dynamic
procedures contain dynamic embedded SQL statements, which are parsed and
compiled at execution time. For this reason, they do not have to be stored before
are executed.

There are several different types of procedure implementations:

• Stored procedures: compiled and stored in the database for later executio
They can be static or dynamic. You can define triggers on stored proced

• Non-stored procedures: compiled for immediate execution.

• Inline procedures: used optionally in triggers. You may want to specify th
INLINE clause of the CREATE TRIGGER command to call inline procedu
text. When you create the trigger, SQLBase stores these inline procedur
the system catalog.

SQLBase’s implementation of procedures will be familiar to anyone already usin
Centura Team Developer, a graphical application development system. SQLBas
provides a set of SAL functions that you can embed in procedures, and the flow
control language of procedures is the same as Team Developer programs. How
you do not need the Team Developer product to use these functions; they are prov
by SQLBase.

SQLBase also provides preconstructed procedures as useful tools to help you
maintain your database. See Appendix B of the Database Administrator’s Guide for a
description of SQLBase-supplied procedures.

Why use procedures?
Procedures offer a number of benefits:

• They simplify applications by transferring processing to the server.

• They reduce network traffic by storing the SQL statements to be execute
the backend where the procedures are processed. The frontend need on
the procedure and wait for results.

• They provide more flexible security, giving end-users privileges on data
which they might not otherwise be allowed to access.
7-2 SQL Language Reference

What is a procedure?

ts are
d.

t
tes

 from
I

ou
r

s

ns

ome
Storing procedures provide these additional benefits:

• They improve runtime performance because the procedural logic is
precompiled. In the case of static stored procedures, the SQL statemen
also precompiled; as a result, the SQL execution plans are predetermine

• You have a centralized location of precompiled programs, which differen
sites can then access for their own customized applications. This facilita
control and administration of database applications.

• You can store a procedure and then retrieve and execute this procedure
a variety of front-ends, such as SQLTalk, Team Developer, or a SQL/AP
application.

• You can invoke an external function within a stored procedure, providing y
with the flexibility to extend the functionality of your stored procedures, o
add functionality to your existing applications by creating plug and play
external components. Read Chapter 9, External Functions for details.

When used in conjunction with triggers, procedures also can implement busines
rules that are not possible from the database server through SQL declarative
referential integrity. For examples and more information on triggers, read Triggers on
page 7-54.

How stored procedures are different from stored commands
SQLBase already allows you to store often-used SQL statements in stored commands
for future execution. However, a stored command can only contain a single SQL
statement. Procedures, on the other hand, allow you to create a program using
procedural logic, data typing, and variables using multiple SQL statements.

Unlike stored commands, stored procedures themselves never become invalid,
although the stored commands within procedures may become invalid. This mea
you do not need to automatically recompile the procedure with EXECUTE
RECOMPILE, or flag it to be recompiled with ALTER COMMAND.

Note: When using procedures with Team Developer programs, be aware that there are s
implementation issues you must address. These issues are discussed in the section Using
procedures with Centura Team Developer applications on page 7-43.
SQL Language Reference 7-3

Chapter 7 Procedures and Triggers

e

ure.

h

ive.
Format of a procedure
SQLBase procedures follow a format and syntax similar to a Team Developer
program. A SQLBase procedure has the following elements:

• Name. This is the name of the procedure, which can be different from th
name under which you store the procedure.

• Parameters. You can define parameters for input and output to the proced

• Local Variables. You can define local variables for temporary storage.

• Action section. Use this section to control both the conditions under whic
the statements are executed and the order in which they are executed.

Unlike Team Developer, the elements of SQLBase procedures are case insensit

This example shows a sample procedure and its format.

Name
Every procedure has a name. For example:

PROCEDURE: WithDraw

The procedure name is a long identifier, and can contain up to 18 characters.

Note: Even though the colon is optional, you must supply it if your procedures are to be
compatible with Team Developer.

PROCEDURE: myproc
Parameters

Number: nInputVar1
Number: nInputVar2
Number: nInputVar3
Receive Number: nOutputVar1
Receive Number: nOutputVar2

Local Variables
Sql Handle: hSqlCur1
Sql Handle: hSqlCur2
Number: nInd

Actions
Call SqlConnect (hSqlCur1)

.

.

.

Name
Parameters

Local Variables

Actions
7-4 SQL Language Reference

Format of a procedure

 the
d
. For

stored

tored
nd.

 This
pply

t, you
When you store a procedure, you give it an additional name that lets you refer to
procedure as well as access it once it is stored (this parallels the syntax for store
commands). You can assign a stored name that differs from the procedure name
example:

STORE WDPROC
PROCEDURE: WithDraw
Parameters
...

Note that you cannot replace an existing procedure with one that uses the same
name. As in the example, assume you have stored procedure WithDraw under
WDPROC. You cannot replace WDPROC with a procedure that uses the same s
name unless you have erased WDPROC first using the SQLTalk ERASE comma

Parameters
Parameters enable you to provide input to and receive output from a procedure.
section is optional; you do not have to define parameters for a procedure. You su
the values for all the parameters when you execute the procedure.

Declare a parameter using this syntax:

[Receive] DataType [:] ParameterName

Note: Even though the colon is optional, you must supply it if your procedures are to be
compatible with Team Developer.

For example:

Parameters
Boolean: bDone
Date/Time: dtBirthDate
Number: nCount
Receive Number: nTotal
String: strLastName

See the Data types supported in procedures on page 7-9 for information on valid data
types for parameters.

Output parameters in procedures must be preceded with the keyword Receive:

Receive Number: nTotal

SQLTalk accepts values for binding for input parameters. For output receive
parameters, you must supply a place holder, with or without a value, for all binds
which map to those parameters. If the receive parameter is used strictly as outpu
can use a comma (,) with no leading space as a placeholder.
SQL Language Reference 7-5

Chapter 7 Procedures and Triggers

ffers
d by

(s)

re keep

ata

.

ey
he

ial
only
are not
n on

ction
On the other hand, a SQL/API application uses bind values for input, and sets bu
to receive output values. In the SQL/API, an output parameter’s value (generate
an executing function such as sqlexe) can be retrieved with the sqlssb function (Set
Buffer) before the procedure starts executing, and then by the sqlfet function (Fetch)
after the procedure passes control back to the invoker.

Note: In SQLTalk, output strings default to 80. This means you should resize the column
generated from the procedure with the COLUMN command.

You cannot pass an array as a parameter. All parameters passed into a procedu
the values that were passed in, whether null or not null.

Local variables
Local variables perform several functions in SQL statements:

• They store data.

• They bind input data to a SQL statement. Variables used in this way are
called bind variables.

• They specify where to put the output of a SQL SELECT statement. The
SELECT statement’s INTO clause specifies the variables where query d
is placed. Variables in an INTO clause are called into variables.

This section is optional; you do not have to define local variables for a procedure

The Receive keyword is not supported for local variables.

Declare a local variable using the same syntax as parameters:

DataType [:] LocalVariableName

Local variables are available to and accessible by only the procedure in which th
are defined. They are also automatic, which means that they are created when t
procedure executes and destroyed when the procedure ends.

Data you store in a variable are active across all stages of a procedure; their init
values persist across multiple fetch and execute statements, and are destroyed
when the procedure closes. Once the procedure closes, however, these values
retained for future invocations. See the section on the ON directive for informatio
procedure states.

Variable buffers are allocated dynamically.

In addition to those data types supported for parameters, the Local Variables se
also supports Sql Handles and File Handles. For example:

Sql Handle: hSqlCur1
File Handle: hFileActive
7-6 SQL Language Reference

Format of a procedure

 on
ult

ure.

 a

f

 level

ich

ed as
em
Note: Even though the colon is optional, you must supply it if your procedures are to be
compatible with Team Developer.

If you do not initialize a local variable, SQLBase assigns it a default value based
its data type when the procedure is invoked and before it takes control. For defa
value information, read the section Data types supported in procedures on page 7-9.

Like parameters, you cannot pass an array as a local variable in a stored proced

Actions
This section contains statements to be executed depending upon the state of the
procedure. It also contains logic flow language that controls the order in which
SQLBase executes the statements.

Read Appendix A for a detailed description of the SAL functions you can include in
procedure.

Unlike Team Builder, you cannot include user-defined functions in procedures.
However, your procedure can invoke another procedure that performs the work o
your desired function.

Statement blocks
A block in the Actions section contains a set of statements to be executed in
successive order. All the statements in a block are either of the same indentation
or enclosed within Begin and End statements.

Indentation
Indentation is an important element of logic flow. Use it to control the order in wh
SQLBase executes blocks of statements in a procedure.

SQLBase is very strict about indentation, and a change in indentation is interpret
a block change. For example, when defining parameters, make sure that all of th
are indented by the same amount:

Parameters
Boolean: bDone
Date/Time: dtBirthDate
Number: nCount

Defining them according to the following example will produce an error:

Parameters
Boolean: bDone

Date/Time: dtBirthDate
Number: nCount
SQL Language Reference 7-7

Chapter 7 Procedures and Triggers

ne or

 have
els of

 with
yers

 End
You can use spaces or tabs to implement indentation. If you are using spaces, o
more spaces defines a specific indentation.

Note: Do not mix spaces and tabs for indentation. For example, four spaces may appear to
the same indentation as a tab in your on-line editor, but the four spaces represent four lev
indentation, while a tab only represents one.

This is an example of valid indentation:

Loop Outerloop
If I3 > 0

If NOT SqlExecute (hSqlCur1)
Return 201

Set I3 = I3 - 1
Else

Break Outerloop

Using Begin and End statements (block delimiters)
Another way to achieve the same level of control is to use block delimiters to
surround a set of statements. To use block delimiters, begin a set of statements
Begin, and end with End. This allows you to reduce the number of indentation la
in your program.

Using Begin and End statements reduces the number of indentation levels in the
previous example:

On Procedure Execute
Loop Outerloop
Begin
If I3 > 0

If NOT SqlExecute (hSqlCur1)
Return 201

Set I3 = I3 - 1
Else

Break Outerloop
End

Block delimiters are only allowed in a procedure’s Actions section.

Note: The If, Else, Else if, and Loop statements require either indentation or a Begin and
statement.
7-8 SQL Language Reference

Data types supported in procedures

local

lt

tion,
Data types supported in procedures
You must specify one of the following data types when defining parameters and
variables in procedures.

The following table lists valid data types supported in procedures and their defau
value. It also lists their SQL standard naming prefix. Although not required, using
these prefixes in the names of variables will help make your procedure self-
documenting.

Note the following restrictions:

• You cannot pass an array as a parameter to a procedure.

• Unlike Team Developer, you cannot use user-defined constants in a
procedure. However, you can use system constants. Read the next sec
System constants supported in procedures for details.

Data type
Default
Value

Suggested
Name prefix

Example Comments

Boolean FALSE b bOk

Sql Handle none hSql hSqlCur1 Supported only for
local variables.

Date/Time null dt dtStartDate

String null string s (or) str strLastName Use the Long String
data types for strings
longer than 254 bytes

Long
String

null string s (or) str strLastName Supports strings
longer than 254 bytes

Number 0 n nSalary

Window
Handle

0 hWin hWinActive Bind to the variable
using the program data
type SQLNUM. The
same holds for set
select buffer. Cannot
be used for any
arithmetic operation.

File
Handle

0 hFile hFileActive Supported only for
local variables. Cannot
be used for any
arithmetic operation
SQL Language Reference 7-9

Chapter 7 Procedures and Triggers

rage
ange.

er null

mats.

:

All data types can be an alternate form called a receive data type, which identify
output parameters. Receive data types allow you to pass data to a procedure by
reference rather than value. This means that SQLBase passes the variable’s sto
address and the procedure has access to the original value which it can then ch
For example:

Parameters
Receive Boolean: bOrderFilled

...
Actions

Set bOrderFilled = TRUE

Note: All parameters passed into a procedure keep the values that were passed in, wheth
or not null.

Unless otherwise noted, procedure data types conform to SQLBase data type for
Note that these may be different from Team Developer data type formats.

Boolean
Use this data type for variables that can be TRUE (1) or FALSE (0). For example

Local Variables
Boolean: bDone

...
Actions

Set bDone = FALSE

Date/Time
Use this data type for date and/or time variables. For example:

Parameters
Date/Time: dtBirthday

...
Actions

If dtBirthday > 07/01/1983

Number
Use this data type for numbers with up to 15 digits of precision. For example:

Parameters
Number: nMonth

...
Actions

If nMonth = 3
...
7-10 SQL Language Reference

Data types supported in procedures

 a

th of
ter, its

g data

o bind

al to

es

 to
r.
Sql Handle
Use this data type to identify an existing connection to a database. All access to
database requires a Sql Handle. For example:

Local Variables
Sql Handle: hSqlCur1

...
Actions

Call SqlConnect (hSqlCur1)

String
Use this data type for character data. Unlike Team Developer, the maximum leng
a procedure string is 64 Kbytes; however, if a string is used as a receive parame
length cannot exceed 254 characters on return from the procedure. If its length
exceeds 254 characters, SQLBase issues an error message. Use the Long Strin
type to return strings longer than 254 characters,

Enclose literal strings in single quotes. For example:

PROCEDURE: CLIENTPROC
Parameters

Receive Date/Time: dtAppt
Receive String: sSelect

Local Variables
Sql Handle: hSqlCur1
Number: nInd

Actions
Call SqlConnect(hSqlCur1)
Set sSelect = 'Select max(APPT) from CLIENT into :dtAppt '
Call SqlPrepare(hSqlCur1, sSelect)
......

Long String
Use this data type for character data to return strings greater than 254 bytes or t
the string to a LONG VARCHAR column type. Note that the behavior of a Long
String data type is identical to the String data type with the following exceptions:

• When used to return data (Receive Long String), the data type is identic
Long Varchar. For example, if you use sqldes() to describe the parameter, the
data type returned will be SQLDLON. You must use the read long primitiv
to fetch this data.

• When used to bind data, SQLBase uses the write long primitives to bind
the string variable. SQLBase treats the target column as a Long Varcha
SQL Language Reference 7-11

Chapter 7 Procedures and Triggers

e
ing
mple:

l

ple,

.

Enclose literal strings in single quotes. For example:

Variables
Long String: sLong

...
Set sLong = 'Long String'

Window Handle
Use this data type to store window handles. A window handle identifies a single
instance of a particular window. This data type supports the SAL and WINAPI
functions that use and manipulate window handles. If this data type is used in th
parameter section of the procedure (that is, input/output), bind to the variable us
the program data type SQLPNUM. The same holds for set select buffer. For exa

PROCEDURE: CLIENTPROC
Parameters

Window Handle: hWind
Actions

Call SalSendMsg(hWind, ...)

....

File Handle
Use this data type to store file handles. A file window identifies an open file. This
data type supports the SAL file manipulation functions. For example:

Local Variables
File Handle: hFileActive

...
Actions

Call SalFileOpen (hFileActive, ...)

System constants supported in procedures
You can use the following standard system constants:

• The null constants: STRING_Null, NUMBER_Null, and DATETIME_Nul

You can check for nulls within procedures using null constants. For exam
you can create a boolean expression, such as:

IF (A = NUMBER_Null)
IF (S = STRING_Null)

If the variable is null, the expression evaluates to TRUE.

• The TRUE and FALSE boolean constants.

• The Fetch_Delete, Fetch_EOF, Fetch_Ok, and Fetch_Update constants
7-12 SQL Language Reference

Using SAL statements

n the

 the

hat
f

ost
• The DBP parameters: DBP_AUTOCOMMIT, DBP_BRAND,
DBP_PRESERVE, DBP_VERSION, DBP_LOCKWAITTIMEOUT,
DBP_ROLLBACKTIMEOUT.

• The DBV_BRAND database brands: DBV_BRAND_DB2,
DBV_BRAND_ORACLE, and DBV_BRAND_SQL.

For details on these constants, read the constant descriptions in Appendix A.

Note: System constants in SQLBase are case insensitive. Case sensitivity that appears i
system constants listed in this section apply only to Team Developer.

Using SAL statements
Use Scalable Application Language (SAL) statements to control the logic flow of
statements in a procedure. SQLBase provides the following SAL statements:

• Break

• Call

• If, Else, and Else If

• Loop

• On

• Return

• Set

• When SqlError

• While

Break
The Break statement terminates a Loop statement. If you specify a loop name, t
particular loop terminates. This allows you to break out of more than one level o
loop. If you do not specify a loop name, the BREAK statement breaks out of the m
recently-entered loop.

Syntax
Break [loopname]

Example
Loop

Set nOutput2 = nOutput2 + nInput2
If nOutput2 > nInput2 + 10

Break
SQL Language Reference 7-13

Chapter 7 Procedures and Triggers

lost.
ndle.

me of
u can
on.

Call
The Call statement executes a SAL function. SAL functions are listed in the
following section SAL functionality in SQLBase.

Syntax
Call FunctionName (Parameters, ...)

Example
Call SqlImmediate ('DELETE FROM CUSTOMER WHERE \

CUSTNO = 1290')

Be aware that using the Call statement means that the function’s return value is
However, if an error is returned, SQLBase passes control to the closest error ha
Read Error handling on page 7-45.

If, Else, and Else If
The If, Else, and Else If statements execute other statements based on the outco
an expression. The Else and Else If parts are optional. For each If statement, yo
code as many Else If sections as you want, but there can be only one Else secti

Indentation determines the conditional flow of control.

Syntax
If Expression1

<statement(s)>
Else If Expression2

<statement(s)>
Else

<statement(s)>

If Expression1 evaluates to TRUE, the first set of statements executes. If Expression1
evaluates to FALSE, Expression2 is evaluated. If Expression2 evaluates to TRUE, the
second set of statements executes. If Expression2 evaluates to FALSE, the third set of
statements executes.

Example
If nMonthly_Salary < 1000

Set nTax_Rate = 10
Else If nMonthly_Salary < 2000

Set nTax_Rate = 20
Else

Set nTax_Rate = 25
7-14 SQL Language Reference

Using SAL statements

nt is

later

uting.
re
sses. A

re,
te
ns
Loop
The Loop statement repeats a set of statements until a Break or Return stateme
executed.

Syntax
Loop [loopname]

The loopname is optional. Specifying a loopname lets you refer to that loop in a
Break statement.

Examples
Loop

If nCount = 100
Return 1

Set nCount = nCount + 1

and:

Loop Outer
If I3 > 0

If NOT SqlExecute (hSqlCur)
Return 201

Set I3 = I3 - 1
Else

Break Outer

On <procedure state>
The ON directive identifies the procedure’s current state, such as startup or exec
When a procedure is at a specific state, the statements indented underneath it a
processed. The state of a procedure changes as the procedure execution progre
procedure can be at any of the following states:

• Procedure Startup

• Procedure Execute

• Procedure Fetch

• Procedure Close

Using ON directives is optional. If you do not specify an ON directive in a procedu
SQLBase processes the entire procedure when the calling program issues an execu
command. In other words, not specifying any ON directive in a procedure’s Actio
section is equivalent to including only an On Procedure Execute section under
Actions (see the following paragraphs).
SQL Language Reference 7-15

Chapter 7 Procedures and Triggers

s.
cific

dure
(for

once.
y times
tch

ons
k or

 many

o

I

ith

ure

esses

e
ain.

wo
The default state (On Procedure Execute) is often adequate for many procedure
However, there are two situations in particular which do require one or more spe
ON <procedure states>:

• If you wish to repeatedly execute a procedure, such as when supplying
different parameter values, it can be more efficient to code an On Proce
Startup state that contains commands requiring only a single execution
example, database connections and variable assignments.) This avoids
unnecessary multiple executions of these commands.

• When you are fetching multiple rows, an On Procedure Fetch state is
required.

SQLBase processes the Procedure Startup and Procedure Close sections only
The Procedure Execute and Procedure Fetch sections can be processed as man
as you want. Local variables values are retained through multiple execute and fe
operations; the values are only destroyed at the close section.

SQLBase only allows you to specify On directives at the topmost level of the Acti
section. In other words, you cannot nest an On directive within a statement bloc
between Begin and End statements.

To retrieve all the output data generated by the procedures, you must declare as
output variables as the number of items you want returned.

The following paragraphs describe the different procedure states.

Procedure Startup. A procedure is in procedure startup state after the following tw
steps are completed:

1. The calling program compiles the procedure (for example, with the SQL/AP
sqlcom function).

2. The calling program executes the procedure for the first time (for example, w
the first SQL/API sqlexe function).

After processing the commands in the Procedure Startup stage, the first execute
command from the calling program also processes the commands in the Proced
Execute stage. In other words, the calling program’s first execute command proc
both the Procedure Startup and Procedure Execute sections.

However, subsequent execute commands from the calling program only process th
Procedure Execute stage; they do not process the Procedure Startup section ag

Procedure Execute. A procedure is in procedure execute state after the following t
steps are completed:

1. The calling program first executes the procedure.

2. The Procedure Startup section is processed.
7-16 SQL Language Reference

Using SAL statements

lling

 section

ure.
ction
e

 many

 is
t
y times

ow

s the
ad,

eral

ow for

The Procedure Execute section is processed and reprocessed each time the ca
program issues subsequent execute commands.

Procedure Fetch. If the calling program issues a FETCH command (for example,
with the SQL/API sqlfet function) and you have a Procedure Fetch section, the
statements in the Procedure Fetch section are processed. The Procedure Fetch
is processed and reprocessed each time you issue a FETCH command.

You must include a Procedure Fetch section to fetch multiple rows in your proced
It is recommended that you also include a Return statement (see the following se
on Return) to first return 0 while fetching is in progress, and then return 1 when th
fetch is finished.

To retrieve all the output data generated by the procedures, you must declare as
output variables as the number of items you want returned.

Note that for each row returned by a procedure, the On Procedure Fetch section
executed. With multi-row buffering, therefore, a FETCH command from the clien
can cause the On Procedure Fetch section to be executed several times (as man
as the number of rows that fit into the buffer, or until end of the fetch). See the
following Examples section which contains a procedure that demonstrates multi-r
buffering behavior. Although multi-row buffering is a performance feature, it can
result in unexpected behavior.

For example, you may expect that a single fetch command from the client cause
Procedure Fetch section to issue a COMMIT each time it returns a row. But inste
you find with multi-row buffering that the On Procedure Fetch section issues sev
COMMITs for the first row returned to the client.

If needed, you can have the On Procedure Fetch section generate exactly one r
each fetch call from the client, by setting the FETCHTHROUGH mode ON at the
client. The default is OFF.

There are two ways to set FETCHTHROUGH mode:

• From SQLTalk, use the SET FETCHTHOUGH ON command

• From SQL/API, use sqlset function with the SQLPFT parameter

Procedure Close. Finally, when the calling program either issues a disconnect
command (for example, with the SQL/API sqldis function) or you compile another
command on the same cursor that the calling program was using to execute the
procedure, the Procedure Close section is processed.

Syntax
On <procedure state>

<statement(s) >
SQL Language Reference 7-17

Chapter 7 Procedures and Triggers

. You
QL.

Examples
This section shows examples of various procedure states using the ON directive
can find most of the examples shown in this section in the directory \Centura\SP.S
These examples use the following PRODUCT_INVENTORY table:

create table PRODUDCT_INVENTORY (NAME varchar(25),
INVENTORY decimal (3,0), WHEN date);
insert into PRODUDCT_INVENTORY values (:1,:2,:3)

\

JF 12R,132,13-OCT-1992
DJ Y5Y,165,11-OCT-1992
DJ Y5Y,159,12-OCT-1992

/

Example with ON PROCEDURE states. This example prepares, executes, and
fetches results from a procedure called PRODUDCT_INPROC.

PREPARE
PROCEDURE: PRODUDCT_INPROC
Parameters

String: sName
Receive Number: nINVENTORY

Local Variables
Sql Handle: hSqlCur1
String: sSelect
Number: nInd

Actions
On Procedure Startup

Call SqlConnect(hSqlCur1)
Set sSelect = 'Select INVENTORY from PRODUDCT_INVENTORY \

where NAME = :sName into :nINVENTORY'
Call SqlPrepare(hSqlCur1, sSelect)

On Procedure Execute
Call SqlExecute(hSqlCur1)

On Procedure Fetch
If NOT SqlFetchNext(hSqlCur1, nInd)

Return 1
Else

Return 0
On Procedure Close

Call SqlDisconnect(hSqlCur1)

perform PRODUDCT_INPROC

\

JF 12R,,

➀

➁

➂

➃

➄

7-18 SQL Language Reference

Using SAL statements

am.
n are

ults to

and,

g, or
rent

dure
nd

 an

ch

rent

e.

te
/

FETCH 1;

perform PRODUDCT_INPROC

\

DJ Y5Y,,

/

FETCH 2;

SELECT * from PRODUDCT_INVENTORY;

1. This state is processed only once on the first EXECUTE by the calling progr
If the calling program re-executes the procedure, the commands in this sectio
not processed again. This reduces procedure performance overhead.

2. This state is processed every time the calling program issues an EXECUTE
command. If there are no ON <procedure states> coded, the procedure defa
this state.

3. This state is processed every time the calling program issues a FETCH comm
and is essential to fetching multiple rows.

4. This state is processed only 1) after the procedure has finished all processin
2) if another command is compiled or executed on the calling program’s cur
cursor, or that cursor becomes disconnected.

5. The calling program executes the procedure for the first time. The On Proce
Startup and On Procedure Execute states are processed. Note that the seco
comma used in the SQLTalk PERFORM command for the binding of the
Procedure provides the required placeholder for the procedure’s Receive
parameter nINVENTORY. You must provide either a placeholder comma or
argument value for all procedure parameters.

6. This the first fetch issued by the calling applications. The On Procedure Fet
state is processed multiple times until end-of-fetch or until the buffer is full.

7. The calling program executes the procedure for the second time with a diffe
bind value. Only the On Procedure Execute state is processed.

8. The calling program issues another fetch, this time with a different bind valu
Two rows are returned to the client.

9. The On Procedure Close state is processed for the previous procedure.

Example with no On Procedure states. The next example compiles, executes and
fetches a single row from a procedure which defaults to the On Procedure Execu
state for all code under Actions.

➅

➆

➇

➈

SQL Language Reference 7-19

Chapter 7 Procedures and Triggers

to the

alling
AL

nd
op).
 and

w
d

ure.
PROCEDURE: PRODUDCT_INPROC
Parameters

Receive Number: nSumINVENTORY
Local Variables

Sql Handle: hSqlCur1
String: sSelect
Number: nInd

Actions
Call SqlConnect(hSqlCur1)
Set sSelect = 'Select max(INVENTORY) from
PRODUDCT_INVENTORYinto :nSumINVENTORY'
Call SqlPrepare(hSqlCur1, sSelect)
Call SqlExecute(hSqlCur1)

If NOT SqlFetchNext(hSqlCur1, nInd)
Return 1

Else
Return 0

Call SqlDisconnect(hSqlCur1)
\

,

/

1. Since there are no On Procedure statements, the entire procedure defaults
On Procedure Execute state.

2. There is no On Procedure Fetch state in this procedure. This means that the c
program can FETCH from the ON Procedure Execute state by embedding S
fetch calls like SqlFetchNext. However, in this instance you can only fetch a
return to the caller a single row (even if within the procedure the fetch is in a lo
In this case, the caller's FETCH will only return the receive parameter values
perform no other processing.

Example with single row fetch and multiple row result. This example generates a
single row fetch and then manipulates that data in order to produce a multiple ro
result. In this case the output is only indirectly tied to the database. This is a goo
method to produce “what-if” scenarios. In general, any fetches from the calling
application do not necessarily have to have database sources within the proced

PROCEDURE: PRODUDCT_INPROC
Parameters

String: sName
Receive Number: nCurrentIN
Receive Number: nDays

Local Variables
Sql Handle: hSqlCur1

➀

➁

7-20 SQL Language Reference

Using SAL statements

 not
uent

ry is
, the

his
String: sSelect
Number: nMaxINVENTORY
Number: nInd

Actions
On Procedure Startup

Call SqlConnect(hSqlCur1)
Set sSelect = 'select max(INVENTORY) \

from PRODUDCT_INVENTORY
where NAME = :sName into :nMaxINVENTORY'

Call SqlPrepare(hSqlCur1, sSelect)
On Procedure Execute

Call SqlExecute(hSqlCur1)
Call SqlFetchNext(hSqlCur1, nInd)
Set nCurrentIN = nMaxINVENTORY

On Procedure Fetch
If nCurrentIN < 200

Set nCurrentIN = nCurrentIN + 10
Set nDays = nDays + 1
Return 0

Else
Return 1

On Procedure Close
Call SqlDisconnect(hSqlCur1)

\
DJ Y5Y,,,

/

1. Because an On Procedure Fetch state is also coded, this single row fetch is
returned to the caller and is only used internally by the procedure for subseq
processing.

2. This statement lists the inventory by day (10 daily increase) until the invento
greater than 200, starting from the historical maximum inventory. In this case
caller is not directly fetching from the database.

Example of fetch with default multi-row buffering behavior. This example generates
a multi-row buffer when a single fetch has been issued against the procedure. T
example is only intended to show the affect of multi-row buffering.

create table X (COL1 int);

TABLE CREATED

insert into X values(:1)

\
1

➀

➁

SQL Language Reference 7-21

Chapter 7 Procedures and Triggers
2
3
/

PROCESSING DATA

1
2
3

3 ROWS INSERTED

create table Y (COL1 int);

TABLE CREATED

-- Set FETCHTHROUGH ON at client before executing
-- this procedure if you want to maintain 6.0.0 procedure
-- fetch semantics:

prepare
procedure: MROWBUF1
Parameters
 Receive Number: nCol1
Local Variables
 Sql Handle: hSqlCur1
 Number: nInd
Actions
 On Procedure Execute

 Call SqlConnect(hSqlCur1)
Call SqlPrepareAndExecute(hSqlCur1, 'select\

 COL1 from X into :nCol1')
 ! 1 fetch from client causes On Procedure Fetch

! to be executed multiple times
 On Procedure Fetch

If NOT SqlFetchNext(hSqlCur1, nInd)
 Return 1
 Else

Call SqlImmediate('insert into Y values \
 (:nCol1)')
 Return 0

On Procedure Close
Call SqlDisconnect(hSqlCur1)

;

STATEMENT PREPARED
7-22 SQL Language Reference

Using SAL statements

n the
perform;

PROCESSING DATA

STATEMENT PERFORMED

fetch 1;

NCOL1
=====
1

1 ROW RETRIEVED FROM PROCEDURE

-- 3 rows should be inserted into Y because 1
-- fetch from client causes On Procedure Fetch
-- to be executed 3 times in this case.

select * from Y;

COL1
====
1
2
3

3 ROWS SELECTED
Example of data manipulation at the server if no data needs to be fetched at the
client. This example is the recommended method for achieving the same results i
previous example. This example omits the On Procedure Fetch section.

drop table y;
create table y;
procedure: MOVE_DATA
Local Variables
 Sql Handle: hSqlCur1
 Number: nInd
 Number: nCol1
Actions

! Omission of On Procedure section defaults
 ! to On Procedure Execute
 Call SqlConnect(hSqlCur1)
 Call SqlPrepareAndExecute(hSqlCur1, 'select \

COL1 from X into :nCol1')
 While SqlFetchNext(hSqlCur1, nInd)

 Call SqlImmediate('insert into Y values (:nCol1)');
SQL Language Reference 7-23

Chapter 7 Procedures and Triggers

this
E/

es is

ure

.

from
usually

n on
.
0 ROWS RETRIEVED FROM PROCEDURE

-- Same result as earlier example without the
-- need for a client fetch:

select * from Y;

COL1
====
1
2
3

3 ROWS SELECTED

Return
The Return statement breaks the flow of control and returns control to the calling
program.

The exception is when a Return is executed from the When SqlError section. In
situation, control is returned back to the procedure with the boolean return (TRU
FALSE). This becomes the return value for the failed SAL Sql* function. The
procedure then resumes execution according to the Boolean return.

If you do not specify a Return statement in a procedure, one of the following cod
returned to the calling program:

• If a SQL error occurs and there is no When SQLError block, the proced
returns the error code. If there is a When SQLError block and a return
statement within the block, the procedure does not return the error code

• If no error occurs, the procedure returns 0.

Note: If the calling program performs fetches in a loop and expects an end-of- fetch return
the procedure, the On Procedure Fetch section must be coded with an appropriate return (
Return 1) or the or the calling program will go into an endless loop

Syntax
Return <expression>

The expression is mandatory, and can be anything that evaluates to a number.

• If you code a Return statement in a When SqlError block (see the sectio
When SqlError), you can only return a boolean such as TRUE or FALSE
7-24 SQL Language Reference

Using SAL statements

n
bles.

.

lue of

gging
ent
f a
• If you code a Return statement outside of a When SqlError block, you ca
only return integer values. You can code these as either constants or varia
You cannot return a string, date/time, or SQL Handle local variable type

Example
On Procedure Startup

When SqlError
Set nRcd = SqlError(hSqlCur1)
If nRcd = 601

Return FALSE
Else

Return TRUE
.....

....
On Procedure Fetch

If NOT SqlFetchNext(hSqlCur1, nInd)
Return 1

Else
Return 0

....

Set
The Set statement assigns a value to a variable. You can set a variable to the va
another variable.

Syntax
Set VariableName = Expression

Example
!Declare two variables for End-of-File and Return Code
Local Variables

Boolean: bEOF
Number: nRCD

...
Actions

Set bEOF = FALSE
Set nRCD = 0

Trace
The Trace statement prints the value of one or more variables. Use it when debu
a procedure to check the values of variables. For example, code a Trace statem
immediately before and after a command that you expect will change the value o
variable.
SQL Language Reference 7-25

Chapter 7 Procedures and Triggers

ued
tes.

or a
ill
E

of two
re.

t

ng
This statement is different from the SQLTalk SET TRACE command, which is iss
independently of the procedure and traces every statement the procedure execu
You do not need to run SET TRACE ON to use the Trace statement.

By default, output from the Trace function is sent to the Process Activity screen f
multi-user server, and is not displayed for a single-user engine. Generally, you w
want to direct the output to a file on the server with the SQLTalk SET TRACEFIL
command.

Syntax
Trace Variable1, Variable2, ..., VariableN

Example
This example shows a procedure using the Trace statement to trace the values
variables nCount and nRcd. It traces the values at different points in the procedu

PROCEDURE: TRPROC
Local Variables

Number: nCount
Actions

Trace nCount
Loop

Set nCount = nCount + 1
Trace nCount
If nCount > 10

Trace nCount
Return 0

;

When SqlError
The When SqlError statement declares a local error handler. To learn more abou
local error handling, see the Error Handling section later in this chapter.

Syntax
When SqlError

<statement(s)>

Example
This example demonstrates local error handling with SqlError. It uses the followi
tables JF and PRODUDCT_INVENTORY:

CREATE TABLE JF 12R,132,13-OCT-1992 (NAME varchar(25),
INVENTORY decimal (3,0), WHEN date);

INSERT INTO PRODUDCT_INVENTORY values
(JF 12R,132,13-OCT-1992);
7-26 SQL Language Reference

Using SAL statements

not
COMMIT;

This examples also uses the following stored command INVENTORY_QUERY:

STORE INVENTORY_QUERY
SELECT INVENTORY from PRODUDCT_INVENTORY
where NAME = :1;

To create the error condition, the stored command is dropped prior to procedure
execution. The procedure’s When SqlError section traps error #207 (Command
found for retrieval) and fixes the problem of the missing stored command.

ERASE INVENTORY_QUERY;
PROCEDURE: ILPROC
Parameters

String: sName
Receive Number: nINVENTORY

Local Variables
Sql Handle: hSqlCur1
Number: nInd
Number: nRcd

Actions
On Procedure Startup

When SqlError
Set nRcd = SqlError(hSqlCur1)
If nRcd = 207

Call SqlStore(hSqlCur1, 'INVENTORY_QUERY', \
'select INVENTORY \
from PRODUDCT_INVENTORY \
where NAME = :1 into :2')

Call SqlCommit(hSqlCur1)
Call SqlRetrieve(hSqlCur1, 'INVENTORY_QUERY', \

':sName', ':nINVENTORY')
Return TRUE

Call SqlConnect(hSqlCur1)

Call SqlRetrieve(hSqlCur1, 'INVENTORY_QUERY', \
':sName', ':nINVENTORY')

On Procedure Execute
Call SqlExecute(hSqlCur1)

On Procedure Fetch
If NOT SqlFetchNext(hSqlCur1, nInd)

Return 1
Else

Return 0
On Procedure Close

Call SqlDisconnect(hSqlCur1)

➀

➁

SQL Language Reference 7-27

Chapter 7 Procedures and Triggers

turns
L

error

hen

SE.

rts at
urn
\

DJ Y5Y,,

/

1. This exception handling routine can detect the SQL error generated by the
SqlRetrieve call, and handle this error by restoring the non-existing stored
command. In order to continue processing the procedure, the error handler re
TRUE back to the procedure, and executes the stored command. If other SQ
errors are encountered, no Return is executed; control (along with the SQL
code) is immediately returned to the calling program.

2. This call will fail due to the non-existing stored command. In this example, W
SqlError forces SqlRetrieve to return TRUE, and the procedure continues to
execute successfully.

While
The While statement repeats until the expression being evaluated becomes FAL

Syntax
While Expression

<statement(s) >

Example
...
While nInputVar3 > 0

If NOT SqlExecute (hSqlCur1)
Return 201

Set nInputVar3 = nInputVar3 - 1
...

Comments
Comment lines allow you to include explanations in a procedure. A comment sta
the beginning of a line with an exclamation point (!) and ends with a carriage ret
or line feed character. Comments and code are not allowed on the same line.

You do not need to follow indentation rules for comments.

Syntax

! Comment line
Example

! These are comment lines; SQLBase does not attempt to
! execute them.
7-28 SQL Language Reference

Using SAL statements

n, are

For

:

Operators
These operators are supported in procedures and, excluding string concatenatio
listed according to precedence:

Continuation lines and concatenation
Use a backslash (\) at the end of a line to continue a statement on the next line.
example:

Actions
Set sUpdate = 'UPDATE Checking \

Set Balance = Balance - :nAmount \
WHERE AccountNum = :nAccount'

You can also use the double line symbol (||) to concatenate strings. For example

Set sWhere = 'where INVENTORY <200'
Set sSelect = 'SELECT name, inventory \

from PRODUDCT_INVENTORY’ ||sWhere || 'into :sName,
:nINVENTORY'

Operator Description

() Parentheses

unary - Unary

*, / Numeric: multiply, divide

+, - Numeric: add, subtract

>, <, >=, <= Relational: greater than, less than, greater than or equal
to, less than or equal to

=, != Relational: equal to, not equal to

& Bitwise AND

| Bitwise OR

NOT Boolean NOT

AND Boolean AND

OR Boolean OR

|| Concatenate string
SQL Language Reference 7-29

Chapter 7 Procedures and Triggers

ough

nd

e
les in

ugh
d
ff.

 not

ures
e
How to generate, store, execute and drop
procedures

This section describes how to generate, store, execute, and drop procedures thr
SQLTalk. It also describes debugging a procedure and security issues.

You can also perform these functions through the SQL/API (see the section Using
SQL/API functions with procedures later in the chapter for a list of associated
functions), through SQLConsole with the Procedures Editor, and through Team
Builder with the following functions:

SqlStore
SqlRetrieve
SqlExecute
SqlDropStoredCmd

See the documentation for these products for more detail. In addition, SQLBase
provides an online sample application called sp.app that demonstrates calling
procedures in a Team Developer application.

Like all other SQL commands, procedures can be stored, retrieved, compiled, a
executed through applications such as the SQL/API.

Generating a procedure
To generate a procedure, use the SQL PROCEDURE command. Read the SQL
Language Reference for detailed information on this command. When you generat
the procedure, specify the SAL statements and any parameters and local variab
the Actions section.

If you turn on result sets on the client, you can scroll forwards and backwards thro
the result set returned by a procedure. The result set for procedures is preserve
across COMMIT and ROLLBACK operations, even if preserve context mode is o
In SQLTalk, result set mode is OFF by default.

Note: To avoid necessary performance degradation, keep result set mode OFF if you are
using scrollable cursors. When set to ON, SQLBase builds the result set for a procedure.

Following are restrictions to note when generating procedures:

• If you are using a network version of SQLBase, you cannot create proced
that perform SQL commands that use a SET SERVER command. Thes
commands are:

CREATE DATABASE
DROP DATABASE
7-30 SQL Language Reference

How to generate, store, execute and drop procedures

tings

tion

ands
s to
d that

re
cts
dure
cannot

 object
e (as

mple,
le:
CREATE STOGROUP
DELETE
INSTALL DATABASE
DEINSTALL DATA

• Recursion and nesting limits of procedures are determined by various set
in your system, such as available memory.

• You cannot include DDL commands in static procedures. The only excep
is if you are specifying the LOAD...ON SERVER.. command in the
procedure and the file you are loading contains DDL commands.

• Restriction mode to filter a result set is not supported for procedures.

Procedure Validation
Typically, a procedure performs some action on a table, or contains stored comm
that reference tables in a single SQL statement. Note that SQLBase allows user
drop or alter a table even if it is referenced in a procedure or in a stored comman
is contained in a procedure.

If the object a procedure references is changed or no longer exists, the procedu
remains valid. However, SQLBase issues a runtime error about the missing obje
when the procedure is executed. In addition, if you attempt to load a static proce
that references a dropped or altered object, SQLBase also issues errors when it
locate the missing or altered objects.

To execute and load procedures successfully, be sure to recreate any referenced
that is dropped, or restore any referenced object that is altered to its original stat
known by the procedure).

Procedure Example
The following procedure updates and returns bank account balances. In this exa
the procedure is executed through SQLTalk. This example uses the following tab

CREATE TABLE CHECKING (ACCOUNTNUM number, BALANCE
number);

PROCEDURE: WITHDRAW
Parameters

Number: nAccount
Number: nAmount
Receive Number: nNewBalance

Local Variables
String: sUpdate
String: sSelect

Actions
Set sUpdate = 'UPDATE CHECKING \

set BALANCE = BALANCE - :nAmount \
SQL Language Reference 7-31

Chapter 7 Procedures and Triggers

ead

 as a

 to

n)
where ACCOUNTNUM = :nAccount'
Call SqlImmediate(sUpdate)
Set sSelect = 'SELECT BALANCE from CHECKING \

where ACCOUNTNUM = :nAccount \
into :nNewBalance'

Call SqlImmediate(sSelect)
\
1,50,,
/

Remember to follow the indentation guidelines when creating your procedure. R
the section Indentation on page 7-7 for more information. Also, if you are breaking a
long line to span multiple lines, you must use a backslash (\) at the end of the line
continuation marker.

Of course, typing a long procedure directly into the SQLTalk interface is time-
consuming, especially if you make typing errors. Generally, you will want instead
create a script that contains the PROCEDURE command. You can then use the
SQLTalk RUN command to run this script in SQLTalk.

Static versus dynamic procedures
A procedure is either dynamic or static. Dynamic is the default.

The following table lists important differences between static and dynamic
procedures.

* Performance of Dynamic procedures can be enhanced by retrieving previously
stored SQL commands (SqlRetrieve as opposed to SqlPrepare).

Static procedures. SQLBase compiles and optimizes (determines the query pla
the SQL statements embedded in a static stored procedure. These statements and

Feature Dynamic Static

Require storing to execute? No Yes

Parse/precompile procedural logic? Yes Yes

Parse SQL at store time? No Yes

Precompile SQL at store time? No Yes

Dynamic SQL support? Yes No

*SQL performance Slower Faster

Use for Triggers? No Yes
7-32 SQL Language Reference

How to generate, store, execute and drop procedures

s must

P
N

ring is
atic

 do
their associated query execution plans are kept in the database. Static procedure
be stored before they can be executed.

You must be sure that a static procedure’s embedded SQL commands meet the
following criteria:

• They are not data definition language (DDL) statements.

• They are string literals and contain no variables other than bind or INTO
variables.

The first requirement means that you cannot include a CREATE, ALTER, or DRO
command in a static procedure. However, the procedure can contain a LOAD.. O
SERVER command that has DDL statements.

The second requirement means that SQLBase must know what the command st
at compilation time. For example, you cannot include the following excerpt in a st
stored procedure:

Set sCmd = 'select * from employee'
...
SqlPrepare (cur, sCmd)

You must specify the actual command string itself:

SqlPrepare (cur, 'select * from employee')

As another example, this statement meets the static requirements:

Select Col1, Col2 from sysadm.Table1 into :Out1, :Out2

but these do not:

Set sColumns = 'Col1, Col2'
...
Set SELECT = 'Select' || sColumns || 'from sysadm.Table1

into :Out1, :Out2 '

Note that as with any statement that contains bind variables, SQLBase must
determine the optimal access method without all the necessary information.

While static procedures do not provide the flexibility of dynamic procedures, they
optimize and parse SQL statements before storing and hence yield higher
performance at runtime.

The following example shows a static stored procedure:

STORE STATICS
PROCEDURE: STATIC_SQL static
Parameters

Receive String: sName
Receive Number: nINVENTORY

Local Variables
SQL Language Reference 7-33

Chapter 7 Procedures and Triggers

cessed
ave
d or

ey are

ntil
store

s are
Sql Handle: hSqlCur1
Number: nInd

Actions
On Procedure Startup

Call SqlConnect(hSqlCur1)
Call SqlPrepare(hSqlCur1, 'select NAME, INVENTORY from \

PRODUDCT_INVENTORY into :sName, :nINVENTORY')
On Procedure Execute

Call SqlExecute(hSqlCur1)
On Procedure Fetch

If NOT SqlFetchNext(hSqlCur1, nInd)
Return 1

Else
Return 0

On Procedure Close
Call SqlDisconnect(hSqlCur1)

/
execute STATICS

\

,,

/

1. When static procedures are executed, the SqlPrepare statement is not repro
since all SQL statements within a static procedure are precompiled. If you h
already stored the SQL statement either using the SQLTalk STORE comman
within the procedure using the SqlStore() function, SqlRetrieve() can be
substituted.

Dynamic procedures. A dynamic procedure can contain dynamic embedded SQL
statements. Because the dynamic SQL string components can change, the SQL
statements cannot be precompiled.

Unlike static procedures, dynamic procedures do not have to be stored before th
executed.

Note that since SQL statements in a dynamic stored procedure are not parsed u
execution, SQLBase does not catch any SQL errors in the procedure when you
it.

The previous examples of invalid embedded SQL statements for static procedure
acceptable for dynamic procedures:

Set sCmd = 'select * from employee'
...
SqlPrepare (cur, sCmd)

➀

7-34 SQL Language Reference

How to generate, store, execute and drop procedures

sing

r

 be
the
iled
and:
Set sColumns = 'Col1, Col2'
...

Set SELECT = 'Select' || sColumns || 'from sysadm.Table1
into :Out1, :Out2 '

To improve dynamic procedure performance and avoid the possibility of runtime
errors, you can store SQL commands outside of the procedure (as opposed to u
SqlPrepare within the procedure) and then retrieve and execute them within the
procedure. However, this prevents you from using dynamic SQL for that particula
SQL statement.

The following example shows a dynamic SQL procedure. This procedure cannot
static because of the symbolic string substitution of the SQL statement found in
SqlPrepare() call. The SQL statements in a dynamic procedure are not precomp
and so are not optimized or parsed when stored.

store DYNAMITE
procedure: DYNAMIC_SQL
Parameters

Number: nOver200
Receive String: sName
Receive Number: nINVENTORY

Local Variables
Sql Handle: hSqlCur1
String: sWhere
String: sSelect

Number: nInd
Actions

On Procedure Startup
Call SqlConnect(hSqlCur1)

If nOver200 = 1
Set sWhere = 'where INVENTORY > 200'

Else
Set sWhere = 'where INVENTORY < 200'

Set sSelect = 'select NAME, INVENTORY \
 from PRODUDCT_INVENTORY ' || sWhere || ' into

:sName, :nINVENTORY'
Call SqlPrepare(hSqlCur1, sSelect)

On Procedure Execute
Call SqlExecute(hSqlCur1)

On Procedure Fetch
If NOT SqlFetchNext(hSqlCur1, nInd)

Return 1
Else

Return 0
On Procedure Close

(1)
SQL Language Reference 7-35

Chapter 7 Procedures and Triggers

 run

ic
g the

 then

 you
n.

. For

red
efore

nd at
:

Call SqlDisconnect(hSqlCur1)

/
execute DYNAMITE

\

1,,,

/

The advantage to dynamic procedures is that they are more flexible than static
procedures. You can run and rerun a dynamic stored procedure with embedded
dynamic SQL by using string substitution to produce different SQL commands at
time.

Determining whether to store a procedure as dynamic or static. If you have a stored
procedure that contains SQL statements, some of which would benefit from stat
storage and others which would benefit from dynamic storage, consider breakin
procedure into several smaller static and dynamic procedures. For example, you
might have a main static stored procedure that calls several dynamic stored
procedures.

Storing a procedure
Storing a procedure stores it in the system catalog for future execution. You can
later retrieve and execute it.

When you create the procedure with the PROCEDURE command, you specify
whether it is a dynamic or static stored procedure; dynamic is the default. When
actually store the procedure, SQLBase also stores the procedure’s execution pla

You can store a procedure under a different name than the one it is created with
details, read the section Name on page 7-4.

Note: You cannot replace an existing procedure with a procedure that uses the same sto
name. You must first use the SQLTalk ERASE command to erase the existing procedure b
storing the new one.

You must store a procedure as static if you plan to use it in a trigger.

Use the SQLTalk STORE command to store a procedure. You issue this comma
the same time you generate the procedure text with PROCEDURE. For example

STORE WD_PROC
PROCEDURE: WITHDRAW
Parameters

Number: nAccount
Number: nAmount
7-36 SQL Language Reference

How to generate, store, execute and drop procedures

run

 a
n
 the

mand.
tored

.

e still

 are
r alter
Receive Number: nNewBalance
Local Variables

String: sUpdate
String: sSelect

Actions
Set sUpdate = 'UPDATE CHECKING set \

BALANCE = BALANCE - :nAmount where \
ACCOUNTNUM =:nAccount'

Call SqlImmediate(sUpdate)
Set sSelect = 'SELECT BALANCE from CHECKING \

where ACCOUNTNUM = :nAccount \
into :nNewBalance'

Call SqlImmediate(sSelect)
;

Generally, you will want to include the STORE command in a script file and then
the script file.

Executing a procedure
Issuing a PROCEDURE command by itself automatically compiles and executes
procedure. You can also run the SQLTalk PREPARE or RETRIEVE commands i
conjunction with the PERFORM command to compile/execute or retrieve/execute
procedure in two separate steps.

To retrieve and execute a stored procedure in one step, use the EXECUTE com
This command accepts input values and retrieves data as well as executes the s
procedure. For example:

EXECUTE WD_PROC
\
1,50,,
/

Note: Stored commands embedded in procedures can become invalid if their underlying
database object changes. However, a stored procedure itself never becomes invalidated

Runtime Errors
Stored commands embedded in procedures can become invalid if the stored
command, or its underlying objects are dropped or altered. In this case, SQLBas
executes the procedure, but issues a runtime error about any missing or altered
objects.

Similarly, SQLBase also issues a runtime error if is it is unable to find tables that
referenced in the stored procedure. Note that SQLBase allows users to delete o
tables that are referenced in existing stored procedures.
SQL Language Reference 7-37

Chapter 7 Procedures and Triggers

r

 of
n on
Dropping a procedure
To drop a procedure from the database, use the SQLTalk ERASE command. Fo
example:

ERASE WD_PROC;

Debugging a procedure
Within the procedure, you can use the SAL Trace statement to check the values
individual variables. See the Trace statement documentation for more informatio
this statement.

The SQLTalk SET and SHOW commands also have TRACE and TRACEFILE
options to help trace procedure statements. These are run independently of the
PROCEDURE command:

For example:

SET TRACE ON;
RUN example.sql;
PROCEDURE: WithDraw
Parameters

Number: nAccount
Number: nAmount

...
SET TRACE OFF;

SQLTalk command Description

SET TRACE ON/OFF Enables or disables statement tracing.

SET TRACEFILE
<filename>/OFF

If this is set to a file name, SQLBase
directs statement trace output to a file on
the server; an Off value directs the output
to the server’s Process Activity screen.

SHOW TRACE Determines whether statement tracing is
enabled or disabled.

SHOW TRACEFILE Determines whether statement trace output
is being directed to a file on the server or
to the server’s Process Activity screen.
7-38 SQL Language Reference

SAL functionality in SQLBase

T

ions
r

d

o,

Security
To grant privileges to other users for stored procedures, use the SQLTalk GRAN
EXECUTE command. You can grant either your own privileges to other users, or
grant them privileges of their own. To revoke users’ privileges, use the REVOKE
EXECUTE command.

Read the SQLTalk Language Reference for information on these commands.

SAL functionality in SQLBase
You can embed any of the following functions in a procedure. User-defined funct
are not supported. Note that while these functions are similar to Team Develope
functions, they are SQLBase-specific. You do not need Centura’s Team Developer
program to use these functions. See the Appendix for a complete description an
syntax for these functions.

Team Developer system variables (such as SqlDatabase) are not supported. Als
unlike Team Developer, SQLBase procedures are not case sensitive.

Team Developer Function Description

SqlClearImmediate Disconnects the Sql Handle used by SqlImmediate.

SqlClose Closes a named cursor.

SqlCommit Commits the current SQL transaction.

SqlConnect Connects a Sql Handle to a database.

SqlDisconnect Disconnects a Sql Handle from a database.

SqlDropStoredCmd Deletes a stored command or stored procedure.

SqlError Gets the most recent error code for the specified Sql
Handle.

SqlExecute Executes a SQL statement, stored command, or stored
procedure.

SqlExists Checks if a specified row or rows exist.

SqlFetchNext Fetches the next row in a result set.

SqlFetchPrevious Fetches the previous row in a result set.

SqlFetchRow Fetches a specific row from a result set.

SqlGetErrorPosition Gets the offset of an error within a SQL statement.
SQL Language Reference 7-39

Chapter 7 Procedures and Triggers

r

d
SqlGetErrorText Gets the message text for a SQL error number.

SqlGetModifiedRows Returns the number of rows changed by an INSERT,
UPDATE, or DELETE statement.

SqlGetParameter Returns a database parameter.

SqlGetParameterAll Returns a database parameter.

SqlGetResultSetCount Returns the number of rows in a result set.

SqlGetRollbackFlag Returns the database rollback flag.

SqlImmediate Compiles and executes a SQL statement.

SqlOpen Names a cursor and executes a SQL statement.

SqlPrepare Compiles a SQL statement or non-stored procedure fo
execution.

SqlPrepareAndExecute Compiles and executes a SQL statement or non-store
procedure.

SqlRetrieve Retrieves a stored command or stored procedure.

SqlSetIsolationLevel Sets the isolation level.

SqlSetLockTimeout Sets the timeout period on waiting for a lock.

SqlSetParameter Sets a database parameter.

SqlSetParameterAll Sets a database parameter.

SqlSetResultSet Turns results set mode on and off.

SqlStore Compiles and stores a command or procedure.

Team Developer Function Description
7-40 SQL Language Reference

Related SQLTalk commands

res.

d

r

s

ts
Related SQLTalk commands
Use the following SQLTalk commands to compile, prepare, and execute procedu
For information on these commands, read the SQLTalk Language Reference.

Using SQL/API functions with procedures
You can use the following SQL/API functions to manipulate procedures. For
information on these functions, read the SQL/API Reference Manual.

Command Description

ERASE Erases a stored command/stored procedure.

EXECUTE Executes a stored command or stored procedure.

PERFORM Executes either a prepared SQL command/non-store
procedure, or retrieved stored command/stored
procedure.

PREPARE Compiles a SQL command or non-stored procedure.

SET TRACE Enables or disables statement tracing.

SET TRACEFILE Directs statement trace output to a file on the server o
to the server’s Process Activity screen.

SHOW TRACE Determines whether statement tracing is enabled or
disabled.

SHOW TRACEFILE Determines whether statement trace output is being
directed to a file on the server or to the server’s Proces
Activity screen.

STORE Compiles and stores a command or procedure (and i
execution plan) for later execution.

SQL/API
Function

Description

sqlbnd Bind input data by name.

sqlbnn Bind input data by number.

sqlbnv Get the number of input parameters.

sqlcbv Clear bind variables.
SQL Language Reference 7-41

Chapter 7 Procedures and Triggers
sqlcex Compile and execute a non-stored command or non-stored
procedure.

sqlcom Compile a non-stored command or non-stored procedure.

sqlcty Return the command type.

sqldes Describe output parameters in terms of internal data types and
lengths.

sqldii Describe an INTO variable.

sqldsc Describe output parameters in terms of external data types and
lengths.

sqldst Drop a stored command or stored procedure.

sqlepo Retrieve error position.

sqlexe Execute a command or procedure that has either been
previously-compiled or stored.

sqlfet Fetch next row from result set.

sqlget Return the statement trace status (enabled/disabled) with the
SQLPTRC parameter, and the file name of the trace output file
with the SQLPTRF parameter.

sqlnbv Retrieve number of bind variables.

sqlnii Get the number of INTO variables.

sqlnsi Get the number of output parameters.

sqlret Retrieve a stored command or stored procedure.

sqlset Enable/disable statement tracing with the SQLPTRC
parameter, and redirect trace output to a file or the Process
Activity (F2) screen with the SQLPTRF parameter.

sqlssb Set up buffers for output parameter data.

sqlsto Store a procedure or SQL command.

SQL/API
Function

Description
7-42 SQL Language Reference

Using procedures with Centura Team Developer applications

s in

n
ursor
ssue a
s is

t for

d df2,
Using procedures with Centura Team Developer
applications

This section discusses implementation issues to consider when using procedure
Centura Team Developer applications.

Default for Result Sets in Stored Procedures
To emulate scrollable results sets in Team Developer, the default for result sets i
stored procedures is turned ON when you issue a Call SqlConnect (hsql). This c
has results sets turned ON so that scrollable result sets are available when you i
SqlFetchPrevious. Note that normally in SQLTalk, result sets in stored procedure
turned OFF by default.

Note: If you are NOT using SqlFetchPrevious in your procedures, you can improve
performance by explicitly turning results sets OFF in procedures with SqlSetResultSet.

Calling a SQLBase Procedure
To call a SQLBase procedure from Team Developer, use the SAL SqlRetrieve call.
You must follow these rules:

• All SQLBase procedure parameters must have a representative Team
Developer variable/visual object in the bind list (third parameter) of
SqlRetrieve().

• All Receive parameters of a SQLBase procedure that are used as outpu
the calling Team Developer application must be represented by a Team
Developer variable/visual object in the into list (fourth parameter) of
SqlRetrieve.

Note: There is an exception to these SqlRetrieve() rules when using Team Developer List and
Combo boxes. These are discussed in the following paragraphs.

For example, assume you are populating two Team Developer data fields, df1 an
with the following procedure which returns rows from a SELECT:

Procedure: PRODUCTS
Parameters

Number: nInventory
Receive String: sName
Receive Date/Time: dtWhen

Actions
...
SQL Language Reference 7-43

Chapter 7 Procedures and Triggers

indow.

ince
 list
ceive
.

eam
Call SqlPrepareAndExecute(hSqlCur1, 'select NAME, WHEN
from PRODUDCT_INVENTORY \
where INVENTORY = :nInventory into :sName, \
:dtWhen')

...

Within Team Developer, code the following lines. Notice the bind list.

...
Set nInvent = 200
Call SqlRetrieve(hCur1, 'PRODUCTS', ':nInvent, :df1,

:df2', ':df1, :df2')
Call SqlExecute(hCur1)
Call SqlFetchNext(hCur1, nInd)
...

For table windows, the third parameter for SalTblPopulate is passed as a null. This is
the same method used when a stored command is the data source for a table w

...
Set nInvent = 200
Call SqlRetrieve(hCur1, 'PRODUCTS', ':nInvent, :df1,

:df2', ':df1, :df2')
Call SalTblPopulate(tbProducts, hCur1, '',

TBL_InventNormal

For list boxes and combo boxes, both the fourth parameter (into list string) for
SqlRetrieve and the third parameter for SalListPopulate is are passed as nulls. This is
the same method used when a stored command is the data source. Secondly, s
Team Developer has no method of referencing individual database columns in a
or combo box, you must create dummy variables to represent the procedure Re
parameters within the bind list. Backend result sets do not need to be turned off

 ...

Window Variables:
String: sDummy1
String: sDummy2
Number: nInvent

...

Message Actions
...

set nInvent = 200
Call SqlRetrive(hCur1, 'PRODUCTS', ':nInvent, :sDummy1,

:sDummy2', '')
Call SaListPopulate(hWndItem, hCur1, '')

To learn more about using SQLBase procedures with Team Developer, run the T
Developer application sp.app shipped with SQLBase.
7-44 SQL Language Reference

Error handling

ure,

ment

 the

r

ution,
lling

e be
 not
l and

e of
QL

f the
Error handling
By default, SQLBase handles a SQL error by terminating execution of the proced
and returning an error code to you.

You can override this default SQL error processing using the When SqlError
statement. This enables you to specify a local error handler as you can in Team
Developer. A local error handler is only effective for statements in the same state
block as that in which the error handler is declared.

However, if the When SqlError returns control back to the procedure, it is the
procedure’s responsibility to check the return from the failed SQL statement and
process accordingly. If there is no return from the When SqlError construct, both
control and the SQL error code are immediately returned to the caller.

Unlike Team Developer, procedures do not allow you to specify a global error
handler.

Put a When SqlError statement in a procedure’s Actions section:

• Before a procedure SAL function.

• At the same indent level as the procedure SAL function.

The following flowchart shows the steps that SQLBase follows when a SQL erro
occurs during the execution of a procedure.

1. SQLBase looks for When SqlError in the procedure’s Actions section.

2. If there is no When SqlError statement, SQLBase breaks the procedure exec
and returns control to the calling program. The error code is returned to the ca
program.

3. If there is a When SqlError, SQLBase performs the statements in the When
SqlError section.

4. You can use a Return statement to specify that either a TRUE or FALSE valu
returned by the procedure SAL function on which the error occurred. If you do
specify a Return statement, the procedure breaks execution, and both contro
the error code are returned to the calling program.

• If the Return statement returns FALSE, FALSE becomes the return valu
the failed Sql* function. Procedure execution continues as if the failed S
statement returned FALSE.

• If the Return statement returns TRUE, TRUE becomes the return value o
failed Sql* function. Procedure execution continues as if the failed SQL
statement returned TRUE.
SQL Language Reference 7-45

Chapter 7 Procedures and Triggers
This example uses the tables JR and PRODUDCT_INVENTORY:

CREATE TABLE JF 12R,132,13-OCT-1992 (NAME varchar(25),
INVENTORY decimal (3,0), WHEN date);

INSERT INTO PRODUDCT_INVENTORY values
(JF 12R,132,13-OCT-1992);

COMMIT;

Is there
a Return state-

ment?

Perform
When SqlError

statements

Is there a
When

SqlError
construct?

Return FALSE

Start

Yes

No

Yes

Procedure
continues execution

as if failed SQL
statement returned

TRUE

Encounter SQL
error during proce-

dure execution

No

1, 2

3

4

Return TRUE

Procedure
continues execution

as if failed SQL
statement returned

FALSE

Break execution,
return SQL error

code to
calling program.
7-46 SQL Language Reference

Error handling

s

red
This examples also uses the following stored command INVENTORY_QUERY:

STORE INVENTORY_QUERY
SELECT INVENTORY from PRODUDCT_INVENTORY
where NAME = :1;

In this example, the When SqlError construct tests for two error conditions:

• If the stored command does not exist, error code 207 is returned.

• If the table used in the stored command does not exist, error code 601 i
returned.

In this example, error code 601 is returned because the table required for the sto
command is dropped prior to procedure execution.

DROP TABLE PRODUDCT_INVENTORY
PROCEDURE: ILPROC
Parameters

String: sName
Receive Number: nINVENTORY

Local Variables
Sql Handle: hSqlCur1
Number: nInd
Number: nRcd
Boolean: bCond

Actions
On Procedure Startup

When SqlError
Set nRcd = SqlError(hSqlCur1)
If nRcd = 207

Call SqlStore(hSqlCur1, 'INVENTORY_QUERY', \
 'select INVENTORY from PRODUDCT_INVENTORY \
 where NAME = :1 into :2')

Call SqlCommit(hSqlCur1)
Call SqlRetrieve(hSqlCur1, 'INVENTORY_QUERY', \

 ':sName', ':nINVENTORY')
Return TRUE

Else If nRcd = 601
Return FALSE

Call SqlConnect(hSqlCur1)

Set bCond = SqlRetrieve(hSqlCur1,\
'INVENTORY_QUERY',':sName', ':nINVENTORY')

If NOT bCond
Return 6302

On Procedure Execute
Call SqlExecute(hSqlCur1)

➀

➁

➂

SQL Language Reference 7-47

Chapter 7 Procedures and Triggers

r the
rning

 error.

ond

k to

loper.

 if the
On Procedure Fetch
If NOT SqlFetchNext(hSqlCur1, nInd)

Return 1
Else

Return 0
On Procedure Close

Call SqlDisconnect(hSqlCur1)

\

JF 12R,,

/

1. This exception handling routine Returns FALSE because the required table fo
stored command was dropped prior to the execution of the procedure. Retu
FALSE (as opposed to executing no Return from When SqlError) allows the
procedure to provide additional processing, such as returning a user defined

2. Since the When SqlError construct returned FALSE, the return value for bC
is set to FALSE.

3. The When SqlError construct sets bCond to FALSE. This returns control bac
the calling application with the user defined error 6302 "PRODUDCT_INVENTORY

table is missing - see DBA".

Procedure examples
This section is a series of examples that demonstrate the different elements of
procedures. They use a table called CHECKING. You can run these and other
examples online using the sp.sql SQLTalk script, which is provided in the Centura
directory with your SQLBase software. In addition, the sp.app sample application
provided in the Centura directory demonstrates using procedures in Team Deve

Example 1 - Procedure IF/Else statement
This next example adds an IF/Else statement to the procedure; this checks to see
balance is negative.

STORE WITHDRAW
PROCEDURE: WITHDRAW
Parameters

Number: nAccount
Number: nAmount
Receive Number: nNewBalance
Receive Boolean: bOverDrawn

Local Variables
7-48 SQL Language Reference

Procedure examples
String: sSelect
String: sUpdate

Actions
Set sSelect = 'SELECT BALANCE from CHECKING \

 where ACCOUNTNUM = :nAccount \
into :nNewBalance'

Call SqlImmediate(sSelect)
Set nNewBalance = nNewBalance - nAmount
If (nNewBalance < 0)

Set bOverDrawn = TRUE
Else

Set bOverDrawn = FALSE
Set sUpdate = 'UPDATE CHECKING \
set BALANCE = BALANCE - :nAmount \

 whereACCOUNTNUM = :nAccount'
Call SqlImmediate(sUpdate)

;

EXECUTE WITHDRAW
\
1,100,,,
/

Example 2- Using SQL handles and ON statements
The next example adds SQL handles and ON statements to the procedure.

STORE WITHDRAW
PROCEDURE: WITHDRAW
Parameters

Number: nAccount
Number: nAmount
Receive Number: nNewBalance
Receive Boolean: bOverDrawn

Local Variables
Sql Handle: hSqlSelect
Sql Handle: hSqlUpdate
String: sSelect
String: sUpdate
Number: nStatus

Actions
On Procedure Startup

Set sSelect = 'SELECT BALANCE from CHECKING \
where ACCOUNTNUM = :nAccount \
into :nNewBalance'

Set sUpdate = 'UPDATE CHECKING \
set BALANCE = BALANCE - :nAmount \

 whereACCOUNTNUM = :nAccount'
SQL Language Reference 7-49

Chapter 7 Procedures and Triggers
Call SqlConnect(hSqlSelect)
Call SqlPrepare(hSqlSelect, sSelect)
Call SqlConnect(hSqlUpdate)
Call SqlPrepare(hSqlUpdate, sUpdate)

On Procedure Execute
Call SqlExecute(hSqlSelect)
Call SqlFetchNext(hSqlSelect, nStatus)
Set nNewBalance = nNewBalance - nAmount
If (nNewBalance < 0)

Set bOverDrawn = TRUE
Else

Set bOverDrawn = FALSE
Call SqlExecute(hSqlUpdate)

On Procedure Close
Call SqlDisconnect(hSqlSelect)
Call SqlDisconnect(hSqlUpdate)

;

EXECUTE WITHDRAW
\
1,100,,,
/

Example 3 - Doing a fetch
This example adds a fetch operation to the procedure.

STORE WITHDRAW
PROCEDURE: WITHDRAW
Parameters

Number: nAccount
Number: nAmount
Receive Number: nNewBalance

Local Variables
Sql Handle: hSqlSelect
String: sSelect
Number: nStatus
Boolean: bEOF

Actions
On Procedure Startup

Set sSelect = 'SELECT BALANCE from CHECKING \
where ACCOUNTNUM = :nAccount \
into :nNewBalance'

Call SqlConnect(hSqlSelect)
Call SqlPrepare(hSqlSelect, sSelect)

On Procedure Execute
Call SqlExecute(hSqlSelect)
! Internal fetch - column is not returned to the calling
7-50 SQL Language Reference

Procedure examples

e. The
.
tines

f
! program since there is an On Procedure Fetch state
! which does return values to the calling program.

Call SqlFetchNext(hSqlSelect, nStatus)
On Procedure Fetch

If (nNewBalance > 100)
Set nNewBalance = nNewBalance * 1.005
Set nNewBalance = nNewBalance - 100
Set bEOF = FALSE

Else
Set bEOF = TRUE

Return bEOF
On Procedure Close

Call SqlDisconnect(hSqlSelect);

EXECUTE WITHDRAW
\
1,100,,
/

Example 4 - Calling a stored procedure from within another
procedure

This example shows how one stored procedure can call another stored procedur
calling stored procedure is DYNAMIC and the called stored procedure is STATIC
Nesting procedures can enhance the modularity of code by creating common rou
that perform specialized tasks. These tasks can then be called by any number o
different procedures or calling programs.

This example uses the following two tables PRODUCTIVE and RATE:

create table PRODUCTIVE
(
NAME varchar(25),
DEPT varchar(2),
BUILD varchar(1),
PRICE integer
);

insert into PRODUCTIVE values('BM J18','TT','M',66);

create table RATE
(
RATE varchar(12),
PER_DAY double precision
);
SQL Language Reference 7-51

Chapter 7 Procedures and Triggers

mic

tion,
insert into RATE values(:1, :2)
\
"LEVEL H",300,
"LEVEL B",190,
"LEVEL T",150,
"LEVEL I",25,
/

This is the syntax of the static stored procedure PRODUCT_COUNT, which
determines the current population of the PRODUCT table. It is called by the dyna
procedure ADJUST_RATE.

STORE PRODUCT_COUNT
PROCEDURE: PRODUCT_COUNT static
Parameters

Receive Number: nCount
Local Variables

Sql Handle: hSqlCur1
Number: nInd

Actions
Call SqlConnect(hSqlCur1)
Call SqlPrepareAndExecute(hSqlCur1, \

'select count(*) from PRODUCTIVE into :nCount')
Call SqlFetchNext(hSqlCur1, nInd)

;

The following dynamic stored procedure ADJUST_RATE calls the
PRODUCT_COUNT stored procedure. Based on the current PRODUCT popula
the DAILY rates are determined.

store ADJUST_RATE
procedure: ADJUST_RATE dynamic
Parameters

Receive String: sRate
Receive Number: nPerDay

Local Variables
Sql Handle: hSqlCur1
Number: nPop
Number: nInd
String: sAdjust
String: sUpdate
String: sSelect

Actions
On Procedure Startup

Call SqlConnect(hSqlCur1)
Set nPop = 0

Call SqlRetrieve(hSqlCur1, \➀
7-52 SQL Language Reference

Procedure examples

 bind

into
lled
'PRODUCT_COUNT', ':nPop', ':nPop')
Set sSelect = 'Select RATE, PER_DAY from RATE \

into :sRate, :nPerDay'
On Procedure Execute

Call SqlExecute(hSqlCur1)
Call SQLFetchNext(hSQlCurl, nInd)
If nPop > 1

Set sAdjust = 'set PER_DAY = PER_DAY * 1.15'
Else

Set sAdjust = 'set PER_DAY = PER_DAY * 1.05'
Set sUpdate = 'Update RATE ' || sAdjust

Call SqlPrepareAndExecute(hSqlCur1, sUpdate)
Call SqlPrepareAndExecute(hSqlCur1, sSelect)

On Procedure Fetch
If NOT SqlFetchNext(hSqlCur1, nInd)

Return 1
Else

Return 0
On Procedure Close

Call SqlDisconnect(hSqlCur1)

;

column 1 width 15;
execute ADJUST_RATE

\
,,
/

1. Retrieve the stored procedure to get the current PRODUCT count. Notice the
list must include (in proper order) variables which represent all parameters
declared in the called stored procedure PRODUCT_COUNT. Secondly, the
list must include variables which map to those Receive parameters of the ca
procedure that return output to procedure ADJUST_RATE.

2. Fetch a single row value into the nPop local variable.

3. Use dynamic SQL to build the update statement based on the PRODUCT
population.

4. Update the RATE table.

5. Now select the new rates from the RATE table.

6. SQLTalk requires string columns to be resized.

➁

➂

➃

➄

➅

SQL Language Reference 7-53

Chapter 7 Procedures and Triggers

utes
ers on
,

der

n

uring
ity.

unt
ffic.

call a

 an
s
 this

re

file
ble or
IG.

ins the
ou
Triggers
This section provides an overview of triggers which use stored procedures. For
detailed information about triggers, see the documentation on the CREATE
TRIGGER command in this manual.

What is a trigger?
A trigger activates a stored or inline procedure that SQLBase automatically exec
when a user attempts to change the data in a table. You create one or more trigg
a table, with each trigger defined to activate on a specific command (an INSERT
UPDATE, or DELETE). Attempting to modify data within the table activates the
trigger that corresponds to the command. For details on the trigger execution or
before a single data manipulation statement is executed, read the Section DML
Execution Model in Chapter 1.

Triggers enable you to:

• Implement referential integrity constraints, such as ensuring that a foreig
key value matches an existing primary key value.

• Prevent users from making incorrect or inconsistent data changes by ens
that intended data modifications do not compromise a database’s integr

• Take action based on the value of a row before or after modification.

• Transfer much of the logic processing to the backend, reducing the amo
of work that your application needs to do as well as reducing network tra

Creating Triggers
You can only use inline or static stored procedures with triggers. In addition, you
must first store the static procedure with the STORE command; a trigger cannot
non-stored procedure.

Use the SQL CREATE TRIGGER command to create a trigger. You can disable
existing trigger by using the ALTER TRIGGER command. This command cause
SQLBase to ignore the trigger when an activating DML statement is issued. With
command, you can also enable a trigger that is currently inactive.

You can easily disable all triggers defined on a table by using the stored procedu
\Centura\rep_trig.sql included with SQLBase.

To access the stored procedure, you must have SYSADM authority and run the
REP_TRIG.SQL against the database that contains the triggers you want to ena
disable. This file creates the stored procedure SYSADM.SYSPROC_ALTTABTR

To use the stored procedure, provide the owner and name of the table that conta
trigger and specify whether to enable or disable the triggers in the table. When y
7-54 SQL Language Reference

Triggers

e and

ert
execute the procedure, it retrieves the names of all triggers belonging to the tabl
enables or disables each trigger one by one. Through the receive parameter, the
procedure returns the number of triggers that it processed.

For example, to disable all triggers on table T1 created by USER1, run:

EXECUTE SYSPROC_ALTTABTRIG
\
USER1, T1, DISABLE, 0
/
To delete a trigger from the system catalog, use DROP TRIGGER.

Note: To see an online triggers tutorial, run the triggers.sql script that is installed with
SQLBase.

Trigger example
The following example shows how an insert statement can invoke a trigger to ins
data into a history table. The trigger calls an inline procedure called proc_newpres.

This trigger uses the following PRESIDENT and ELECTION tables:

CREATE TABLE PRESIDENT
(PRES_NAME varchar(20) not null, BIRTH_DATE date,
YRS_SERV integer, DEATH_AGE integer,
PARTY varchar (20),STATE_BORN varchar(20));

CREATE TABLE ELECTION (ELECTION_YEAR smallint,
CANDIDATE varchar(20),VOTES float,
WINNER_LOSER_INDIC char(1));

CREATE TRIGGER TRG_NEWPRES
after insert on SYSADM.PRESIDENT
(execute inline (1792,'Jefferson T',4,'L')

PROCEDURE: PROC_NEWPRES static
Parameters

Number: nElecYear
String: sCandidate
Number: nVotes
String: sWinLose

Local Variables
Sql Handle: hSqlCur

Actions
On Procedure Startup

Call SqlConnect(hSqlCur)
Call SqlPrepare(hSqlCur, 'Insert into \
 sysadm.election values \

(:nElecYear, :sCandidate, :nVotes, :sWinLose)')
SQL Language Reference 7-55

Chapter 7 Procedures and Triggers

 table
s to

On Procedure Execute
Call SqlExecute(hSqlCur)

On Procedure Close
Call SqlDisconnect(hSqlCur)

)
for each statement;

This trigger is invoked when you INSERT into the PRESIDENT table, as in the
following example:

INSERT into PRESIDENT values ('Jefferson T',
13-Apr-1743,8,83,'Demo-Rep','Virginia');

Security
When a user invokes a trigger, he/she assumes the privileges of the owner of the
on which the trigger is defined. The user invoking the trigger must have privilege
do the DML command that causes the trigger to be activated.

You can only create a trigger which uses a stored procedure under one of the
following conditions:

• You have either DBA or SYSADM privileges.

• You are the owner of the stored procedure.

• You have been granted EXECUTE privileges for that stored procedure.

Error handling in triggers
If a trigger calls a stored procedure and the procedure performs validation logic
which returns an error code, the trigger returns the error code to the calling SQL
statement, which displays it. A procedure’s error will “bubble” all the way to the
trigger. This means that the error appears no matter how the trigger is invoked.
7-56 SQL Language Reference

or

SQL Language Reference
Chapter 8

External Functions

This chapter describes external functions. It provides the information you need f
developing external functions and invoking them from within a SQLBase stored
procedure.

The following topics are covered:

• What is an external function?

• How to declare external functions

• Using external data types

• Calling external functions

• Developing external functions

• Modifying external function definitions

• Error handling

• System Catalog tables for external functions

• Scripts and DLLs for external functions

• External function example
SQL Language Reference 8-1

Chapter 8 External Functions

 C,

nts,

oke
ns.

s the

ting

ver

t

d in
m
What is an External Function?
An external function is a user-defined function that resides in an “external” DLL
(Dynamic Link Library) that is invoked from within a SQLBase stored procedure.
You can create your own external function in a language of your choice, such as
C++, and so forth.

You use the CREATE EXTERNAL FUNCTION command to define external
functions calls by specifying such information as the function’s name, its argume
DLL where it resides, compiler callstyle, and execution mode.

From within a SQLBase stored procedure, you can use a CALL statement to inv
the external function, or you can embed the function invocation in SAL expressio
On invoking the external function, SQLBase looks for the function’s name in the
catalog, loads the appropriate DLL that is specified for the function, and then call
function. Figure 9.1 illustrates how an external function MyFunc is invoked from
within a stored procedure.

Why use external functions?
The ability to call external functions within SQLBase enhances the power of the
SQLBase server. It provides you with the flexibility to extend the functionality of
your stored procedures, or add functionality to your existing applications by crea
plug and play external components. You can:

• Use existing SAL functions as external functions

• Execute application programs that call C/API functions directly on the ser
by converting them into external functions.

• Maintain a centralized library of functions that can be used with differen
applications and at different sites as needed.

Calling external functions from stored procedures extends functionality with no
impact on the application or the server. Your components are dynamically plugge
and behave like built-in functions. Using external functions, you achieve maximu
flexibility and performance with minimal programming effort.
8-2 SQL Language Reference

What is an External Function?
External Function Invocation

Call SQLPrepare()

Call MyFunc()

SQLBase

 Server

Myextern.dll

MyFunc()

SQL/API

Application

Stored
Procedure

C/APIs
SQL Language Reference 8-3

Chapter 8 External Functions

nd
an
 You,

l
n
e

r

, you

ATE

s and
or
Security
If you have DBA authority, you can create, drop, and modify external functions a
create synonyms for them. When a user invokes a stored procedure and it calls
external function, the user must have privileges to execute the external function.
as the creator of the external function, or another DBA, can grant execute privileges
to other users so they can execute external functions.

If a user is granted execute with creator privileges on a procedure that calls externa
functions, then the user does not need execute privileges on any external functio
invoked within the procedure. Only the CREATOR of the procedure needs to hav
execute privileges on the external function.

If the user is granted execute with grantee privileges on a stored procedure, the use
must also have execute privileges on the external functions invoked within the
procedure. For details on setting up security for external functions, see the Database
Administrator’s Guide.

SQLBase checks for privileges on external functions at procedure compile and
retrieval time.

How to declare external functions
In order for SQLBase to recognize an external function in your stored procedure
must declare the external function with the CREATE EXTERNAL FUNCTION
command. The full syntax for this command is described in Chapter 3.

This example shows the use of an external function named myfunc in your stored
procedure. To make this function known to SQLBase, it is declared with the CRE
EXTERNAL FUNCTION command:

CREATE EXTERNAL FUNCTION MYFUNC
Parameters (int, lpint)
Returns ()
Callstyle CDECL
Library myfunc.dll
Execute in same thread;

Note that function name and library name are mandatory. If your function uses
parameters, you can optionally specify the external data types for the parameter
if the function returns a value, you can optionally specify the external data type f
the return value. For details, read Using external data types on page 8-10.

After the function is declared, myfunc is then called within stored procedure P1 as
shown in the following example:

PREPARE
Procedure P1
8-4 SQL Language Reference

How to declare external functions

in
ey can

e

erved.
 can

a.

e

on

me
local variables
receive number: n1
receive number: n2

Actions
call myfunc(n1,n2)

;

Function name
Function name specifies the name of the function as known and referenced with
SQLBase. Function names are similar to other database object names, except th
be up to 64 characters in length.

If you specify the function name without quotes, you must begin the function nam
with an alpha, “a...z” character. By default, the characters are uppercased.

For example if an external function is named myfunc and is not enclosed in double
quotes, SQLBase converts the name to uppercase, as in MYFUNC . When this
external function is called in a stored procedure, MYFUNC must be specified in
upper case.

You must specify a function name in double quotes if:

• the name contains special characters

• the name starts with an alpha character

• the case of the name is to be preserved

Note that if you enclose the name in double quotes, the case of the name is pres
For example, if you want the external function name to remain in lower case, you
specify the external function name in double quotes, as in “myfunc”.

If you do not provide the external name clause, the function name is also used to
specify the external name of the function in the library.

Naming Restrictions
Please note the following restrictions when choosing a function name.

• Function names cannot be the same as procedure names and vice vers

• Functions names cannot be the same name used in any of the SQLBas
aggregate functions (for example, min, max, avg, etc., or any functions
beginning with the @ symbol, such as @ASIN, @ATAN, @CHAR, etc.)

• Function names cannot begin with SQL.

• If the external name is not used in the function definition, then the functi
name must match the exported name in the DLL.

• If the external name is used in the function definition, then the external na
must match the exported name in the DLL.
SQL Language Reference 8-5

Chapter 8 External Functions

xported

tory.

limit

ny
r the

mit

d pass
rmat

 are

s,
al
Note: If you are using WINAPI functions, check the exported names for the function. We
recommend that you use the external name clause to make the function name match the e
name. See the examples under External Name on page 8-7 for details.

Library
Library is the file specification of the dynamic linked library (DLL) in which the
function resides. SQLBase checks for the existence of the library at function
invocation time, rather than function creation time.

You must provide a fully qualified path name for the file, or else be sure the PATH
environment variable is set to point to the location of the file in your operating
system.

Note: The directory from which SQLBase executes is considered the current working direc

Specify the library name as a string with up to 254 characters. You can include
special characters in the string. If the library name contains spaces, you must de
the name in single quotes (for example, ‘lib name’).

You may be specifying the name of a DLL provided for Microsoft Window API
functions. The DDLs are typically stored in the system directory.

Parameters and return data types
When you create an external function, you must specify external data types for a
parameters and return values used in the function. If there are no parameters fo
external function, omit the PARAMETERS clause, or provide empty parentheses()
in the declaration. Similarly, If there is no return type from the external function, o
the RETURNS clause, or provide empty parentheses () in the declaration.

The data type for parameters and returns tells SQLBase the format (both size an
by value/reference) to use when passing data to the external function and the fo
to expect when receiving data from the function.

The external type typically corresponds to a standard Microsoft data type. There
some data types that do not correspond to any Microsoft data type. Read Non-
Microsoft data types on page 8-16 for details.

Once the external function is defined with the correct parameter and return type
SQLBase automatically converts the stored procedure data types into the extern
data representation.
8-6 SQL Language Reference

How to declare external functions

to

tions
ers by

ce,

n

return
stack

n

e
Declaring External Data types
You specify parameter and return data types in the CREATE EXTERNAL
FUNCTION command using the following format:

CREATE EXTERNAL FUNCTION MYFUNC
Parameters (int, lpint)
Returns (int)
Library myfunc.dll
Execute in same thread;

In the PARAMETERS clause, you specify receive data types, which are passed
functions by reference (pass by reference). Typically the external data types for
receive parameters are prefixed by LP (LPINT, LPWORD, etc.)

In the RETURNS clause, you can only specify data types that are passed to func
by value (pass by value). Examples of external data types used to pass paramet
value are INT, LONG, CHAR, etc.

For a list of external data types used to pass parameters by value and by referen
read Using external data types on page 8-10.

Parameters and return values must be compatible in size and type to the functio
prototype in the DLL.

Note: SQLBase requires the function definition that you create with CREATE EXTERNAL
FUNCTION to push parameters on to the stack before calling the function and to read the
value provided by the function. If the parameters are not specified properly, this will cause
corruption which can result in server failure.

For details on external function calls, read Calling External Functions on page 8-17.

External Name
External name is an optional clause to specify the name of the function in the
specified dynamic link library (DLL). Defining an external name enables a functio
name referenced in the stored procedure to be different from the name used to
reference the same function in the DLL.

Specify the external name as a string with up to 254 characters. You can include
special characters in the string. The external name is case-sensitive and must b
identical to the exported function name in the DLL.
SQL Language Reference 8-7

Chapter 8 External Functions

ation

ed by

 is
e the
e the

nt

t has

tion,

er,
he
Examples
You may need to define an external name to:

• indicate the function is used by more than one stored procedure or applic

For example, you may want to provide an external name that clearly
identifies what stored procedure uses the function.

• make the external name match the exported name of the function assign
your operating system.

For example, in 16-bit systems the exported name of a WINAPI function
uppercase. To keep the call for the function name in the stored procedur
same as the API call, you would use the external name clause and mak
external name match the exported name as in the following:

create external function “SendMessage”

...

library USER.EXE

external name SENDMESSAGE

...;

• indicate the correct version of the API function to use.

For example, in 32-bit systems, WINAPI functions have unicode (double
byte character) support which means that WINAPI functions have differe
internal implementations depending on the character set that is used.

The version of the function that supports the ASCII character set has anA
appended to it, while the one that supports the double byte character se
a W appended to it. The two external names for the SendMessage func
are SendMessageA and SendMessageW. If you want to indicate
SendMessageA as the version to use, the external function definition is:

create external function “SendMessage”
parameters (...)
returns(...)
library USER32.DLL
external name SendMessageA
....;

Note: Normally, the compiler converts a call to the correct version of the function. Howev
external function calls are made without the use of a compiler; hence, you must provide t
correct version name.
8-8 SQL Language Reference

How to declare external functions

 the

pops

ops
call

ops
ls.

ops
call

 a

s.
Callstyle
Depending on the platform you are using, you must specify a callstyle which
determines how SQLBase invokes your external function. SQLBase manipulates
call stack based on the callstyle that you have defined for the external function.

Note: Be sure to specify the correct callstyle for your platform in the external function
definition. An incorrect callstyle will corrupt the call stack and result in server failure.

Win16 Platforms
On 16-bit platforms, there are two available call styles:

• pascal - the compiler pushes parameters from left to right and the callee
the stack before return. This callstyle applies to all Windows API calls.

• cdecl - the compiler pushes parameters from right to left and the callee p
the stack after return from the called function. This is the default compiler
style for 16-bit and 32-bit compilers.

Win32 Platforms
On 32-bit platforms, there are two available call styles:

• stdcall - the compiler pushes parameters from right to left and the callee p
the stack before return. This is the default for all 32-bit Windows API cal

• cdecl - the compiler pushes parameters from right to left and the callee p
the stack after return from the called function. This is the default compiler
style for 16-bit and 32-bit compilers.

Execution Mode
Execute In specifies the execution mode to use for your platform. If you are using
16-bit platform, you are not required to specify this clause. SQLBase sets 16-bit
platforms for same thread mode which is the only mode allowed on 16-bit platform
If you specify separate process mode on a 16-bit platform, you will receive a
parsetime error.

If you are using a 32-bit platform, you can change the default mode separate process
setting by specifying same thread mode. Read Choosing an Execution Mode for
Win32 on page 8-20 for details on using execution modes.
SQL Language Reference 8-9

Chapter 8 External Functions

al

L
orm

al

es

at the
he
tion
r the

lled
nge
not

 type
t the

ause
use

Data

o
type
Using external data types
When you declare an external function, you specify the parameters to the extern
function and return type from the external function.

SQLBase uses the external data type that you specify in the CREATE EXTERNA
FUNCTION command to format the actual parameters and return values in the f
expected by the external function.

SQLBase automatically converts the stored procedure data types into the extern
data representation.

Parameters and External Data types
You can pass parameters by reference or by value. The external data type defin
whether the parameter is passed by value or by reference.

Pass by reference
Receive data types are passed to external functions by reference. This means th
called function has access to the original value; the called function can change t
original value. Any change in value made to the data type within the external func
is reflected in SQLBase when the parameter is returned. Typically, the names fo
receive data types start with “LP” which means “Long Pointer” (for example,
LPINT).

Pass by value
Return values are passed to external functions by value. This means that the ca
function only has access to a copy of the value; the called function can only cha
the copy of the value. You can identify return value data types because they do
have the prefix “LP” (for example, INT).

Providing external data types
SQLBase uses the external data type to allocate bytes on the stack when an
application calls the function in the DLL. If there are parameters for the external
function and/or the function has a return value, you must specify an external data
for each parameter and/ or return value that represents the number of bytes tha
function expects.

The external data types for Number and Date/Time are easier to understand bec
they are fixed-length. The external data types for strings are more complex beca
they are variable in length. Detail on strings are described in the section “String
String data type on page 8-12.

To choose an external data type for a parameter or return value, you need to als
know the external data types that are available for each SQLBase internal data
8-10 SQL Language Reference

Using external data types

T,

and

y value
pes are

ternal

D,
(NUMBER, BOOLEAN, etc). This information is provided in the sections that
follow. Note that the external data types available are:

• Standard Microsoft Windows and C scalar data types such as LONG, IN
DWORD, and HWND.

• External SAL data types such as HSTRING

• Structures with one or more of the above data types such as NUMBER
DATETIME.

Each section also indicates those external data types used to pass parameters b
and those used to pass parameters by reference. The names of external data ty
UPPERCASE.

Numeric and boolean data types
Specify one of these external data types when you pass a Number or Boolean in
data type:

Note: By specifying an external data type that is prefixed by LP (such as, LPINT, LPWOR
etc.,) you indicate the parameter is passed by reference.

External Datatypes
(Passed By Value)

Corresponding
C scalar data type

External Data types
(Passed By Reference)

Corresponding C
scalar data type

BYTE unsigned char LPBYTE unsigned char*

CHAR char LPCHAR char*

DOUBLE double LPDOUBLE double*

DWORD unsigned long LPDWORD unsigned long*

FLOAT float LPFLOAT float*

INT int LPINT int*

UINT unsigned int LPUINT unsigned int*

LONG signed long LPLONG signed long*

WORD unsigned short LPWORD unsigned short*

BOOL int LPBOOL int*

NUMBER SQLBase internal
representation for
numeric types.

LPNUMBER SQLbase internal
representation for
numeric types.
SQL Language Reference 8-11

Chapter 8 External Functions

e
ned

yte

es.
 for

he

.

T,

ues,

he
ngth.

n
ring
py is
al
he

pe:
The following rules apply when you specify external data types for an internal
numeric or boolean data type.

• NUMBER and LPNUMBER are non-Microsoft data types. Both are SQLBas
internal representation for numeric types.The definitions for them are defi
in either SQL.H included with SQLBase or SWTYPE.H included with
Centura.

• NUMBER data type consists of two fields, a 1-byte length field and a 12-b
character array containing the internal representation of the number.

• LPNUMBER is a pointer to the NUMBER data type

• NUMBER and LPNUMBER are used in only two cases:

• When calling SAL functions within SQLBase that use these data typ
Because a script is provided to create all external function definitions
SAL functions, you will never need to specify these data types.

• When calling functions that in turn call SQL/API functions that use t
internal numeric representation. See the SQL/API Programming
Reference manual for those functions that use internal representation

• Memory representation for such datatypes as INT, UNIT, LPINT, LPUIN
may differ between 16-bit and 32-bit platforms. To obtain the precise
memory representation of a specific data type and to resolve memory iss
consult your C Compiler documentation for your platform.

String data type
Strings are buffers that can contain text or binary data. Text is null terminated. T
most important thing about the string data type is that you must be aware of its le

When a string data type (other than HSTRING and LPHSTRING) is passed to a
external function, SQLBase makes a copy of the string and passes a pointer (st
address) to that copy on the stack. In case the string is passed by value, that co
discarded on return. If passed by reference, the string is copied back to its origin
location. Note that SQLBase only passes to the stack the address or pointer to t
string even if the string is passed by value.

Specify one of these external data types when you pass a string internal data ty

LPARAM unsigned int

WPARAM long

External Datatypes
(Passed By Value)

Corresponding
C scalar data type

External Data types
(Passed By Reference)

Corresponding C
scalar data type
8-12 SQL Language Reference

Using external data types

RY,

ring.

n a
p to
ize
tring.

 the

al
ies

e

es.

ion
turn
Note: By specifying an external data type that is prefixed by LP (such as, LPSTR, LPBINA
etc.) you indicate that the parameter for the data type is passed by reference.

The following rules apply when you specify external data types for the internal st

• LPSTR data type is treated as a pointer to a null terminated string. Whe
string is passed as LPSTR, the external function can modify the string u
the maximum buffer size allocated for the string. The string may grow in s
as long as the new length does not exceed the buffer allocated for the s

You can allocate buffers by calling SalStrSetBufferLength() or malloc().
SQLBase looks for the null terminator on return and copies the data up to
null terminator back into buffer space. If SQLBase does not find a null
terminator within buffer size bytes, an error is generated.

• LPVOID is treated as binary data. In this case, on return from the extern
function, SQLBase assumes that the string length is unchanged and cop
any data up to the original length back into its buffer space.

• If you want an external function to pass strings as binary data and includ
length information, specify the external data type for the parameter as
BINARY or LPBINARY. Note that these data types are not standard
Microsoft data types.

BINARY data type is defined in SQL.H. LPBINARY is a pointer to
BINARY. Its structure contains a 4-byte string pointer and a 4-byte string
length. Also see the following section Manipulating the Binary Data type for
available macros used to manipulate the BINARY and LBINARY data typ

• When a string is passed by reference with LPBINARY, the external funct
may allocate a string in its own memory and pass that string back. On re

External Data types
(Passed By Value)

Corresponding
C scalar data type

External Data types (Passed
By Reference)

Corresponding C
scalar data type

LPCSTR char * (null terminated) LPSTR char* (null
terminated)

BINARY struct {char*; long;} LPBINARY pointer to struct
{char*;long;}

HSTRING Centura Builder handle LPHSTRING Centura Builder
handle

LPCVOID binary data LPVOID binary data
SQL Language Reference 8-13

Chapter 8 External Functions

nted

 on
to
e a

re:

a type:

e

ring.

R
e not
from the function, SQLBase copies into its own buffer space, the data poi
by the string pointer up to a length defined by the string length field.

• HSTRING and LPHSTRING are data types used only by Centura Builder
32-bit platforms to call SAL functions. Since SQLBase provides a script
create all function definitions for SAL functions, there is no need to creat
function that uses HSTRING or LPHSTRING.

Manipulating the Binary Data Type
Four macros are provided in SQL.H to manipulate the BINARY datatype. They a

• BINARY_GET_LENGTH (BINARY) - Get the length of the string

• BINARY_GET_BUFFER (BINARY) - Get the pointer to the string

• BINARY_SET_LENGTH (BINARY, LENGTH) - Put length into binary

• BINARY_SET_BUFFER (BINARY, STRING) - Put pointer to string into
binary

Date/Time data types
Specify one of these external data types when you pass a date/time internal dat

Note: By specifying an external data type that is prefixed by LP (such as, LPDATETIME,

LPSTR, etc.) you indicate that the parameter for the data type is passed by reference.

The following rules apply when you specify external data types for each date/tim
data type.

• The external data type for Date/Time can also be a null terminated date st
In this case, SQLBase converts the data type to ASCII format.

• When Date/Time is passed by value with either the DATETIME or LPCST
data types, any changes made to the string within the external function ar
visible on return from the function.

External Datatypes
(Passed By Value)

Corresponding
C scalar data type

External Data types
(Passed By Reference)

Corresponding C scalar
data type

DATETIME SQLBase internal date/
time representation.

LPDATETIME pointer to SQLBase
internal date/time
representation.

LPCSTR char* (null terminated) LPSTR char* (null terminated)
8-14 SQL Language Reference

Using external data types

d
s for

es.
 for

e

d

L
tions

ow
a
tput),
• DATETIME and LPDATETIME are non-standard Microsoft data types an
are SQLBase internal representations for date/time types. The definition
them are provided in either SQL.H included with SQLBase or SWTYPE.H
included with Centura.

• DATETIME consists of two fields, a 1-byte length field and a 12-byte
character array containing the internal representation of the number.

• LPDATETIME is a pointer to the DATETIME data type

• DATETIME and LPDATETIME are used in only two cases:

• When calling SAL functions within SQLBase that use these data typ
Because a script is provided to create all external function definitions
SAL functions, you will never need to specify these data types.

• When calling functions that in turn call SQL/API functions that use th
internal numeric representation. See the SQL/API Reference Manual for
those functions that use internal representation

Other external data types
This section contains information on SAL window and file function data types an
non-Microsoft data types.

SAL Window and File function data types
The table below lists the external data types that have been added to support SA
Window and File functions. You can use these data types for other external func
that use window and file handles.

The following rules apply when you specify external data types for the window
handle and file handle internal data types:

• The HWND and LPHWND external data types are used for storing wind
handles and support the SAL window manipulation function. If these dat
types are used in the parameter section of the procedure (that is, input/ou

Internal data type External data type
Corresponding C scalar data

type

Window Handle HWND

LPHWND

Microsoft data type HWND

pointer to Microsoft data type
HWND

File Handle HFFILE

LPHFFILE

FILE

FILE*
SQL Language Reference 8-15

Chapter 8 External Functions

The

his

file
e

or
 any

act

you should bind to the variable using the program data type SQLPNUM.
same holds for set select buffer.

• Use the keyword hWndNull to check whether a window handle is null. T
keyword is similar to STRING_NULL, NUMBER_NULL and
DATETIME_NULL.

• The HFFILE and LPHFFILE external data types are used for storing file
handles and support the SAL file manipulation function and C Run Time
manipulation functions. The file handle data type can only be used in th
local variable section; that is, it cannot be used to pass input/output in a
procedure.

• HWND, LPHWND, HFFILE, and LPHFFILE data types can only be used f
storing window and file handles. These data types cannot be included in
arithmetic operations.

Non-Microsoft data types
The non-microsoft data types number and datetime are defined in SQL.H. You can
use each data type within the external function. Please refer to SQL.H for the ex
structure of these data types.

You can use the following macros with the data types number and datetime, which
are defined in SQL.H.

• NUMBER_IS_NULL(number) - returns TRUE if number is null, FALSE
otherwise

• DATETIME_IS NULL(datetime) - returns TRUE if datetime is null, FALSE
otherwise

• NUMBER_SET_NULL(number) - sets a number type to null

• DATETIME_SET_NULL(datetime) - sets a datetime type to null

Note: These macros cannot be used with NUMBER and DATETIME data types.
8-16 SQL Language Reference

Calling External Functions

al
ee if
your

ure.

TH
g

ses
le

ATE

ernal

 the
rt)
 for
Calling External Functions
This section provides a list of tasks you may need to perform before your extern
function is ready to be called from within a stored procedure. Review this list to s
you have met the basic requirements and any additional ones that may apply to
environment.

To set up SQLBase to call external functions, you need to:

1. Provide the CALL command for the external function within the stored proced
Read Specifying external functions within stored procedures on page 8-19.

2. Set up the Dynamic Linked Library (DLL) to store the external function.

You must provide a fully qualified path name for the file, or else be sure the PA
environment variable is set to point to the location of the file in your operatin
system.

3. Optionally, specify the DLLs for loading at SQLBase server start up time.

Note that this procedure is highly recommended and is mandatory if the DLL u
global variables that can be accessed from different functions or from multip
invocations of a function.

4. Define the external functions in the SQLBase server database using the CRE
EXTERNAL FUNCTION command. Read How to declare external functions on
page 8-4.

5. Run the SQLSAL32.SQL script if you are using SAL functions as external
functions. Read Calling SAL functions as external functions on page 8-20.

6. Set up user privileges to the functions. Read the Database Administrator’s Guide
for details on setting up security for external functions.

7. Set up synonyms. Read the Database Administrator’s Guide for details on setting
up synonyms and Chapter 3 of this manual for details on the CREATE
SYNONYM command.

8. Make sure the function name is exported from the DLL. The exported name
should be identical to either the external function name or the name in the ext
name clause.

To export the function, you can use the EXPORTS keyword in the .DEF file,
/EXPORTS option when linking the DLL, or the keywords _declspec (dllexpo
when declaring the function. Please read you compiler/linker documentation
more details.
SQL Language Reference 8-17

Chapter 8 External Functions

h

s.

e.

g

e

is

.
er is

tions

n of

ple

ch
Building a 16-bit DLL
If you are using the Microsoft Visual C++ version 1.52 to build a 16-bit DLL whic
contains the external functions, make sure to:

1. Select Project Compiler Options instead of using the Default Project Option

2. Select LARGE memory model.

3. Set the segment setup option to:

SS != DS, DS loaded on function entry

Note: This is the same option as /ALu when the 16-bit DLL is built from the command lin

4. In the Windows Prolog/Epilog section, choose None (that is, no prolog/epilo
code optimization) option.

Note: This is the same as NOT giving the /GD option when the 16-bit DLL is built from th
command line.

Pre-loading DLLs
By default, SQL loads the DLL at function call time by calling the Microsoft API
function Load Library. Because of the enormous overhead involved in making th
call, (especially in the case of large DLLs or DLLs that cause more DLLs to be
loaded), SQLBase allows you to specify pre-loading DLLs at server startup time
This saves overhead and guarantees that the DLL is loaded as long as the serv
running.

Note: If you have a DLL that uses global variables that can be accessed from different func
or from multiple invocations of a function, you must load the DLL at server start up.

To set up the DLLs for pre-loading on the server, add the EXTDLL=dllname keyword
to the dbwservr or dbntsrv (whichever applies to your environment) server sectio
the SQL.INI file. For example, if you are loading DLLs for WINAPIs in a 32-bit
platform, you would specify:

EXTDLL=USER32.DLL
If you want to pre-load more than one DLL, you can specify the parameter multi
times within the server section. If the DLL name is not qualified, the Operating
System uses the path environment variable to locate the DLL.

At server startup time, the server screen displays the following message after ea
DLL is loaded:
8-18 SQL Language Reference

Calling External Functions

ou

from

rent
 is
it

 in

 to an
ym.

te
Loaded External Library <dllname>
If there is an error loading the DLL, you will see the following message:

Load of External Library <dllname> failed with error <errornum>
The errornum is the error code returned by the Microsoft API call LoadLibrary. Y
must look up the error code in the Microsoft function reference.

DLLs and global variables
If the DLL uses global variables that can be accessed from different functions or
invocations of a function, be sure to load the DLL at server start up.

If you are using SAL functions, you are advised to preload the DLL in which the
function resides (currently CDLLI10.DLL) since the size of this DLL is large and
results in a costly load operation.

For example, if you want to use the function SalNumberRandom to return a diffe
random number for each invocation, the CDLLI10.DLL must be pre-loaded. This
because the random number generator is initialized by calling SalNumberRandIn
with a seed. This seed is maintained as a global variable and is used for each
invocation of SalNumberRandom.

For details on using CDLLI10.DLL read the manual, Developing with Centura
Builder.

Specifying external functions within stored procedures
You can directly invoke an external function using the CALL statement described
Chapter 7, Procedures and Triggers. For example:

CALL extfunc()
You can also embed external functions in SAL expressions. For example:

set n = m + extfun()
or,

if (extfun())

Function Names Used for Invocation
Calls to external functions in stored procedures are case sensitive. Any reference
external function must be identical to the name of the external function or synon
For details on naming external functions, read Function name on page 8-5.

You cannot use qualified names to invoke functions. Hence, if a function creator
grants execute privilege to another user, the creator must create a public or priva
synonym for the function.
SQL Language Reference 8-19

Chapter 8 External Functions

ntical

e

that
L

ad

 pre-

in

 the

at
Specifying external functions for export to the DLL
When you specify the external functions to be exported, each name must be ide
to either the external name of the function if specified, or the function name
(including case) if the external name is not specified.

If you are not specifying an external name and the exported name has lower cas
characters, you must enclose the function name in double quotes (““) to be sure of
the case sensitivity.

Calling SAL functions as external functions
If you are using a 32-bit platform, you can invoke SAL functions as external
functions. Included in your SQLBase package is a script called SQLSAL32.SQL
creates external function definitions for the SAL functions. For details on the SA
functions included in the DLL, see the Centura Function Reference manual.

To call SAL functions in your stored procedure:

1. Run the SQLSAL32.SQL script. The script contains unqualified names to lo
into the DLLS.

2. Add the location of the SAL DLLs to the path environment.

3. If desired, pre-load the DLL for the SAL functions. Read Pre-loading DLLs on
page 8-18 for details.

Note: To avoid high overhead since the SAL DLL is quite large, we recommend that you
load the SAL DLL.

Developing external functions
This section describes issues you need to consider when developing external
functions on Windows 16-bit and 32-bit platforms and invoking the functions with
SQLBase.

Choosing an Execution Mode for Win32
When you declare an external function and are using a 32-bit platform, you have
option of invoking the external function on a separate OS process or in the same
server database thread as the invoking stored procedure. Read How to declare
external functions on page 8-4 for syntax details.

You must choose the separate OS process if you are using external functions th
require C/API calls
8-20 SQL Language Reference

Developing external functions

read

ve

rver,
rver.
pace

nction
t do

ons)

s a
g in

or the
s and

a
rnal

e

Note: C/API calls cannot be invoked within external functions that execute in the same th
as the calling procedure.

Otherwise, you will want to consider what impact the execution mode has on the
called function.

Once an external function is invoked within SQLBase, the server relinquishes its
execution control over the code to the external function. If the external function is
invoked on the same database thread as the SQLBase server, this action can ha
adverse impact on the server’s ability to continue to carry through with the stored
procedure.

For example, if the external function performs I/O’s or is connected to another se
it may be locked out from performing its task, thereby blocking the SQLBase Se
In addition the external function would continue executing in the same process s
as SQLBase and could corrupt server memory.

In using the same thread execution mode, you need to consider what task the fu
performs, its resources, and volume of activity. Small, self contained functions tha
not perform I/O or C/API calls can execute in the same thread successfully. For
example, SAL string manipulation functions (that are definable as external functi
are those that perform well under the same thread mode.

For functions that perform I/O and C/API calls, executing in a separate process i
way to prevent the server from blockage and memory corruption. When executin
this mode, C/API calls can be invoked from within the function and executed in
SQLBase. When a function executes in a separate process there is no chance f
function to corrupt server memory. Also I/Os are performed in a separate proces
cannot block the server.

Executing in separate process
By defining external functions to execute in a separate OS process mode within
stored procedure or application, all processes come under the control of the exte
function daemon (EFDaemon).

The SQLBase server process sends messages to the EFDaemon and informs th
daemon when native OS shared memory is implemented. The EFDaemon
communicates with each external function process known as EFHost through
messages and the shared memory block created by SQLBase for each external
function.
SQL Language Reference 8-21

Chapter 8 External Functions

e of
n.

t
om
re are
 that

d

e.
Developing External Functions for Concurrent Execution
When developing external functions for concurrent execution, note that the scop
execution of an external function is the duration of the stored procedure executio
This means that a EFHost process is assigned to a stored procedure on the firs
invocation of an external function that requires a separate process execution. Fr
then on, all subsequent calls to external functions from the same stored procedu
routed to the same EFHost process. This behavior has the following implications
you need to keep in mind when designing an external application:

• Multiple external functions share the same Dynamic Link Library (DLL) an
the DLL is loaded only once.

• Multiple external functions can share global variables.

• All DLLs are unloaded when the stored procedure is closed by SQLBas

• Nested procedure(s) are executed in their own scope.

SQLBase

Shared Memory

Shared Memory

EFDaemon

EFHost

EFHost

Legend:

Message passing

Shared memory Access
8-22 SQL Language Reference

Developing external functions

ing

led

r

l

al

to
Checking external function processes
While a stored procedure or external application is running, you can check each
external function process through the EFDaemon window which displays
automatically upon function execution. On the window, a menu item displays the
status of currently active EFHost processes. For each EFHost process, the follow
information is displayed:

Field Description

Cursor Number Unique number of SQLBase thread. If the stored procedure is cal
directly, the cursor number corresponds to the cursor number
displayed in the Process Activity window in the main database serve
status window. If the stored procedure is called indirectly, for
example, through a trigger, then the cursor number is different than
the one shown in the server window.

External function
host number

Serial number of the EFHost process.

EFHost The possible values displayed under this heading are:

Idle

This indicates that the EFHost process is not executing any externa
function calls; that is, it is not communicating the EFDaemon.

Busy

This indicates that the EFHost process is busy executing an extern
function call.

Waiting

This indicates that the EFHost process is waiting in-between calls
external functions; that is, waiting to serve.

Error

This indicates the EFHost process experienced some error while
executing the external function call.

Function Name External function name. Not currently shown in window.

External function
DLL name

DLL containing the external function. Not currently shown in
window.
SQL Language Reference 8-23

Chapter 8 External Functions

sing

 you

orm
ions.

e
u may

want

 it.

of
re

y its

en an

fers
Testing and debugging external functions
If you are using a 32-bit platform, we recommend testing the external function u
the separate process mode. Read Choosing an Execution Mode for Win32 on page
8-20 for details. Once the function has been sufficiently tested without problems,
can change the execution mode to server thread using the ALTER FUNCTION
command.

Note: You should always use the separate process model for external functions that perf
blocking operations (such as file I/O), C/API calls, and any CPU memory intensive operat

Before inserting the function into a DLL and defining the function to SQLBase, b
sure to use standard debugging techniques to ensure the function is bug free. Yo
want to execute the function as a front end application and apply the debugging
techniques of your choice to the application. In a test environment, you may also
to set up the compile of your function to display debugging information and then
bring up SQLBase from within a symbolic debugging facility.

Modifying external function definitions
Once you have created an external function, you can alter its definition, or delete

Alter external function
You use the ALTER EXTERNAL FUNCTION command to alter those properties
an external function that do not invalidate dependent objects. Those properties a
library name, external name, callstyle, and execution mode. You must have DBA
authority to execute this command. For details, read the section on ALTER
EXTERNAL FUNCTION in Chapter 3.

Drop external function
You use the DROP EXTERNAL FUNCTION command to delete the specified
external function from the database. An external function can only be dropped b
creator or by a user with SYSADM or DBA authority.

The command presents three options that determine the behavior that occurs wh
external function is dropped. You can:

• prevent the external function from being dropped if a stored procedure re
to the function.

• specify that all stored procedures that call the external function also be
dropped.
8-24 SQL Language Reference

Error Handling

efer

n
tains

tion.

ored
s on

errors

ey
• specify the external function be dropped and all stored procedures that r
to the function be invalidated.

A system catalog table, SYSDEPENDENCIES, maintains dependencies betwee
dependent objects and determinant objects. The SYSDEPENDENCIES table con
one row for each dependency between a stored procedure and an external func

For details, read the section on the DROP EXTERNAL FUNCTION command in
Chapter 3. For details on the SYSDPENDENCIES tables, refer to Appendix A, System
Catalog Tables of the Database Administrator’s Guide.

Error Handling
By default, errors encountered when an external function is executed within a st
procedure terminates the procedure and returns an error code to you. For detail
stored procedure error handling, read Error Handling in Chapter 7, Procedures and
Triggers.

Errors specific to external functions are included in the ERROR.SQL file. The file
includes the exact error message, the reason, and the remedy. You can identify
specific to external functions in this file from the EXF identifier. For example:

12502 EXF GPA Cannot get address for external function <name>
 Reason: An attempt to get the address for an
externalfunction failed.
 Remedy: Check to make sure that the function exists and/or
its ordinal number is correct.

Exception Handling
If you are using a 32-bit platform, SQLBase identifies the following exceptions if th
occur in the external function.

• Bad memory access

• Floating point underflow

• Floating point overflow

• Floating point divide by zero

• Integer overflow

• Integer divide by zero

In the 16-bit platform, such exceptions will result in server shut down.
SQL Language Reference 8-25

Chapter 8 External Functions

he
 refer

ith

L
m.

, and

re

.

System Catalog tables for external functions
SQLBase provides and maintains system catalogs, a set of tables owned by the
SYSADM that contain information about objects in the database. Following are t
tables that are specific to external functions. For details on each of these tables,
to Appendix A, System Catalog Tables in the Database Administrator’s Guide.

SQLBase-supplied scripts and DLLs
This section describes the external function scripts and DLLs that are supplied w
SQLBase. You can use these scripts and DLLs to invoke SAL and C Run Time
functions.

Scripts and DLLs for 32-bit systems
• SQLSAL32.SQL

Script that contains the definitions for SAL functions. If you want to use SA
functions, be sure the Centura runtime DLLs are installed on your syste

• SQLCRT32.SQL

Script that contains the definitions for the 32-bit C Run Time Library
functions.

• SQLCRT32.DLL

Because it is not possible for SQLBase to directly call the C Run Time
Library function malloc(), this library contains a wrapper malloc() function
that turns around and invokes the C Run Time version. The source, make
project files are provided if you want to add any functions not already
included with the C Run Time version. They are:

• SQLCRT32.C (source file)

Table Name Brief Description

SYSDEPENDENCIES Lists each dependency between a stored procedu
and an external function.

SYSEXTFUN Lists all declared external functions.

SYSEXTPARAMS Lists each parameter of an external function.

SYSOBAUTH Lists each user who is granted execute privilege on
an external function.

SYSOBJSYN Lists each synonym created for an external function
8-26 SQL Language Reference

External function example

le.
• SQLCRT32.MAK (make file)

• SQLCRT32.MDP (project file)

Note that the project was built using Microsoft Visual C++ 4.0.

• MSVCRT40.DLL

Contains the C Run Time Library functions and is a redistributable DLL
provided by Microsoft for the 32-bit system.

Scripts and DLLs for 16-bit systems
• SQLCRT16.SQL

Script that contains the definitions for the 16-bit C Run Time Library
functions.

• SQLCRT16.DLL

Library of C Run Time functions. The source, make, and def files are
provided if you want to add any functions not already included with the C
Run Time version. They are:

• SQLCRT16.C (source file)

• SQLCRT16.MAK (make file)

• SQLCRT16.DEF (def file)

Be sure to use the settings mentioned in Building a 16-bit DLL on page 8-18.

External function example
Following is an example of the SAL external function SalDateConstruct invoked
within stored procedure dateconstruct. The example also includes the CREATE
EXTERNAL FUNCTION declaration for SalDateConstruct, and the SQL commands
for creating a synonym for the function name, and privileges for executing the
function. Read the end of this section for step by step explanations of this examp

-- create SAL external function definitions.

create external function "SalDateConstruct"
parameters (INT, INT, INT, INT, INT, INT)
returns (DATETIME)
library cdlli10.dll
callstyle STDCALL
execute in same thread;

create public synonym "SalDateConstruct" for external
function "SalDateConstruct";

➀

➁

SQL Language Reference 8-27

Chapter 8 External Functions

type,

s
grant execute on external function "SalDateConstruct" to
public;

store dateconstruct
procedure dateconstruct
parameters
 number : nYear
 number : nMonth
 number : nDay
 number : nHour
 number : nMinute
 number : nSecond

 receive date/time : dtDate
actions
 set dtDate = SalDateConstruct
(nYear,nMonth,nDay,nHour,nMinute,nSecond)
;

execute p_extsal8
\
1994,12,26,9,15,0,,
/

1. Creates the external function definition. This defines the parameters, return
library, etc.

2. Creates a public synonym for SalDateConstruct so that all users may refer to the
function as SalDateConstruct.

3. Grants all users execute privileges on SalDateConstruct.

4. Creates the procedure that invokes the external function SalDateConstruct. The
procedure, dateconstruct, takes the individual components of a date and send
back a complete date.

5. Call to the external function SalDateConstruct.

➂

➃

➄

8-28 SQL Language Reference

SQL Language Reference
Appendix A

SAL Functions

This appendix describes the SAL functions that you can invoke within SQLBase
procedures.
SQL Language Reference A-1

Appendix A SAL Functions

ains

ect

all
 used.

ion.
SqlClearImmediate

Syntax

bOk = SqlClearImmediate ()

Description

Disconnects the internal Sql Handle from a database.

You connect the internal handle to a database by calling SqlImmediate and it rem
connected until the application terminates or you explicitly disconnect it with
SqlClearImmediate.

SqlClearImmediate causes an implicit COMMIT if it is the last cursor you disconn
from the database.

Parameters

None.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlClose

Syntax

bOk = SqlClose (hSql)

Description

Invalidates a SQL command and/or frees the cursor name associated with the
specified cursor, making the cursor name available for reuse.

If you create a named cursor by calling SqlOpen and then instead of closing it, c
SqlOpen or SqlExecute again, you get an error that the name has already been

Parameters

hSql Sql Handle. A handle that identifies a database connect

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.
A-2 SQL Language Reference

SqlCommit

base,

tartup
, the
fail

ntext
RUE.

ion.
SqlCommit

Syntax

bOk = SqlCommit (hSql)

Description

Commits all of the SQL transaction’s cursors that are connected to the same data
including those outside the procedure.

Note: In stored procedures, if you have a SqlPrepare function called in an On Procedure S
section and a SQLCommit function called in a subsequent On Procedure Execute section
COMMIT will destroy the cursor of the SQLPrepare function. Subsequent executions will
because the cursor’s “preparation” is lost.

To prevent destroying a cursor’s result set when a COMMIT is performed, turn on cursor co
preservation by calling SqlSetParameter and setting the DBP_PRESERVE parameter to T

Parameters

hSql Sql Handle. A handle that identifies a database connect

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

Example

...
Call SqlConnect (hSql)
Call SqlPrepare (hSql, 'INSERT INTO TEST VALUES (1)')
Call SqlExecute (hSql)
Call SqlCommit (hSql)

...
SQL Language Reference A-3

Appendix A SAL Functions

s a
cuted

ure, 1
ely. If

 it

SqlConnect

Syntax

bOk = SqlConnect (hSql)

Description

Connects to the currently active database. This means that SQLBase establishe
new connection to the same database that you were connected to when you exe
the procedure.

For example, assume your SQLTalk session has two cursors outside the proced
and 2. These cursors are attached to databases DEMO1 and DEMO2, respectiv
you execute a procedure on cursor 1, you connect DEMO1; if you execute the
procedure on cursor 2, you connect to DEMO2.

You cannot connect to multiple databases with SqlConnect.

Parameters

hSql Receive Sql Handle. A handle that identifies a database
connection.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

Example

Assume you are connected to the TEST database. When the procedure begins,
connects the hSqlPrimary Sql Handle to the TEST database. When the procedure
ends, it disconnects the hSqlPrimary Sql Handle from the TEST database.

Actions
On Procedure Startup

Call SqlConnect (hSqlPrimary)
...

On Procedure Close
Call SqlDisconnect (hSqlPrimary)

...
A-4 SQL Language Reference

SqlDisconnect

ion.
SqlDisconnect

Syntax

bOk = SqlDisconnect (hSql)

Description

Disconnects from a database.

Parameters

hSql Sql Handle. The handle that identifies the database
connection to disconnect.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

Example

When the procedure begins, it connects the hSqlPrimary Sql Handle to the database
which is currently being accessed. When the procedure ends, it disconnects the
hSqlPrimary Sql Handle from the database.

Actions
On Procedure Startup

Call SqlConnect (hSqlPrimary)
...

On Procedure Close
Call SqlDisconnect (hSqlPrimary)

...

SqlDropStoredCmd

Syntax

bOk = SqlDropStoredCmd (hSql, strName)

Description

Deletes a stored command/stored procedure from a database.

Parameters

hSql Sql Handle. A handle that identifies a database connect
SQL Language Reference A-5

Appendix A SAL Functions

ot

e
strName String. The name of the stored command/procedure to
delete.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlError

Syntax

nError = SqlError (hSql)

Description

Returns the most recent error code for the specified Sql Handle.

SqlError is not useful after a call to SqlImmediate because SqlImmediate does n
return a handle that you can use as the parameter for SqlError.

Parameters

hSql Sql Handle. A handle on which an error occurred.

Return value

nError is the error code returned. It is equal to zero (0) if no error occurred.

SqlExecute

Syntax

bOk = SqlExecute (hSql)

Description

Executes a SQL statement, procedure, or command that was prepared with
SqlPrepare, or a SQL statement, stored command, or stored procedure that was
retrieved with SqlRetrieve.

SqlExecute does not fetch data. To fetch data, call one of the fetch functions:
SqlFetchNext, SqlFetchPrevious, or SqlFetchRow.

Bind variables values are sent to the database when you call SqlExecute.

You can use SqlExecute just like SqlOpen, but you can never address rows in th
result set by a cursor name. That is, you cannot use the “CURRENT OF
A-6 SQL Language Reference

SqlExists

E,

nt.

dle to

 the
er
<cursor_name>” and “ADJUSTING <cursor_name>” clauses to INSERT, UPDAT
or DELETE result set rows.

Parameters

hSql Sql Handle. The handle associated with a SQL stateme

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlExists

Syntax

bOk = SqlExists (strSelect, bExists)

Description

Determines whether a row or rows exist.

SqlExists connects to the currently active database and uses the internal Sql Han
execute the specified query.

Parameters

strSelect String. The SELECT statement that establishes the
existence of a row.

bExists Receive Boolean. TRUE if the row exists and FALSE if it
does not.

Return value

bOk is TRUE if strSelect is correct and executable and FALSE otherwise.

SqlFetchNext

Syntax

bOk = SqlFetchNext (hSql, nInd)

Description

Fetches the next row in a result set. You must have first 1) prepared or retrieved
SELECT statement with SqlPrepare or SqlRetrieve, respectively, and then 2) eith
executed it with SqlExecute, or opened it with SqlOpen.
SQL Language Reference A-7

Appendix A SAL Functions

ded

ed or
nd

ded
If you call the this function within the On Procedure Fetch section, it is recommen
that you specify a Return statement. For example:

If NOT SqlFetchNext (hSqlCur1, nInd)
Return 1

Else
Return 0

Parameters

hSql Sql Handle. The handle of a SELECT statement.

nInd Receive Number. The fetch return code is one of the
following fetch values:

Return value

bOk is TRUE if there is another row to fetch and FALSE otherwise.

SqlFetchPrevious

Syntax

bOk = SqlFetchPrevious (hSql, nInd)

Description

Fetches the previous row in a scrollable result set. You must have first 1) prepar
retrieved the SELECT statement with SqlPrepare or SqlRetrieve, respectively, a
then 2) either executed it with SqlExecute, or opened it with SqlOpen.

If you call the this function within the On Procedure Fetch section, it is recommen
that you specify a Return statement. For example:

If NOT SqlFetchPrevious (hSqlCur1, nInd)
Return 1

Constant Description

Fetch_Delete Indicates failure. The row has been deleted since it
was last fetched.

Fetch_EOF Indicates failure. There are no more rows to fetch
(end of fetch).

Fetch_Ok Indicates success. The row was fetched.

Fetch_Update Indicates failure. The row has been updated since it
was last fetched.
A-8 SQL Language Reference

SqlFetchRow

ared
, and
Else
Return 0

Note: To use this function, first ensure that result set mode is set to on. To turn it on, use
SqlSetResultSet.

Parameters

hSql Sql Handle. The handle of a SELECT statement.

nInd Receive Number. The fetch return code is one of the
following fetch values:

Return value

bOk is TRUE if there is another row to fetch and FALSE otherwise.

SqlFetchRow

Syntax

bOk = SqlFetchRow (hSql, nRow, nInd)

Description

Fetches a row according to an absolute row position. You must have first 1) prep
or retrieved the SELECT statement with SqlPrepare or SqlRetrieve, respectively
then 2) either executed it with SqlExecute, or opened it with SqlOpen.

Parameters

hSql Sql Handle. The handle of a SELECT statement.

nRow Number. The row number of the row to fetch.

Constant Description

Fetch_Delete Indicates failure. The row has been deleted since it
was last fetched.

Fetch_EOF Indicates failure. There are no more rows to fetch
(end of fetch).

Fetch_Ok Indicates success. The row was fetched.

Fetch_Update Indicates failure. The row has been updated since it
was last fetched.
SQL Language Reference A-9

Appendix A SAL Functions

re,
was

re
nInd Receive Number. The fetch return code is one of the
following fetch values:

Return value

bOk is TRUE if nRow could be fetched and FALSE otherwise.

SqlGetErrorPosition

Syntax

bOk = SqlGetErrorPosition (hSql, nPos)

Description

Returns the offset of the error position within a SQL statement. After a SqlPrepa
the error position points to the place in the SQL statement where a syntax error
detected. The first character position in the SQL statement is zero (0).

Parameters

hSql Sql Handle. The handle of a SELECT statement.

nPos Receive Number. The position in the SQL statement whe
a syntax error occurred.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

Constant Description

Fetch_Delete Indicates failure. The row has been deleted since it
was last fetched.

Fetch_EOF Indicates failure. There are no more rows to fetch
(end of fetch).

Fetch_Ok Indicates success. The row was fetched.

Fetch_Update Indicates failure. The row has been updated since it
was last fetched.
A-10 SQL Language Reference

SqlGetErrorText
SqlGetErrorText

Syntax

bOk = SqlGetErrorText (nError, strText)

Description

Gets the message text for a SQL error number from error.sql.

Parameters

nError Number. The error number.

strText Receive String. The error text.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlGetModifiedRows

Syntax

bOk = SqlGetModifiedRows (hSql, nCount)

Description

Returns the number of rows affected by the most recent INSERT, UPDATE, or
DELETE statement.

Parameters

hSql Sql Handle. The handle of a SQL statement.

nCount Receive Number. The number of rows affected.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.
SQL Language Reference A-11

Appendix A SAL Functions

ue in

ion.

r

r
SqlGetParameter

Syntax

bOk = SqlGetParameter (hSql, nParameter, nNumber, strString)

Description

Gets the value of a database parameter. This function returns the parameter val
nNumber or strString as appropriate for the data type of the parameter.

Parameters

hSql Sql Handle. A handle that identifies a database connect

nParameter Number. The database parameter. You can specify eithe
one of the literal strings from the following table, or the
number associated with the desired database paramete
(for example, the When to return Describe information
(SQLPDIS) parameter number is 3018). To find the
number of the associated parameter, see the sql.h header
file:

Constant Description

DBP_AUTOCOMMIT Autocommit. If autocommit is on (TRUE), the database
commits changes automatically after each SQL
command. If autocommit is off (FALSE), the database
commits changes only when you issue a COMMIT
command.

DBP_BRAND Database server brand. Currently, only the SQLBase
brand (DBV_BRAND_SQL) is supported.
A-12 SQL Language Reference

SqlGetParameter

f

h

e

lt

DBP_FetchTHROUGH Fetchthrough. The fetchthrough feature enables you to
retrieve rows directly from the database server instead o
from the client’s input message buffer, thereby ensuring
that the user sees the most up-to-date data.

If fetchthrough is on (TRUE), the application fetches
data one row at a time from the backend. Using this
feature increases response time because of the network
traffic incurred, so you should only use it when the user
needs the most current information.

If fetchthrough is off (FALSE), the application fetches
data from the client’s input message buffer whenever
possible. This is the default.

Note that in a procedure, performance is enhanced. Eac
client side fetch request (by default) generates a buffer
full of row(s), rather than one row for each fetch. If you
want the On Procedure Fetch section to execute exactly
once for every fetch call from the client (returning one
row at a time), set fetchthrough mode on (TRUE) at the
client.

DBP_LOCKWAITTIMEOUT Lock wait timeout. This is the number of seconds an
application should wait for the database server to acquir
a lock before timing out. After the specified time has
elapsed, SQLBase rolls back the transaction. The defau
lock timeout value is 300 seconds.

Valid timeout values are 1 to 1800 (30 minutes), -1 (wait
forever), and 0 (never wait).

DBP_NOPREBUILD Don’t Prebuild. SQLbase does not prebuild result sets
when the application is in result set mode and is using
the Release Locks isolation level.

Pre-building a result set provides the advantage of being
able to release shared locks and return control to the
client. The disadvantage of pre-building a result set is
that the application must wait while the result set is
being built.

If noprebuild is on (TRUE), result sets are not pre-built.
A shared lock remains on the current page. This is the
default.

If noprebuild is off (FALSE), result sets are pre-built.

Constant Description
SQL Language Reference A-13

Appendix A SAL Functions

:

t
nNumber Receive number. The value (TRUE or FALSE) of the
parameter.

If nParameter is DBP_BRAND, nNumber is one of the
DBV_BRAND_* values.

strString Receive string. If you specify DBP_VERSION in
nParameter, this is the version number.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

Example

Actions
On Procedure Startup

Call SqlGetParameter (hSql, DBP_LOCKWAITTIMEOUT,\
nTimeout, strNull)

DBP_PRESERVE Cursor context preservation. If cursor context
preservation is on (TRUE), a COMMIT does not destroy
an active result set. This enables an application to
maintain its position after a COMMIT, ROLLBACK,
INSERT, or UPDATE. A user-initiated ROLLBACK
preserves cursor context if both of the following are true

• The application is in Release Locks (RL)
isolation level

• A data definition language (DDL) operation
was not performed

Note that a system-initiated ROLLBACK such as a
deadlock, timeout, etc., does not preserve cursor contex
even when cursor context preservation is on.

If cursor context preservation is off (FALSE), a
COMMIT does destroy an active result set. Cursor
context preservation is lost.

DBP_ROLLBACKONTIMEOUT Roll back a transaction when a lock timeout occurs.

If TRUE, the entire transaction rolls back when a lock
timeout occurs. If FALSE, only the current command
rolls back on a lock timeout. The default is TRUE.

DBP_VERSION Database server version.

Constant Description
A-14 SQL Language Reference

SqlGetParameterAll

fined

ut

ion.

r

h
 to
er
r,
SqlGetParameterAll

Syntax

bOk = SqlGetParameterAll (hSql, nParameter, nNumber, strString,
bNumber)

Description

Gets the value of a database parameter identified by a SQLP* constant value de
in sql.h. This function returns the parameter value in nNumber or strString as
appropriate for the data type of the parameter.

Note: A set of the SQLP* constants in sql.h have the same values as the DBP_* constants, b
the values identify different parameters. Be sure to specify the correct number.

Parameters

hSql Sql Handle. A handle that identifies a database connect

nParameter Number. The database parameter. You can specify eithe
one of the literal strings from the table in the previous
SqlGetParameter section, or the number associated wit
the desired database parameter (for example, the When
return Describe information (SQLPDIS) parameter numb
is 3018). To find the number of the associated paramete
see the sql.h header file.

nNumber Receive number. The value (TRUE or FALSE) of the
parameter. If nParameter is DBP_BRAND, nNumber is
one of the DBV_BRAND_* values.

strString Receive string. If you specify DBP_VERSION in
nParameter, this is the version number.

bNumber Boolean. If TRUE, the parameter value is returned in
nNumber. If FALSE, the parameter value is returned in
strString.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.
SQL Language Reference A-15

Appendix A SAL Functions

f the

ot
CT.
SqlGetResultSetCount

Syntax

bOk = SqlGetResultSetCount (hSql, nCount)

Description

Counts the rows in a scrollable result set by building the result set.

SQLBase fetches each row that has not already been fetched, returns a count o
rows, and positions the cursor back to its original position.

Warning: This can be time-consuming if the result set is large.

INSERTs into the result set increase the result set row count, but DELETEs do n
decrease the row count. However, the deleted rows disappear on the next SELE

You must be in result set mode and you must call SqlExecute before
SqlGetResultSetCount.

Parameters

hSql Sql Handle. A handle associated with a result set.

nCount Receive Number. The number of rows in the result set.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

Example

...
Call SqlPrepare (hSql, strSqlStatement)
Call SqlExecute (hSql)
Call SqlGetResultSetCount (hSql, nRowCount)

...
A-16 SQL Language Reference

SqlGetRollbackFlag

sult
d

l

E

ese

 does
SqlGetRollbackFlag

Syntax

bOk = SqlGetRollbackFlag (hSql, bRollbackFlag)

Description

Returns the database rollback flag. Use this function after an error to find out if a
transaction rolled back.

SQLBase sets the rollback flag when a system-initiated rollback occurs as the re
of a deadlock or system failure. It does not set the rollback flag on a user-initiate
rollback.

Parameters

hSql Sql Handle. The handle associated with the function cal
which got an error.

bRollbackFlag Receive Boolean. TRUE if a rollback occurred and FALS
otherwise.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

Example

...
Call SqlGetRollbackFlag (hSqlError, bRollbackFlag)
If bRollbackFlag
! Execute code to handle rolled back transaction...

SqlImmediate

Syntax

bOk = SqlImmediate (strSqlCommand)

Description

Prepares and executes a SQL statement. SqlImmediate actually performs a
SqlConnect, a SqlPrepare, a SqlExecute, and for SELECT statements, a
SqlFetchNext. The first time you call SqlImmediate, the system performs all of th
functions. On later calls, only those functions that need to be performed are
performed. For example, if the handle is still connected to a database, the system
SQL Language Reference A-17

Appendix A SAL Functions

nt as
re.

that
.

plicit

t
.

nce

d

.

not perform a SqlConnect. If the SQL statement to compile is the same stateme
that used by the last SqlImmediate call, the system does not perform a SqlPrepa

Use SqlImmediate with INSERT, UPDATE, DELETE, and other non-query SQL
commands. You can use SqlImmediate with a SELECT statement if you expect
the statement only returns one row. SqlImmediate manages the internal handle

Any command that you execute with SqlImmediate can also be executed with ex
calls to SqlConnect, SqlPrepare, SqlExecute or SqlOpen, and SqlFetchNext, for
SELECTs.

When static procedures are executed, the compile phase of SqlImmediate is no
reprocessed since all SQL statements within a static procedure are precompiled

Note: Do not use SqlImmediate if you are implementing error handling with SqlError(), si
SqlImmediate does not retain a database handle.

Parameters

strSqlCommand String. The SQL statement to prepare and execute. This
statement cannot have more than 255 bind variables an
255 INTO variables.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlOpen

Syntax

bOk = SqlOpen (hSql, strCursorName)

Description

Names a cursor and executes a SQL statement. Use this function to perform
INSERTs, UPDATEs, and DELETEs on the current row.

Call SqlOpen after SqlPrepare and before any of the SqlFetch* commands.

Parameters

hSql Sql Handle. The handle associated with the SqlPrepare

strCursorName String. A string containing the cursor name.
A-18 SQL Language Reference

SqlPrepare

'

set

55

put
L

.

ion.
Specify this name in the 'CURRENT OF <cursor_name>
or 'ADJUSTING <cursor_name>' clause of an INSERT,
UPDATE, or DELETE statement.

The value of this parameter is case insensitive. You can
it to null using the empty string ('').

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlPrepare

Syntax

bOk = SqlPrepare (hSql, strSqlStatement)

Description

Compiles a SQL statement (including non-stored procedures) for execution.
Compiling includes:

• Checking the syntax of the SQL statement or procedure.

• Checking the system catalog.

• Processing a SELECT statement's INTO clause.

An INTO clause names where data is placed when it is fetched. These
variables are sometimes called INTO variables. You can specify up to 2
INTO variables per SQL statement.

• Identifying bind variables in the SQL statement. Bind variables contain in
data for the statement. You can specify up to 255 bind variables per SQ
statement.

Follow this function with a SqlOpen, SqlExecute, or fetches.

When static procedures are executed, the compile phase of SqlPrepare is not
reprocessed since all SQL statements within a static procedure are precompiled

Parameters

hSql Sql Handle. A handle that identifies a database connect

strSqlStatement String. The SQL statement to compile.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.
SQL Language Reference A-19

Appendix A SAL Functions

55

put
L

ing

ute is
iled.

 only
n

p
te.

ion.
SqlPrepareAndExecute

Syntax

bOk = SqlPrepareAndExecute (hSql, strSqlStatement)

Description

Compiles and executes a SQL statement (including non-stored procedures).
Compiling includes:

• Checking the syntax of the SQL statement.

• Checking the system catalog.

• Processing a SELECT statement's INTO clause.

An INTO clause names where data is placed when it is fetched. These
variables are sometimes called INTO variables. You can specify up to 2
INTO variables per SQL statement.

• Identifying bind variables in the SQL statement. Bind variables contain in
data for the statement. You can specify up to 255 bind variables per SQ
statement.

SqlPrepareAndExecute does not fetch data. To fetch data, call one of the follow
fetch functions: SqlFetchNext, SqlFetchPrevious, or SqlFetchRow.

When static procedures are executed, the compile phase of SqlPrepareAndExec
not reprocessed since all SQL statements within a static procedure are precomp

For dynamic procedures, it is recommended that you do not call
SqlPrepareAndExecute if your procedure needs to be executed repeatedly, and
needs to be compiled once. An example is binding different variables at executio
time. Calling SqlPrepareAndExecute in this situation would compile the SQL
statement each time it is executed, resulting in unnecessary overhead.

Instead, prepare the SQL statement with SqlPrepare in the On Procedure Startu
section, and then execute it in the On Procedure Execute section with SqlExecu

Parameters

hSql Sql Handle. A handle that identifies a database connect

strSqlStatement String. The SQL statement to compile and execute.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.
A-20 SQL Language Reference

SqlRetrieve

pile
ed

ion.

s.

d.

.

SqlRetrieve

Syntax

bOk = SqlRetrieve (hSql, strName, strBindList, strIntoList)

Description

Retrieves a SQLBase stored command or stored procedure.

To execute the command, you need only call SqlExecute. You do not need to com
the command with SqlPrepare because the command is compiled when it is stor
with SqlStore.

Parameters

hSql Sql Handle. A handle that identifies a database connect

strName String. The name of the compiled command.

strBindList String. A comma-separated list of up to 255 bind variable
Each string must be preceded by a colon (:).This list has
the same number of variables as the compiled comman
This string can be null.

strIntoList String. A comma-separated list of up to 255 INTO
variables. Each string must be preceded by a colon (:).This
list has the same (or less) number of INTO variables as
named in the SELECT list of the compiled command.

This string can be null (‘’ or strNULL).

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlSetIsolationLevel

Syntax

bOk = SqlSetIsolationLevel (hSql, strIsolation)

Description

Sets the isolation level for all the application’s cursors connected to the database
SQL Language Reference A-21

Appendix A SAL Functions

 if
el

ult.
 the

ion.

on;
.

The default isolation level for a procedure is Read Repeatability (RR). However,
the calling program is set at a different isolation level, the procedure isolation lev
automatically changes to that of the calling program.

Also, if the procedure makes a change to the isolation level using
SqlSetIsolationLevel, the calling program inherits this new isolation level by defa
As a result, all cursors connected to the same database both within and outside
procedure are committed.

Parameters

hSql Sql Handle. A handle that identifies a database connect

strIsolation String. The isolation level to set. Specify one of these
values:

CS Cursor Stability
RL Release Locks
RO Read Only
RR Read Repeatability (default)

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlSetLockTimeout

Syntax

bOk = SqlSetLockTimeout (hSql, nTimeout)

Description

Specifies the maximum time to wait to acquire a lock. After the specified time
elapses, a timeout occurs and the transaction rolls back.

Parameters

hSql Sql Handle. A handle that identifies a database connecti
the cursor on which you want to set a lock timeout value

nTimeout Number. The timeout period in seconds. Valid value
include -1 (wait forever), 0 (never wait), and values up to
and including 1800 (30 minutes). The default is 300.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.
A-22 SQL Language Reference

SqlSetParameter

ion.

 the

ion.
SqlSetParameter

Syntax

bOk = SqlSetParameter (hSql, nParameter, nNumber, strString)

Description

Sets the value of a database parameter. Use the number (nNumber) and string
(strString) arguments as appropriate for the data type of the parameter.

Parameters

hSql Sql Handle. A handle that identifies a database connect

nParameter Number. The database parameter to set. Specify one of
DBP_* constants or the desired database parameter
number (found in sql.h) listed for SqlGetParameter.

nNumber Number. The value of nParameter. Specify TRUE or
FALSE for all but DBP_LOCKWAITTIMEOUT, for
which you must specify a value in seconds.

strString String. The value of nParameter.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlSetParameterAll

Syntax

bOk = SqlSetParameterAll (hSql, nParameter, nNumber, strString,
bNumber)

Description

Sets the value of a database parameter. Use the number (nNumber) and string
(strString) arguments as appropriate for the data type of the parameter.

Parameters

hSql Sql Handle. A handle that identifies a database connect
SQL Language Reference A-23

Appendix A SAL Functions

 the

ion.
nParameter Number. The database parameter to set. Specify one of
DBP_* constants or the desired database parameter
number (found in sql.h) listed for SqlGetParameter.

nNumber Number. The value of nParameter. Specify TRUE or
FALSE for all but DBP_LOCKWAITTIMEOUT, for
which you must specify a value in seconds.

strString String. The value of nParameter.

bNumber Boolean. If TRUE, the parameter’s value is in nNumber. If
FALSE, the parameter’s value is in strString.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.

SqlSetResultSet

Syntax

bOk = SqlSetResultSet (hSql, bSet)

Description

Turns result set mode on or off.

By default, result set mode is on.

Parameters

hSql Sql Handle. A handle that identifies a database connect

bSet Boolean. Turns result set mode on (TRUE) or off
(FALSE).

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.
A-24 SQL Language Reference

SqlStore

e

ion.
SqlStore

Syntax

bOk = SqlStore (hSql, strName, strSqlCommand)

Description

Stores and names a SQLBase compiled SQL statement (including procedures).

You do not need to call SqlPrepare before calling SqlStore. SqlStore compiles th
SQL statement.

You can specify up to 255 bind variables. Use numeric bind variables in the SQL
statement, not variable names. For example: "SELECT * FROM PRESIDENT
WHERE LASTNAME = :1 AND AGE = :2;".

When you retrieve the stored command with SqlRetrieve, you specify the bind
variable names in the INTO clause.

Parameters

hSql Sql Handle. A handle that identifies a database connect

strName String. The name of the stored command.

strSqlCommand String. The SQL statement to compile and store.

Return value

bOk is TRUE if the function succeeds and FALSE if it fails.
SQL Language Reference A-25

ess
on of
ta.

 of

m.

 that

t

 the

ow.

ho
cution

g

Glossary
access path—The path used to get the data specified in a SQL command. An acc
path can involve an index or a sequential search (table scan), or a combinati
the two. Alternate paths are judged based on the efficiency of locating the da

aggregate function—A SQL operation that produces a summary value from a set
values.

alias—An alternative name used to identify a database object.

API (application programming interface)—A set of functions that a program uses to
access a database.

application—A program written by or for a user that applies to the user's work. A
program or set of programs that perform a task. For example, a payroll syste

argument—A value entered in a command that defines the data to operate on or
controls execution. Also called parameter or operand.

arithmetic expression—An expression that contains operations and arguments tha
can be reduced to a single numeric value.

arithmetic operator—A symbol used to represent an arithmetic operation, such as
plus sign (+) or the minus sign (-).

attribute—A characteristic or property. For example, the data type or length of a r
Sometimes, attribute is used as a synonym for column or field.

audit file—A log file that records output from an audit operation.

audit message—A message string that you can include in an audit file

audit operation—A SQLBase operation that logs database activities and
performance, writing output to an audit file. For example, you can monitor w
logs on to a database and what tables they access, or record command exe
time.

authorization—The right granted to a user to access a database.

authorization ID—A unique name that identifies a user. Associated to each
authorization id is a password. Abbreviated auth id. Also called username.

back-end—See database server.

backup—To copy information onto a diskette, fixed disk, or tape for record keepin
or recovery purposes.
SQL Language Reference Glossary-1

Glossary

ed
. A
 Also

rces

les

e
e.

mine
r to

tion
r

g
ster to

of
er of
n. A
ct

ted.

se,

.

gth.

is
base table—The permanent table on which a view is based. A base table is creat
with the CREATE TABLE command and does not depend on any other table
base table has its description and its data physically stored in the database.
called underlying table.

bindery—A NetWare 3.x database that contains information about network resou
such as a SQLBase database server.

bind variable—A variable used to associate data to a SQL command. Bind variab
can be used in the VALUES clause of an INSERT command, in a WHERE
clause, or in the SET clause of an UPDATE command. Bind variables are th
mechanism to transmit data between an application work area and SQLBas
Also called into variable or substitution variable.

browse—A mode where a user queries some of a database without necessarily
making additions or changes. In a browsing application, a user needs to exa
data before deciding what to do with it. A browsing application allows the use
scroll forward and backward through data.

buffer—A memory area used to hold data during input/output operations.

C/API—A language interface that lets a programmer develop a database applica
in the C programming language. The C/API has functions that a programme
calls to access a database using SQL commands.

cache—A temporary storage area in computer memory for database pages bein
accessed and changed by database users. A cache is used because it is fa
read and write to computer memory than to a disk file.

Cartesian product—In a join, all the possible combinations of the rows from each
the tables. The number of rows in the Cartesian product is equal to the numb
rows in the first table times the number of rows in the second table, and so o
Cartesian product is the first step in joining tables. Once the Cartesian produ
has been formed, the rows that do not satisfy the join conditions are elimina

cascade—A delete rule which specifies that changing a value in the parent table
automatically affects any related rows in the dependent table.

case sensitive—A condition in which names must be entered in a specific lower-ca
upper-case, or mixed-case format to be valid.

cast—The conversion between different data types that represent the same data

CHAR—A column data type that stores character strings with a user-specified len
SQLBase stores CHAR columns as variable-length strings. Also called
VARCHAR.

character—A letter, digit, or special character (such as a punctuation mark) that
used to represent data.
Glossary-2 SQL Language Reference

re

 as

 unit
 a

d or

action

of the
ext
ist so

as
 and

le.

an
e and

s

 proper

e.
character string—A sequence of characters treated as a unit.

checkpoint—A point at which database changes older than the last checkpoint a
flushed to disk. Checkpoints are needed to ensure crash recovery.

clause—A distinct part of a SQL command, such as the WHERE clause; usually
followed by an argument.

client—A computer that accesses shared resources on other computers running
servers on the network. Also called front-end or requester.

column—A data value that describes one characteristic of an entity. The smallest
of data that can be referred to in a row. A column contains one unit of data in
row of a table. A column has a name and a data type. Sometimes called fiel
attribute.

command—A user request to perform a task or operation. In SQLTalk, each
command starts with a name, and has clauses and arguments that tailor the
that is performed. A command can include limits or specific terms for its
execution, such as a query for names and addresses in a single zip code.
Sometimes called statement.

commit—A process that causes data changed by an application to become part
physical database. Locks are freed after a commit (except when cursor-cont
preservation is on). Before changes are stored, both the old and new data ex
that changes can be stored or the data can be restored to its prior state.

commit server—A database server participating in a distributed transaction, that h
commit service enabled. It logs information about the distributed transaction
assists in recover after a network failure.

composite primary key—A primary key made up of more than one column in a tab

concatenated key—An index that is created on more than one column of a table. C
be used to guarantee that those columns are unique for every row in the tabl
to speed access to rows via those columns.

concatenation—Combining two or more character strings into a single string.

concurrency—The shared use of a database by multiple users or application
programs at the same time. Multiple users can execute database transaction
simultaneously without interfering with each other. The database software
ensures that all users see correct data and that all changes are made in the
order.

configure—To define the features and settings for a database server or its client
applications.

connect—To provide a valid authorization-id and password to log on to a databas
SQL Language Reference Glossary-3

Glossary

rsors.

oes

ver
t it is

the
nds

E,
d to
tion
o

 to
ery
t
ks the

ws

connection handle—Used to create multiple, independent connections. An
application must request a connection handle before it opens a cursor. Each
connection handle represents a single transaction and can have multiple cu
An application may request multiple connection handles if it is involved in a
sequence of transactions.

consistency—A state that guarantees that all data encountered by a transaction d
not change for the duration of a command. Consistency ensures that
uncommitted updates are not seen by other users.

constant—Specifies an unchanging value. Also called literal.

control file—An ASCII file containing information to manage segmented load/
unload files.

cooperative processing—Processing that is distributed between a client and a ser
in a such a way that each computer works on the parts of the application tha
best at handling.

coordinator—The application that initiates a distributed transaction.

correlated subquery—A subquery that is executed once for each row selected by
outer query. A subquery cannot be evaluated independently because it depe
on the outer query for its results. Also called a repeating query. Also see
subquery and outer query.

correlation name—A temporary name assigned to a table in an UPDATE, DELET
or SELECT command. The correlation name and column name are combine
refer to a column from a specific table later in the same command. A correla
name is used when a reference to a column name could be ambiguous. Als
called range variable.

crash recovery—The procedures that SQLBase uses automatically to bring a
database to a consistent state after a failure.

CRC (Cyclic Redundancy Check)—A technique that makes unauthorized changes
a database page detectable. SQLBase appends an extra bit sequence to ev
database page called a Frame Check Sequence (FCS) that holds redundan
information about the page. When SQLBase reads a database page, it chec
FCS to detect unauthorized changes.

current row—The latest row of the active result set which has been fetched by a
cursor. Each subsequent fetch retrieves the next row of the active result set.

cursor—The term cursor refers to one of the following definitions:

• The position of a row within a result table. A cursor is used to retrieve ro
from the result table. A named cursor can be used in the CURRENT OF
clause or the ADJUSTING clause to make updates or deletions.
Glossary-4 SQL Language Reference

 and

d

sing

ion

hen

e

ing

ed

,
 to

n

/API

ity to
is

 it
 as
n
es

late.
s of
• A work space in memory that is used for gaining access to the database
processing a SQL command. This work space contains the return code,
number of rows, error position, number of select list items, number of bin
variables, rollback flag, and the command type of the current command.

• When the cursor belongs to an explicit connection handle that is created u
the SQL/API function call sqlcch or the SQLTalk BEGIN CONNECTION
command, it identifies a task or activity within a transaction. The task or
activity can be compiled/executed independently within a single connect
thread.

Cursors can be associated with specific connection handles, allowing
multiple transactions to the same database within a single application. W
this is implemented, only one user is allowed per transaction.

• When a cursor belongs to an implicit connection handle created using th
SQL/API function call sqlcnc or sqlcnr, or the SQLTalk CONNECT
command, the cursor applies to an application in which you are connect
the cursor to a specific database that belongs to a single transaction.

cursor-context preservation—A feature of SQLBase where result sets are maintain
after a COMMIT. A COMMIT does not destroy an active result set (cursor
context). This enables an application to maintain its position after a COMMIT
INSERT, or UPDATE. For fetch operations, locks are kept on pages required
maintain the fetch position.

cursor handle—Identifies a task or activity within a transaction. When a connectio
handle is included in a function call to open a new cursor, the function call
returns a cursor handle. The cursor handle can be used in subsequent SQL
calls to identify the connection thread. A cursor handle is always part of a
specific transaction and cannot be used in multiple transactions. However, a
cursor handle can be associated with a specific connection handle. The abil
have multiple transactions to the same database within a single application
possible by associating cursor handles with connection handles.

Cursor Stability (CS)—The isolation level where a page acquires a shared lock on
only while it is being read (while the cursor is on it). A shared lock is dropped
the cursor leaves the page, but an exclusive lock (the type of lock used for a
update) is retained until the transaction completes. This isolation level provid
higher concurrency than Read Repeatability, but consistency is lower.

data dictionary—See system catalog.

data type—Any of the standard forms of data that SQLBase can store and manipu
An attribute that specifies the representation for a column in a table. Example
data types in SQLBase are CHAR (or VARCHAR), LONG VARCHAR (or
SQL Language Reference Glossary-5

Glossary

d
d

n of

odify
tions.

d

ored

ncy,

n

value

se

age,
k is
cquire

.
LONG), NUMBER, DECIMAL (or DEC), INTEGER (or INT), SMALLINT,
DOUBLE PRECISION, FLOAT, REAL, DATETIME (or TIMESTAMP), DATE,
TIME.

database—A collection of interrelated or independent pieces of information store
together without unnecessary redundancy. A database can be accessed an
operated upon by client applications such as SQLTalk.

database administrator (DBA)—A person responsible for the design, planning,
installation, configuration, control, management, maintenance, and operatio
a DBMS and its supporting network. A DBA ensures successful use of the
DBMS by users.

A DBA is authorized to grant and revoke other users’ access to a database, m
database options that affect all users, and perform other administrative func

database area—A database area corresponds to a file. These areas can be sprea
across multiple disk volumes to take advantage of parallel disk input/output
operations.

database management system (DBMS)—A software system that manages the
creation, organization, and modification of a database and access to data st
within it. A DBMS provides centralized control, data independence, and
complex physical structures for efficient access, integrity, recovery, concurre
and security.

database object—A table, view, index, synonym or other object created and
manipulated through SQL.

database server—A DBMS that a user interacts with through a client application o
the same or a different computer. Also called back-end or engine.

DATE—A column data type in SQL that represents a date value as a three-part
(day, month, and year).

date/time value—A value of the data type DATE, TIME, or TIMESTAMP.

DCL (Data Control Language)—SQL commands that assign database access
privileges and security such as GRANT and REVOKE.

DDL (Data Definition Language)—SQL commands that create and define databa
objects such as CREATE TABLE, ALTER TABLE, and DROP TABLE.

deadlock—A situation when two transactions, each having a lock on a database p
attempt to acquire a lock on the other's database page. One type of deadloc
where each transaction holds a shared lock on a page and each wishes to a
an exclusive lock. Also called deadly embrace.

DECIMAL —A column data type that contains numeric data with a decimal point
Also called DEC.
Glossary-6 SQL Language Reference

 (")

dure
n the

ction
edure.

ies

ritten

 in a
 the

that

ead

ther
default—An attribute, value, or setting that is assumed when none is explicitly
specified.

delimited identifier—An identifier enclosed between two double quote characters
because it contains reserved words, spaces, or special characters.

delimiter—A character that groups or separates items in a command.

dependent object—An object whose existence depends on another object.

For example, if a stored procedure calls an external function, the stored proce
is the dependent object of the external function, since its existence depends o
external function.

dependent table—The table containing the foreign key.

determinant object—An object that determines the existence of another object.

For example, if a stored procedure calls an external function, the external fun
is the determinant object, since it determines the existence of the stored proc

digital signature—A unique binary number generated by an algorithm that identif
the content of a larger block of bytes.

dirty page—A database page in cache that has been changed but has not been w
back to disk.

distributed database—A database whose objects reside on more than one system
network of systems and whose objects can be accessed from any system in
network.

distributed transaction—Coordinates SQL statements among multiple databases
are connected by a network.

DLL (Dynamic Link Library)—A program library written in C or assembler that
contains related modules of compiled code. The functions in a DLL are not r
until run-time (dynamic linking).

DML (Data Manipulation Language)—SQL commands that change data such as
INSERT, DELETE, UPDATE, COMMIT, and ROLLBACK.

DOUBLE PRECISION—A column data type that stores a floating point number.

DQL (Data Query Language)—The SQL SELECT command, which lets a user
request information from a database.

duplicates—An option used when creating an index for a table that specifies whe
duplicate values are allowed for a key.
SQL Language Reference Glossary-7

Glossary

ted.

).

t a
tion

d

e

.
r is
ned.

.

 a
k
 is to

her

hat
lue

 a
al
embedded SQL—SQL commands that are embedded within a program, and are
prepared during precompilation and compilation before the program is execu
After a SQL command is prepared, the command itself does not change
(although values of host variables specified within the command can change
Also called static SQL.

encryption—The transformation of data into a form unreadable by anyone withou
decryption key or password. Encryption ensures privacy by keeping informa
hidden from anyone for whom it is not intended, even those who can see the
encrypted data. Unencrypted data is called plain text; encrypted data is calle
cipher text.

engine—See database server.

entity—A person, place, or thing represented by a table. In a table, each row
represents an entity.

equijoin—A join where columns are compared on the basis of equality, and all th
columns in the tables being joined are included in the results.

Ethernet—A LAN with a bus topology (a single cable not connected at the ends)
When a computer wants to transmit, it first checks to see if another compute
transmitting. After a computer transmits, it can detect if a collision has happe
Ethernet is a broadcast network and all computers on the network hear all
transmissions. A computer selects only those transmissions addressed to it

exclusive lock (X-lock)—An exclusive lock allows only one user to have a lock on
page at a time. An exclusive lock prevents another user from acquiring a loc
until the exclusive lock is released. Exclusive locks are placed when a page
be modified (such as for an UPDATE, INSERT, or DELETE).

An exclusive lock differs from a shared lock because it does not permit anot
user to place any type of lock on the same data.

expression—An item or a combination of items and operators that yield a single
value. Examples are column names which yield the value of the column in
successive rows, arithmetic expressions built with operators such as + or - t
yield the result of performing the operation, and functions which yield the va
of the function for its argument.

extent page—A database page used when a row is INSERTed that is longer than
page or when a row is UPDATEd and there is not enough space in the origin
page to hold the data.

external function—A user-defined function that resides in an "external" DLL
(Dynamic Link Library) invoked within a SQLBase stored procedure.

field—See column.
Glossary-8 SQL Language Reference

.

 or

ry

t

 of a
rtions,

 read-

ning
ed
ally
 rows

so
file server—A computer that allows network users to store and share information

FLOAT—A column data type that stores floating point numbers.

floating point—A number represented as a number followed by an exponent
designator (such as 1.234E2, -5.678E2, or 1.234E-2). Also called E-notation
scientific notation.

foreign key—Foreign keys logically connect different tables. A foreign key is a
column or combination of columns in one table whose values match a prima
key in another table. A foreign key can also be used to match a primary key
within the same table.

front-end—See client.

function—A predefined operation that returns a single value per row in the outpu
result table.

grant—That act of a system administrator to permit a user to make specified use
database. A user may be granted access to an entire database or specific po
and have unlimited or strictly-limited power to display, change, add, or delete
data.

GUI (Graphical User Interface)—A graphics-based user interface with windows,
icons, pull-down menus, a pointer, and a mouse. Microsoft Windows and
Presentation Manager are examples of graphical user interfaces.

history file—Contains previous versions of changed database pages. Used when
only (RO) isolation level is enabled.

host language—A program written in a language that contains SQL commands.

identifier—The name of a database object.

index—A data structure associated with a table used to locate a row without scan
an entire table. An index has an entry for each value found in a table’s index
column or columns, and pointers to rows having that value. An index is logic
ordered by the values of a key. Indexes can also enforce uniqueness on the
in a table.

INTEGER—A column data type that stores a number without a decimal point. Al
call INT.

isolation level—The extent to which operations performed by one user can be
affected by (are isolated from) operations performed by another user. The
isolation levels are Read Repeatability (RR), Cursor Stability (CS), Release
Locks (RL), and Read Only (RO).
SQL Language Reference Glossary-9

Glossary

en
ian

e

nd

y.
and
 to

a. See

on

r.

an

ash,

er
is
 the
s

the
s it to

se it is

join—A query that retrieves data from two or more tables. Rows are selected wh
columns from one table match columns from another table. See also Cartes
product, self-join, equijoin, natural join, theta join, and outer join.

key—A column or a set of columns in an index used to identify a row. A key valu
can be used to locate a row.

keyword—One of the predefined words in a command language.

local area network (LAN)—A collection of connected computers that share data a
resources, and access other networks or remote hosts. Usually, a LAN is
geographically confined and microcomputer-based.

lock—To temporarily restrict other usersÕ access to data to maintain consistenc
Locking prevents data from being modified by more than one user at a time
prevents data from being read while being updated. A lock serializes access
data and prevents simultaneous updates that might result in inconsistent dat
shared lock (S-lock) and exclusive lock (X-lock).

logical operator—A symbol for a logical operation that connects expressions in a
WHERE or HAVING clause. Examples are AND, OR, and NOT. An expressi
formed with logical operators evaluates to either TRUE or FALSE. Logical
operators define or limit the information sought. Also called Boolean operato

LONG VARCHAR—In SQL, a column data type where the value can be longer th
254 bytes. The user does not specify a length. SQLBase stores LONG
VARCHAR columns as variable-length strings. Also called LONG.

mathematical function—An operation such as finding the average, minimum, or
maximum value of a set of values.

media recovery—Restoring data from backup after events such as a disk head cr
operating system crash, or a user accidentally dropping a database object.

message buffer—The input message buffer is allocated on both the client comput
and the database server. The database server builds an input message in th
buffer on the database server and sends it across the network to a buffer on
client. It is called an input message buffer because it is input from the client’
point of view.

The out put message buffer is allocated on both the client computer and on
database server. The client builds an output message in this buffer and send
a buffer on the database server. It is called an output message buffer becau
output from the client’s point of view.

modulo—An arithmetic operator that returns an integer remainder after a division
operation on two integers.
Glossary-10 SQL Language Reference

one

red
lts

s of

f
e
nd

n

nt to
n, or

l

an

ase
e
se

multi-user—The ability of a computer system to provide its services to more than
user at a time.

natural join—An equijoin where the value of the columns being joined are compa
on the basis of equality. All the columns in the tables are included in the resu
but only one of each pair of joined columns is included.

NDS (NetWare Directory Services)—A network-wide directory included with
NetWare 4.x, that provides global access to all network resources, regardles
their physical location. The directory is accessible from multiple points by
network users, services and applications.

nested query—See subquery.

NetWare—The networking components sold by Novell. NetWare is a collection o
data link drivers, a transport protocol stack, client computer software, and th
NetWare server operating system. NetWare runs on Token Ring, Ethernet, a
ARCNET.

NetWare 386—A server operating system from Novell for computers that controls
system resources on a network.

NLM (NetWare Loadable Module)—An NLM is a NetWare program that you can
load into or unload from server memory while the server is running. When
loaded, an NLM is part of the NetWare operating system. When unloaded, a
NLM releases the memory and resources that were allocated for it.

null—A value that indicates the absence of data. Null is not considered equivale
zero or to blank. A value of null is not considered to be greater than, less tha
equivalent to any other value, including another value of null.

NUMBER—A column data type that contains a number, with or without a decima
point and a sign.

numeric constant—A fixed value that is a number.

ODBC—The Microsoft Open DataBase Connectivity (ODBC) standard, which is
application programming interface (API) specification written by Microsoft. It
calls for all client applications to write to the ODBC standard API and for all
database vendors to provide support for it. It then relies on third-party datab
drivers or access tools that conform to the ODBC specification to translate th
ODBC standard API calls generated by the client application into the databa
vendor’s proprietary API calls.

operator—A symbol or word that represents an operation to be performed on the
values on either side of it. Examples of operators are
 arithmetic (+, -, *, /), relational (=, !=, >, <, >=, <=), and logical (AND, OR,
NOT).
SQL Language Reference Glossary-11

Glossary

g a

 all

led

e
Also

ables

all

e.

ase.

on.

res

tion

ach

l
optimization—The determination of the most efficient access strategy for satisfyin
database access.

outer join—A join in which both matching and non-matching rows are returned.
Each preserved row is joined to an imaginary row in the other table in which
the fields are null.

outer query—When a query is nested within another query, the main query is cal
the outer query and the inner query is called the subquery. An outer query is
executed once for each row selected by the subquery. A subquery cannot b
evaluated independently but that depends on the outer query for its results.
see subquery.

page—The physical unit of disk storage that SQLBase uses to allocate space to t
and indexes.

parent table—The table containing the primary key.

parse—To examine a command to make sure that it is properly formed and that
necessary information is supplied.

partitioning—A method of setting up separate user areas to maximize disk spac
Databases can be stretched across several different network partitions.

password—A sequence of characters that must be entered to connect to a datab
Associated to each password is an authorization-id.

picture—A string of characters used to format data for display.

precedence—The default order in which operations are performed in an expressi

precision—The maximum number of digits in a column.

precompilation—Processing of a program containing SQL commands or procedu
that takes place before compilation. SQL commands are replaced with
statements that are recognized by the host language compiler. Output from
precompilation includes source code that can be submitted to the compiler.

predicate—An element in a search condition that expresses a comparison opera
that states a set of criteria for the data to be returned by a query.

primary key—The columns or set of columns that are used to uniquely identify e
row in a table. All values for a key are unique and non-null.

privilege—A capability given to a user to perform an action.

procedure—A named set of SAL or SQL statements that can contain flow contro
language. You compile a procedure for immediate and/or later execution.
Glossary-12 SQL Language Reference

ater

s to
the
evel.

t of

ad by
ge
tion
ncy,

ccur

s as a

lso

s
page

 the
query—A request for information from a database, optionally based on specific
conditions. For example, a request to list all customers whose balance is gre
than $1000. Queries are issued with the SELECT command.

Read Only (RO)—The isolation level where pages are not locked, and no user ha
wait. This gives the user a snapshot view of the database at the instant that
transaction began. Data cannot be updated while in the read-only isolation l

Read Repeatability (RR)—The isolation level where if data is read again during a
transaction, it is guaranteed that those rows would not have changed. Rows
referenced by the program cannot be changed by other programs until the
program reaches a commit point. Subsequent queries return a consistent se
results (as though changes to the data were suspended until all the queries
finished). Other users will not be able to update any pages that have been re
the transaction. All shared locks and all exclusive locks are retained on a pa
until the transaction completes. Read repeatability provides maximum protec
from other active application programs. This ensures a high level of consiste
but lowers concurrency. SQLBase default isolation level.

REAL—A column data type that stores a single-precision number.

record—See row.

recovery—Rebuilding a database after a system failure.

referential cycle—Tables which are dependents of one another.

referential integrity—Guarantees that all references from one database table to
another are valid and accurate. Referential integrity prevents problems that o
because of changes in one table which are not reflected in another.

relation—See table.

relational database—A database that is organized and accessed according to
relationships between data items. A relational database is perceived by user
collection of tables.

relational operator—A symbol (such as =, >, or <) used to compare two values. A
called comparison operator.

Release Locks (RL)—With the Cursor Stability isolation level, when a reader move
off a database page, the shared lock is dropped. However, if a row from the
is still in the message buffer, the page is still locked.

In contrast, the Release Lock (RL) isolation level increases concurrency. By
time control returns to the application, all shared locks have been released.

repeating query—See correlated subquery.

requester—See client.
SQL Language Reference Glossary-13

Glossary

the
ch

he

e

.
e this

 or

 an

s
rk.

the
restore—Copying a backup of a database or its log files to a database directory.

restriction mode—In restriction mode, the result set of one query is the basis for
next query. Each query further restricts the result set. This continues for ea
subsequent query.

result set mode—Normally, result table rows are displayed and scrolled off the
screen. In result set mode, the rows of the result table are available for
subsequent scrolling and retrieval.

result table—The set of rows retrieved from one or more tables or views during a
query. A cursor allows the rows to be retrieved one by one.

revoke—The act of withdrawing a user's permission to access a database.

rollback—To restore a database to the condition it was in at its last COMMIT. A
ROLLBACK cancels a transaction and undoes any changes that it made to t
database. All locks are freed unless cursor-context preservation is on.

rollforward—Reapplying changes to a database. The transaction log contains th
entries used for rollforward.

router—A client application talks to a SQLBase server through a router program
The router enables a logical connection between a client and the server. Onc
connection is established on the LAN, the client application uses the router
program to send SQL requests to the server and to receive the results.

row—A set of related columns that describe a specific entity. For example, a row
could contain a name, address, telephone number. Sometimes called record
tuple.

ROWID—A hidden column associated with each row in a SQLBase table that is
internal identifier for the row. The ROWID can be retrieved like any other
column.

ROWID validation—A programming technique that ensures that a given row that
was SELECTed has not been changed or deleted by another user during a
session. When a row is updated, the ROWID is changed.

SAP (Service Advertisement Protocol)—A NetWare protocol that resources (such a
database servers) use to publicize their services and addresses on a netwo

savepoint—An intermediate point within a transaction to which a user can later
ROLLBACK to cancel any subsequent commands, or COMMIT to complete
commands.

scale—The number of digits to the right of the decimal point in a number.

search condition—A criterion for selecting rows from a table. A search condition
appears in a WHERE clause and contains one or more predicates.
Glossary-14 SQL Language Reference

n
he

se
 a
 reads
ges

age
st.

 user
een

d on

level.

 user

 a

ute

op of

pdate,
search—To scan one or more columns in a row to find rows that have a certain
property.

self-join—A join of a table with itself. The user assigns the two different correlatio
names to the table that are used to qualify the column names in the rest of t
query.

self-referencing table—A table that has foreign and primary keys with matching
values within the same table.

server—A computer on a network that provides services and facilities to client
applications.

SHA (Secure Hash Algorithm)—A hash algorithm published by the United States
government that SQLBase uses to detect unauthorized changes to a databa
page. SHA produces a condensed representation of a database page called
message digest that is used to generate a digital signature. When SQLBase
a page encrypted with SHA, it verifies the signature. Any unauthorized chan
to the page results in a different message digest and the signature will fail to
verify. It is extremely unlikely to find a page that corresponds to a given mess
digest, or to find two different pages which produce the same message dige

shared cursor—A handle that is used by two or more Windows applications.

shared lock (S-lock)—A shared lock permits other users to read data, but not to
change it. A shared lock lets users read data concurrently, but does not let a
acquire an exclusive lock on the data until all the users’ shared locks have b
released. A shared lock is placed on a page when the page is read (during a
SELECT). At a given time, more than one user can have a shared lock place
a page. The timing of the release of a shared lock depends on the isolation

A shared lock differs from an exclusive lock because it permits more than one
to place a lock on the same data.

single-user—A computer system that can only provide its services to one user at
time.

SMALLINT— A column data type that stores numbers without decimal points.

socket—An identifier that Novell's IPX (Internetwork Packet Exchange) uses to ro
packets to a specific program.

SPX (Sequenced Packet Exchange)—A Novell communication protocol that
monitors network transmissions to ensure successful delivery. SPX runs on t
Novell’s IPX (Internetwork Packet Exchange).

SQL (Structured Query Language)—A standard set of commands used to manage
information stored in a database. These commands let users retrieve, add, u
or delete data. There are four types of SQL commands
SQL Language Reference Glossary-15

Glossary

s

QL

 to a

w

ure

f
s
uery.

sed

r’s

g
sers.

-
e set
 Data Definition Language (DDL), Data Manipulation Language (DML), Data
Query Language (DQL), and Data Control Language (DCL). SQL command
can be used interactively or they can be embedded within an application
program. Pronounced ess-que-ell or sequel.

SQLBase—A relational DBMS that lets users access, create, and update data.

SQLTalk—SQLTalk is an interactive user interface for SQLBase that is used to
manage a relational database. SQLTalk has a complete implementation of S
and many extensions. SQLTalk is a client application.

static SQL—See embedded SQL.

statistics—Attributes about tables such as the number of rows or the number of
pages. Statistics are used during optimization to determine the access path
table.

storage group—A list of database areas. Storage groups provide a means to allo
databases or tables to be stored on different volumes.

stored procedure—A precompiled procedure that is stored on the backend for fut
execution.

string delimiter—A symbol used to enclose a string constant. The symbol is the
single quote (').

string—A sequence of characters treated as a unit of data.

subquery—A SELECT command nested within the WHERE or HAVING clause o
another SQL command. A subquery can be used anywhere an expression i
allowed if the subquery returns a single value. Sometimes called a nested q
Also called subselect. See also correlated subquery.

synonym—A name assigned to a table, view, external function that may be then u
to refer to it. If you have access to another user’s table, you may create a
synonym for it and refer to it by the synonym alone without entering the use
name as a qualifier.

syntax—The rules governing the structure of a command.

system catalog—A set of tables SQLBase uses to store metadata. System catalo
tables contain information about database objects, privileges, events, and u
Also called data dictionary.

system keywords—Keywords that can be used to retrieve system information in
commands.

table—The basic data storage structure in a relational database. A table is a two
dimensional arrangement of columns and rows. Each row contains the sam
of data items (columns). Sometimes called a relation.
Glossary-16 SQL Language Reference

n a

n

te
d

 in a

r

r. The
 token.

ct

a
 by

he

at
s a

rash

n a
TE
table scan—A method of data retrieval where a DBMS directly searches all rows i
table sequentially instead of using an index.

theta join—A join that uses relational operators to specify the join condition.

TIME— A column data type in the form of a value that designates a time of day i
hours, minutes, and possibly seconds (a two- or three-part value).

timeout—A time interval allotted for an operation to occur.

TIMESTAMP—A column data type with a seven-part value that designates a da
and time. The seven parts are year, month, day, hour, minutes, seconds, an
microseconds (optional). The format is

yyyy-mm-dd-hh.mm.ss.nnnnnn

token—A character string in a specific format that has some defined significance
SQL command.

Token-Ring—A LAN with ring topology (cable connected at the ends). A special
data packet called a token is passed from one computer to another. When a
computer gets the token, it can attach data to it and transmit. Each compute
passes on the data until it arrives at its destination. The receiver marks the
message as being received and sends the message on to the next compute
message continues around the ring until the sender receives it and frees the

tokenized error message—An error message formatted with tokens in order to
provide users with more informational error messages. A tokenized error
message contains one or more variables that SQLBase substitutes with obje
names (tokens) when it returns the error message to the user.

transaction—A logically-related sequence of SQL commands that accomplishes
particular result for an application. SQLBase ensures the consistency of data
verifying that either all the data changes made during a transaction are
performed, or that none of them are performed. A transaction begins when t
application starts or when a COMMIT or ROLLBACK is executed. The
transaction ends when the next COMMIT or ROLLBACK is executed. Also
called logical unit of work.

transaction log—A collection of information describing the sequence of events th
occur while running SQLBase. The information is used for recovery if there i
system failure. A log includes records of changes made to a database. A
transaction log in SQLBase contains the data needed to perform rollbacks, c
recovery, and media recovery.

trigger—Activates a stored procedure that SQLBase automatically executes whe
user attempts to change the data in a table, such as on a DELETE or UPDA
command.
SQL Language Reference Glossary-17

Glossary

it

 An

. A
m a
 be
 table.

acter
rn-

r an

 two
r can

se.
crash.
two-phase commit—The protocol that coordinates a distributed transaction comm
process on all participating databases.

tuple—See row.

unique key—One or more columns that must be unique for each row of the table.
index that ensures that no identical key values are stored in a table.

username—See authorization-id.

value—Data assigned to a column, a constant, a variable, or an argument.

VARCHAR—See CHAR.

variable—A data item that can assume any of a given set of values.

view—A logical representation of data from one or more base tables. A view can
include some or all of the columns in the table or tables on which it is defined
view represents a portion of data generated by a query. A view is derived fro
base table or base tables but has no storage of its own. Data for a view can
updated in the same manner as for a base table. Sometimes called a virtual

wildcard—Characters used in the LIKE predicate that can stand for any one char
(the underscore _) or any number of characters (the percent sign %) in patte
matching.

Windows—A graphical user interface from Microsoft that runs under DOS.

With Windows, commands are organized in lists called menus. Icons (small
pictures) on the screen represent applications. A user selects a menu item o
icon by pointing to it with a mouse and clicking.

Applications run in windows that can be resized and relocated. A user can run
or more applications at the same time and can switch between them. A use
run multiple copies of the same application at the same time.

write-ahead log (WAL)—A transaction logging technique where transactions are
recorded in a disk-based log before they are recorded in the physical databa
This ensures that active transactions can be rolled back if there is a system
Glossary-18 SQL Language Reference

Index
SQL Language Reference
Symbols
 7-29
- 7-29
!= 7-29
% 2-31
& 7-29
* 7-29
+ 7-29
/ 7-29
< 7-29
= 7-29
> 7-29
>= 7-29
@ABS 4-4, 4-12

reserved word 5-2
@ACOS 4-4, 4-13

reserved word 5-2
@ASIN 4-4, 4-13

reserved word 5-2
@ATAN 4-4, 4-14

reserved word 5-2
@ATAN2 4-4, 4-14

reserved word 5-2
@CHAR 4-3, 4-15

reserved word 5-2
@CHOOSE 4-5, 4-15

reserved word 5-2
@CODE 3-36, 4-3, 4-16

reserved word 5-2
@COS 4-4, 4-16

reserved word 5-2
@CTERM 4-5, 4-16

reserved word 5-2
@DATE 4-3, 4-17

reserved word 5-2
@DATETOCHAR 4-3, 4-17

reserved word 5-2
@DATEVALUE 3-36, 4-3, 4-18

reserved word 5-2
@DAY 3-36, 4-3, 4-18

reserved word 5-2
@DECIMAL 4-5, 4-19

reserved word 5-2
@DECODE 4-3, 4-5, 4-19

reserved word 5-2

@EXACT 4-3, 4-20
reserved word 5-2

@EXP 4-4, 4-20
reserved word 5-2

@FACTORIAL 4-4, 4-21
reserved word 5-2

@FIND 4-3, 4-21
reserved word 5-2

@FULLP
reserved word 5-2

@FV 4-5, 4-22
reserved word 5-2

@HALFP
reserved word 5-2

@HEX 4-5, 4-22
reserved word 5-2

@HOUR 3-36, 4-3, 4-23
reserved word 5-2

@IF 4-5, 4-23
reserved word 5-2

@INT 4-4, 4-24
reserved word 5-2

@ISNA 4-5, 4-24
reserved word 5-2

@LEFT 3-36, 4-3, 4-24
reserved word 5-2

@LENGTH 3-36, 4-3, 4-25, 4-58
reserved word 5-2

@LICS 3-36, 4-5, 4-25, 4-58
reserved word 5-2

@LN 4-4, 4-37, 4-70
reserved word 5-2

@LOG 4-4, 4-37, 4-70
reserved word 5-2

@LOWER 3-36, 4-3, 4-38, 4-71
reserved word 5-2

@MEDIAN 4-2, 4-38, 4-71
reserved word 5-2

@MICROSECOND 3-36, 4-3, 4-39, 4-72
reserved word 5-2

@MID 3-36, 4-3, 4-39, 4-72
reserved word 5-2

@MINUTE 3-36, 4-3, 4-40, 4-73
reserved word 5-2

@MOD 4-4, 4-40, 4-73
reserved word 5-2
Database Administrator’s Guide Index-1

Index
@MONTH 3-36, 4-3, 4-40, 4-73
reserved word 5-2

@MONTHBEG 3-36, 4-3, 4-41, 4-74
reserved word 5-2

@NOW 4-3, 4-41, 4-74
reserved word 5-2

@NULLVALUE 4-3, 4-41, 4-74
reserved word 5-2

@PI 4-4, 4-42, 4-75
reserved word 5-2

@PMT 4-5, 4-43, 4-76
reserved word 5-2

@PROPER 3-36, 4-3, 4-43, 4-76
reserved word 5-2

@PV 4-5, 4-44, 4-77
reserved word 5-2

@QUARTER 3-36, 4-3, 4-44, 4-77
reserved word 5-2

@QUARTERBEG 3-36, 4-3, 4-45, 4-78
reserved word 5-2

@RATE 4-5, 4-45, 4-78
reserved word 5-2

@REPEAT 4-3, 4-46, 4-79
reserved word 5-2

@REPLACE 4-3, 4-46, 4-79
reserved word 5-2

@RIGHT 3-36, 4-3, 4-47, 4-80
reserved word 5-2

@ROUND 4-4, 4-47, 4-80
reserved word 5-2

@SCAN 4-3, 4-48, 4-81
reserved word 5-2

@SDV 4-2, 4-48, 4-81
reserved word 5-2

@SECOND 3-36, 4-4, 4-49, 4-82
reserved word 5-2

@SIN 4-4, 4-49, 4-82
reserved word 5-2

@SLN 4-5, 4-50, 4-83
reserved word 5-2

@SQRT 4-4, 4-50, 4-83
reserved word 5-2

@STRING 3-36, 4-3, 4-51, 4-84
reserved word 5-2

@SUBSTRING 3-36, 4-3, 4-51, 4-84
reserved word 5-2

@SYD 4-5, 4-52, 4-85
reserved word 5-2

@TAN 4-4, 4-53, 4-86
reserved word 5-2

@TERM 4-5, 4-53, 4-86
reserved word 5-2

@TIME 4-4, 4-54, 4-87
reserved word 5-2

@TIMEVALUE 3-36, 4-4, 4-54, 4-87
reserved word 5-2

@TRIM 3-36, 4-3, 4-55, 4-88
reserved word 5-2

@UPPER 3-36, 4-3, 4-55, 4-88
reserved word 5-2

@VALUE 3-36, 4-3, 4-55, 4-88
reserved word 5-2

@WEEKBEG 3-36, 4-4, 4-56, 4-89
reserved word 5-2

@WEEKDAY 3-36, 4-4, 4-56, 4-89
reserved word 5-2

@YEAR 3-36, 4-4, 4-57, 4-90
reserved word 5-2

@YEARBEG 3-36, 4-4, 4-57, 4-90
reserved word 5-2

@YEARNO 4-4, 4-58, 4-91
reserved word 5-3

@YEARNUM 3-36
\ (backslash) 2-31
_ (underscore) pattern matching 2-31
| 7-29
|| 7-29
’external function

REVOKE EXECUTE ON 3-110

A
ABORTxxxDBSxxx

reserved word 5-3
action section

On statement
where to specify 7-16

ACTIONS
PROCEDURE 3-105

Actions
reserved word 5-3
When SqlError 7-45

actions
procedure 7-7

execute 7-7
activate

trigger 3-52
Index-2 SQL Language Reference

ADD
ALTER STOGROUP 3-9
ALTER TABLE 3-10
ALTER TABLE (Error Messages) 3-13
ALTER TABLE (referential integrity) 3-15
reserved word 5-3

add 7-29
ADJUSTING

reserved word 5-3
ADJUSTING cursor name

INSERT 3-90
AFTER

trigger 3-57
AFTERr

reserved word 5-3
ALL

GRANT (Table Privileges) 3-85
privilege 3-85
reserved word 5-3
REVOKE (Table Privileges) 3-109
SELECT 3-117
UNLOAD 3-134

ALL keyword 2-29
ALTER

GRANT (Table Privileges) 3-85
privilege 3-85
reserved word 5-3
REVOKE (Table Privileges) 3-109

Alter
procedure 7-33

alter
external function 3-7

ALTER authority
with foreign key 3-17, 3-47, 6-8

ALTER DATABASE 1-6, 3-2, 3-5
LOG 3-5
STOGROUP 3-5

ALTER DBAREA 1-6, 3-2, 3-6
SIZE 3-6

ALTER EXTERNAL FUNCTION 1-6, 3-2
ALTER PASSWORD 1-6, 3-2, 3-8
ALTER STOGROUP 1-6, 3-2, 3-9

ADD 3-9
DROP 3-9

ALTER TABLE 1-6, 3-2, 3-10
ADD 3-10
DROP 3-11
MODIFY 3-11

NOT NULL WITH DEFAULT 3-11
NULL 3-11
RENAME 3-12

ALTER TABLE (Error Messages) 3-19, 6-31
ADD 3-13
DELETE PARENT 3-13
DROP 3-13
INSERT_DEPENDENT 3-14
MODIFY 3-13
UPDATE_DEPENDENT 3-14
UPDATE_PARENT 3-14
USERERROR 3-13

ALTER TABLE (error messages) 3-2
ALTER TABLE (referential iIntegrity) 6-20
ALTER TABLE (Referential Integrity) 6-16
ALTER TABLE (referential integrity) 3-2, 3-15

ADD 3-15
CASCADE delete rule 3-18
DROP 3-15
FOREIGN KEY 3-16
ON DELETE 3-18
PRIMARY KEY 3-15
REFERENCES 3-18
RESTRICT 3-18
SET NULL 3-18

ALTER TRIGGER 1-6, 3-2, 3-19
DISABLE 3-20
ENABLE 3-20

alternate key 6-5
AND 7-29

reserved word 5-3
AND operator 2-25
ANY

reserved word 5-3
ANY keyword 2-28
APPEND

reserved word 5-3
START AUDIT 3-126

array
parameter 7-9

AS
reserved word 5-3

AS filename/raw device
CREATE DBAREA 3-29

ASC
CREATE DBAREA 3-37
reserved word 5-3

ASCII
SQL Language Reference Index-3

Index
LOAD 3-97
reserved word 5-3
UNLOAD 3-133

AT
reserved word 5-3

ATTRIBUTE
reserved word 5-3

AUDIT
reserved word 5-3

audit
APPEND clause 3-126
CATEGORY clause 3-127
GLOBAL clause 3-125
KEEP clause 3-126
OVERWRITE clause 3-126
PERFM clause 3-125
SIZE clause 3-126
stopping 3-129
TO clause 3-125

audit file 3-124
AUDIT keyword 3-129
AUDIT MESSAGE 1-5, 3-2, 3-20
audit name

START AUDIT 3-125
AUTHORITY

reserved word 5-3
authority level

GRANT (Database Authority) 3-82
authorization ID 2-3

GRANT (Database Authority) 3-82
GRANT (Table Privileges) 3-85
name 2-3
name conventions 2-6

autocommit A-12
trigger 3-59

AVG 4-2, 4-9
reserved word 5-3

B
backslash ‹\› 2-31
BEFORE

reserved word 5-3
trigger 3-57

begin
statement block 7-7, 7-8

BETWEEN
reserved word 5-3

BETWEEN predicate 2-30

binary data
storage 2-9

bind variables
definition 2-44
identify A-19, A-20
name 2-5
name conventions 2-6
SqlExecute A-6
SqlStore A-25
trigger 3-62

bitmap file
storage 2-9

BLOBS 2-9
block

statement 7-7
boolean 7-9, 7-10
Boolean expression 2-25
brand

server A-12
Break 7-13

example 7-13
BUCKETS

CREATE INDEX 3-38
reserved word 5-3

BY
reserved word 5-3

C
Call 7-14

example 7-14
CALLSTYLE

reserved word 5-3
candidate key 6-4
Cartesian product 2-40
CASCADE

ALTER TABLE (referential integrity) 3-18
CREATE TABLE 3-49
reserved word 5-3

CATALOG
reserved word 5-3

CATEGORY
reserved word 5-3
START AUDIT 3-127

CDECL
reserved word 5-3

CHAR 3-45
reserved word 5-3
with LIKE 2-31
Index-4 SQL Language Reference

CHAR/VARCHAR
definition 2-8

CHARACTER
reserved word 5-3

character 2-7, 2-8
CHAR 2-8

character string 2-8
CHECK

DATABASE
SYSTEM ONLY 3-21

examples 3-23, 3-24
reserved word 5-3
TABLE

WITHOUT INDEXES 3-24
view 3-23

check
security A-19, A-20
syntax A-19, A-20

CHECK DATABASE 1-6, 3-2, 3-21
with referential integrity 6-30

CHECK EXISTS
UPDATE 3-140

CHECK INDEX 1-6, 3-2, 3-23
CHECK TABLE 1-6, 3-2, 3-23
child row 6-3, 6-12
child table 6-3, 6-11, 6-18

delete connection 6-14
CLIENT

reserved word 5-3
CLUSTERCOUNT 3-143
CLUSTERED

reserved word 5-3
CLUSTERED HASHED

CREATE DBAREA 3-37
Codd, E.F 1-2
COLAUTH

reserved word 5-3
COLUMN

COMMENT ON 3-25
reserved word 5-3

column 1-8
data type 1-8
in trigger 3-60
name 1-8, 2-4

CREATE TABLE 3-45
CREATE VIEW 3-67
identifier 2-4
UPDATE 3-139

naming conventions 2-6
pseudo for sequence objects 2-20

columns 1-7
command

compiled
return A-21

name 2-5
naming conventions 2-6
processing phases 1-11
SQL

compile A-19, A-20
execute A-17, A-18, A-20
invalidate A-2
name A-25
prepare A-17
store A-25

stored
delete A-5

Command Summary 3-2
COMMENT

reserved word 5-3
COMMENT ON 1-6, 3-2, 3-24

COLUMN 3-25
EXTERNAL FUNCTION 3-25
TABLE 3-25

comments
example 7-28
procedure 7-28

COMMIT 1-5, 3-2, 3-25
reserved word 5-3
TRANSACTION <ID> FORCE 3-26
WORK 3-26

commit
cursors A-3
implicit 3-26
trigger 3-59

comparison operations 2-8
comparison predicate 2-28
comparison relational predicate 2-27
compile

procedure 1-10
SQL command 1-10, A-19, A-20

composite primary key 3-46, 6-4
COMPRESS

LOAD 3-98
reserved word 5-3
UNLOAD 3-134

COMPUTE
SQL Language Reference Index-5

Index
reserved word 5-3
concatenate

string 7-29
concatenation

string operator 2-23
with procedures 7-29

CONNECT
GRANT (Database Authority) 3-82
reserved word 5-3
REVOKE (Database Authority) 3-107

connect
database A-4

constant 2-17
examples 2-18

constraint name
see referential integrity

CONTROL
LOAD 3-98
reserved word 5-3
UNLOAD 3-134

control
flow 3-105

control file 3-98, 3-134
DIR 3-99, 3-135
FILEPREFIX 3-99, 3-135
SIZE 3-135

conversion, data types 2-17
COPY

with referential integrity 6-30
correlation

naming conventions 2-7
correlation name 2-4

DELETE 3-71
UPDATE 3-139

COUNT 4-2, 4-10
reserved word 5-3

count
result set rows A-16

CR
reserved word 5-3

CREATE
reserved word 5-3

create
external function 3-31
local variable 7-6
procedure 3-103, 7-33

CREATE DATABASE 1-4, 3-2, 3-27
IN stogroup name 3-28

LOG TO 3-28
CREATE DBAREA 1-4, 3-2, 3-29

AS clause 3-29
ASC 3-37
CLUSTERED HASHED 3-37
dbarea name 3-29
DESC 3-37
PCTFREE 3-38
SIZE 3-29
SIZE ROWS 3-38
UNIQUE 3-37

CREATE EXTERNAL FUNCTION 1-4, 3-30
CREATE EXTERNAL FUNCTIONS 3-2
CREATE INDEX 1-4, 3-2, 3-30

BUCKETS 3-38
index functions 3-36
ROWS 3-38

CREATE STOGROUP 1-4, 3-2, 3-40
USING dbarea name 3-40

CREATE SYNONYM 1-4, 3-3, 3-41
PUBLIC 3-42

CREATE TABLE 1-4, 3-3, 3-44
CASCADE 3-49
column name 3-45
data type 3-45
FOREIGN KEY 3-47
foreign key 6-15
IN 3-49
IN DATABASE 3-49
NOT NULL 3-48
NOT NULL WITH DEFAULT 3-48
ON DELETE 3-49
PCTFREE 3-49
PRIMARY KEY 3-46
primary key 6-15
REFERENCES 3-48
RESTRICT 3-49
SET NULL 3-49
table name 3-45
with referential integrity 6-15

CREATE TRIGGER 1-4, 3-3
CREATE VIEW 1-4, 3-3, 3-66

column name 3-67
SELECT 3-67
view name 3-67
WITH CHECK OPTION 3-68

CREATOR
reserved word 5-3
Index-6 SQL Language Reference

currency
using DECIMAL data type 2-13

CURRENT
reserved word 5-3

CURRENT DATE 2-36
CURRENT DATETIME 2-35, 2-36
CURRENT TIME 2-36
CURRENT TIMESTAMP 2-35, 2-36
CURRENT TIMEZONE 2-36
CURRVAL 2-19, 2-20
CURRVAl

reserved word 5-3
cursor

context preservation A-3
isolation level

set A-21
name A-18

free A-2
SqlExecute A-6

Cursor Stability A-22
cursors

commit A-3

D
DATA

UNLOAD 3-132
data

consistency
trigger 7-54

control commands 1-6
integrity

trigger 7-54
SQL organization 1-7
types 1-8, 2-7, 3-48

boolean 7-9, 7-10
CHAR/VARCHAR 2-8
character 2-8
DATE 2-16
date/time 7-9, 7-10
DECIMAL/DEC 2-10
DOUBLE PRECISION 2-14
FLOAT 2-14
foreign key 3-17, 3-47, 6-8
INTEGER/INT 2-13
local variable 7-6
local variables 7-6
LONG VARCHAR/LONG 2-9
NUMBER 2-10

number 7-9, 7-10
numeric 2-7, 2-9, 2-13
parameters 7-5
REAL 2-14
sql handle 7-9, 7-11, 7-12
string 7-9, 7-11
TIME 2-16

data compression
LOAD 3-98
UNLOAD 3-134

Data Control Commands 1-6
Data Definition Commands 1-4
data dictionary 1-11
Data Manipulation Commands

see DML commands
Data query commands 1-5
data type

conversion 2-16
conversion in functions 2-17
CREATE TABLE 3-45
date/time 2-15

DATETIME/TIMESTAMP 2-15
DATABASE

reserved word 5-3
UNLOAD 3-134
UPDATE STATISTICS 3-142

database
audit message 3-2, 3-20
check 3-21
connect A-4
deinstall 3-70
disconnect A-5
drop 3-73
install 3-92
name 2-4

CREATE DATABASE 3-27
extension 2-4
requirements 2-7
valid characters 2-4

naming conventions 2-2, 2-7
new 3-27
parameter

autocommit A-12
brand A-12
cursor context preservation A-14
database version A-14
fetchthrough A-13
get A-12
SQL Language Reference Index-7

Index
get value A-15
lock wait timeout A-13
pre-build result set A-13
roll back transaction A-14
set A-23

rollback flag
get A-17

server
brand A-12

unload 3-134
version A-14

database sequence objects
SYSDBSequence 2-20

databases 1-7
DATE 3-45

reserved word 5-3
date

add, subtract 2-37
DATE data type 2-16
date/time 2-7, 7-9, 7-10

entering values 2-33
expressions 2-37
keyword resolution 2-36
keywords 2-35
valid input formats 2-35

date/time constant 2-17
date/time data type 2-15
DATETIME 3-45

reserved word 5-3
DATETIME data type 2-15
DAY 2-36

reserved word 5-3
DB2 3-48

load tables 3-97
DBA

GRANT (Database Authority) 3-82
reserved word 5-3
REVOKE (Database Authority) 3-107

dba authority
definition 3-82

DBAREA
reserved word 5-3

dbarea
drop 3-73

dbarea name
CREATE DBAREA 3-29

DBATTRIBUTE 1-6, 3-3, 3-69
reserved word 5-3

DBP_AUTOCOMMIT 7-13, A-12
DBP_BRAND 7-13, A-12
DBP_FETCHTHROUGH A-13
DBP_LOCKWAITTIMEOUT 7-13, A-13
DBP_NOPREBUILD A-13
DBP_PRESERVE 7-13, A-3

cursor
context preservation A-14

DBP_ROLLBACKONTIMEOUT A-14
DBP_ROLLBACKTIMEOUT 7-13
DBP_VERSION 7-13, A-14
DBV_BRAND_DB2 7-13
DBV_BRAND_ORACLE 7-13
DBV_BRAND_SQL 7-13
DDL 1-4
DEC

reserved word 5-3
DEC data type 2-10
DECIMAL 3-45

reserved word 5-3
DECIMAL data type 2-10
declare

input variable 3-104
local variables 7-6
output variable 3-104
parameters 7-5

DEFAULT
reserved word 5-3

default
error handling 7-45

DEINSTALL
reserved word 5-3

DEINSTALL DATABASE 1-6, 3-3, 3-70
DELETE 1-5, 2-24, 3-3, 3-71

AFTER 3-59
BEFORE 3-59
correlation name 3-71
GRANT (Table Privileges) 3-85
referential cycles 6-23
reserved word 5-3
REVOKE (Table Privileges) 3-109
search condition 3-71
table name 3-71
trigger 3-52, 3-59
view name 3-71
when to specify for referential integrity 6-15
WHERE 3-71
WHERE CURRENT OF 3-71
Index-8 SQL Language Reference

with referential integrity 6-19
with self-referencing rows and tables 6-13

delete
stored command A-5
stored procedure A-5

DELETE CASCADE 6-19
referential cycles

rules 6-25
referential cycles example 6-23

DELETE RESTRICT 6-19
referential cycles 6-25

DELETE SET NULL 6-19, 6-20
with partial NULL foreign key 6-10

DELETE WHERE CURRENT OF
with self-referencing rows and tables 6-13

DELETE_PARENT
ALTER TABLE (Error Messages) 3-13

delete-connected table restrictions 6-27
delimited identifier 2-2
delimiters

statement block 7-8
DESC

CREATE DBAREA 3-37
reserved word 5-3

descendent table 6-11
destroy

local variable 7-6
DIF

LOAD 3-97
reserved word 5-3
UNLOAD 3-133

DIR
for control file 3-99, 3-135

DIRECT
reserved word 5-3

DISABLE
ALTER TRIGGER 3-20
reserved word 5-3

disconnect
database A-5
internal Sql Handle A-2

DISCOUNTCOUNT
reserved word 5-3

DISTINCT
reserved word 5-3
SELECT 3-117

DISTINCTCOUNT 3-143
UPDATE STATISTICS 3-143

divide 7-29
DML commands 1-5
DML execution model 1-12
DOUBLE

reserved word 5-3
DOUBLE PRECISION data type 2-14
double quote

using with identifier 2-2
DQL commands 1-5
DROP

ALTER STOGROUP 3-9
ALTER TABLE 3-11
ALTER TABLE (Error Messages) 3-13
ALTER TABLE (referential integrity) 3-15
reserved word 5-3
with referential integrity 6-20

Drop
procedure 7-33

DROP DATABASE 3-3, 3-73
DROP DBAREA 3-3, 3-73
DROP EXTERNAL FUNCTION 3-3
DROP INDEX 3-3, 3-74
DROP STOGROUP 3-3, 3-77, 3-81
DROP SYNONYM 3-3, 3-77
DROP TABLE 3-3, 3-79
DROP TRIGGER 3-3, 3-80

example 3-80
privileges 3-80

DROP VIEW 3-3, 3-80
DYNAMIC

PROCEDURE 3-103
reserved word 5-3

Dynamic
procedure

advantages 7-36
dynamic procedure 7-32

E
EACH

reserved word 5-3
Else 7-14
Else If 7-14
ENABLE

ALTER TRIGGER 3-20
reserved word 5-3

ENCRYPTED
GRANT (Database Authority) 3-82

end
SQL Language Reference Index-9

Index
statement block 7-7, 7-8
equijoin 2-40
Erase

description 7-41
procedure 7-41

error
code

return A-6
local handler 7-45
message

text A-11
position

offset A-10
syntax

position A-10
error handling

default 7-45
in procedures 7-45
in triggers 7-56
procedure 7-45

error message
customizing for referential integrity 6-30

ERROR.SQL A-11
add customized error message 6-31

ERRORLEVEL
SET 3-23, 3-24

EVENT
reserved word 5-3

EVERY
reserved word 5-3

EXECUTE
CREATE TRIGGER 3-61
reserved word 5-3

execute
actions 7-7
command 1-11
procedure 7-41, A-6
SQL command A-6, A-17, A-18
Team Developer function 7-14
trigger 3-57

EXISTS
reserved word 5-3

EXISTS predicate 2-30
expression

definition 2-22
SELECT 3-117
using null values 2-23

extension

database 2-4
EXTERNAL

reserved word 5-3
EXTERNAL FUNCTION

COMMENT ON 3-25
external function

alter 3-7
create 3-30, 3-31

external functions 1-7

F
FALSE 7-12
fetch

next row
result set A-7

previous row
result set A-8

result set
next row A-7
previous row A-8

row A-9
FETCH_Delete

SqlFetchNext 7-12, A-8
SqlFetchPrevious A-9
SqlFetchRow A-10

FETCH_EOF
SqlFetchNext 7-12, A-8
SqlFetchPrevious A-9
SqlFetchRow A-10

FETCH_Ok
SqlFetchNext 7-12, A-8
SqlFetchPrevious A-9
SqlFetchRow A-10

FETCH_Update
SqlFetchNext 7-12, A-8
SqlFetchPrevious A-9
SqlFetchRow A-10

fetchthrough A-13
file

UNLOAD 3-133
file segments

specifying size 3-135
FILEPREFIX

for control file 3-99, 3-135
FLOAT 3-45

reserved word 5-3
FLOAT data type 2-14
flow control
Index-10 SQL Language Reference

language 3-105
FOR

reserved word 5-3
FOR EACH ROW

trigger 3-62
FOR EACH STATEMENT

trigger 3-62
FOR UPDATE OF

SELECT 3-121
FORCE

reserved word 5-3
FOREIGN

reserved word 5-3
FOREIGN KEY

ALTER TABLE (referential integrity) 3-16
CREATE TABLE 3-47

foreign key 1-8, 6-3, 6-7
columns 3-17, 3-47, 6-8
constraint name 6-7
create 6-15, 6-16
customized error messages 6-32
DROP 6-20, 6-21
guidelines 6-8
index 3-17, 3-47, 6-8, 6-9
insertion rules 6-18
matching primary key columns 3-17, 3-47, 6-8
name 3-17
NULL values 3-17, 3-47, 6-8, 6-23
report 6-16
using primary key columns 3-17, 3-47, 6-8
with NULL values 6-9

Form
templates 8-2

free
cursor name A-2

FROM
reserved word 5-3
SELECT 3-118

FROM PUBLIC
REVOKE (Table Privileges) 3-109
REVOKE EXECUTE ON 3-110

FROM userid
REVOKE EXECUTE ON 3-110

FUNCTION
reserved word 5-3

function 2-32
with indexes 3-36

G
get

database parameter A-12
error

message text A-11
rollback flag A-17
value

database parameter A-15
GLOBAL

reserved word 5-3
START AUDIT 3-125

grandparent table 6-14
GRANT 1-6, 3-3

reserved word 5-3
GRANT (Database Authority) 3-81

authority level 3-82
authorization ID 3-82
CONNECT 3-82
DBA 3-82
ENCRYPTED 3-82
IDENTIFIED BY 3-82
password 3-82
RESOURCE 3-82

GRANT (Table Privileges)
ALL 3-85
ALTER 3-85
authorization ID 3-85
DELETE 3-85
INDEX 3-85
INSERT 3-85
privilege 3-85
PUBLIC 3-86
SELECT 3-85
table name 3-85
UPDATE 3-85
view name 3-85

GRANT (table privileges) 3-3, 3-84
GRANT EXECUTE ON 1-6, 3-3, 3-86

example 3-88
procedure name 3-87
TO PUBLIC 3-87
TO userid 3-87
WITH CREATOR PRIVILEGES 3-88
WITH GRANTEE PRIVILEGES 3-88

GRANT EXECUTEON
PUBLIC keyword 3-88

GRANTE EXECUTE ON
privileges 3-87
SQL Language Reference Index-11

Index
GRANTEE
reserved word 5-3

greater than 7-29
greater than or equal to 7-29
great-grandparent table 6-14
GROUP

reserved word 5-3
GROUP BY

SELECT 3-119

H
HASHED

reserved word 5-4
HAVING

reserved word 5-4
SELECT 3-120

HEIGHT 3-143
HOUR 2-36

reserved word 5-4
HOURS

reserved word 5-4

I
ID

reserved word 5-4
IDENTIFIED

reserved word 5-4
IDENTIFIED BY

GRANT (Database Authority) 3-82
identifier 2-2

delimited 2-2
using quotes 2-2

long 2-2
maximum length 2-2
ordinary 2-2
qualified 2-2
see also name
short 2-2
using double quotes 2-2
see also name

identify
bind variables A-19, A-20

If 7-14
IF/ELSE

example 7-48
implicit commit 3-26
IN

CREATE TABLE 3-49

reserved word 5-4
IN DATABASE

CREATE TABLE 3-49
IN predicate 2-31
IN stogroup name

CREATE DATABASE 3-28
indentation

example 7-8
logic flow 7-7
statement block 7-7

independent table 6-12
INDEX

GRANT (Table Privileges) 3-85
privilege 3-85
reserved word 5-4
REVOKE (Table Privileges) 3-109
UPDATE STATISTICS 3-142

index 1-9, 3-17, 3-47, 6-8
check 3-23
drop 3-74
dropping primary 6-21
foreign key 6-9
functions 3-36
name 2-5
naming conventions 2-7
size 3-35
with functions 3-36
with OR operator 2-26

INDEXES
reserved word 5-4

indexes 1-7
INDEXPAGECOUNT 3-143
initialize

local variable 7-7
INLINE

reserved word 5-4
trigger 3-62

input
procedure 7-5

input parameter
procedure 3-103

input variable
declare 3-104

INSERT 1-5, 3-3, 3-88
ADJUSTING 3-90
AFTER 3-59
BEFORE 3-59
GRANT (Table Privileges) 3-85
Index-12 SQL Language Reference

privilege 3-85
referential cycles 6-23
reserved word 5-4
REVOKE (Table Privileges) 3-108
subselect 3-90
trigger 3-52, 3-59
VALUES 3-90
with partial NULL foreign key 6-10
with referential integrity 6-18

INSERT_DEPENDENT
ALTER TABLE (Error Messages) 3-14

INSTALL
reserved word 5-4

INSTALL DATABASE 1-6, 3-3, 3-92
INT

reserved word 5-4
INT data type 2-13
INTEGER 3-45

reserved word 5-4
integer arithmetic 2-10
INTEGER data type 2-13
integrity check 3-21, 3-23

error 3-23, 3-24
system indexes 3-21
system tables 3-21
view 3-23

integrity violation 3-23, 3-24
internal

Sql Handle
disconnect A-2
SqlImmediate A-18

INTO
reserved word 5-4

INTO clause
SqlPrepare A-19, A-20

invalidate
SQL command A-2

IS
reserved word 5-4

IS ’string-constant ’
COMMENT ON 3-25

isolation level
Cursor Stability A-22
Read Only A-22
Read Repeatability A-22
Release Locks A-22
set A-21

item

definition 2-22
IXNAME

reserved word 5-4

J
join 1-8, 2-38, 2-39, 2-40

equijoin 2-40
non-equijoin 2-43
number 2-43
outer join 2-41
self join 2-42

K
KEEP

reserved word 5-4
START AUDIT 3-126

KEY
reserved word 5-4

keywords, system 2-18

L
LABEL 1-6, 3-4, 3-93

multiple columns 3-94
ON COLUMN 3-94
ON TABLE 3-93
reserved word 5-4

LEAFCOUNT 3-143
less than 7-29
less than or equal to 7-29
LF

reserved word 5-4
LIBRARY

reserved word 5-4
LIKE

reserved word 5-4
LIKE predicate 2-31
LIMIT

reserved word 5-4
literal 2-17
LOAD 1-6, 3-4, 3-95

ASCII 3-97
COMPRESS 3-98
CONTROL 3-98
DB2 table 3-97
DIF 3-97
LOG 3-100
ON CLIENT 3-99
ON SERVER 3-99
SQL Language Reference Index-13

Index
reserved word 5-4
SQL 3-96
START AT 3-100
with referential integrity 6-16, 6-30

LOCAL
reserved word 5-4

local error handler 7-45
local variable

boolean 7-10
create 7-6
data types 7-6
date/time 7-10
default value 7-7
destroy 7-6
initialize 7-7
number 7-10
procedure 3-104, 7-6
sql handle 7-11, 7-12
string 7-11

LOCK
reserved word 5-4

lock
wait maximum A-22
wait timeout A-13

LOCK DATABASE 1-6, 3-4
database

lock 3-101
locking mode

Cursor Stability A-22
Read Only A-22
Read Repeatability A-22
Release Locks A-22
set A-21

LOG
ALTER DATABASE 3-5
LOAD 3-100
reserved word 5-4
UNLOAD 3-136

LOG TO
CREATE DATABASE 3-28

logic flow
Break 7-13

example 7-13
Call 7-14

example 7-14
Else 7-14
Else If 7-14
If 7-14

indentation 7-7
Loop 7-15

example 7-15
On 7-15

example 7-18
Return 7-24
Set

example 7-25
Set statement 7-25
Trace 7-25

example 7-26
When sqlerror 7-26
While 7-28

logical operators 2-25
LONG 2-9

reserved word 5-4
long identifier 2-2
LONG VARCHAR 2-9, 3-45
long varchar

trigger 3-62
LONGPAGECOUNT 3-143
Loop 7-15
loop

example 7-15
terminate 7-13

M
MAX 4-2, 4-10

reserved word 5-4
MESSAGE

reserved word 5-4
MICROSECOND 2-36

reserved word 5-4
MICROSECONDS 2-36

reserved word 5-4
MIN 4-2, 4-11

reserved word 5-4
MINUTE 2-36

reserved word 5-4
MINUTES

reserved word 5-4
MODIFY

ALTER TABLE 3-11
ALTER TABLE (Error Messages) 3-13
reserved word 5-4

MONTH 2-36
reserved word 5-4

MONTHS
Index-14 SQL Language Reference

reserved word 5-4
multiply 7-29

N
NAME

reserved word 5-4
name

authorization ID 2-3
bind variables 2-5
column name 2-4
command 2-5
correlation 2-4
cursor A-18

free A-2
SqlExecute A-6

database 2-4
examples 2-2
index 2-5
password 2-5
procedure 2-5, 3-103
requirements 2-6
see also identifier
SQL command A-25
synonym 2-5
table 2-5
types 2-3
user 2-3
view 2-6

naming conventions
variables 7-9

nest
triggers 3-54

NEW
reserved word 5-4

NEW AS
trigger 3-61

next row
fetch A-7

NEXTVAL 2-19, 2-20
reserved word 5-4

non-equijoin 2-40, 2-43
NOT 7-29

reserved word 5-4
NOT NULL

ALTER TABLE 3-11
CREATE TABLE 3-48

NOT NULL WITH DEFAULT
ALTER TABLE 3-11

CREATE TABLE 3-48
NOT operator 2-25
NULL 2-18, 3-46

ALTER TABLE 3-11
reserved word 5-4
with foreign key 3-17, 3-47, 6-8, 6-9, 6-10

null
definition 2-7
in expressions 2-23
search conditions 2-26

NULL predicate 2-30
NUMBER 3-45

reserved word 5-4
number 2-7, 7-9, 7-10
NUMBER data type 2-10
numeric constant 2-17
numeric data type 2-7, 2-9

O
ODBC Glossary-11
OF

reserved word 5-4
OFF

reserved word 5-4
offset

error position A-10
OLD

reserved word 5-4
OLD AS

trigger 3-61
ON

reserved word 5-4
On 7-15

example 7-18
ON CLIENT

LOAD 3-99
UNLOAD 3-136

ON COLUMN
LABEL 3-94

ON DELETE
ALTER TABLE (referential integrity) 3-18
CREATE TABLE 3-49

ON SERVER
LOAD 3-99
UNLOAD 3-136

On statement
where to specify 7-16

ON TABLE
SQL Language Reference Index-15

Index
LABEL 3-93
ONLY

reserved word 5-4
Open DataBase Connectivity

see ODBC Glossary-11
operators 7-29

 7-29
- 7-29
!= 7-29
& 7-29
* 7-29
+ 7-29
/ 7-29
<> 7-29
= 7-29
> 7-29
>= 7-29
| 7-29
|| 7-29
AND 7-29
NOT 7-29
parentheses 7-29
unary - 7-29

optimize 1-11
optimizer 1-12
OPTION

reserved word 5-4
OR

operators
OR 7-29

reserved word 5-4
OR operator 2-25

with index 2-26
Oracle outer join 2-42
oracleouterjoin keyword 2-42
ORDER

reserved word 5-4
ORDER BY

SELECT 3-120
order of execution

trigger 3-59
ordinary identifier 2-2
outer join 2-40
output

procedure 7-5
output parameter

procedure 3-103
output variable

declare 3-104
OVERWRITE 3-136

reserved word 5-4
START AUDIT 3-126
UNLOAD 3-136

OVFLPAGECOUNT 3-143

P
PAGECOUNT 3-143
Parameter

PROCEDURE 3-32
parameter

array 7-9
boolean 7-10
data types 7-5
database

get A-12
set A-23

date/time 7-10
DBP_AUTOCOMMIT A-12
DBP_BRAND A-12
DBP_FETCHTHROUGH A-13
DBP_LOCKWAITTIMEOUT A-13
DBP_NOPREBUILD A-13
DBP_PRESERVE A-14
DBP_ROLLBACKONTIMEOUT A-14
DBP_VERSION A-14
number 7-10
set A-23
sql handle 7-11, 7-12
string 7-11

PARAMETERS
PROCEDURE 3-103
reserved word 5-4

parent row 6-3, 6-12, 6-19, 6-30, 6-31
customized error messages 6-31

parent table 3-17, 3-47, 6-3, 6-8, 6-11, 6-18
parse 1-11
partial NULL/non-NULL foreign key 6-9
PASCAL

reserved word 5-4
pass by reference 7-10
pass by value 7-10
PASSWORD

reserved word 5-4
password 2-5

GRANT (Database Authority) 3-82
naming conventions 2-7
Index-16 SQL Language Reference

pattern matching 2-31
PCTFREE

CREATE DBAREA 3-38
CREATE TABLE 3-49
reserved word 5-4

percent sign pattern matching 2-31
PERFM

reserved word 5-4
START AUDIT 3-125

Perform
procedure 7-41

position
error

offset A-10
syntax error A-10

POST
reserved word 5-4

pre-build
result set A-13

precedence rules 2-24
PRECISION

reserved word 5-4
precision 2-10

calculating for addition/subtraction 2-11
calculating for division 2-12
calculating for multiplication 2-12

predicate 2-25, 2-27
BETWEEN 2-30
EXISTS 2-30
IN 2-31
LIKE 2-31
NULL 2-30
relational 2-27

Prepare
procedure 7-41

prepare
SQL command A-17

preservation
cursor context A-3

previous row
fetch A-8

PRIMARY
reserved word 5-4

primary index 6-6, 6-11
create 6-16
DROP 6-21

PRIMARY KEY
ALTER TABLE (referential integrity) 3-15

CREATE TABLE 3-46
primary key 1-8, 6-3, 6-11

alternate key 6-5
candidate key 6-4
composite 3-46, 6-4
create 6-15, 6-16
customized error message 6-32
definition 6-3
DROP 6-20
format 3-16, 3-46, 6-6
guidelines 6-5
number of columns 6-5
report 6-17
UPDATE rules 6-18
with self-referencing row 3-16, 3-46, 6-6

PRIMPAGECOUNT 3-143
privilege

GRANT (Table Privileges) 3-85
REVOKE (Table Privileges) 3-108

PRIVILEGES
reserved word 5-4

PROCEDURE 1-4, 3-4, 3-102, 7-30
ACTIONS 3-105
DYNAMIC 3-103
example 3-106
input variable

declare 3-104
Local variables 3-104
output variable

declare 3-104
Parameters 3-32, 3-103
reserved word 5-4
STATIC 3-103

procedure 3-102
access data 3-103
actions 7-7

execute 7-7
When SqlError 7-45

Actions section 7-12
Alter 7-33
benefits 7-2, 7-3
boolean 7-9
Break 7-13

example 7-13
Call 7-14

example 7-14
calling within another stored procedure 7-51
case sensitive 7-39
SQL Language Reference Index-17

Index
command invalidation 7-37
comments 7-28

example 7-28
compile 1-10
continuation lines and concatenation 7-29
create 3-103, 7-33
data types

boolean 7-10
date/time 7-10
number 7-10
sql handle 7-11, 7-12
string 7-11

date/time 7-9
debug 7-38
description 1-10, 7-2
difference from stored commands 7-3
Drop 7-33
drop 7-38
Dynamic

advantages 7-36
Else 7-14
Else If 7-14
Erase 7-41
error handler

local 7-45
error handling 7-45
Execute 7-41
execute 7-37
fetch example 7-50
format 7-4
generate 7-30
GRANT EXECUTE ON 3-86
If 7-14
IF/ELSE 7-48
indentation 7-7
input 7-5
input parameter 3-103
introduction 7-1
local variable 7-6

create 7-6
data types 7-6
default value 7-7
destroy 7-6
initialize 7-7

local variables
data types 7-6
declare 7-6

Loop 7-15

example 7-15
name 2-5, 3-103, 7-4
naming conventions 2-7
number 7-9
On 7-15

example 7-18
ON statement 7-49
operators 7-29
output 7-5
output parameter 3-103
parameter

array 7-9
parameters 7-5

data types 7-5
declare 7-5

Perform 7-41
Prepare 7-41
PUBLIC keyword 3-88
receive data types 7-10
related SQLTalk commands 7-41
result set

retrieve rows 7-16, 7-17
Return 7-24
REVOKE EXECUTE ON 3-110
Revoke execute on 3-110
rules for static 7-33
SAL 3-105
security 7-39
Set

example 7-25
Set statement 7-25
Set tracefile 7-41
Show trace 7-38, 7-41
Show tracefile 7-38, 7-41
sql handle 7-9
sqlbnd 7-41
sqlbnn 7-41
sqlbnv 7-41
sqlcbv 7-41
sqlcex 7-42
SqlClose A-2
sqlcom 7-42
SqlCommit A-3
SqlConnect A-4
sqlcty 7-42
sqldes 7-42
sqldii 7-42
sqldis 7-17
Index-18 SQL Language Reference

SqlDisconnect A-5
SqlDropStoredCmd A-5
sqldsc 7-42
sqldst 7-42
sqlepo 7-42
SqlError A-6
sqlexe 7-42
SqlExecute A-6
SqlExists A-7
sqlfet 7-17, 7-42
SqlFetchNext A-7
SqlFetchPrevious A-8
SqlFetchRow A-9
sqlget 7-42
SqlGetErrorPosition A-10
SqlGetErrorText A-11
SqlGetModifiedRows A-11
SqlGetParameter A-12
SqlGetParameterAll A-15
SqlGetResultSetCount A-16
SqlGetRollbackFlag A-17
SqlImmediate A-17
sqlnbv 7-42
sqlnii 7-42
sqlnsi 7-42
SqlOpen A-18
SqlPrepare A-19
SqlPrepareAndExecute A-20
sqlret 7-42
SqlRetrieve A-21
sqlset 7-42
SqlSetIsolationLevel A-21
SqlSetLockTimeout A-22
SqlSetParameter A-23
SqlSetParameterAll A-23
SqlSetResultSet A-24
sqlssb 7-42
sqlsto 7-42
state 7-15
static and dynamic 7-32
store 1-10, 7-36, 7-41
stored

delete A-5
static 7-32

string 7-9
Team Developer 7-2
Trace 7-25

example 7-26

USER 3-87
using SAL functionality 7-39
using SQL/API functions 7-41
using SQLhandling 7-49
variables

local 3-104
When SqlError 7-45
When sqlerror 7-26
While 7-28
with Team Developer 7-43

procedure name
GRANT EXECUTE ON 3-87

procedure_close 7-17
execute 7-16

procedure_execute 7-16
execute 7-16

procedure_fetch 7-17
execute 7-16

procedure_startup 7-16
execute 7-16

PROCESS
reserved word 5-4

PUBLIC
CREATE SYNONYM 3-42
DROP SYNONYM 3-74, 3-78
GRANT (Table Privileges) 3-86
reserved word 5-4

PUBLIC keyword
GRANT EXECUTE ON 3-88

Q
qualified identifier 2-2
QUALIFIER

reserved word 5-4
quantified relational predicate 2-27, 2-28
query

input 1-5
output 1-5

quotation mark
with delimited identifier 2-2

R
RAISE

reserved word 5-4
Read Only A-22
Read Repeatability A-22
REAL

reserved word 5-4
SQL Language Reference Index-19

Index
REAL data type 2-14
receive data type 7-10
recursive trigger 3-54
REFERENCES

ALTER TABLE (referential integrity) 3-18
CREATE TABLE 3-48
reserved word 5-4

REFERENCING
reserved word 5-4
trigger 3-61

referential cycle 6-22
referential integrity 6-1–6-35

ALTER TABLE 6-16, 6-20, 6-31
alternate key 6-5
benefits 6-2
candidate key 6-4
CHECK DATABASE 6-30
child row 6-12
child table 6-11, 6-18
components 6-3
composite primary key 6-4
concept 6-2
COPY 6-30
DELETE 6-19
DELETE CASCADE 6-19
DELETE RESTRICT 6-19
delete rule 3-49
DELETE SET NULL 6-10, 6-19, 6-20
descendent table 6-11
DROP 6-20
error messages 6-30
foreign key 1-8, 3-17, 3-47, 6-3, 6-7, 6-8, 6-9, 6-

21
constraint name 6-7
create 3-47, 6-15
customized error messages 6-32
DROP 6-20
guidelines 6-8
index 6-9
matching primary key columns 3-17, 3-47, 6-8
NULL values 3-17, 3-47, 6-8, 6-10
number of columns 3-17, 3-47, 6-8
number per table 3-17, 3-47, 6-8
parent table 3-17, 3-47, 6-8
partial NULL/non-NULL 6-9
privileges 3-17, 3-47, 6-8
sharing columns 3-17, 3-47, 6-8
system catalog tables 3-17, 3-47, 6-8

using primary key columns 3-17, 3-47, 6-8
with NULL values 6-23
with view 3-17, 3-47, 6-9

incomplete table 6-6
independent table 6-12
INSERT 6-10, 6-18
LOAD 6-16, 6-30
parent row 6-12
parent table 6-11, 6-18
parent/child tables 6-11
primary index 6-6

DROP 6-21
primary key 1-8, 6-3

columns 6-5
create 6-15, 6-16
customized error message 6-32
DROP 6-20
format 3-16, 3-46, 6-6
guidelines 6-5
permanent value 6-5
unique identifier 6-5
with self-referencing row 3-16, 3-46, 6-6
with view 3-16, 3-46, 6-5

referential cycles 6-22
DELETE implications 6-23
DELETE RESTRICT example 6-25
INSERT implications 6-23
rules 6-25

REORGANIZE 6-30
report 6-16
sample database tables 6-2, 6-33
see also primary key
self-referencing row 3-16, 3-17, 3-46, 3-48, 6-9,

6-13
restrictions 6-13

self-referencing table 6-3, 6-12
restrictions 6-13

SYSADM.SYSFKCONSTRAINTS 6-16
SYSADM.SYSPKCONSTRAINTS 6-17
SYSADM.SYSTABCONSTRAINTS 6-17
table

create 6-15
delete-connected restrictions 6-27

triggers 7-54
UPDATE 6-18
using triggers 3-56
view 3-17, 3-47, 6-9

referential integrity constraint 6-2
Index-20 SQL Language Reference

REL
reserved word 5-4

relational operator 1-5, 2-43
relational predicate 2-27

comparison 2-28
quantified 2-28

release locks A-22
RENAME

ALTER TABLE 3-12
reserved word 5-4

REORGANIZE
with referential integrity 6-30

reserved words 5-2
as identifiers 2-2

RESOURCE
GRANT (Database Authority) 3-82
reserved word 5-4
REVOKE (Database Authority) 3-107

resource authority
definition 3-82

RESTRICT
ALTER TABLE (referential integrity) 3-18
CREATE TABLE 3-49
reserved word 5-4

result set
pre-build A-13
rows

count A-16
save A-3

result set mode
change A-24

retrieve
rows

procedure 7-16, 7-17
Return 7-24
return

compiled command A-21
error code A-6
number of rows A-11
When SqlError 7-45

RETURNS
reserved word 5-4

REVOKE 1-6, 3-4
reserved word 5-4

REVOKE (Database Authority) 3-106
CONNECT 3-107
DBA 3-107
RESOURCE 3-107

SYSADM 3-107
REVOKE (Table Privileges) 3-108

ALL 3-109
ALTER 3-109
DELETE 3-109
FROM PUBLIC 3-109
INDEX 3-109
INSERT 3-108
privilege 3-108
SELECT 3-108
UPDATE 3-109

REVOKE EXECUTE ON 1-6, 3-4
FROM PUBLIC 3-110
FROM userid 3-110

Revoke execute on 3-110
examples 3-111
privileges 3-110

revoke privilege
external function 3-110
stored procedure 3-110

roll back
transaction A-14

ROLLBACK 1-5, 3-4, 3-111
reserved word 5-4
savepoint identifier 3-112

rollback flag
get A-17

ROW
reserved word 5-4

row 1-8
count A-16
counting 3-4, 3-113
fetch A-9
next

fetch A-7
number of

return A-11
previous

fetch A-8
self-referencing 3-16, 3-17, 3-46, 3-48, 6-13

ROWCOUNT 1-6, 3-4, 3-113, 3-143
reserved word 5-4

ROWID 2-18
reserved word 5-4

ROWPAGECOUNT 3-143
ROWS

CREATE INDEX 3-38
reserved word 5-4
SQL Language Reference Index-21

Index
S
SAL 7-13

procedure 3-105
SAME

reserved word 5-4
save

result set A-3
SAVEPOINT 1-5, 3-4, 3-113

reserved word 5-4
savepoint identifier

ROLLBACK 3-112
SAVEPOINT 3-114

scale 2-10
calculating for multiplication 2-12

SCHEMA
reserved word 5-4
UNLOAD 3-134

search condition 2-24
DELETE 3-71

SECOND 2-36
reserved word 5-4

SECONDS
reserved word 5-5

security
check A-19, A-20
with triggers 7-56

see DQL commands
SELECT 2-24, 3-4, 3-116

ALL 3-117
CREATE VIEW 3-67
DISTINCT 3-117
expression 3-117
fetch row A-7, A-8, A-9
FOR UPDATE OF 3-121
FROM 3-118
GRANT (Table Privileges) 3-85
GROUP BY 3-119
HAVING 3-120
ORDER BY 3-120
privilege 3-85
reserved word 5-5
REVOKE (Table Privileges) 3-108
SqlImmediate A-17
UNION 3-122
WHERE 3-119

self join 2-40, 2-42
self-referencing row 3-16, 3-17, 3-46, 3-48, 6-13

with foreign key 3-17, 3-48, 6-9

self-referencing table 6-3, 6-12
delete connection 6-14
DELETE rule 6-20

SEPARATE
reserved word 5-5

SERVER
reserved word 5-5

SET
reserved word 5-5
UPDATE 3-139
UPDATE STATISTICS

set test value 3-142
Set

example 7-25
set

database parameter A-23
isolation level A-21
locking mode A-21
result sets

on/off A-24
SET DEFAULT STOGROUP 1-6, 3-4, 3-123
SET ERRORLEVEL 3-23, 3-24
SET NULL

ALTER TABLE (referential integrity) 3-18
CREATE TABLE 3-49

Set statement 7-25
Set tracefile

procedure 7-41
short identifier 2-2
Show trace

procedure 7-38, 7-41
Show tracefile

procedure 7-38, 7-41
SIZE

ALTER DBAREA 3-6
CREATE DBAREA 3-29
CREATE INDEX 3-34
for control file 3-135
reserved word 5-5
START AUDIT 3-126

SIZE integer constant ROWS
CREATE DBAREA 3-38

SMALLINT 2-13, 3-45
reserved word 5-5

SMALLINT data type 2-13
SOME keyword 2-28
source table

UNLOAD 3-133
Index-22 SQL Language Reference

SQL
benefits 1-3
command processing 1-11
command types 1-4
data administration commands 1-5
data control commands 1-6
DDL 1-4
description 1-2
DML commands 1-5
DML execution model 1-12
history 1-2
how it organizes data 1-7
how to use it 1-3
join 1-8
LOAD 3-96
optimizer 1-12
relational operator 1-5
reserved word 5-5
subselect 1-5
transaction control commands 1-5
types of users 1-4
UNLOAD 3-132

SQL command
compile A-19, A-20
error

position A-10
execute A-17, A-18, A-20
invalidate A-2
name A-25
prepare A-17
store A-25

SQL functionality in procedures 7-39
SQL handle 7-49
Sql Handle

internal
SqlImmediate A-18

sql handle 7-9, 7-11, 7-12
SQL/API

with procedures 7-41
sqlbnd

procedure 7-41
sqlbnn

procedure 7-41
sqlbnv

procedure 7-41
sqlcbv

procedure 7-41
sqlcex

procedure 7-42
SqlClearImmediate 7-39, A-2

COMMIT A-2
parameters A-2
return value A-2
syntax A-2

SqlClose 7-39
description A-2
parameters A-2
return value A-2
syntax A-2

sqlcom
procedure 7-42

SqlCommit 7-39
description A-3
example A-3
parameters A-3
return value A-3
syntax A-3

SqlConnect 7-39
description A-4
example A-4
parameters A-4
return value A-4
syntax A-4

sqlcty
procedure 7-42

sqldes
procedure 7-42

sqldii
procedure 7-42

sqldis
procedure 7-17

SqlDisconnect 7-39
description A-5
example A-5
parameters A-5
return value A-5
syntax A-5

SqlDropStoredCmd 7-39
description A-5
parameters A-5
return value A-6
syntax A-5

sqldsc
procedure 7-42

sqldst
procedure 7-42
SQL Language Reference Index-23

Index
sqlepo
procedure 7-42

SqlError 7-39
description A-6
parameters A-6
return value A-6
syntax A-6

sqlexe
procedure 7-42

SqlExecute 7-39
bind variables A-6
cursor name A-6
description A-6
parameters A-7
return value A-7
syntax A-6

SqlExists 7-39
description A-7
parameters A-7
return value A-7
syntax A-7

sqlfet
procedure 7-17, 7-42

SqlFetchNext 7-39, A-6, A-20
description A-7
FETCH_Delete 7-12, A-8
FETCH_EOF 7-12, A-8
FETCH_Ok 7-12, A-8
FETCH_Update 7-12, A-8
parameters A-8
return value A-8
syntax A-7

SqlFetchPrevious 7-39, A-6, A-20
description A-8
FETCH_Delete A-9
FETCH_EOF A-9
FETCH_Ok A-9
FETCH_Update A-9
parameters A-9
return value A-9
syntax A-8

SqlFetchRow 7-39, A-6, A-20
description A-9
FETCH_Delete A-10
FETCH_EOF A-10
FETCH_Ok A-10
FETCH_Update A-10
parameters A-9

return value A-10
syntax A-9

sqlget
procedure 7-42

SqlGetErrorPosition 7-39
description A-10
parameters A-10
return value A-10
syntax A-10

SqlGetErrorText 7-40
description A-11
parameters A-11
return value A-11
syntax A-11

SqlGetModifiedRows 7-40
description A-11
parameters A-11
return value A-11
syntax A-11

SqlGetParameter 7-40
description A-12
example A-14
parameters A-12
return value A-14
syntax A-12

SqlGetParameterAll 7-40
description A-15
parameters A-15
return value A-15
syntax A-15

SqlGetResultSetCount 7-40
description A-16
example A-16
parameters A-16
return value A-16
syntax A-16

SqlGetRollbackFlag 7-40
description A-17
example A-17
parameters A-17
return value A-17
syntax A-17

SqlImmediate 7-40
description A-17
parameters A-18
return value A-18
SELECT A-17
Sql Handle
Index-24 SQL Language Reference

internal A-18
syntax A-17

sqlnbv
procedure 7-42

sqlnii
procedure 7-42

sqlnsi
procedure 7-42

SqlOpen 7-40
description A-18
parameters A-18
return value A-19
syntax A-18

SqlPrepare 7-40
description A-19
INTO clause A-19, A-20
parameters A-19, A-20
return value A-19, A-20
syntax A-19

SqlPrepareAndExecute 7-40
description A-20
syntax A-20

sqlret
procedure 7-42

SqlRetrieve 7-40
description A-21
parameters A-21
return value A-21
syntax A-21

sqlset
procedure 7-42

SqlSetIlsolationLevel
parameters A-22

SqlSetIsolationLevel 7-40
description A-21
return value A-22
syntax A-21

SqlSetLockTimeout 7-40
description A-22
parameters A-22
return value A-22
syntax A-22

SqlSetParameter 7-40
cursor context A-3
description A-23
parameters A-23
return value A-23
syntax A-23

SqlSetParameterAll 7-40
description A-23
parameters A-23
return value A-24
syntax A-23

SqlSetResultSet 7-40
description A-24
parameters A-24
return value A-24
syntax A-24

sqlssb
procedure 7-42

sqlsto
procedure 7-42

SqlStore 7-40
bind variables A-25
description A-25
parameters A-25
return value A-25
syntax A-25

SQLTalk
commands for procedures 7-41

START
reserved word 5-5

START AT
LOAD 3-100

START AUDIT 1-5, 3-4, 3-124
APPEND 3-126
audit name 3-125
CATEGORY 3-127
GLOBAL 3-125
KEEP 3-126
OVERWRITE 3-126
PERFM 3-125
SIZE 3-126
TO 3-125

state
procedure 7-15

STATEMENT
reserved word 5-5

statement block 7-7
begin 7-7, 7-8
delimiters 7-8
end 7-7, 7-8
indentation 7-7

STATIC
PROCEDURE 3-103
reserved word 5-5
SQL Language Reference Index-25

Index
static procedure
described 7-32
rules 7-33

STATISTICS
reserved word 5-5

STDCALL
reserved word 5-5

STOGROUP
ALTER DATABASE 3-5
reserved word 5-5

STOP AUDIT 1-5, 3-4, 3-129
storage group

drop 3-77, 3-81
set default 3-123

STORE 7-36
procedure 1-10
SQL command 1-10

store
procedure 7-41
SQL command A-25

stored command
delete A-5

stored commands 1-7
stored procedure

delete A-5
loading data 3-95
static 7-32
trigger 3-62
unloading data 3-130

stored procedures 1-7
string 7-9, 7-11

concatenate 7-29
concatenation operator 2-23
definition 2-17

string constant 2-17
subquery 2-43

examples 2-29
subselect 1-5

examples 2-29
INSERT 3-90

subtract 7-29
SUM 4-2, 4-12

reserved word 5-5
SYNCREATOR

reserved word 5-5
SYNNAME

reserved word 5-5
SYNONYM

reserved word 5-5
synonym

definition 1-9
drop 3-77
naming conventions 2-7

synonym name 2-5
synonyms 1-7
syntax

check A-19, A-20
syntax error

position A-10
SYSADM

REVOKE (Database Authority) 3-107
SYSADM.SYSFKCONSTRAINTS 6-16
SYSADM.SYSPKCONSTRAINTS 6-17
SYSADM.SYSTABCONSTRAINTS 6-17
SYSDATE 2-19, 2-35, 2-36

reserved word 5-5
SYSDATETIME 2-19, 2-35

reserved word 5-5
SYSDBSEQUENCE

reserved word 5-5
SYSDBSequence 2-20
SYSDBTRANSID 2-19

reserved word 5-5
system catalog 1-11

with foreign key 3-17, 3-47, 6-8
system keywords 2-18
SYSTEM ONLY

CHECK DATABASE 3-21
SYSTIME 2-19, 2-35, 2-36

reserved word 5-5
SYSTIMEZONE 2-19, 2-35, 2-36

reserved word 5-5

T
TABAUTH

reserved word 5-5
TABLE

ALTER TABLE 3-10
ALTER TABLE (referential integrity) 3-15
COMMENT ON 3-25
LABEL ON 3-94
reserved word 5-5
UPDATE STATISTICS 3-142

table 1-7, 2-4
check 3-23
child 6-11
Index-26 SQL Language Reference

create with referential integrity 6-15
delete-connected restrictions 6-27
drop 3-79
grandparent 6-14
great-grandparent 6-14
incomplete 6-6
name 2-5
name within command 2-4
naming conventions 2-7
parent 6-11
report constraints 6-17
row count 3-4, 3-113
rules for inserting with foreign key 6-18
self-referencing 6-12

table name 2-5
CREATE TABLE 3-45
DELETE 3-71
GRANT (Table Privileges) 3-85
UPDATE 3-138

TBNAME
reserved word 5-5

Team Developer
function

execute 7-14
functions

case sensitive 7-39
procedure 7-2
using with procedures 7-43

terminate
loop 7-13

text
storing 2-9

THREAD
reserved word 5-5

TIME 3-45
reserved word 5-5

time
keywords 2-36
lock wait A-22
see also date/time

TIME data type 2-16
time zone 2-37
timeout

lock A-13
TIMESTAMP 3-45

reserved word 5-5
TIMESTAMP data type 2-15
TIMESYSTIME 2-36

TIMEZONE
reserved word 5-5

timezone
sql.ini keyword 2-37

TO
reserved word 5-5
START AUDIT 3-125

TO PUBLIC
GRANT EXECUTE ON 3-87

TO userid
GRANT EXECUTE ON 3-87

Trace 7-25
example 7-26

TRANSACTION
reserved word 5-5

transaction
control commands 1-5
roll back A-14

TRANSACTION <ID> FORCE
COMMIT 3-26
ROLLBACK 3-112

Transaction Control Commands 1-5
TRIGGER

reserved word 5-5
Trigger 2-7

naming requirements 2-7
trigger 7-54

activate 3-52
AFTER 3-57
autocommit 3-59
BEFORE 3-57
bind variables 3-62
columns 3-60
commit 3-59
data consistency 7-54
data integrity 7-54
definition 1-10, 7-54
DELETE 3-52, 3-59

AFTER 3-59
BEFORE 3-59

DML execution model 1-12
drop 3-80
error handling 3-52, 7-56
examples 3-63
EXECUTE 3-61
execution order 3-59
execution time 3-57
FOR EACH ROW 3-62
SQL Language Reference Index-27

Index
FOR EACH STATEMENT 3-62
INLINE 3-62
INSERT 3-52, 3-59

AFTER 3-59
BEFORE 3-59

limit 3-52, 3-57
long varchar 3-62
name 3-57
nest 3-54
NEW AS 3-61
OLD AS 3-61
privileges 3-51
recursive 3-54
recursive update 3-59
REFERENCING 3-61
referential integrity 3-56, 7-54
security 7-56
stored procedure 3-62
UPDATE 3-52, 3-59

AFTER 3-58
BEFORE 3-58
REFERENCING 3-61

view 3-51
triggers 1-7
TRUE 7-12
TYPE

reserved word 5-5

U
unary - 7-29
unary operator 2-24
underscore 2-31
UNION

reserved word 5-5
SELECT 3-122

UNIQUE
CREATE DBAREA 3-37
reserved word 5-5

UNLOAD 1-6, 3-4, 3-130, 3-136
ALL 3-134
ASCII 3-133
COMPRESSION 3-134
CONTROL 3-134
DATA 3-132
DATABASE 3-134
DIF 3-133
file 3-133
LOG 3-136

ON CLIENT 3-136
ON SERVER 3-136
reserved word 5-5
SCHEMA 3-134
source table 3-133
SQL 3-132
with AUTORECOMPILE 3-131

UNLOCK DATABASE 1-6, 3-4, 3-137
UPDATE 1-5, 2-24, 3-4, 3-138

AFTER 3-58
BEFORE 3-58
CHECK EXISTS 3-140
column name 3-139
correlation name 3-139
GRANT (Table Privileges) 3-85
REFERENCING 3-61
reserved word 5-5
REVOKE (Table Privileges) 3-109
SET 3-139
table name 3-138
trigger 3-52, 3-59
view name 3-139
WHERE 3-139
WHERE CURRENT OF 3-139
with referential integrity 6-18

update (recursive)
trigger 3-59

UPDATE privilege 3-85
UPDATE RESTRICT 6-18
UPDATE STATISTICS 1-6, 3-4, 3-143

DATABASE 3-142
INDEX 3-142
TABLE 3-142

UPDATE WHERE CURRENT
with referential integrity 6-6

UPDATE_DEPENDENT
ALTER TABLE (Error Messages) 3-14

UPDATE_PARENT
ALTER TABLE (Error Messages) 3-14

USER 2-3, 2-19
procedure 3-87
reserved word 5-5

user
name 2-3

USERERROR
ALTER TABLE (Error Messages) 3-13
reserved word 5-5

username 2-3
Index-28 SQL Language Reference

USING
CREATE STOGROUP 3-40
reserved word 5-5

V
VALUES

INSERT 3-90
reserved word 5-5

VARCHAR 2-8, 2-31, 3-45
reserved word 5-5

variable
input

declare 3-104
output

declare 3-104
VARIABLES

reserved word 5-5
variables

bind
SqlExecute A-6

local
procedure 3-104

naming conventions 7-9
version

database A-14
VIEW

reserved word 5-5
view 1-7, 2-4

definition 1-9
drop 3-80
integrity check 3-23
name 2-6
name within command 2-4
naming conventions 2-7
referential integrity 3-16, 3-46, 6-5
trigger 3-51
UPDATE rules 6-18
with foreign key 3-17, 3-47, 6-9

view name 2-6
CREATE VIEW 3-67
DELETE 3-71
GRANT (Table Privileges) 3-85
UPDATE 3-139

W
WAIT

reserved word 5-5
wait

lock
maximum A-22

When SqlError
actions 7-45
procedure 7-45
return 7-45

When sqlerror 7-26
WHERE 2-24

DELETE 3-71
reserved word 5-5
SELECT 3-119
UPDATE 3-139

WHERE CURRENT OF
DELETE 3-71
UPDATE 3-139

While 7-28
WITH

reserved word 5-5
WITH CHECK OPTION

CREATE VIEW 3-68
WITH CREATOR PRIVILEGES

GRANT EXECUTE ON 3-88
WITH GRANTEE PRIVILEGES

GRANT EXECUTE ON 3-88
WITHOUT

reserved word 5-5
WITHOUT INDEXES

CHECK TABLE 3-24
WORK

COMMIT 3-26
reserved word 5-5

Y
Y2K 2-33
YEAR 2-36

reserved word 5-5
year 2000 2-33
YEARS

reserved word 5-5
SQL Language Reference Index-29

	SQLBase SQL Language Reference
	Contents
	Preface
	Who should read this manual
	Summary of chapters
	Syntax diagrams
	Notation conventions
	Other helpful resources
	Send comments to...

	Chapter 1: Introduction to SQL
	What is SQL?
	SQL history
	Why is SQL used?
	How you use SQL
	Who uses SQL?
	Types of SQL commands
	Example of a SQL command

	What are SQL objects?
	Database
	Tables
	Indexes
	Views
	Synonyms
	Stored commands and procedures
	External functions
	Triggers

	System catalog tables
	SQL command processing
	Optimizer
	DML Execution Model

	Chapter 2: SQL Elements
	Names
	Examples of names
	Types of names
	Summary of naming requirements

	Data types
	Null values

	Character data types
	CHAR (or VARCHAR)
	LONG VARCHAR (or LONG)

	Numeric data types
	NUMBER
	DECIMAL (or DEC)
	Currency
	INTEGER (or INT)
	SMALLINT
	DOUBLE PRECISION
	FLOAT
	REAL

	Date/Time data types
	DATETIME (or TIMESTAMP)
	DATE
	TIME

	Data type conversions
	Data type conversions in assignments
	Data type conversions in functions

	Constants
	String constants
	Numeric constants
	Date/Time constants
	Examples of constants

	System keywords
	Using SYSDBTRANSID keyword

	Database sequence objects
	Using SYSDBSequence

	Expressions
	Null values in expressions
	String concatenation operator (||)
	Precedence
	Examples of expressions

	Search conditions
	Nulls and search conditions
	Examples of search conditions

	Predicates
	Relational predicate
	BETWEEN predicate
	NULL predicate
	EXISTS predicate
	LIKE predicate
	IN predicate

	Functions
	Date/Time values
	Entering date/time values
	Date/time system keywords
	Resolution for time keywords
	Time zones
	Date/Time expressions
	Examples of date/time expressions

	Joins
	Types of joins
	Number of joins

	Subqueries
	Examples of subqueries

	Bind variables

	Chapter 3: SQL Command Reference
	SQL command summary
	ALTER DATABASE
	ALTER DBAREA
	ALTER EXTERNAL FUNCTION
	ALTER PASSWORD
	ALTER STOGROUP
	ALTER TABLE
	ALTER TABLE (Error Messages)
	ALTER TABLE (Referential Integrity)
	ALTER TRIGGER
	AUDIT MESSAGE
	CHECK DATABASE
	CHECK INDEX
	CHECK TABLE
	COMMENT ON
	COMMIT
	CREATE DATABASE
	CREATE DBAREA
	CREATE EXTERNAL FUNCTION
	CREATE INDEX
	CREATE STOGROUP
	CREATE SYNONYM
	CREATE TABLE
	CREATE TRIGGER
	CREATE VIEW
	DBATTRIBUTE
	DEINSTALL DATABASE
	DELETE
	DROP DATABASE
	DROP DBAREA
	DROP EXTERNAL FUNCTION
	DROP INDEX
	DROP STOGROUP
	DROP SYNONYM
	DROP TABLE
	DROP TRIGGER
	DROP VIEW
	GRANT (Database Authority)
	GRANT (Table Privileges)
	GRANT EXECUTE ON
	INSERT
	INSTALL DATABASE
	LABEL
	LOAD
	LOCK DATABASE
	PROCEDURE:
	REVOKE (Database Authority)
	REVOKE (Table Privileges)
	REVOKE EXECUTE ON
	ROLLBACK
	ROWCOUNT
	SAVEPOINT
	SELECT
	SET DEFAULT STOGROUP
	START AUDIT
	STOP AUDIT
	UNLOAD
	UNLOCK DATABASE
	UPDATE
	UPDATE STATISTICS

	Chapter 4: SQL Function Reference
	Data type conversions in functions
	Aggregate functions
	String functions
	Date/Time functions
	Math functions
	Finance functions
	Logical functions
	Special functions
	SQLBase function summary
	AVG
	COUNT
	MAX
	MIN
	SUM
	@ABS
	@ACOS
	@ASIN
	@ATAN
	@ATAN2
	@CHAR
	@CHOOSE
	@CODE
	@COS
	@CTERM
	@DATE
	@DATETOCHAR
	@DATEVALUE
	@DAY
	@DECIMAL
	@DECODE
	@EXACT
	@EXP
	@FACTORIAL
	@FIND
	@FV
	@HEX
	@HOUR
	@IF
	@INT
	@ISNA
	@LEFT
	@LENGTH
	@LICS
	@LN
	@LOG
	@LOWER
	@MEDIAN
	@MICROSECOND
	@MID
	@MINUTE
	@MOD
	@MONTH
	@MONTHBEG
	@NOW
	@NULLVALUE
	@PI
	@PMT
	@PROPER
	@PV
	@QUARTER
	@QUARTERBEG
	@RATE
	@REPEAT
	@REPLACE
	@RIGHT
	@ROUND
	@SCAN
	@SDV
	@SECOND
	@SIN
	@SLN
	@SQRT
	@STRING
	@SUBSTRING
	@SYD
	@TAN
	@TERM
	@TIME
	@TIMEVALUE
	@TRIM
	@UPPER
	@VALUE
	@WEEKBEG
	@WEEKDAY
	@YEAR
	@YEARBEG
	@YEARNO
	@LEFT
	@LENGTH
	@LICS
	@LN
	@LOG
	@LOWER
	@MEDIAN
	@MICROSECOND
	@MID
	@MINUTE
	@MOD
	@MONTH
	@MONTHBEG
	@NOW
	@NULLVALUE
	@PI
	@PMT
	@PROPER
	@PV
	@QUARTER
	@QUARTERBEG
	@RATE
	@REPEAT
	@REPLACE
	@RIGHT
	@ROUND
	@SCAN
	@SDV
	@SECOND
	@SIN
	@SLN
	@SQRT
	@STRING
	@SUBSTRING
	@SYD
	@TAN
	@TERM
	@TIME
	@TIMEVALUE
	@TRIM
	@UPPER
	@VALUE
	@WEEKBEG
	@WEEKDAY
	@YEAR
	@YEARBEG
	@YEARNO

	Chapter 5: SQL Reserved Words
	SQL Reserved Words

	Chapter 6: Referential Integrity
	About referential integrity
	Sample service database
	The benefits of referential integrity

	Components
	Primary key
	Foreign key
	Parent and child tables
	Parent and child rows
	Self-referencing tables and rows
	Delete-connected tables

	How to create tables with referential constraints
	Using the CREATE TABLE statement
	Using the ALTER TABLE statement
	Creating a primary index

	Reporting referential integrity
	Implications for SQLBase operations
	INSERT
	UPDATE
	DELETE
	DROP
	SELECT

	Cycles of dependent tables
	INSERT implications
	DELETE implications
	Delete-connected table restrictions

	SQLTalk commands and referential integrity
	Customizing SQLBase error messages
	Editing the error messages
	Primary key error messages
	Foreign key error messages

	Service database tables

	Chapter 7: Procedures and Triggers
	What is a procedure?
	Why use procedures?
	How stored procedures are different from stored commands

	Format of a procedure
	Name
	Parameters
	Local variables
	Actions

	Data types supported in procedures
	Boolean
	Date/Time
	Number
	Sql Handle
	String
	Long String
	Window Handle
	File Handle

	System constants supported in procedures
	Using SAL statements
	Break
	Call
	If, Else, and Else If
	Loop
	On <procedure state>
	Return
	Set
	Trace
	When SqlError
	While
	Comments
	Operators
	Continuation lines and concatenation

	How to generate, store, execute and drop procedures
	Generating a procedure
	Storing a procedure
	Executing a procedure
	Dropping a procedure
	Debugging a procedure
	Security

	SAL functionality in SQLBase
	Related SQLTalk commands
	Using SQL/API functions with procedures
	Using procedures with Centura Team Developer applications
	Default for Result Sets in Stored Procedures
	Calling a SQLBase Procedure

	Error handling
	Procedure examples
	Example 1 - Procedure IF/Else statement
	Example 2- Using SQL handles and ON statements
	Example 3 - Doing a fetch
	Example 4 - Calling a stored procedure from within another procedure

	Triggers
	What is a trigger?
	Error handling in triggers

	Chapter 8: External Functions
	What is an External Function?
	Why use external functions?
	Security

	How to declare external functions
	Function name
	Library
	Parameters and return data types
	External Name
	Callstyle
	Execution Mode

	Using external data types
	Parameters and External Data types
	Providing external data types
	Numeric and boolean data types
	String data type
	Date/Time data types
	Other external data types

	Calling External Functions
	Building a 16-bit DLL
	Pre-loading DLLs
	Specifying external functions within stored procedures
	Specifying external functions for export to the DLL
	Calling SAL functions as external functions

	Developing external functions
	Choosing an Execution Mode for Win32
	Executing in separate process
	Testing and debugging external functions

	Modifying external function definitions
	Alter external function
	Drop external function

	Error Handling
	Exception Handling

	System Catalog tables for external functions
	SQLBase-supplied scripts and DLLs
	Scripts and DLLs for 32-bit systems
	Scripts and DLLs for 16-bit systems

	External function example

	Appendix A: SAL Functions
	SqlClearImmediate
	SqlClose
	SqlCommit
	SqlConnect
	SqlDisconnect
	SqlDropStoredCmd
	SqlError
	SqlExecute
	SqlExists
	SqlFetchNext
	SqlFetchPrevious
	SqlFetchRow
	SqlGetErrorPosition
	SqlGetErrorText
	SqlGetModifiedRows
	SqlGetParameter
	SqlGetParameterAll
	SqlGetResultSetCount
	SqlGetRollbackFlag
	SqlImmediate
	SqlOpen
	SqlPrepare
	SqlPrepareAndExecute
	SqlRetrieve
	SqlSetIsolationLevel
	SqlSetLockTimeout
	SqlSetParameter
	SqlSetParameterAll
	SqlSetResultSet
	SqlStore

	Glossary
	Index

