
Database Administration Made
Easy With Oracle9i

An Oracle White Paper
May 2002

Database Administration Made Easy With Oracle9i

INTRODUCTION .. 4

SPACE MANAGEMENT .. 4
Automatic Segment Space Management ... 4
Oracle Managed Files ... 5
Fully Locally Managed Database .. 6
File Map and IO Topology for Intelligent Storage Arrays 6
Default Temporary Tablespace... 7
Delete Datafiles... 7

MEMORY MANAGEMENT .. 8
Dynamic Shared Memory Management .. 8
Self-Tuning SQL Execution Memory.. 10
Self-Tuning Direct I/O.. 11

RESOURCE MANAGEMENT .. 11
Automatic Consumer Group Switching.. 12
Operation Queuing... 13
Maximum Estimated Execution Time... 14
Undo Quota... 14

BACKUP AND RECOVERY MANAGEABILITY ENHANCEMENTS 14
Persistent Parameter Configuration ... 14
Retention Policy .. 15
Restartable Backup and Restore ... 15
Archive Log Failover.. 15
Self Describing Backup.. 16
Administrator Bound Recovery Time ... 16

TRANSACTION MANAGEMENT .. 17
Automatic Undo Management ... 17
Resumable Space Allocation ... 19

OTHER DAY-TO-DAY DATABASE ADMINISTRATIVE TASKS 21
Server Side Persistent Initialization Parameter File 21
Multiple Block Size Support .. 22
Cached Execution plans... 23

Database Administration Made Easy With Oracle9i Page 2

Automatic Cost Based Optimizer (CBO) Statistics Gathering
Enhancements... 23
Transaction Naming... 24

CONCLUSION.. 24

Database Administration Made Easy With Oracle9i Page 3

Database Administration Made Easy With Oracle9i

INTRODUCTION
The Oracle server has evolved from a traditional RDBMS to a broad based Internet
platform. Revolutionary growth of the Internet and emergence of the Oracle
server as the lifeblood of any eBusiness has underlined the need for better
management of Oracle databases to ensure round the clock availability and high
performance. One of the key focus areas of Oracle9i has been to enhance Oracle
Database manageability by automating routine DBA tasks, reducing complexity of
administration and making it more self-tuning. A number of new features have
been added to streamline space, memory, and resource management as well as
other day-to-day database administrative tasks. This paper discusses the key
features of Oracle9i that have been provided to simplify server management and
ease database administrative tasks.

SPACE MANAGEMENT
Database space management has always been an important part of any database
administrator’s job. Administrators spend a significant amount of their time in
planning and monitoring the space utilization in order to ensure uninterrupted
database operations. New features introduced in Oracle9i simplify the space
administration tasks, enforce best practices and eliminate much of the space
management related performance tuning.

Automatic Segment Space Management
Oracle9i introduces a new scheme of managing free space inside a database
segment such as tables or indexes. Currently data structures called the FREELISTS
keep track of blocks within an object that can be used to insert new rows. In
addition to the FREELLISTS, Oracle9i allows the free space within a segment to
be tracked using bit maps. The new mechanism makes the task of managing space
within an object completely transparent to the administrators by using bitmaps to
track the space utilization of each data block allocated to the object. The state of
the bitmap indicates how much free space exists in a given data block (i.e. > 75%,
between 50 and 75%, between 25 to 50% or < 25%) as well as whether it its
formatted or not. The new implementation eliminates the necessity to tune space
management related controls (such as FREELISTS, FREELIST GROUPS and
PCTUSED) thereby freeing database administrators from manually managing the
space within a database object. At the same time, it improves the space utilization

Database Administration Made Easy With Oracle9i Page 4

since the database now has a more accurate knowledge of how free a data block is.
This enables better reuse of the available free space especially for objects with rows
of highly varying size. Additionally, the Automatic Segment Space Management
feature improves the performance of concurrent DML operations significantly
since different parts of the bitmap can be used simultaneously eliminating
serialization for free space lookups.

The Automatic Segment Space Management feature is available only with locally
managed tablespaces. A new clause SEGMENT SPACE MANAGEMENT in the
CREATE TABLESPACE command allows administrators to choose between
automatic and manual modes. A tablespace created with MANUAL segment space
management continues to use FREELISTS for managing free space within the
objects located in it. Any specification of PCTUSED, FREELISTS and FREELIST
GROUPS parameters for objects created in this tablespace will be ignored. A new
column called SEGMENT_SPACE_MANAGEMENT has been added to the
DBA_TABLESPACES view to indicate the segment space management mode
used by a tablespace.

Oracle Managed Files
Continuing in its quest to make life simpler for DBAs, Oracle9i’s “Oracle Managed
File” (OMF) feature simplifies database administration by eliminating the need for
administrators to directly manage the files of an Oracle database. This feature
allows for specifying operations in terms of database objects. Oracle internally uses
the standard operating system (OS) file system interfaces to create and delete files
as needed for tablespaces, online logs and controlfiles. DBAs merely need to
specify the location of these files using new initialization parameters. Oracle then
ensures creation of a file with a unique name and deletes it when the corresponding
object is dropped.

OMF eliminates errors caused by administrators specifying incorrect file names,
reduces disk space wasted in obsolete files, and simplifies creation of test and
development databases. It also makes development of portable third party
applications easier by eliminating the need to put OS-specific file names in SQL
scripts.

While the parameter DB_CREATE_FILE_DEST specifies the default location of
datafiles, DB_CREATE_ONLINE_LOG_DEST_<n>, where n is any integer
between 1 and 5, decide the default location for copies of online logs and
controlfiles. If no DB_CREATE_ONLINE_LOG_DEST parameters are set, all
the files (datafiles, controlfiles and online logs) will be created at the destination
specified by the DB_CREATE_FILE_DEST parameter.

Oracle Managed datafiles, created by default, are 100 MB in size and are auto
extensible with unlimited maximum size. The default size of Oracle Managed
online logs is also 100MB.

Database Administration Made Easy With Oracle9i Page 5

Fully Locally Managed Database
Locally Managed Tablespaces, introduced in Oracle8i, liberated DBAs from having
to manage the space within a tablespace manually. As opposed to the administrator
deciding how the space is to be allocated and reused, this feature enables the Oracle
Database to automatically use the available disk space in the most optimal manner.
As a result, DBAs no longer need to worry about tablespace de-fragmentation
issues and spend a significant amount of their time reorganizing database objects
just to coalesce fragmented free space within a tablespace.

Beginning with Oracle9i Release 2, the SYSTEM tablespace can also of locally
managed type. This allows creation of a fully locally managed database consisting of
locally managed tablespaces only. Such a database uses the available space more
efficiently, significantly improves the performance of DML (INSERT, UPDATE,
DELETE) and DDL operations (DROP) and, frees administrators from some of
the most time-consuming routine space management tasks.

A fully locally managed database can be created either by using the Database
Configuration Assistant (DBCA) predefined templates or by specifying the
EXTENT MANAGEMENT LOCAL clause in the CREATE DATABASE
command. It is also possible to migrate an existing dictionary managed SYSTEM
tablespace to locally managed type using either Oracle Enterprise Manager or the
DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL procedure.

File Map and IO Topology for Intelligent Storage Arrays
In an environment where datafiles are simply file system files or are created directly
on a raw device, it is relatively straightforward to see the association between a
tablespace and the underlying device. The mapping of files onto devices can be
used together with device statistics to determine I/O performance.

However, with more common use of host based Logical Volume Managers (LVM),
and sophisticated storage subsystems that provide RAID features, it is not always
easy to determine the file to device mapping. In fact, to get an understanding of
I/O performance, one must have detailed knowledge of storage hierarchy on which
the data file resides.

Oracle9i Release 2 provides a number of dynamic performance views (i.e. v$ views)
to map Oracle datafiles to intermediate layers of logical volumes and actual physical
devices on supported storage sub-systems. Using these views, a DBA can locate the
exact disk on which any block of a file resides. Oracle Enterprise Manager Storage
Management makes it easy to view the files mapping, their logical grouping and the
properties of each storage device. This information will help immensely in
diagnosing and correcting problems related to storage layout.

This feature is currently available only for EMC disk subsystems.

Database Administration Made Easy With Oracle9i Page 6

Using Oracle Enterprise Manager, it is now
possible to easily traverse through the
storage mapping tree starting from an
individual table all the way up to the
physical disk block where the
corresponding data is stored.

Default Temporary Tablespace
Storing temporary data in a permanent tablespace incurs the same space
management overhead as that of managing permanent data and therefore can be
inefficient. With the “Default Temporary Tablespace” feature in Oracle9i, DBAs
can specify a database-wide default temporary tablespace at the time of database
creation and eliminate the possibility of using inappropriate tablespaces for storing
temporary data. There are several advantages to using temporary tablespaces: 1.
The space management overhead for temporary tablespace is considerable less,
compared to that of permanent tablespaces, 2. During recovery, the database
avoids doing work in temporary segments, reducing recovery time, 3. The
SYSTEM tablespace (a frequent default choice for temporary objects) is protected
from space contention caused by creation of large or numerous user space
allocations.

It is also possible to assign or change the default temporary table after creating the
database. The default temporary tablespace created with Database Configuration
Assistant (DBCA) or the CREATE DATABASE command is of locally managed
type and all database users who are not explicitly assigned a temporary tablespace
default to it. Administrators migrating from earlier versions of Oracle can assign
any temporary tablespace, either dictionary or locally managed, as the default
temporary tablespace.

Delete Datafiles
Oracle9i simplifies the maintenance of Oracle datafiles by allowing DBAs to
automatically delete them after dropping a tablespace. With Oracle9i,

Database Administration Made Easy With Oracle9i Page 7

administrators can specify INCLUDING CONTENTS AND DATAFILES clause
in the DROP TABLESPACE command, which uses OS services to delete the
appropriate datafiles automatically. Oracle9i also ensures that failed DDL
operations, which create OS files, such as ALTER TABLESPACE ADD
DATAFILE, CREATE TABLESPACE etc., automatically remove any partially
created underlying files. Oracle Enterprise Manager fully supports these options in
the administration of tablespaces.

MEMORY MANAGEMENT
Memory is a critical system resource. Since memory access is many times faster
than accessing data from disk, effective utilization of memory is necessary for
optimal system performance. Administrators, therefore, continuously strive to tune
memory related parameters to maximize system performance and ensure the most
efficient use of system memory. Oracle9i seeks to automate much of the tuning
process and allows administrators to alter the instance memory configuration
dynamically. These features provide improved system performance, optimal
memory utilization and reduced maintenance downtime.

Dynamic Shared Memory Management
Oracle System Global Area (SGA) is a shared memory region, accessible to all
threads of execution. Oracle9i makes it simple to add to or remove memory from
an Oracle instance by allowing administrators to change the SGA configuration
without shutting the instance down. To achieve this, all initialization parameters
determining the size of SGA components, such as SHARED_POOL_SIZE,
DB_CACHE_SIZE and LARGE_POOL_SIZE, have been made dynamic in
Oracle9i. On supported OS platforms, DBAs can also modify Oracle’s virtual
address space to respond to the operating system’s use of physical memory.

Dynamic SGA allows administrators to use the ALTER SYSTEM command to

• Grow the size of SGA components (Buffer Cache, Shared Pool, LARGE
POOL).

• Shrink SGA by reducing the size of SGA components to an Oracle
prescribed minimum.

Database Administration Made Easy With Oracle9i Page 8

Oracle9i also includes an advisory mechanism that can be used to determine the
optimal sizes for the buffer cache and the shared pool. A new fixed view
V$DB_CACHE_ADVICE contains “miss” rate predictions for twenty cache sizes
ranging from 10% to 200% of the current cache size. This view can be used to
determine whether the cache should be shrunk or grown for the present workload.
Similarly, the view V$SHARED_POOL_ADVICE displays information about
estimated change in the total parse time for different sizes of the shared pool
ranging from 50% to 200% of the current size. The Enterprise Manager graphical

interface for these advisories make it very simple to view, interpret and use the
system provided advice to size the SGA components optimally.

It is easy to find the optimal size of the
buffer cache with Oracle9i. The Buffer
Cache advisory can predict the number of
“misses” for different size of buffer cache.

There are numerous advantages to dynamic SGA. For instance, it allows the buffer
cache to relinquish memory to other SGA components (such as shared pool) if the
memory requirements of these components increase. Conversely, it allows the size
of buffer cache to increase at the expense of other components such as large pool
and shared pool, if the buffer cache hit ratio is low. It is also possible to
accommodate changes in the memory available to Oracle resulting either from
changes in system hardware or changes resulting from OS resource manager
allocations.

Database Administration Made Easy With Oracle9i Page 9

Self-Tuning SQL Execution Memory
Queries performing complex join or sort operations, typical in DSS environments,
consume a large amount of memory for storing the “in-process” data. Oracle9i
can automatically tune itself for the most efficient use of such SQL execution
memory and optimal system performance. The goal of the tuning process is to
adapt to the current circumstances, utilizing resources efficiently regardless of the
load on the system. In this mode, all work areas allocated by the session are
automatically tuned by Oracle for maximum system performance and
administrators no longer have to manually adjust the value of parameters such as
SORT_AREA_SIZE, HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE
and CREATE_BITMAP_AREA_SIZE.

While tuning working area sizes, Oracle9i’s self-tuning capability is not limited to
just determining optimal values for the initialization parameters mentioned above.
In Oracle9i, memory consuming algorithms (such as sort, hash join) have been
modified to dynamically alter their memory usage at run time to ensure the best
possible use of system memory and maximize system performance. At the same
time, Oracle9i can also help administrators decide how large should the overall
PGA size be in order to support the current workload. The view
V$PGA_TARGET_ADVICE contains simulated prediction of the effect of
increasing or decreasing the value of the parameter
PGA_AGGREGATE_TARGET on the performance of long running operations.
These predictions are generated by using the workload history to simulate the

With automatic SQL execution memory
management, DBAs just need to specify
the maximum PGA memory available for
an instance. Oracle9i automatically
distributes this memory among various
active sessions in a manner which
results in maximum performance gains

Database Administration Made Easy With Oracle9i Page 10

system performance for different settings of PGA_AGRREGATE_TARGET.

The auto-tuning mode is activated using two newly introduced initialization
parameters PGA_AGGREGATE_TARGET and WORKAREA_SIZE_POLICY.
While the PGA_AGGREGATE_TARGET parameter allows a DBA to advise an
Oracle instance to limit its overall private memory consumption to the specified
value, the WORKAREA_SIZE_POLICY parameter can be set to “auto” or
“manual” to enable or disable the auto-tuning mode.

Although, the performance improvement will be most noticeable in heavy DSS
workload environment, this feature will be very useful for OLTP environments as
well. Most of the OLTP applications require complex reports to be run
periodically whose performance can be improved due to self-tuning of SQL
execution memory working areas. Users are encouraged to enable auto-tuning
mode irrespective of the nature of workload.

Self-Tuning Direct I/O
Direct path I/O is an I/O and caching mechanism for reading and writing disk
blocks directly from a process’s private memory without going through the SGA
buffer cache. It improves the performance of operations such as table, index and
LOB scans significantly.

Direct read uses a read ahead algorithm to prefetch extents so that when clients
need to access a block from disk, it would have already been read and cached in the
process’s private memory. Prior to Oracle9i, the read-ahead is done one extent at a
time. Oracle9i can prefetch multiple extents, which is very useful when the extent
sizes are small. It can also dynamically adjust its direct read algorithm based on the
workload to ensure optimal performance.

RESOURCE MANAGEMENT
Database Resource Manager was introduced in Oracle8i to enable database
administrators to distribute available system resources among various
users/application in a manner consistent with enterprise business needs. In
absence of such a tool, it was not possible to differentiate one database session
from another and one long resource intensive operation could slow the entire
database. With Database Resource Manager, administrators can group database
users into resource consumer groups and allocate percentages of CPU resources.
Using the ability to dynamically move a session from a high priority to low priority
group, DBAs can limit the impact of long operations on overall database
performance. Oracle9i enhances this tool further with significant task automation
and proactive resource management capabilities. Database Resource Manager in
Oracle9i can automatically move a long running operation to a low priority
consumer group, limit the number of such operations running concurrently and
prevent their execution if they exceed the administrator defined execution time
limit.

Database Administration Made Easy With Oracle9i Page 11

All Resource Manager features are fully supported by Oracle Enterprise Manager,

which makes setup and monitoring of resources much simplified.

Database Resource Manager in Oracle9i
can automatically move a long running
operation to a low priority consumer
group, limit the number of such operations
running concurrently and prevent their
execution if they exceed the administrator
defined execution time limit

Automatic Consumer Group Switching
With Oracle8i Database Resource Manager, a DBA can manually switch the
consumer group for any running session. This capability can be used to switch the
consumer group of a long running resource intensive session from a high priority
to a low priority group. Oracle9i further enhances this feature by allowing
administrators to specify criteria, which, if met, will cause the Database Resource
Manager to automatically switch a session’s consumer group.

Each plan directive referring to a resource consumer group in Oracle9i has three
new parameters related to automatic change of consumer groups:

• SWITCH_TIME

• SWITCH_GROUP

• SWITCH_ESTIMATE

The Database Resource Manager switches a running session to SWITCH_GROUP
if a session is active for more than SWITCH_TIME seconds. Once the session
finishes its operation and becomes idle, it is automatically switched back to its

Database Administration Made Easy With Oracle9i Page 12

original group. If the value of the parameter SWITCH_ESTIMATE is set to
TRUE, the Database Resource Manager uses its estimate of execution time to
decide whether to switch the session before an operation even starts running. It is
also possible to set up a cascading switching plan where a switched session can be
switched further to a different group if its exceeds the switch time of its current
group, provided there is no looping in the plan (i.e. a process can not be
automatically switched back to its original group for the duration of its current
active operation). Administrators can use this feature to manage the workload
better by segregating long-running batch jobs from short OLTP transactions.
Batch jobs can be automatically assigned to consumer groups with lower resource
allocation during prime time to ensure good response time for OLTP users.

Operation Queuing
A heavily utilized system may experience severe performance degradation due to
newly arriving operations unless the concurrent workload is restricted. The
Database Resource Manager in Oracle9i provides a mechanism to allow
administrators to set an active session pool per resource consumer group. An active
session is defined as a session that is currently a part of an active transaction or
query. Once this pool is filled with active sessions, all subsequent sessions
attempting to become active are queued until other active sessions complete or
become inactive.

Since the Database Resource Manager never blocks a running operation, an active
switched session gets to run regardless of whether the “switch” group’s active
session pool is full or not. This is done in order to avoid any possible deadlocks
that might arise from queuing sessions that still hold shared resources. Also, it
avoids possible resource depletion (memory, temporary space) that might arise
from indefinitely queuing sessions holding these resources. Because of this, the
active session pool of a consumer group may be temporarily exceeded. However,
once the running session becomes inactive and attempts to start another operation,
it will be treated normally (i.e. may be queued if required). If the
SWITCH_ESTIMATE parameter is set to TRUE and the operation is a part of an
active transaction that holds no shared resources, then it will be queued when it is
switched prior to execution.

Administrators can specify an optional time-out period (in seconds) as a part of
resource plan directive. The time-out parameter indicates how long any session will
wait on the queue. If a session waits in the queue longer than the time-out period,
it will abort with an error. Users can then either ignore the error or trap it and
resubmit the operation at a later time.

For Parallel Queries (PQ) or Parallel DML (PDML), the adaptive degree of
parallelism is used to reduce the degree of parallelism based on the load of the
instance. This is calculated before the PQ/PDML attempts execution. Once the
degree of parallelism is calculated, the Query Coordinator (QC) session queues
itself if the active session pool of its consumer group is full. Once the QC becomes

Database Administration Made Easy With Oracle9i Page 13

active, it requests a certain number of PQ slaves. These slaves do not count
towards the number of active sessions for QC’s resource consumer group. The
entire parallel operation is counted as one active session.

Maximum Estimated Execution Time
In Oracle9i, the Database Resource Manager allows the administrator to specify a
maximum estimated execution time for an operation using a new resource plan
directive, MAX_ESTIMATED_EXEC_TIME. If this parameter is set, the
Database Resource Manager estimates the execution time of an operation before it
starts. If this estimate is longer than the maximum estimated execution time
specified by the administrator, the operation will abort with an error. This way the
administrator can set up a plan that will not accept any job that is exceptionally
large and would thus use too many system resources.

Undo Quota
Finally, in Oracle9i, administrators are able to manage the resources consumed by a
long running transaction by limiting the use of rollback (undo) space. A new
resource plan directive UNDO_POOL allows DBAs to assign a quota for undo
space to each consumer group. Whenever the total undo space used by sessions
belonging to a consumer group exceeds its quota, they will not be allowed to make
any further INSERT, UPDATE or DELETE until some undo space is freed by
another session in the same group. If the consumer group’s undo quota is
exceeded during the execution of a DML statement, the operation will abort with
an error. As soon as a process aborts or completes, the consumer group will be
credited with freed undo space. The default value for the UNDO_POOL directive
is UNLIMITED allowing sessions to consume as much undo space as available.
This feature can be used with Automatic Undo Management (discussed later in the
paper) as well as user defined rollback segments.

BACKUP AND RECOVERY MANAGEABILITY ENHANCEMENTS
Oracle Recovery Manager (RMAN) is a powerful tool for managing backup and
recovery of Oracle databases. RMAN provides DBAs a flexible and feature rich
tool that allows them to manage centralized backup and recovery of enterprise wide
databases. Oracle9i features an enhanced RMAN that is easier to use and is more
self-managing. A wizards driven graphical interface provided with Enterprise
Manager helps administrators setup appropriate backup options and recover as
needed.

In Oracle9i, a database may be backed
using single RMAN command i.e.

BACKUP DATABSE

Persistent Parameter Configuration
Oracle Enterprise Manager provides a graphical interface to RMAN to simplify the
setup of appropriate backup policies for the managed environment and aid in
recovery. Pre-defined backup configurations provide recommendations for Backup

Database Administration Made Easy With Oracle9i Page 14

strategies based on your business needs. In addition, Oracle9i, administrators can
customize RMAN setup to their environment so that many of its parameters need
not be specified with each backup/recovery operation. Using the new
CONFIGURE command, a DBA can specify a backup retention policy (discussed
later), backup duplexing, any available non-disk device, and the number and types
of channels (including the parameters to be passed on to the media manager)
persistently. Having done so, they can execute backup/recovery using much
simpler commands. The CONFIG parameters also has a default value which will
help DBAs, new to Oracle environment, get started with backup and restore of
databases easily and quickly.

Retention Policy
RMAN 9i allows DBAs to define a backup retention policy. The backup retention
policy directs RMAN as to which backup should be preserved and for how long.
DBAs can specify a retention policy by defining

• The number of backups that should be preserved. (Redundancy)

• A period of time in which the database should be recoverable to any desired
point in time. (Recovery Window)

Once Redundancy and Recovery Window are defined by the DBA, RMAN will preserve
all required backups to honor this policy and delete backups automatically when
they are no longer required. The backup retention policy can be set persistently
using the CONFIGURE command. By specifying a retention policy, DBAs no
longer need to manually manage the number of backup copies and space used by
backups. With Oracle 9.2, Enterprise Manager’s Backup Wizard allows setting
additional options, such as backup retention policy, deleting obsolete backups and
specifying the archivelog deletion policy.

Restartable Backup and Restore
RMAN backup & recovery operations have been optimized in Oracle9i to allow
resumption from a point of failure. In Oracle9i, RMAN backs up only those
datafiles that have not already been backed up. Similarly during a restore operation,
RMAN scans the datafile headers and determine if it is necessary to restore the file
to complete a database recovery. This feature improves the performance of
backup/restore operations by eliminating unnecessary activity. It will also allow
DBAs to segment a large backup into smaller pieces, each backing up a portion of
database, without having to specify files to be handled by each sub-process.

Archive Log Failover
It is a common practice among DBAs to maintain multiple copies of archived logs
to ensure recoverability in case one of the archiving destinations encounters a
failure. In Oracle9i, RMAN takes advantage of this multiplexing. RMAN now
validates each archive log being backed up for corruption. If an invalid log is
detected, it reads other multiplexed archive log destinations to find a good copy of

Database Administration Made Easy With Oracle9i Page 15

the archive log being backed up. Also, once an archived log has been backed up, its
copies will be deleted from all archived log destinations thereby improving space
management.

Self Describing Backup
RMAN requires the use of a repository to store information about backups and its
components. RMAN always stores this information in the control file of the target
database. Optionally, users can create a recovery catalog and propagate the
metadata in the control file into the catalog. Loss of either of these repositories can
complicate recovery.

RMAN 9i provides a mechanism by which the restore of the control file repository
can be performed without depending on the existence of a control file or recovery
catalog. The “auto backup” mechanism ensures that after any backup, a backup of
the control file is also created. RMAN can restore this control file and then use the
information in the control file to restore the database. Consequently, DBAs face
fewer risks when using either the control file or the recovery catalog as the
repository for RMAN metadata. Even if everything is lost but the backups, DBAs
can restore the database with a minimum of effort.

Administrator Bound Recovery Time
Many Service Level Agreements include a bound on the Mean Time To Recover
(MTTR) after a failure. In order to meet these service levels, the database
administrator must be able to reliably set a limit on the time it will take the database
to recover from a crash or failure.

Oracle9i introduces Fast-Start Time-Based Recovery. This feature lets a DBA
specify a target for recovery time in seconds, using the new parameter
FAST_START_MTTR_TARGET, and the database server automatically
determines appropriate values for the parameters that control recovery time,
FAST_START_IO_TARGET and LOG_CHECKPOINT_INTERVAL. The
algorithm takes into account such tasks as instance initialization, file open, reading
the log, reading the data blocks from the data files, and writing the data blocks back
to the data files. It initially uses defaults for these operations, but later substitutes
actual statistics as they become available. The estimate therefore become more
accurate over time, as the server learns more about its environment and expected
I/O times. Because manually measuring the time it takes to complete these
operations, and calculating values for parameters controlling recovery time is a
complex task, this feature greatly simplifies and increases the accuracy of bounded
database recovery time.

The V$INSTANCE_RECOVERY view can be used to monitor checkpointing,
and it’s impact on recovery time. Every 30 second, Oracle9i calculates an estimate
of the current MTTR and displays this value in V$INSTANCE_RECOVERY.
This allows the DBA to monitor the current estimated MTTR, and compare it to
the target specified by FAST_START_MTTR_TARGET.

Database Administration Made Easy With Oracle9i Page 16

Since an aggressive setting of recovery time may increase the number of checkpoint
writes significantly thereby degrading performance, Oracle9i’ Recovery Cost
Estimator feature helps administrators set the value of the
PAST_START_MTTR_TARGET parameter judiciously. A new view
V$MTTR_TARGET_ADVICE can be used to determine the changes in
checkpoint writes if the value of the recovery time parameter were to be altered.

This view displays the estimated number of physical I/O for different values of the
FAST_START_MTTR_TARGET parameter raging from 10% to 200% of current
setting. Data from this view is presented on an Enterprise Manager chart that
shows the trade-offs between recovery time and run-time operation performance,
as shown above.

TRANSACTION MANAGEMENT

Automatic Undo Management
In order to simplify management of rollback segments, Oracle9i introduces
Automatic Undo Management where the database automatically manages allocation
and management of Undo (Rollback) space among various active sessions.
Administrators merely need to create an UNDO tablespace (using Enterprise
Manager or the CREATE UNDO TABLESPACE…. SQL command). This

Database Administration Made Easy With Oracle9i Page 17

replaces the former process of creating a number of rollback segments and
strategically assigning transactions to a rollback segment large enough to
accommodate generated rollback data. This also frees DBAs from adjusting the
attributes of rollback segments to avoid undo block and consistent read contention.

Undo tablespaces are special tablespaces used solely for storing undo information;
creation of other database objects such as tables, indexes is not allowed in this
tablespace. While a database may have more than one undo tablespace, each
instance can use only one of them at a time. Undo blocks can be read by any
instance (in Real Application Clusters environments) for “consistent read”
purposes. Also, any instance can update an undo tablespace during transaction
recovery as long as the tablespace is not already being used by any other instance
either for undo generation by an active transaction or transaction recovery. It is
possible to switch the undo tablespace being used by an instance in case the
administrator wishes to create a different undo tablespace. The process of
switching the undo tablespace is an online operation and happens without stopping
the database or impacting users.

In a database using Automatic Undo Management, all transactions share a single
undo tablespace. Any executing transaction can consume free space in this
tablespace. Undo space is dynamically transferred from committed transactions to
executing transactions in the event of space scarcity in the undo tablespace.

In order to avoid contention, the number of undo segments is dynamically adjusted
to meet current workload requirements. An Oracle instance running in the
Automatic Undo Management mode is capable of creating additional undo
segments whenever required. Similarly some of the undo segments may be taken
off-line and their space reclaimed whenever they are no longer needed. All these
operations occur with no intervention by the administrator.

Automatic Undo Management feature also provides a way for administrators to
exert control on undo retention. A DBA can specify the amount of undo to be
retained in terms of wall-clock time (number of seconds). For example, to
configure a database to support queries that run for 30 minutes or less, the DBA
can simply set the undo retention parameter to 30 minutes. With retention control,
users can configure their systems to allow long running queries to execute
successfully without encountering ORA-1555 (Snapshot too old) errors. The undo
retention time is specified using a new persistent INIT.ORA parameter,
UNDO_RETENTION. This parameter is dynamic and hence can be changed
anytime during database operation using the ALTER SYSTEM command.

In order to prevent a rogue transaction from consuming excessive undo space and
thus impacting system operation, Oracle9i allows assigning an undo quota at the
resource consumer group level using a newly introduced resource manager plan
directive UNDO_POOL. Whenever the total undo consumed by a group exceeds
its limit, its sessions will not be allowed to execute any more DML statements until

Database Administration Made Easy With Oracle9i Page 18

some undo space is freed by other sessions of this group after their transactions
commit or abort. (See Resource Management section for more details on this feature)

A number of new performance views have been added to ease the monitoring and
configuring the system to ensure efficient use of undo space. The view
V$UNDOSTAT has been added in Oracle9i to show various undo/transaction

statistics. For example, the amount of undo consumed in the instance is presented
in the view.

Oracle9i Enterprise Manager allows creating and assigning a new undo tablespace
for a database. In addition, it also helps administrators size the undo tablespace
optimally to support a given undo retention time using its undo tablespace sizing
advisor.

Resumable Space Allocation
Large operations such as batch updates or data loads can encounter out-of-space
errors after executing for a period of time, sometimes when they are just about to
complete. Re-executing these processes could be a wasteful process, which could
disrupt normal database operation.

Database Administration Made Easy With Oracle9i Page 19

Oracle9i introduces a new feature called “Resumable Space Allocation” which
allows the system to suspend operations that encounter this kind of failure, fix the
problem, and then automatically resume execution from the point of interruption.
This feature enables application developers to write applications without worrying
about running into space related errors. It also helps administrators avoid having to
divide a large job into smaller sub-jobs and monitor progress of individual sub-jobs.

A statement can be executed in the “resumable” mode when explicitly specified by
using the ALTER SESSION ENABLE RESUMABLE command. Virtually any
kind of operation (e.g. PL/SQL stored procedure, Java stored procedure, queries,
DML (UPDATE, INSERT) and DDL (CREATE TABLE AS SELECT….,
CREATE INDEX , INDEX REBUILD, ALTER TABLE MOVE PARTITION,
ALTER TABLE SPLIT PARTITION, ALTER INDEX REBUILD PARTITION,
ALTER INDEX SPLIT PARTITION, CREATE MATERIALIZED VIEW,
CREATE MATERIALIZED VIEW LOG etc.) can all be run as a “resumable”
statement. A “resumable” operation will be suspended whenever it encounters one
of the following types of failures:

• Out of space condition: The operation can not acquire any more space in a
tablespace or when the tablespace itself can not extend by acquiring
additional disk space from the OS.

• MAX Extents Reached: The number of extents in a table, index, temp
segment, rollback segment, cluster, LOB, table partition, index partition
already equals the maximum number of extents permitted by its DDL
definition.

• User space quota is exceeded.

Once an operation is suspended, a warning to that effect is written in the alert log
file. A notification is also sent using Oracle Enterprise Manager event sub-system
alerting administrators about the suspended operation. More advanced corrective
actions, such as extending a datafile or increasing the undo quota for the resource
consumer group the suspended session belongs to, can be automatically performed
using the new “AFTER SUSPEND” trigger. Any transactions executed within the
trigger is automatically executed as an autonomous transaction and can therefore
include operations such as inserts into a user table for error logging purposes.
Oracle Enterprise Manager sessions screen highlights the suspended sessions to
facilitate easy identification and displays all relevant information including the error
encountered. The error data can also be accessed using the
“DBMS_RESUMABLE” package and the DBA(USER)_RESUMABLE view.

Database Administration Made Easy With Oracle9i Page 20

When the problem that caused the failure is fixed, the suspended statement
automatically resumes execution. If the operation encounters a transient problem
no administrator intervention may be required to resume execution. For example, a
resumable query running out of temporary space may resume automatically with
absolutely no user or administrator intervention once other active queries complete.
A resumable statement may be suspended and resumed multiple times during its
execution.

Every resumable statement has a time-out period associated with it. The default
value of time-out period is 2 hours but can be set to any value using Enterprise
Manager or the ALTER SESSION ENABLE RESUMABLE TIMEOUT <time-
out period in seconds> command. A suspended operation is automatically aborted
if the error condition is not fixed within “time-out” period. An administrator can
abort a suspended operation any time using Enterprise Manager or
DBMS_RESUMABLE.ABORT() procedure.

While running Parallel DML/Query, if one of the server processes encounters a
correctable error, it suspends its execution while other processes continue executing
their respective tasks, until either they too encounter an error or are blocked by the
suspended process. When the correctable error is resolved, the suspended process
resumes execution but if it is aborted, the parallel operation aborts as well.

OTHER DAY-TO-DAY DATABASE ADMINISTRATIVE TASKS

Server Side Persistent Initialization Parameter File
Initialization parameters for an Oracle instance are currently specified using a client
side parameter file popularly known as the INIT.ORA file. Although in most of
the cases this file resides on the same machine as the Oracle instance, this is not a
requirement since the front-end tools that are used to start the database (e.g. Server
Manager, SQL Plus or Enterprise Manager) can be used from a remote machine as
well. Since these tools need to read the parameter file and pass on the parameter
values to the instance, it was necessary that this file should be accessible to the

Database Administration Made Easy With Oracle9i Page 21

front-end tools. This can lead to multiple parameter files for one instance and it
may be difficult to keep them synchronized every time a parameter value is
changed.

Oracle9i makes the management of the initialization parameter file simpler by
introducing the persistent “Server Parameter file” (SPFILE). This file always
resides on the server. Front-end tools merely need to specify the name of the
SPFILE on the server to activate the instance. Similar to the current use of the
INIT.ORA file, there is a default name and location for the SPFILE. Hence if the
front-end tools do not explicitly specify the parameter file name, the default
SPFILE is used if it exists. Introduction of the SPFILE slightly changes the
behavior of the STARTUP command. A STARTUP command without an explicit
PFILE (INIT.ORA) clause now tries to start the instance with default SPFILE
settings. If the default SPFILE is not found, it attempts to start the instance using
the default INIT.ORA file at the server side.

The SPFILE is automatically maintained by the server and any dynamic changes
made to the values of parameters can be recorded in this file. A DBA has the
ability to specify whether the change being made is temporary (i.e. the parameter
will revert to its old value at next startup) or persistent. It is also possible to delete
or reset a parameter from the SPFILE to allow an instance to revert to the default
value of that parameter.

A SPFILE can be created from an INIT.ORA file using Enterprise Manager or the
CREATE SPFILE command, before or after instance startup. It is possible to
have multiple SPFILEs on a node, however only one of them can be used at a time.
If multiple SPFILEs exist on a system, a DBA can direct an instance to use a
particular SPFILE by setting the new SPFILE parameter in the INIT.ORA.

The SPFILE is automatically backed by RMAN during all backup operations. This
eliminates the need to back up the parameter file separately and makes the database
back up completely self-contained.

In order to simplify the management of Real Application Clusters (RAC), a single
SPFILE is used by all member instances of a RAC cluster. Oracle9i still supports
traditional PFILE (INIT.ORA) files that can be different for different RAC
instances. However, if a SPFILE is used it must be the same on all instances.
Since a SPFILE needs to be accessible from each instance node, it must reside on a
shared device. In an RAC environment, a parameter can be configured to have
different values for each instance in the cluster i.e. the parameter can be multi-
valued. A multi-valued parameter has a default value and a value for each RAC
instance that has modified the parameter to be different from its default value. The
parameters that must be the same across all RAC instances are not multi-valued.

Multiple Block Size Support
Past versions of Oracle databases are composed of datafiles with a single block size.
Oracle9i supports the creation of databases with multiple block sizes. An Oracle9i

Database Administration Made Easy With Oracle9i Page 22

database can be created with a default block size (specified by the initialization
parameter DB_BLOCK_SIZE) and up to 5 alternate block sizes (2K, 4K, 8K, 16K
and 32K). DBAs can configure “sub-caches” within the buffer cache for each
alternate block size using new initialization parameters DB_<n>K_CACHE_SIZE
, where n is the alternate block size. Tablespaces of any of the permitted block
sizes may be created (using Enterprise Manager or CREATE
TABLESPACE…….BLOCKSIZE <n>K) or plugged in (using the transportable
tablespace feature) once the sub-caches for those block sizes have been configured.
The SYSTEM tablespace in a database is always of the default block size.

This feature allows administrators to “transport” a tablespace from an OLTP
database to a data warehouse for data archival and data mining purposes.

The initialization parameter DB_BLOCK_BUFFERS is deprecated in favor of
DB_CACHE_SIZE, which defines the size of the standard block cache. Unlike
DB_BLOCK_BUFFERS parameter, the value of DB_CACHE_SIZE as well as
DB_<n>K_BLOCK_SIZE can be specified in terms of Bytes, Kilobytes (K),
Megabytes (M) and Gigabytes (G). These parameters are dynamic; their values can
be changed without shutting the instance down. See memory management section for
more details about dynamicity of these parameters.

Cached Execution plans
Oracle9i facilitates better diagnosis of query performance problems by storing
execution plan information for the cached cursors in a new dynamic performance
view V$SQL_PLAN. DBAs and developers can now find out the actual execution
plan used by queries at the time of reported performance problem and will be able
to determine the cause of these problems better. This information is stored in
memory as long as the cursor remains in the SGA.

Automatic Cost Based Optimizer (CBO) Statistics Gathering
Enhancements
Oracle CBO requires statistics about data storage and distribution to generate
accurate execution plans for queries. These statistics are generated using either the
ANALYZE command or the DBMS_STATS package. Accuracy of these statistics
depends largely on the judicious selection of the size of data sample being analyzed.

Also while using the CBO, histograms are used to store detailed information about
data distributions that are non-uniform. This information helps the optimizer
better estimate the selectivity of predicates that will result in more efficient
execution plans. It is useful to create histograms when the application uses queries
having:

• An equality predicate on a column which exhibits non-uniformity in
repetition count (e.g. in a table having FIRST_NAME column, there are
more “Mikes” than “Sushils”).

Database Administration Made Easy With Oracle9i Page 23

• A range predicate on a column which exhibits non-uniformity in range (e.g.
in EMPLOYEES table, 60% employees have been hired in the last two years
out of 10 years since the company was established).

While creating histograms can result into significant performance improvements, it
requires the knowledge of data distribution to decide when to create one.

In Oracle9i, DBAs can leave these decisions to the database itself. Using
enhancements made to the DBMS_STATS package, they can direct the database to
select the appropriate sample size to generate accurate statistics as well as identify
the columns on which the histograms need to be created. This feature allows
DBAs to ensure adequate optimizer statistics without being intimately familiar with
either the data distribution or the structure of queries used by applications accessing
the database.

Transaction Naming
Prior to Oracle9i, users could associate a comment with a transaction while
committing using commit comment e.g. COMMIT COMMENT ‘text’. This
feature helps a DBA identify a specific transaction while resolving in-doubt
transactions in a distributed computing environment. Oracle9i extends this
capability by allowing users to name a transaction before it begins using the SET
TRANSACTION NAME ‘text’ command. This transaction name can be used to
monitor long running transactions or to search for a specific transaction from
transaction auditing records in the log files using Log Miner.

CONCLUSION
Oracle databases have always been known for their scalability, availability and high
performance. Oracle9i takes a giant step forward by providing a range of features
and tools that lower the customer’s total cost of ownership via simplified database
management. Administrators can expect a significantly reduced burden keeping
databases operational and enterprises should be able to maintain growth without
having to hire as large an IT staff.

Database Administration Made Easy With Oracle9i Page 24

Database Administration Made Easy with Oracle9i
May 2002
Author: Sushil Kumar
Contributing Authors: Keith Lyon, Daniela Hansell

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2000 Oracle Corporation
All rights reserved.

