
SQLBase
SQL Application Programming
Interface Reference
20-2111-1005

Gupta

ay,

d
 and
ed

ca

d
Trademarks
Centura, Centura Ranger, the Centura logo, Centura Web Developer, Gupta, the
logo, Gupta Powered, the Gupta Powered logo, Fast Facts, Object Nationalizer,
Quest, Quest/Web, QuickObjects, SQL/API, SQLBase, SQLConsole, SQLGatew
SQLHost, SQLNetwork, SQLRouter, SQLTalk, and Team Object Manager are
trademarks of Centura Software Corporation and may be registered in the Unite
States of America and/or other countries. SQLWindows is a registered trademark
TeamWindows, ReportWindows and EditWindows are trademarks exclusively us
and licensed by Centura Software Corporation.

Microsoft, Win32, Windows, Windows NT and Visual Basic are either registered
trademarks or trademarks of Microsoft Corporation in the United States of Ameri
and/or other countries.

Java is a trademark of Sun Microsystems Inc.

All other product or service names mentioned herein are trademarks or registere
trademarks of their respective owners.

Copyright
Copyright  1997 by Centura Software Corporation. All rights reserved.
SQL Application Programming Interface
20-2107-1005
November 1997

Contents
Preface. ix

1 Introduction to the
SQL/API. 1-1

About the SQL/API . 1-2

How SQL/API applications access SQLBase 1-3

SQL/API components . 1-4

Compiling, linking, and running applications 1-10

Compiling, linking, and running example programs . 1-17

2 Data Types . 2-1

Internal database data types. 2-2

Program data types. 2-6

External data types . 2-8

3 Using the SQL/API . 3-1

Connect and close cursor . 3-2

Compiling and executing SQL commands 3-4

Setting SELECT buffers . 3-5

Bind variables . 3-5

Queries . 3-6

Result sets . 3-10

INSERTs, UPDATEs, and DELETEs 3-12

Connection handles . 3-17

Transactions . 3-20

Cursors . 3-27

LONG VARCHAR handling. 3-33

Calling stored commands and procedures 3-41
SQL Application Programming Interface Reference iii

Bulk execute mode . 3-45

Error handling . 3-46

Back up and restore . 3-55

Load and unloading databases 3-60

Microsoft Windows applications 3-66

4 SQL/API Functions by Category. 4-1

Function categories. 4-2

5 SQL/API Function Reference 5-1

sqlbbr - Bulk execute Return. 5-2

sqlbdb - Backup DataBase . 5-4

sqlbef - Bulk Execute Flush. 5-8

sqlber - Bulk Execute Return 5-10

sqlbld - Bind Long Data by name 5-13

sqlblf - Backup Log Files . 5-14

sqlblk - BuLK execute . 5-18

sqlbln - Bind Long data by Number. 5-20

sqlbna - Bind data by NAme (with null indicator) . . . 5-22

sqlbnd - BiNd Data by name 5-25

sqlbnn - BiNd data by Number 5-28

sqlbnu - Bind data by NUmber 5-31

sqlbss - Backup SnapShot . 5-34

sqlcbv - Clear Bind Variables 5-37

sqlcch - Create Connection Handle 5-38

sqlcdr - Cancel Database Request 5-40

sqlcex - Compile and EXecute 5-41

sqlclf - Change process activity Log File. 5-43

sqlcmt - CoMmiT . 5-45

sqlcnc - CoNnect Cursor . 5-46

sqlcnr - Connect with No Recovery. 5-48

sqlcom - COMpile a SQL command/procedure 5-51

sqlcpy - CoPY data from one table to another 5-53

sqlcre - CREate database . 5-56
iv SQL Application Programming Interface Reference

sqlcrf - Continue RollForward 5-58

sqlcrs - Close ReStriction and Result Set modes . . . 5-60

sqlcsv - Connect to SerVer . 5-61

sqlcty - Command TYpe . 5-63

sqldbn - DataBase Names . 5-68

sqldch - Destroy Connection Handle. 5-70

sqlded - DEinstall Database 5-71

sqldel - DELete database . 5-73

sqldes - DEScribe items in a SELECT list. 5-75

sqldii - Describe Into variable 5-79

sqldir - DIRectory of databases. 5-83

sqldis - DISconnect from cursor 5-84

sqldon - DONe . 5-86

sqldox - Directory Open eXtended 5-87

sqldrc - DiRectory Close . 5-90

sqldro - DiRectory Open . 5-92

sqldrr - DiRectory Read. 5-94

sqldrs - Drop Result Set . 5-96

sqldsc - DeSCribe item in a SELECT command. . . . 5-97

sqldst - Drop STored command/procedure 5-103

sqldsv - Disconnect from SerVer. 5-104

sqlelo - End Long Operation 5-105

sqlenr - ENd Rollforward . 5-106

sqlepo - Error POsition . 5-108

sqlerr - ERRor message . 5-109

sqletx - Error message TeXt 5-111

sqlexe - EXEcute a SQL command/procedure 5-113

sqlexp - EXecution Plan . 5-115

sqlfer - Full ERror message 5-117

sqlfet - FETch next row from result set 5-119

sqlfgt - GeT File from server 5-120

sqlfpt - PuT File to server . 5-122
SQL Application Programming Interface Reference v

sqlfqn - Fully-Qualified column Name 5-124

sqlgbc - Get Backend Cursor 5-126

sqlgbi - Get Backend Information 5-127

sqlgdi - Get Describe Information 5-128

sqlget - GET parameter. 5-134

sqlgfi - Get Fetch Information 5-162

sqlgls - Get Long Size . 5-165

sqlgnl - Get Next Log . 5-166

sqlgnr - Get Number of Rows 5-169

sqlgsi - Get Server Information 5-170

sqlims - Input Message Size 5-174

sqlind - INstall Database . 5-176

sqlini - INItialize . 5-178

sqllab - LABel information . 5-180

sqlldp - LoaD oPeration. 5-182

sqllsk - Long SeeK . 5-183

sqlmcl - reMote CLose server file 5-184

sqlmdl - reMote DeLete server file 5-186

sqlmop - reMote OPen server file 5-187

sqlmrd - reMote ReaD server file 5-190

sqlmsk - reMote SeeK server file 5-192

sqlmwr - reMote WRite server file 5-193

sqlnbv - Number of Bind Variables 5-195

sqlnii - get the Number of Into variables 5-196

sqlnrr - Number of Rows in Result set 5-199

sqlnsi - Number of Select Items 5-202

sqloms - Output Message Size 5-203

sqlopc - OPen Cursor . 5-205

sqlprs - Position in Result Set 5-206

sqlrbf - Roll Back Flag . 5-207

sqlrbk - RollBacK. 5-208

sqlrcd - Return CoDe . 5-209
vi SQL Application Programming Interface Reference

sqlrdb - Restore DataBase 5-210

sqlrel - RELease current log 5-214

sqlret - RETrieve a stored command/procedure . . . 5-216

sqlrlf - Restore Log Files . 5-219

sqlrlo - Read LOng . 5-222

sqlrof - ROllForward . 5-224

sqlrow - number of ROWs. 5-227

sqlrrs - restart Restriction and Result Set modes . . 5-228

sqlrsi - Reset Statistical Information 5-229

sqlrss - Restore SnapShot 5-230

sqlsab - Server ABort database process. 5-233

sqlscl - Set CLient name . 5-234

sqlscn - Set Cursor Name . 5-235

sqlscp - Set Cache Pages. 5-237

sqlsdn - ShutDowN database 5-238

sqlsds - ShutDown Server. 5-240

sqlsdx - ShutDown database eXtended 5-241

sqlset - SET parameter . 5-242

sqlsil - Set Isolation Level . 5-268

sqlspr - StoP Restriction mode 5-272

sqlsrs - Start Restriction Set and Result Set modes 5-273

sqlssb - Set SELECT Buffer 5-274

sqlsta - STAtistics . 5-279

sqlstm - Server TerMinate. 5-280

sqlsto - STOre a compiled command/procedure. . . 5-281

sqlstr - STart Restriction mode 5-283

sqltec - Translate Error Code 5-284

sqltem - Tokenize Error Message 5-285

sqltio - TIme Out . 5-289

sqlunl - UNLOAD command 5-290

sqlurs - Undo Result Set . 5-292

sqlwlo - Write LOng. 5-293
SQL Application Programming Interface Reference vii

sqlxad - eXtended ADd . 5-295

sqlxcn - eXtended CoNvert 5-296

sqlxda - eXtended Date Add 5-298

sqlxdp - eXtended Date to Picture 5-299

sqlxdv - eXtended DiVide . 5-301

sqlxer - eXtended ERror . 5-303

sqlxml - eXtended MuLtiply 5-305

sqlxnp - eXtended Number to Picture 5-306

sqlxpd - eXtended Picture to Date 5-310

sqlxsb - eXtended SuBtract. 5-312

Glossary. Glossary-1

Index . Index- 1
viii SQL Application Programming Interface Reference

Preface

SQL Application Programming Interface Reference
The SQL Application Programming Interface provides information about each SQL
Application Programming Interface (SQL/API) function.

This preface describes the following information:

• Who should read this manual.

• The organization of this manual.

• The documentation format.

• The notation conventions used in this manual.

• Related publications.
SQL Application Programming Interface Reference ix

Preface

o

x and

ct,

I

Who should read this manual
The SQL Application Programming Interface Reference is written for application
developers using Centura’s SQL Application Programming Interface (SQL/API) t
write programs that access one or more databases.

This manual assumes you:

• Know how to program in the C language.

• Have some knowledge of relational databases and SQL.

Summary of chapters
This manual is organized in the chapters in the table below. There is also an inde
glossary.

Notation conventions
The table below show the notation conventions that this manual uses.

1 Introduction to the SQL/API Provides a context for the SQL/API, lists the components of the produ
and shows you how to compile, link, and run programs.

2 SQL/API Concepts Explains the basics of the SQL/API.

3 Using the SQL/API Uses flowcharts and code examples to show you how to use SQL/AP
functions.

4 SQL/API Functions by
Category

Groups the SQL/API functions by functional category.

5 SQL/API Function
Reference

Provides the syntax, a description, and an example for each SQL/API
function.

Notation Explanation

You A developer who reads this manual

User The end-user of applications that you write

bold type Menu items, push buttons, and field names. Things that you select.
Keyboard keys that you press.

Courier 9 Builder or C language code example

SQL.INI

MAPDLL.EXE

Program names and file names

Precaution Warning:

Vital
information

Important:
x SQL Application Programming Interface Reference

s

e
ns,

, and

om/

g
nline

rst
Other helpful resources
Centura Books Online. The Centura document suite is available online. This
document collection lets you perform full-text indexed searches across the entire
document suite, navigate the table of contents using the expandable/collapsible
browser, or print any chapter. Open the collection by selecting the Centura Book
Online icon from the Start menu or by double-clicking on the launcher icon in the
program group.

Online Help. This is an extensive context-sensitive online help system. The onlin
help offers a quick way to find information on topics including menu items, functio
messages, and objects.

World Wide Web. Centura Software’s World Wide Web site contains information
about Centura Software Corporation’s partners, products, sales, support, training
users. The URL is http://www.centurasoft.com.

To access Centura technical services on the Web, go to http:/www.centurasoft.c
support. This section of our Web site is a valuable resource for customers with
technical support issues, and addresses a variety of topics and services, includin
technical support case status, commonly asked questions, access to Centura’s O
Newsgroups, links to Shareware tools, product bulletins, white papers, and
downloadable product updates.

For information on training, including course descriptions, class schedules, and
Certified Training Partners, go to http://www.centurasoft.com/training.

Supplemental
information

Note:

Alt+1 A plus sign between key names means to press and hold down the fi
key while you press the second key

TRUE

FALSE

These are numeric boolean constants defined internally in Builder:

Notation Explanation

Constant Value Meaning

TRUE 1 Successful, on, set

FALSE 0 Unsuccessful, off, clear
SQL Application Programming Interface Reference xi

Preface
Send comments to...
Anyone reading this manual can contribute to it. If you have any comments or
suggestions, please send them to:

Technical Publications Department
Centura Software Corporation
975 Island Drive
Redwood Shores, CA 94065

or send email, with comments or suggestions to:

techpubs@centurasoft.com
xii SQL Application Programming Interface Reference

SQL Application Programming Interface Reference
Chapter 1

Introduction to the
SQL/API

This chapter describes the SQL/API and provides the following information:

• Description of SQL/API components

• Compiling and linking SQL/API applications

• Running a SQL/API application
SQL Application Programming Interface Reference 1-1

Chapter 1 Introduction to the SQL/API

t
ng

L

 a
QL/
n

u to
.

ms

an
About the SQL/API
Centura’s SQL/API (Application Programming Interface) is a set of functions tha
you can call to access a database using Structured Query Language (SQL). Usi
these functions allows you to interface with a database through a procedural
language, such as C.

You embed SQL/API functions within your program. Some functions specify SQ
commands while other functions specify non-SQL database activities. After you
write your application program, you compile it and link it with a Centura C/API
library. You then can access database servers such as SQLBase.

The programs you write with the SQL/API are client (front-end) applications that
connect to a backend database server.

Why use the SQL/API?
Using SQL commands is useful to define, manipulate, control, and query data in
relational database. However, SQL is not a programming language. Using the S
API functions to call SQL commands gives you the following features which plai
SQL commands do not:

• Procedural logic

• Extensive data typing

• Variables

Using the API functions to develop a client application that uses SQL enables yo
use SQL without giving up the power and flexibility of the programming language

Other Centura SQLBase interfaces
The following SQLBase interfaces are available to assist you in creating your
application.

SQLBase++: This is a class library that lets you write object-oriented C++ progra
to access SQLBase. Read the following for more detailed information:

• README.WRI file in the CGSQL directory

• SQLBase++ Help System (CSQLHELP.HLP)

SQLTalk: This is an interactive user interface for SQL. Using this interface you c
call SQL commands directly. For information on using SQLTalk, read the SQLTalk
Language Reference manual.
1-2 SQL Application Programming Interface Reference

How SQL/API applications access SQLBase

ion
s that

e.
How SQL/API applications access SQLBase
A SQL/API client application can access either a local SQLBase database engine/
server or a remote SQLBase database server. Local means that the client applicat
and the database engine or server run on the same machine, and remote mean
they run on different machines.

Single-user engines reside on client machines, just as applications do. Single-user
engines allow only one application to connect to them at a time.

Multi-user servers can reside on the same machines as client applications or on
different machines. Servers allow multiple applications to connect to them
simultaneously and they can support multiple network protocols at the same tim

Refer to the Communications chapter of the Database Administrator’s Guide for
detailed information on single-user engines and multi-user servers.

Local configuration
The following diagram shows local configurations, where both the client application
and the engine/server are on the same machine.

Local configurations

Single-user engine

SQL/API

Client
Application

Multi-user server

SQL/API

Client
Application

+ +
SQL Application Programming Interface Reference 1-3

Chapter 1 Introduction to the SQL/API

 and
port
Remote configuration
The following diagram shows a remote configuration, where the client and server are
both on different machines connected by a Local Area Network (LAN).

In the remote configuration, there are communication libraries on both the client
server machines. Communication libraries provide network protocol-specific sup
so that client applications can communicate with database servers.

Refer to the Communications chapter of the Database Administrator’s Guide for
detailed information on communication options and libraries.

SQL/API components
The files listed below are components of the SQL/API.

sqlapinw.nlm
The NetWare Loadable Module that interfaces between a NetWare
SQL/API application and a database server.

errsql.h
An include file that contains defines for all return codes.

Client

Network software

Server

Local Area Network (LAN)

Centura
SQL/API

Communication

Network software

Library
Communication

Library

Remote configuration

Application

Database
Server
1-4 SQL Application Programming Interface Reference

SQL/API components

th a

QL
 SQL/
t

QL
ram

d a

base

ion

ams

er
qsiext.h
This file contains structure definitions and defined constants used to interface wi
SQLBase server and returns extended OSI information.

sql.h
A file that contains definitions for data types (typedefs), codes for each type of S
command, and system defaults. Include this file in a C source program that uses
API functions. This file contains two macros to accommodate both 16- and 32-bi
programs:

• SQL_32BITTARG for 32-bit programs

• SQL_16BITTARG for 16-bit programs

sql32.h
A file that contains definitions for data types (typedefs), codes for each type of S
command, and system defaults. You can include this file in a 32-bit C source prog
that uses SQL/API functions instead of sql.h.

sqlapiw.lib
The library that interfaces between a Microsoft Windows SQL/API application an
database server.

sqlsrv.h
A file that contains structure and constant definitions used to interface with a data
server.

sqlwntm.lib
A library that interfaces between a Windows 95 or Windows NT SQL/API applicat
(built with Microsoft’s NT tools) and a database server.

Example programs
Centura supplies the following example programs with the SQL/API. These progr
are referenced throughout this manual to illustrate the use of the SQL/API. Read
Running the example SQL/API function for details on running the examples und
your platform.

ex01.c
Performs a simple database connection using the standard defaults.
SQL Application Programming Interface Reference 1-5

Chapter 1 Introduction to the SQL/API

ayroll

.
ex02.c
Performs a database connection using literals for the connect string. (Create a P
database and run the grant.sql script in SQLTalk first.)

ex03.c
Performs a database connection using variables for the connect string. (Run the
grant.sql script in SQLTalk first.)

ex04.c
Compiles and executes a SQL command.

ex05.c
Compiles and executes a SQL command in one function call.

ex06.c
Demonstrates transaction control with the COMMIT and ROLLBACK commands
(Run the account.sql script in SQLTalk first.)

ex07.c
Demonstrates a common error routine. (Run the account.sql script in SQLTalk first.)

ex08.c
Performs a simple fetch. (Run the emp.sql script in SQLTalk first.)

ex09.c
Performs a fetch from multiple columns. (Run the emp.sql script in SQLTalk first.)

ex10.c
Demonstrates the describe operation. (Run the emp.sql script in SQLTalk first.)

ex11.c
Performs an insert with bind variables. (Reads from the data file.)

ex12.c
Performs data binding by name. (Run the emp.sql script in SQLTalk first.)

ex13.c
Writes LONG VARCHAR data. (Reads from the sayings.1 file.)

ex14.c
Reads LONG VARCHAR data. (You must compile and execute ex13.c first.)
1-6 SQL Application Programming Interface Reference

SQL/API components
ex15.c
Uses the sqlcpy function. (Run the emp.sql script in SQLTalk first.)

ex16.c
Demonstrates the use of multiple cursors. (Run the bonus.sql script in SQLTalk first.)

ex17.c
Performs backup and restore operations.

ex18.c
Demonstrates the use of result set and restriction modes.

ex19.c
Demonstrates most of the features of the SQL/API. (Reads from the sample.txt file.)

ex20.c
Fetches data. (Reads from the data file.)

ex21.c
Demonstrates the use of the SQL/API with Microsoft Windows.

ex22.c
Uses the sqlgsi function.

ex23.c
Demonstrates how to execute stored commands and procedures from SQL/API.

ring.c
Displays numbers that you enter in database-internal numeric format.

sqlcbv.c
Uses the sqlcbv (Clear Bind Variables) function.

sqlclf.c
Uses the sqlclf (Change process activity Log File) function.

sqlcre.c
Uses the sqlcre (CREate database) function.
SQL Application Programming Interface Reference 1-7

Chapter 1 Introduction to the SQL/API
sqldbn.c
Uses the sqldbn (DataBase Names) function.

sqlded.c
Uses the sqlded (DEinstall Database) function.

sqldel.c
Uses the sqldel (DELete database) function.

sqldro.c
Uses the sqldro (DiRectory Open) function.

sqldsc.c
Uses the sqldsc (DeSCribe column in SELECT list) function.

sqldsv.c
Uses the sqldsv (Disconnect from SerVer) function.

sqlfer.c
Uses the sqlfer (Full ERror message) function.

sqlfgt.c
Uses the sqlfgt (GeT File from server) function.

sqlims.c
Uses the sqlims (Input Message Size) function.

sqlind.c
Uses the sqlind (INstall Database) function.

sqlnrr.c
Uses the sqlnrr (Number of Rows in Result set) function.

sqloms.c
Uses the sqloms (Output Message Size) function.

sqlscp.c
Uses the sqlscp (Set Cache Pages) function.
1-8 SQL Application Programming Interface Reference

SQL/API components

 and
sqltio.c
Uses the sqltio (TIme Out) function.

test.c
Connects to a database, creates and populates a table, and performs SELECTs
UPDATEs on the table.

testwin.c
Sample Microsoft Windows program.

xdfunc.c
Uses the sqlxdp (eXtended convert Picture to Date).

Support files
The following files accompany the example programs.

account.sql
Creates the savings and checking tables for ex06.c and ex07.c.

bonus.sql
Creates the emp and bonus tables for ex16.c.

data
Company data for ex11.c and ex20.c.

emp.sql
Creates, indexes, and populates the emp table for ex08.c, ex09.c, ex10.c, ex12.c and
ex15.c.

examples
A listing of the example programs.

grant.sql
Grants connect authority to a user for ex02.c and ex03.c.

sample.txt
LONG VARCHAR data file for ex19.c.

testwin
The makefile for testwin.c which builds testwin.exe.
SQL Application Programming Interface Reference 1-9

Chapter 1 Introduction to the SQL/API

 in

the

g. If
ftware
testwin.def
The linker definitions file for testwin.c. It specifies the stack size, executable type,
program name, and exported functions.

testwin.exe
Executable file created from testwin.c.

testwin.rc
Resource file for testwin.c.

Compiling, linking, and running applications
This section describes how to compile, link, and run applications with embedded
SQL/API function calls on the various client platforms. For details on running the
example functions included in the SQLBase software, read Compiling, linking, and
running example programs on page 1-17.

Running a SQL/API application

1. Compile the program with the compiler of your choice. Read the information
the following sections that pertain to your platform.

2. Link the program with the appropriate Centura SQL/API library for your
platform. Read the next section Environment variables to include to choose
correct library for your platform.

Note: Some compilers allow you to compile and link a program in one step.

3. Confirm that the database engine or server that you plan to access is runnin
you plan to access a remote database server, make sure that the network so
on both the client and server machines is loaded and running.

4. Start a router program on the client machine, if necessary.

5. Make sure that the executable file can find and access the database.

6. Run the executable program.
1-10 SQL Application Programming Interface Reference

Compiling, linking, and running applications

ms
ds

n
 The
s in

Environment variables to include
Before compiling any SQL/API application, you need to set two environment
variables:

• INCLUDE

• LIB

INCLUDE identifies the directory or directories where header files such as sql.h or
sql32.h reside. For details on available header files, read Header files for 16-bit and
32-bit programs on page 1-16.

LIB identifies the directory where the SQL/API library resides. The SQL/API
libraries are listed below by platform:

Windows 16-bit programs
This section describes how to compile, link, and run Microsoft Windows C progra
that contain SQL/API functions for the Windows 3.x platform. Centura recommen
compiling your application with the /w3 option so that the compiler displays all
warning messages.

After compiling your application, either statically link it with sqlapiw.lib or reference
IMPORTS through the .def file.

Note: sqlapiw.lib is model independent.

Microsoft restricts you from calling sqlapiw.dll functions from a DLL in the LibMain
entry point, either directly or indirectly. This is because MS Windows has not bee
fully initialized and therefore, has not yet created a message queue for the task.
communications interface requires that initialization be complete before function
sqlapiw.dll are called.

For more information about LibMain, refer to the Microsoft Developer’s CD-ROM
documentation.

Platform SQL/API library

Windows sqlapiw.lib

Windows NT and
Windows 95

sqlwntm.lib (used for applications built
with Microsoft’s NT tools)

NetWare sqlapinw.nlm
SQL Application Programming Interface Reference 1-11

Chapter 1 Introduction to the SQL/API

:

ms

The following two examples illustrate the direct and indirect calling of sqlapiw.dll
functions:

/* Direct; this will not run. */

LibMain ()
{

sqlcnc (&cur, “demo”, 0);
}
and:
/* Indirect; this will not run either. */

LibMain ()
{

connect ();
}

void FAR PASCAL connect ()
{

sqlcnc (&cur, “demo”, 0);
}

Running Windows 3.x
If your application plans to access the local multiple-user Windows engine
(dbwservr.exe), follow these steps:

1. Start MS Windows.

2. Start dbwservr.exe.

3. Start your application.

If your application plans to access a remote database server, follow these steps

4. Start MS Windows.

5. Start your application.

Windows 32-bit programs
This section describes how to compile, link, and run Microsoft Windows C progra
that contain SQL/API functions for the Windows 95 and Windows NT platforms.

When building 32-bit applications to run on Windows NT or Windows 95, use the
Microsoft toolset (compiler, linker, librarian, and so on) that accompanies the
Windows NT SDK or use a Windows NT-compatible or Windows 95-compatible
toolset.

After compiling your program, link it with sqlwntm.lib.
1-12 SQL Application Programming Interface Reference

Compiling, linking, and running applications

hat
ets

el's

rary

le
Use the sqlwntm.lib library with applications built with Microsoft’s NT or 95 tools.
This library resolves references to the SQL/API functions at link time into the
sqlwntm.dll library.

Running Windows 95 and Windows NT
If your application plans to access the local multiple-user Windows engine
(dbntsrv.exe), follow these steps:

1. Start Windows 95 or Windows NT.

2. Start dbntsrv.exe.

3. Start your application.

If your application plans to access a remote database server, follow these steps:

4. Start Windows 95 or NT.

5. Start your application.

Windows NT character-based application
To build a character-based SQL/API application under Windows NT, make sure t
you have the Windows NT SDK installed on your machine. The install process s
the environment variable INCLUDE to the following value:

INCLUDE=c:\mstools\h

This assumes that the SDK has been installed on drive C:.

You may also need to do the following:

1. Include an additional setting for this variable:

INCLUDE=c:\mstools\h;c:\mstools\h\sys

2. Add search path(s) for your own C header files, including sql.h. All modifications
to the INCLUDE environment variable should be made from the Control Pan
System icon.

3. Ensure that the environment variable LIB includes the directory where the lib
sqlwntm.lib is located.

Once the variables have been set properly, use the following command to compi
your program. This example compiles a sample program called example.c:

cl386 -c -Gs -Od -Zpe -DSQL_32BITTARG=1 -DSTRICT -W1 -D_X86
example.c

This creates the object file example.obj.
SQL Application Programming Interface Reference 1-13

Chapter 1 Introduction to the SQL/API

PI

e

uild
rver

uild

 to
The program can be linked with the SQL/API library sqlwntm.lib using the following
command:

link32 -debug:full -debugtype:cv -subsystem:console -
entry:mainCRTStartup -map:example.map example.obj
libc.lib kernel32.lib sqlwntm.lib -out:example.exe

Both cl386 and link32 are documented in the Tools User's Guides of the Microsoft
Win32 Software Development Kit.

C programs for Netware
This section describes how to build a NetWare Loadable Module (NLM) from a C
program containing SQL/API functions and how to compile and link your SQL/A
applications to the sqlapinw.nlm library.

Building the SQL/API NLM
An NLM is a program that you can load into or unload from the NetWare server
memory while the NetWare server is running. When loaded, an NLM is part of th
NetWare operating system. When unloaded, an NLM releases the memory and
resources that were allocated for it.

A SQLBase client NLM is version-independent; it does not matter whether you b
it under NetWare 3.x or 4.x. It also can communicate with either the SQLBase Se
for NetWare 3.x or 4.x.

You can build an NLM from a C program created on any platform. You can also b
an NLM from any of the SQL/API examples accompanying this product to run on
NetWare.

The SQL/API import NLM name is sqlapinw.nlm. The NetWare communication
library is spxdll.nlm (if you are using Novell’s NETX environment), tlidll.nlm (if you
are using TLI-TCP/IP support for both NetWare 3.x and 4.x), and spxdll40.nlm (if
you are using Novell’s DOS/VLM).

Compiling and linking SQL/API applications to the NLM
Use the Watcom C/C++ compiler to compile and link your SQL/API applications
the sqlapinw.nlm library. The following example compiles a program called myfile.c
to create myfile.obj:

wcc386p -3s myfile.c

To debug the program, add the -d2 switch to the compile command.

Edit the sql.h file with the following modifications:

• Set the #define SQL_32BITTARG to 1.
1-14 SQL Application Programming Interface Reference

Compiling, linking, and running applications

ple

w to
• Add the following line:

#define_stdcall

The following command line links the C program and builds the NLM. This exam
links the myfile.obj file to create myfile.nlm:

wlinkp myfile.lnk

To link the program to the NetWare, you must supply a .lnk or .def file. See the Novell
and Watcom documentation listed at the end of this section for information on ho
build a .lnk or .def file.

The following example shows a sample link file called mytest.lnk.

#BEGIN MYTEST.LNK SAMPLE#
form NOV NLM 'Centura SQLAPI Test NLM'
name \testnlm\mytest#name

#specify map file and version options
option map=\testnlm\mytest.map
option version=1.00

debug NOVELL #Use this to debug in NetWare
#Internal debugger only

#debug ALL # Use this to debug under Watcom
#video also

option stack=60k
#option caseexact
file \testnlm\mytest.obj

#import libraries
import @\sql\watc\h\clib.imp
#import @\sql\watc\h\mathlib.imp

#Import all SQL/API functions from sqlapinw.nlm that
#will be called in the mytest.nlm program
import sqlcnc
import sqldis
import sqlcom
import sqlexe

#END MYTEST.LNK SAMPLE#

For more information, see the following documentation as appropriate:

• Netware NLM Library reference and related documentation.

• Watcom C/C++ compiler documentation.

• Netware 4.0 NLM Programming from Novell Press.
SQL Application Programming Interface Reference 1-15

Chapter 1 Introduction to the SQL/API

e

pile
s

G

 the
Running a SQL/API NLM
To run a SQL/API NLM, first load the following NLMs at the colon according to th
listed order:

:load dll.nlm
:load dfs.nlm (or) :load dfd.nlm
:load spxdll.nlm (or) :load tlidll.nlm
:load sqlapinw.nlm

You can also load the NLMs together as a batch (or .ncf) file.

After loading these NLMs, load the SQLAPI application NLM as follows

:load myvolume:\mypath\myfile.NLM.

Header files for 16-bit and 32-bit programs
SQLBase provides two header files for client applications. The sql32.h
accommodates 32-bit programs; generally, you should use this header file to com
32-bit programs. The sql.h header file accommodates both 16- and 32-bit program
with 2 macros:

• SQL_32BITTARG for 32-bit programs

• SQL_16BITTARG for 16-bit programs

These macros are case sensitive, and must be called in upper-case.

Be aware that by default, SQL_16BITTARG is set to 1 (true), and SQL_32BITTAR
is set to 0 (false) in sql.h. To compile 32-bit programs with sql.h, you must set
SQL_32BITTARG to 1. You can do this in several ways:

• Use the -D switch on the compiler command line. For example:

-DSQL_32BITTARG=1

• Define the macro in the user code, and then include sql.h. For example:

#define SQL_32BITTARG 1
#include “sql.h”

• Include the new header file sql32.h. Include this new header file in your
program instead of the regular sql.h:

#include “sql32.h”

The Centura sql.h file is compatible with all of Microsoft’s C/C++ compilers
(versions 5.1 and up) and with the latest version of WATCOM’s C/C+ compiler. If
you are using a compiler other than either of these two, make certain that it uses
flat memory model and supports the __stdcall calling convention.
1-16 SQL Application Programming Interface Reference

Compiling, linking, and running example programs

ions
ions

g
Compiling, linking, and running example programs
This section describes how to compile, link, and run the example SQL/API funct
included in the SQLBase software for the Windows platforms. The example funct
that are available with SQLBase are listed under SQL/API components on page 1-4.

Running example programs with Windows 3.x

1. Compile the program as a QuickWin application. For information on compilin
QuickWin applications, see the documentation for your specific compiler.

2. Link the program with the sqlapiw.lib library. Read Environment variables to
include on page 1-11 for details on linking the library.

3. Run the executable program.

Running example programs with Windows 95 and Windows NT

1. Create a project of type Console Application in Microsoft Visual C (MSVC) 2.0
or later.

2. Link the program with the sqlwntm.lib library. Read Environment variables to
include on page 1-11 for details on linking the library.

3. Compile the example programs (which are DOS programs).

4. Run the executable program.
SQL Application Programming Interface Reference 1-17

SQL Application Programming Interface Reference
Chapter 2

Data Types

This chapter describes the three different kinds of data types:

• Internal database data types are generic data types. They specify how
SQLBase stores data internally. The sqldes and sqlgdi functions are the only
SQL/API functions that reference these data types.

• Program data types map to C data types.

• External data types map to non-Centura database data types. The sqldsc and
sqlgdi functions are the only SQL/API functions that reference these data
types.
SQL Application Programming Interface Reference 2-1

Chapter 2 Data Types

ata

e

gth

30)
g to

rs to

rnal
Internal database data types
SQLBase stores data internally as one of the following data types. The internal d
types are defined in sql.h:

Note: Internal data types SQLDBOO and SQLDHL are not stored in the database, but ar
parameters to stored procedures.

Character data
SQLBase stores character data (including LONG VARCHAR data) as variable-len
strings.

For example, if you insert a 20-character string into a column defined as CHAR(
or VARCHAR (30), SQLBase stores only 20 characters. It does not pad the strin
make it 30 characters long.

Numeric data
SQLBase stores numeric data in base 100 floating point format, and maintains
precision and scale. Precision refers to the total number of digits while scale refe
the number of digits to the right of the decimal point.

The length of a stored numeric value varies, and can be from 1 to 12 bytes.

Numeric data is cast on input and output to conform to the restrictions of the exte
data type.

Internal Data Type Description

SQLDBOO Boolean

SQLDCHR Character

SQLDDAT Date/time

SQLDDTE Date (only)

SQLDHDL SQL Handle

SQLDLON Long

SQLDNUM Numeric

SQLDTIM Time (only)
2-2 SQL Application Programming Interface Reference

Internal database data types

r bit

Internal numeric functions
You can use the functions listed below to manipulate numeric data stored in its
internal format:

Byte format
The byte format is:

The first byte contains the sign bit and the exponent. The sign bit is the high orde
(80 hexadecimal, 10000000 binary). If this bit is set, the final number is positive;
otherwise the number is negative.

Function Description

sqlxad eXtended ADd - Adds two SQLBase internal numbers.

sqlxcn eXtended CoNvert - Converts a character string to a SQLBase
internal number.

sqlxdv eXtended DiVide - Divides a SQLBase internal number by
another SQLBase internal number.

sqlxml eXtended MuLtiply - Multiplies two SQLBase internal
numbers.

sqlxnp eXtended Number to Picture - Converts a SQLBase internal
number to a string using a picture format.

sqlxsb eXtended SuBtract - Subtracts one SQLBase internal number
from another and puts the result in a third SQLBase internal
number.

Exponent

. . .

(1 byte)
Fractional Part

(1-11 bytes - variable)

Sign bit:
1 = positive
0 = negative

Exponent bits
SQL Application Programming Interface Reference 2-3

Chapter 2 Data Types

ent
ght

om 0

ue of

The remaining 7 bits of the first byte store the exponent in base 100. The expon
indicates how many bytes in the fractional part to shift the decimal point to the ri
(or to the left for negative exponents) to get the final number.

The exponent is biased by 64 (40 hexadecimal, 01000000 binary) and ranges fr
to 127 as a biased number or -64 to 63 unbiased.

For example:

In the fractional part, there may be 0 to 11 bytes. Each byte contains a binary val
0 to 99. Each byte represents a base 100 number.

Trailing digits are truncated for positive numbers.

Negative numbers
For negative numbers, the following conversion is applied to the positive number
representation:

1. Take the 1's complement of the exponent byte.

2. Take the 100's complement of the fractional part.

3. Add a byte containing 101 to the end of the fractional part.

These steps ensure that negative numbers sort properly.

Here are some examples of internal numeric storage representation:

Biased Exponent Actual exponent (unbiased)

70 6

65 1

64 0

63 -1

58 -6

Number Internal Representation

123 194,01,23

0.0123 192,01,23

12.3 193,12,30

-123 61,99,77,101
2-4 SQL Application Programming Interface Reference

Internal database data types

o

al

ot

ined
Here are the steps followed for the fifth example above:

-0.0123 63,99,77,101

1. The binary value of the exponent (63) is 00111111.

2. The high-order bit is zero, which means that the final value is negative and t
invert the binary value:

11000000

3. Strip the high-order bit:

01000000

4. which is 64 in decimal. Subtract 64 from 64 and it equals zero, so the decim
point does not need to be shifted.

5. Drop the 101 and take the 100's complement of 99 and 77:

01 23

6. The final value is negative (determined in step 2). The decimal point does n
shift, so the final value is:

-0.0123

Date and time data
SQLBase stores date and time data in the same format as for numeric data. The
default display format of date and time data in the SQL/API is:

yyyy-mm-dd-hh.mi.ss.999999

where hours (hh) is based on a 24-hour clock.

Define the buffer that receives date and time data with a length of SQLSCDA (def
in sql.h).

-0.0123 63,99,77,101

-12.3 62,88,70,101

Number Internal Representation
SQL Application Programming Interface Reference 2-5

Chapter 2 Data Types

a

am
urns
Internal date/time functions
You can use the following functions listed below to manipulate date and time dat
stored in its internal format.

Program data types
Use program data types to define data within a SQL/API program.

When inserting data into a database, the program data type does not have to match an
internal database data type. The SQL/API always tries to convert data in a progr
variable to the database data type. If the SQL/API cannot convert the data, it ret
an error.

The program data types are defined in sql.h:

Function Description

sqlxda eXtended Date Add - Adds n days to a SQLBase internal
date.

sqlxdp eXtended Date to Picture - Converts a SQLBase internal
date to a string using the specified picture format.

sqlxpd eXtended Picture to Date - Converts a null-terminated string
to a SQLBase internal date.

Program Data Type Description

SQLPBUF Character buffer

SQLPDAT Internal datetime

SQLPDOU Double

SQLPDTE Date only

SQLPEBC EBCDIC buffer

SQLPFLT Float

SQLPLON Long text string

SQLPLBI Long binary buffer

SQLPLVR Char/long varchar >254

SQLPNBU Numeric buffer

SQLPNST Numeric string
2-6 SQL Application Programming Interface Reference

Program data types

its in
most

tes as
Packed-decimal data types
You can retrieve packed-decimal data into a program. There are data types for
unsigned packed decimal (SQLPUPD) and signed packed decimal (SQLPSPD).

If you use a packed decimal type, the data length is the maximum number of dig
the number. Each nibble (4 bits) of each byte holds one digit, except for the right
nibble which holds the sign (if requested).

For example, the number 9987654321 has a length of 6 bytes and appears in by
shown below.

The leftmost nibble is unused and the rightmost nibble contains a sign (if any).

SQLPNUM Internal numeric

SQLPSCH Character

SQLPSIN Integer

SQLPSLO Long

SQLPSPD Signed packed decimal

SQLPSSH Short

SQLPSTR String (null-terminated)

SQLPTIM Time only

SQLPUCH Unsigned character

SQLPUIN Unsigned integer

SQLPULO Unsigned long

SQLPUPD Unsigned packed decimal

SQLPUSH Unsigned short

Program Data Type Description

Sign

6 5 4 3 2 1

9 9 8 7 6 5 4 3 2 1 S
SQL Application Programming Interface Reference 2-7

Chapter 2 Data Types

d 1

a
To determine the number of bytes required:

Number of bytes required = (1 + number of digits)/2

If it divides evenly, the quotient is the length. If there is a remainder (modulo), ad
to the quotient. For example, the number 9987654321 contains 10 digits:

(1 + 10)/2 = 5 modulo

It does not divide evenly, so add 1. The length is 6.

You need only specify the scale argument (number of decimal places) for the sqlssb,
sqlbnn, and sqlbnd functions for a packed-decimal data type. If you are not using
packed-decimal data type with one of these functions, specify a 0 for the scale
argument.

External data types
The external data types are defined in sql.h:

External Data Type Description

SQLEBIN BINARY

SQLEBOO BOOLEAN

SQLECHR CHAR

SQLEDAT DATE

SQLEDEC DECIMAL

SQLEDOU DOUBLE

SQLEFLO FLOAT

SQLEGPH GRAPHIC

SQLEINT INTEGER

SQLELBI LONG BINARY

SQLELCH CHAR >254

SQLELGP LONG VAR GRAPHIC

SQLELON LONG VARCHAR

SQLELVR VARCHAR >254

SQLEMON MONEY
2-8 SQL Application Programming Interface Reference

External data types
SQLESMA SMALLINT

SQLETIM TIME

SQLETMS TIMESTAMP

SQLEVAR VARCHAR

SQLEVBI VAR BINARY

SQLEVGP VAR GRAPHIC

External Data Type Description
SQL Application Programming Interface Reference 2-9

L/API

e

e the
. To

SQL Application Programming Interface Reference
Chapter 3

Using the SQL/API

This chapter uses flowcharts and code examples to show you how to use the SQ
functions. This chapter does not attempt to provide details for each SQL/API
function, but it does show the logic flow within a program.

The SQL/API functions are flexible and can be used in different ways. In the cod
examples, specific techniques are used to perform tasks (for example, using for and
while loops). These techniques are only suggested solutions and you should not
interpret them as the only or best way to perform a task.

This chapter refers to example programs that are on the installation diskette. Se
Example programs section in Chapter 1 for a summary of these example programs
run the example programs yourself, read Compiling, linking, and running example
programs on page 1-17.
SQL Application Programming Interface Reference 3-1

Chapter 3 Using the SQL/API

fic

ltiple
ns to
. For

ect

to the

Connect and close cursor

Note: This section applies to applications in which you are connecting cursors to a speci
database that belong to a single transaction.

To create multiple, independent connections, SQLBase allows you to explicitly create mu
connection handles. For example, you can use connection handles for multiple transactio
the same database within an application, or for creating multi-threaded Win32 applications
details on creating connection handles, read Connection handles on page 3-17.

Before you can perform database operations in your application, you must conn
the cursor to a specific database with a cursor handle (sqlcnc). The sqlcnc function
returns a cursor handle which identifies an implicit connection to the database.

All cursors that you connect to this database belong to a single transaction and
same implicit connection handle. Read Cursors on page 3-27 for more information.

You must disconnect the cursor connection to the database (sqldis) before you can
exit from the program.

The example programs ex01.c, ex02.c, and ex03.c show how to connect to, and close
a cursor from, a database. Here is ex03.c:

#include "sql.h"
➀ #include <stdio.h>

main()
{

➁ SQLTCUR cur=0; /* SQLBase cursor number*/
➂ SQLTRCD rcd=0; /* return code */
➃ static char dbname[]="PAYROLL/BOSS/SECRET";

/*
CONNECT TO THE DATABASE

*/
➄ if (rcd = sqlcnc (&cur,dbname,0))

{
➅ printf("FAILURE ON CONNECT %d\n",rcd);

printf("Does the PAYROLL database exist?\n");
printf(Has GRANT.SQL been run\n");
return (1);

}
else

printf("Connection Established \n");
/*

DISCONNECT CURSORS
*/
3-2 SQL Application Programming Interface Reference

Connect and close cursor

PI

other

ame,

oints

ge

ys

tting

n to
vents
➆ if (rcd = sqldis(cur))
printf("FAILURE ON DISCONNECT %d\n", rcd);

else
printf("Disconnect Performed \n");

}

1. You must include the support file sql.h in a program that calls the SQL/API
functions.

2. Declare a cursor for the connection.

3. Declare a variable that will hold a return code for each execution of a SQL/A
function.

4. Declare the name of the database that you want to connect to.

5. Call the sqlcnc function to connect to the database. If the call completes
successfully, the cursor handle is returned in the first argument (cur). The cursor
handle is opaque and you are not aware of its actual value, but you use it in
SQL/API functions to identify a specific connection to the database.

The second argument is the connect string which can specify the database n
the username and the password. If you do not specify all three parameters
(database name, user name, and password), their default values (DEMO,
SYSADM, and SYSADM) are used.

The third argument (length) is zero which means that the second argument p
to a string that is null-terminated. The
SQL/API will compute the actual length of the string.

6. If the function fails and returns a non-zero value, a user-defined error messa
(“FAILURE ON CONNECT”) is printed.

7. Call the sqldis function to close the cursor connection from the database. Alwa
disconnect all cursors before exiting a program. The last sqldis function in a
program causes an implicit commit by default. You can change the default se
using the sqlset function with the SQLPCCB parameter.

Server security
To perform administrative operations on a server, you must establish a connectio
the database server itself and specify the server password (if one exists). This pre
unauthorized users from performing destructive operations on the server.

Define the server name by configuring the servername keyword in the server’s
configuration file (sql.ini). A server name can be up to eight alpha-numeric
characters, but it must start with a letter.
SQL Application Programming Interface Reference 3-3

Chapter 3 Using the SQL/API

t

ver

tence

at

ed
te it

h

h as

d
s on,
Define the server password by configuring the password keyword on the line
immediately following the servername keyword entry. A password can be up to eigh
alpha-numeric characters.

Use the sqlcsv function to establish a server connection. This function requires a
server name as input and returns a handle.

Use the sqldsv function to break a server connection. This function requires a ser
handle as input.

Compiling and executing SQL commands
Four things happen when SQLBase compiles a SQL command:

1. It parses the command. This step detects syntax errors and verifies the exis
of database objects.

2. It performs a security check.

3. It determines the best access path. The system finds the indexes (if any) th
provide the best access path to the data.

4. It translates the command into a series of executable modules.

The sqlcom function compiles a SQL command, and SQLBase stores the compil
command in the cursor work space. After compiling a command, you can execu
using the sqlexe function.

The sqlcex function compiles and executes a SQL command in one step. Use the
sqlcex function for SQL commands which do not contain bind variables and whic
will only be executed once. For example, commands which you can compile and
execute with sqlcex are data definition commands and data control commands suc
CREATE, DROP, GRANT, and REVOKE.

Unless cursor-context preservation is on, when you COMMIT a transaction,
SQLBase destroys compiled commands for all cursors that the program has
connected to the database. This is true for both explicit and implicit COMMITs,
including implicit COMMITs which occur when you have autocommit on.

If cursor-context preservation is off, a ROLLBACK (including a ROLLBACK cause
by a deadlock) destroys all compiled commands. If cursor-context preservation i
a ROLLBACK does not destroy compiled commands if both of the following are
true:

• The application is in Release Locks (RL) isolation level

• No data definition language (DDL) operations were performed

The example programs ex04.c and ex05.c show how to compile and execute SQL
commands.
3-4 SQL Application Programming Interface Reference

Setting SELECT buffers

e,
ll

n. A
e

g.

edly,

 to a

Setting SELECT buffers
After you compile a SELECT command with sqlcom, you must set up areas within
your application to receive the selected data. Do this with the sqlssb function.

You must call the sqlssb function once for each item in the SELECT list. For exampl
if you SELECT the columns EMP_NAME, EMP_NO, EMP_DOB, you need to ca
the sqlssb function three times.

You do not need to call the sqlssb function for LONG VARCHAR columns. The
sqlrlo function identifies the receive buffer for a LONG VARCHAR.

The example programs ex08.c and ex09.c show how to use the sqlssb function.

Bind variables
In a SQL statement, you can use a bind variable to represent the value of a colum
bind variable indicates that data from a variable defined in your application will b
bound (associated) to it each time you execute the SQL statement.

A bind variable name begins with a colon (:) and is followed by a number or strin
For example:

SELECT * FROM BOOKS WHERE AUTHOR = :1
or:

SELECT * FROM BOOKS WHERE AUTHOR = :auth
Bind variables allow you to compile a SQL statement once and execute it repeat
each time substituting a new set of values in the bind variables.

Binding data
The sqlbnd function associates an alphanumeric bind variable in a SQL statement
variable in your application. The sqlbnn function associates a numeric bind variable
in a SQL statement to a variable in your application.

Bind functions for LONG VARCHAR columns are explained in the LONG
VARCHAR Handling section later in this chapter.

The example programs ex12.c and ex16.c show how to bind data.
SQL Application Programming Interface Reference 3-5

Chapter 3 Using the SQL/API

 a

 the
Queries
The following two flowcharts show the sequence of operations when performing
SELECT command. The first flowchart shows the sequence if you are not using bind
variables, and the second flowchart shows the sequence if you are using bind
variables.

In the first flowchart (a SELECT not using bind variables), note that you can call
sqlssb function before or after the sqlexe function. However, you must call the sqlssb
function before the sqlfet function.

Start

Access cycle for SELECT command
without bind variables

Compile
SQL statement

Set
SELECT buffers

Execute
SQL statement

Fetch row

End

sqlcom

sqlssb

sqlexe

sqlfet

Process row

More
rows to
fetch?

No

Yes
3-6 SQL Application Programming Interface Reference

Queries
Start

Access cycle for SELECT command
with bind variables

Compile
SQL statement

Set
SELECT buffers

Execute
SQL statement

Fetch row

End

sqlcom

sqlssb

sqlexe

sqlfet

Process row

More
rows to
fetch?

No

Yes

More
data to
bind?

Yes

No

Bind the data
sqlbnn

or
sqlbnd
SQL Application Programming Interface Reference 3-7

Chapter 3 Using the SQL/API
SELECT command without bind variables (ex20.c)
This example uses excerpts from ex20.c to show how to perform a SQL SELECT
statement (without bind variables) using the SQL/API.

#include "sql.h"

...

SQLTCUR cur = 0; /* Cursor number */
SQLTRCD rcd = 0; /* Return code */

main()
{

...

SQLTDAP cp; /* Character pointer */
SQLTDAL length; /* Length */
SQLTPDL pdl; /* Program buffer length */
SQLTDDT ddt; /* Database data type */
SQLTPDT pdt; /* Program data type */
SQLTSLC slc; /* SELECT list column */
SQLTNSI nsi; /* Number of SELECT items */
char line[200]; /* I/O line */
...

➀ static char selcom1[] ="SELECT A, D, C FROM X";
/*SELECT command*/

... /*Connect to database, create the table */

pdt = SQLPBUF; /* Set program data type of buffer */
...
/* Compile the SELECT command */

➁ if (sqlcom(cur, selcom1, 0))
failure("SELECT COMPILE");

/* Get descriptive information about SELECT */

cp = line; /* Set pointer to input line */
➂ if (sqlnsi(cur, &nsi)) /* Get # SELECT items */

failure("GET NUMBER OF SELECT ITEMS");

for (slc = 1; slc <= nsi; slc++) /* Get information */
 /* on each column */

{

3-8 SQL Application Programming Interface Reference

Queries

ns
tual

ta is
➃ if (sqldes(cur, slc, &ddt, &pdl, /* Failure on */
/* describe? */

SQLNPTR, SQLNPTR, SQLNPTR, SQLNPTR))
failure("SELECT DESCRIBE");

➄ if (sqlssb (cur, slc, pdt, cp, pdl, /* Set SELECT */
0, SQLNPTR, SQLNPTR)) /* buffer */

failure("SET SELECT BUFFER");
cp += (pdl + 1); /* Locate next area */
}

/* Execute the SELECT command */

➅ if (sqlexe(cur))
failure("SELECT EXECUTE");

/* Fetch and display the data */

length = cp -(SQLTDAP)line; /* Compute the length */
cp = 0; / Append a zero to the string */

for (;;)
{
memset(line, ' ', length); /* Fill the line */

/* with spaces */

➆ if (rcd = sqlfet(cur)) /* Failure or end of */
break; /* file? */

printf("%s\n", line); /* Print the line */
}

➇ if (rcd != 1) /* Failure on fetch */
failure("FETCH");

...

1. Declare a string that contains the SELECT statement.

2. You must compile a SQL statement before you can execute it. Compile the
SELECT statement with the sqlcom function. The first argument is the cursor
handle returned by sqlcnc. The second argument specifies the variable that
contains the SQL command string. The third argument is zero (0) which mea
that the command string is null-terminated. The SQL/API will compute the ac
length of the argument.

3. Call the sqlnsi function to get the number of columns in the SELECT list. For
some applications, you may not know the number of columns from which da
SQL Application Programming Interface Reference 3-9

Chapter 3 Using the SQL/API

se

 have

data
 is

t for
ey are

t and

d,

get
being selected. The sqlnsi function returns a pointer to the number of SELECT
columns in the second argument (&nsi).

4. The for loop starts with the first SELECT column and continues until SQLBa
processes the number of SELECT columns returned by sqlnsi. The sqldes
function retrieves the attributes of each column. In this example, we are only
interested in the data type and length (the third and fourth arguments), so we
specified the remaining arguments as SQLNPTR, which is defined in sql.h as a
null pointer.

5. The sqlssb function sets up the data area in the application that receives the
for each column fetched by sqlfet (to be performed later). The second argument
the column number in the SELECT list. The third argument (pdt) is assigned the
value of SQLPBUF (defined in sql.h as a character data type). The fourth
argument (cp) is a pointer to a buffer in the program. The fifth argument (pdl) is
the program data length. The fifth argument is zero because it is only relevan
a packed-decimal data type. The remaining arguments are not relevant, so th
assigned SQLNPTR (null pointer). After the sqlssb function, cp is set to point to
the program area that will receive the next column.

6. Execute the SELECT statement using the sqlexe function. The sqlexe function
executes the previously-compiled command.

7. Fetch a row at a time using the sqlfet function. Repeat this until all rows in the
result set have been fetched. In the program, the length of the print line is se
then a for loop gets each row in the result set using the sqlfet function and prints it.

8. When the sqlfet function fails, the for loop terminates and program execution
continues at the next statement where the return code for sqlfet is checked to
ensure that a 1 was returned. The normal end-of-fetch indicator for sqlfet is 1,
meaning that the last row has been successfully fetched. If a 1 is not returne
there must have been an error.

Result sets
A result set is a collection of rows produced by a query (a SELECT statement).

Result set mode and restriction mode
You can use result set mode (also called scroll mode) and restriction mode with
queries. These features are useful for browsing applications.

Result set mode . In result set mode, once a result set has been created, you can
to any row in the result set without sequentially fetching forward by calling the sqlprs
function. Once the cursor is positioned, fetches start from that row.
3-10 SQL Application Programming Interface Reference

Result sets

e

us

e

t

f row
. A
r you
er and

lling

Restriction mode . In restriction mode, the result set of a query is the basis for th
next subsequent query, with each query further restricting the result set. This
continues until you query a different table. Querying a new table drops the previo
result set and establishes a new basis from which to start further restrictions.

While in restriction mode, you can "undo" the current result set and return to the
result set as it was before the last SELECT with the sqlurs function.

Turn on both result set mode and restriction mode with the sqlsrs function. After you
call sqlsrs, you can turn off restriction mode (but leave result set mode on) with th
sqlspr function. Calling the sqlstr function turns restriction mode back on.

You turn off both result set mode and restriction mode with the sqlcrs function. The
sqlcrs function lets you optionally assign a name to the result set and save it.

Saved result sets
To use a saved result set later, call the sqlrrs function and specify the saved result se
name. The sqlrrs function turns on result set mode and restriction mode.

The sqldrs function drops a saved result set.

Be cautious about using saved result sets. Internally, a saved result set is a list o
identifiers (ROWIDs) that is stored in the SYSROWIDLISTS system catalog table
ROWID changes whenever the row is updated. If one of the rows is updated afte
have saved and closed a result set, you get an error if you open the result set lat
try to fetch the row.

The example program ex18.c illustrates result set mode and restriction mode
processing.

Fetching

Row-at-a-time processing
If a query returns multiple rows, fetch each row and process it; you do this by ca
the sqlfet function after compiling and executing a SELECT command. At this point,
SQLBase builds the result set and returns the first row. Each subsequent call to sqlfet
fetches the next row from the result set.

Fetching the last row of a result set
To fetch the last row of a result set, call the sqlnrr function to get the number of rows
in the result set, position to the last row with a call to the sqlprs function, and then
fetch the last row with the sqlfet function.
SQL Application Programming Interface Reference 3-11

Chapter 3 Using the SQL/API

 an

is is
ine is

e

and
Keeping track of the cursor position
If you need to keep track of the current cursor position, create a counter and
increment it by 1 each time you fetch a row. If you position the cursor (with the sqlprs
function) to a particular row, set the counter to that row position.

Example programs
The example programs ex08.c and ex09.c show how to fetch rows from a result set.

INSERTs, UPDATEs, and DELETEs
The following flowchart shows the sequence of operations necessary to perform
INSERT, UPDATE, or DELETE command using bind variables.

In the flowchart, SQLBase binds the data each time the command executes. Th
necessary because in the example program that follows the flowchart, an input l
scanned to find a comma that separates individual values (the values can vary in
length). In other words, the input data "changes location," so the bind needs to b
done each time the command is executed. If the input data does not change location
each time, the bind only needs to be done once.

If you are not using bind variables, you need only to compile and execute a comm
using the sqlcex function.

Start

Access cycle for INSERT, DELETE, or UPDATE command
with bind variables

Compile
SQL statement

Bind the data

End

sqlcom

sqlssb

sqlexe

More
data to
bind?

No

Yes

Execute
SQL statement
3-12 SQL Application Programming Interface Reference

INSERTs, UPDATEs, and DELETEs

his
INSERT with bind variables (ex11.c)
This example shows how to perform an INSERT command using the SQL/API. T
program reads a flat file called data that contains a row with four column values on
each line. Each column value is separated with a comma.

#include "sql.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

SQLTCUR cur=0; /* SQLBase cursor number*/
SQLTRCD rcd=0; /*SQLBase return code */
int strscn(char*, char);
void failure(char*); /*error handler*/

main ()
{

FILE* fp; /* file pointer*/
char* cp; /* character pointer */
SQLTDAL length; /* length */
SQLTBNN bnn; /* bind number*/
SQLTNBV nbv; /* # of bind variables*/
char line[80]; /* input line */
static char ctbcom[] = /*CREATE TABLE comand */

"CREATE TABLE X (A NUMBER, B DATETIME,
C CHAR(30), D NUMBER)";

➀ static char inscom[] =/*INSERT command */
"INSERT INTO X (A, B, C, D) VALUES (:1, :2, :3, :4)";

/* CONNECT TO THE DATABASE */
if (rcd = sqlcnc(&cur, "DEMO", 0))

failure("CONNECT");

/*
CREATE THE TABLE

*/

if (sqlcex(cur, ctbcom, 0))
failure("CREATE TABLE");

/*
COMPILE THE INSERT COMMAND

*/

➁ if (sqlcom(cur, inscom, 0))
SQL Application Programming Interface Reference 3-13

Chapter 3 Using the SQL/API

with
d.
failure("INSERT COMPILE");

/*
INSERT THE DATA

*/

if (!(fp = fopen("DATA", "r"))) /* open input file */
failure("FILE OPEN");

while (fgets(line, sizeof(line), fp))/*read the input */
{

line[strlen(line) -1] = 0; /* remove new line char */

➂ sqlnbv(cur, &nbv); /* OPTIONAL: could hard code */
/* a value of 4*/

for (cp = line, bnn =1;/*scan the line */
bnn <= nbv; bnn++)

{
length=strscn(cp, ',')/*locate comma*/

➃ sqlbnn (cur, bnn, cp,length, 0, SQLPBUF) ;
cp += length;/*locate end*/
if (cp* == ',')/*comma ?*/

cp++;
}

➄ if (sqlexe (cur))/*insert row */
failure ("INSERT EXECUTE");

}
/*

DISCONNECT FROM THE DATABASE
*/
...

} /* end MAIN */
...

1. Declare the INSERT command.

2. Compile the INSERT command.

3. The while loop reads one line of the file at a time. The sqlnbv function returns the
number of bind variables in the SQL command. The for loop finds each column
value in the line by scanning for commas.

4. The sqlbnn function associates a buffer in the program that contains the data
the appropriate bind variable in the VALUES clause of the INSERT comman
Data from the program will be associated with the bind variable in the SQL
3-14 SQL Application Programming Interface Reference

INSERTs, UPDATEs, and DELETEs

 data,
gram
command each time the command executes. The arguments for the sqlbnn
function are the cursor, the sequence number of the bind variable, a pointer to
the length, the scale (only used for packed-decimal data types), and the pro
data type.

5. After binding all values in the line, the sqlexe function is called to execute the
INSERT command.

UPDATE with bind variables (ex19.c)
This example shows how to execute an UPDATE command with a WHERE
CURRENT OF clause.

#include "stdio.h"
#include "sql.h"
...

➀ static char updprice[] = /* UPDATE command */
"UPDATE ITEM SET PRICE = :1 WHERE CURRENT OF C1";
SQLTCUR cur1;/* SQLBase first cursor number */
SQLTCUR cur2;/* SQLBase second cursor number */
...

main()
{

/* CONNECT CUR1 TO THE DATABASE */
if (rcd=sqlcnc(&cur1, dbnam,0))

cncfail(rcd, "CONNECT");
...
} /* end MAIN */

void itemins()
{

FILE *fp;
struct item *datap; /* pointer to input data*/
int maxitem = 50; /* highest item number */

/* Compile insert statement */
if (sqlcom(cur1, insitem, 0))

failure(cur1,"COMPILE ERROR");
...
} /* end itemins() */

/* The routine fetches each row, including long data,*/
/* updates */
SQL Application Programming Interface Reference 3-15

Chapter 3 Using the SQL/API
/* the price by 1 */
void priceupd ()
{

SQLTDAL len; /* Length of data read*/
SQLTRCD rcd; /* Fetch return code*/
char line [80]; /* output buffer*/
char newprice[10];/* length of data read*/
double value;
char* result;
char ret_code ='\n';

➁ if (sqlscn (cur1,"C1", 2)) /* Name cursor C1 */
failure(cur1,"SET CURSOR NAME");

if (sqlcom (cur1, selitem, 0))/*Compile select*/
failure(cur1,"SELECT COMPILE");

➂ if (sqlcom (cur2, updprice, 0)) /* Compile update */
failure(cur2,"COMPILE ERROR");

/* Bind price buffer for update statement */

➃ if (sqlbnn(cur2,1,(SQLTDAP) &value,sizeof (value),
0,SQLPDOU))

failure(cur2,"SQLBNN ERROR ");

/*
** Set buffers for the character columns. Not necessary
** for last column,which is a long.
*/

...
/* Read the long column and display */

for (; ;)
/* Update the price according to user input */

...
for(; ;)
{

printf("Enter new price for %s; or return if no
price change",itembuf);

/* Get user input */
result=fgets(newprice, sizeof (newprice), stdin);
if (*newprice == ret_code)

{
printf ("No change in price \n"");
break;

}
else
{

3-16 SQL Application Programming Interface Reference

Connection handles

ies

d in

TE

 user

 An

 the

urns a
s a
 a

value=atof(newprice) ;
printf("price=%s\n",newprice) ;

}
➄ if (rcd=sqlexe(cur2))

failure(cur2,"update execute error");
break;

} /* end if */
}

if (rcd !=1) /* If not end of fetch*/
failure(cur1, "Error on Fetch");

if (sqlcmt(cur2))/*Commit*/
failure(cur2, "ON UPDATE COMMIT");

}
...

1. Declare the UPDATE command. Note that the CURRENT OF clause specif
"C1". The cursor will be assigned to this name in step 2.

2. The sqlscn function assigns a name (second argument) to the cursor specifie
the first argument. The third argument is the length of the cursor name.

3. Compile the UPDATE command.

4. Associate the user input to the bind variables in the SET clause of the UPDA
command.

5. The for loop accepts the user input for each row that has been fetched. If the
enters a value for the price, the UPDATE command is executed with sqlexe.

Connection handles
An explicit connection handle defines the scope of a database transaction. Each
connection handle represents a separate, independent transaction in the server.
application requests a connection handle by making a sqlcch function call, providing
the database name, username, and password string. The sqlcch function starts a new
transaction, returns a connection handle, and authenticates the username and
password for the specified database.

For each connection handle, an application can open one or more cursors using
same active connection. An application requests a cursor handle by making a sqlopc
function call, providing the connection handle as input. The sqlopc function call
opens a new cursor, associates the cursor with the specified connection, and ret
cursor handle. Since the connection handle is already authenticated and identifie
database, that information no longer is required by the application when opening
new cursor each time. All cursors associated with a connection still belong to the
same independent transaction.
SQL Application Programming Interface Reference 3-17

Chapter 3 Using the SQL/API

vel
ed in

ion
Transaction processing operations (such as COMMITs, ROLLBACKs, isolation le
changes, and so forth) of one transaction do not affect operations being perform
other transactions. When closing the final cursor in an connection handle, the
transaction remains pending. It is either committed or rolled back when the
connection handle is terminated using the sqldch function call. For details on
specifying the closure behavior, read the sqlset function description in Chapter 5.

Implicit connection handle
An implicit connection handle is created when the sqlcnc (CoNnect Cursor) or sqlcnr
(Connect with No Recovery) functions are issued in the API. An implicit connect
encompasses all cursors connected from a given application that use the sqlcnc or
sqlcnr function calls for a specific database. Therefore, an implicit connection
represents a single independent transaction per database.

If you are closing the final cursor that is part of an implicit connection handle, a
COMMIT, by default, is performed before the cursor is closed. If the cursor was
issued using the sqlcnc function call, you can specify the ROLLBACK option using
the sqlset function call with the SQLPCCB parameter. For more details on using
sqlcnc, sqlcnr, and sqlset, read the description for these functions in Chapter 5.

Note: Both implicit and explicit connection handles can exist within a single application.

Application

hConn_1 hConn_2

hCur_1 hCur_2 hCur_1 hCur_2

DB Connections

Cursors
3-18 SQL Application Programming Interface Reference

Connection handles

le.
ond
ich
ds for
e the

wer of
these

le

ad

te

tion
Setting lock time out
Although API calls on different connection handles can be executing on separate
threads, a call can be locked out if it is waiting for a thread to complete a task.
Similarly, locking can also occur if an application has an implicit connection hand
A cursor may try to enter an API while another cursor is still in it, causing the sec
cursor to be locked out until the first one exits. By default, the time interval in wh
SQLBase waits for a lock time out before issuing an error message is 300 secon
all platforms, except for single-user Windows which is 2 seconds. You can chang
setting for the locktimeout keyword in the SQL.INI file. For example, to set the time
out period to 2 minutes, specify:

locktimeout=120

Why use connection handles
By creating explicit connection handles within an application, you can establish
multiple, independent database connections. This can expand the processing po
your application and increase its performance. Multiple connection handles add
capabilities to an application:

• ability to execute multiple transactions concurrently from the same, sing
database or different databases.

• ability for you to write applications which are multi-threaded to take
advantage of the multi-tasking resource available in win32 platforms. Re
Chapter 6, Creating Multi-threaded Applications for details.

• ability to create 16-bit MS Windows applications that will later accommoda
win32 platforms.

Setting up a connection handle (ex26.c)
This example shows you how to set up connection handles from a single applica
to the same database. The example is self-explanatory.

#include "sql32.h"
#include <stdio.h>
#include <windows.h>
#include <stdlib.h>
#include <ctype.h>
/*--*/

/* */
/* Example of simple connect using all standard defaults */
/* */
/*---*/
SQL Application Programming Interface Reference 3-19

Chapter 3 Using the SQL/API

ated

te the
 the

erent

n;

 or
main(int argc, char** argv)
{

SQLTRCD rcd;/* return code */
SQLTCON con[50]; /* Connection Handle */
int i=1;
int j;

/* CONNECTION TO THE DATABASE */
j = atoi(argv[1]);
for (i=1;i<=j;i++)
{

if (rcd = sqlcch(&con[i], "ISLAND/SYSADM/SYSADM",
0,(SQLTMOD) 0))

{
printf("FAILURE ON CONNECTION %d\n",rcd);
return(1);

}
else

printf("Connection Established \n");
}

exit(0);
}

Transactions
A transaction is a logical unit of work, which is a sequence of SQL statements tre
as a single entity.

The scope of a transaction is a single implicit or explicit connection handle that an
application has connected to the database.

Each connection handle can have multiple cursors which are required to comple
same independent transaction. If there are multiple connection handles set up in
server, a single application can execute multiple transactions to the same or diff
databases.

An application can request that each SQL statement be committed on completio
otherwise, the database waits for an explicit commit or rollback request from the
application. Read Connection handles on page 3-17 for more details.

Committing and rolling back
An application gains control when a transaction is committed (made permanent)
rolled back (erased).

A commit (implicit or explicit) destroys all compiled commands for a single
connection handle, unless cursor-context preservation is on.
3-20 SQL Application Programming Interface Reference

Transactions

 a

or
bit)

 let
ck

fy

e

n
However, when cursor-context preservation is on, SQLBase does not preserve cursor
context after an isolation level change or a system-initiated ROLLBACK (such as
deadlock, timeout, etc.). SQLBase does preserve cursor context after a user-initiated
ROLLBACK if both of the following are true:

• The application is in Release Locks (RL) isolation level

• No data definition language (DDL) operations were performed

SQLBase either commits or rolls back all the data changes made by a transaction. F
example, a transaction might add (credit) money to one account and subtract (de
money from another account. As long as both UPDATES are part of the same
transaction, the database is in no danger of being left in an inconsistent state.
SQLBase either commits both UPDATEs, or rolls both back.

The sqlcmt function causes a commit and the sqlrbk function causes a rollback.

Savepoints
A savepoint is a user-defined and -named point within a transaction. Savepoints
you roll back portions of a transaction, rather than forcing you to commit or roll ba
an entire transaction.

The SAVEPOINT command lets you specify a point within a transaction to which
you can later roll back if you want to undo part of that transaction. You can speci
multiple savepoints within a transaction.

The ROLLBACK command has an optional savepoint identifier that lets you nam
the savepoint to which you want to roll back.

The following graphic illustrates the use of the SAVEPOINT and ROLLBACK
commands:

Rolling back to a savepoint does not release locks. Rolling back an entire transactio
does release locks.

Start of transaction

ROLLBACK savepoint2

SAVEPOINT savepoint2

SAVEPOINT savepoint1

ROLLBACK savepoint1

ROLLBACK
SQL Application Programming Interface Reference 3-21

Chapter 3 Using the SQL/API

ed

o the
ributed

. For

s that
action

he
hen

e
e at

 a
 in

be the
on
y for

g

st be
. If

s to
en a
You can check the rollback flag (sqlrbf) to see whether the previous operation caus
a server-initiated rollback.

Distributed transactions

Note: Distributed transactions are not supported with multiple, independent connections t
same database or different databases. Therefore, if you are using connection handles, dist
transactions cannot be enabled. Use the sqlset function in conjunction with the SQLPDTR
parameter to set distributed transaction mode off. The default for this parameter is off (0)
details on setting this parameter, read the sqlset function in Chapter 5.

A distributed transaction coordinates SQL statements among multiple database
are connected by a network. The databases that participate in a distributed trans
can reside anywhere on the network.

In a distributed transaction, the coordinating application communicates among t
participant databases and verifies data integrity. It maintains this integrity even w
a crash occurs.

A distributed transaction conforms to the same data consistency rules as a singl
database transaction — either all of the transaction’s statements commit, or non
all.

Server connects (sqlcsv) and connects with recovery turned off cannot participate in
distributed transaction. In addition, an application cannot connect to a database
both distributed and non-distributed transaction mode.

In a distributed transaction, one of the participating database servers must also
commit server. The commit server logs information about the distributed transacti
and assists in recovery after a network failure. To enable commit server capabilit
a server, set the commitserver keyword to 1 (on) in sql.ini.

Databases participating in a distributed transaction must conform to the followin
communication requirements:

• They must reside on the same network.

• Each participating database server that has commit service enabled mu
able to connect to all other servers involved in the distributed transaction
all the servers have commit service capability, they all must be able to
connect with each other.

• If you are using Novell’s NetWare, specify the [nwclient] section for each
server that is participating in a distributed transaction. This allows server
communicate mutually. Communication between servers only occurs wh
commit server:
3-22 SQL Application Programming Interface Reference

Transactions

ion.

ed
s

. The
e
• Verifies it can talk to all other participating servers at the time of a
distributed commit. (This is performed at most once per participant.)

• Attempts to contact other participating servers under a failure condit

Use the sqlset function in conjunction with the SQLPDTR parameter to set distribut
transaction mode on. Once you set this parameter on, all subsequent command
automatically become part of a distributed transaction.

Setting up a transaction (ex06.c)
This example shows you how to set up a transaction that updates multiple tables
commit (sqlcmt) and the rollback (sqlrbk) functions ensure that either both tables ar
updated or that neither is updated.

#include "sql.h"
#include <stdio.h>

main()
{
SQLTCUR cur; /* SQLBASE cursor number */
SQLTRCD rcd; /* return code*/

➀ static char savupdt [] = /* UPDATE savings command */
"UPDATE SAVINGS SET SAV_DOLLARS =
SAV_DOLLARS - 100 WHERE SAV_ACC_NO = 951";

➁ static char chkupdt [] = /* UPDATE checking command */
"UPDATE CHECKING SET CHK_DOLLARS =
CHK_DOLLARS + 100 WHERE CHK_ACC_NO = 1495";

/*
CONNECT TO THE DATABASE

*/
...

/*
COMPILE AND EXECUTE UPDATE OF SAVINGS ACCOUNT
*/

➂ if (rcd = sqlcex(cur, savupdt, 0))
{

printf("FAILED UPDATING SAVINGS, rcd = %d\n",rcd);
sqldis(cur);
return(1);

}
else
SQL Application Programming Interface Reference 3-23

Chapter 3 Using the SQL/API

st

n to

ully,
printf("ONE HUNDRED DOLLARS SUBTRACTED FROM
SAVINGS \n");

/*COMPILE AND EXECUTE UPDATE OF CHECKING ACCOUNT */

➃ if (rcd = sqlcex(cur, chkupdt, 0))
{

printf("FAILED UPDATING CHECKING (TRANSACTION
ROLLBACK),rcd = %d\n",rcd);

➄ sqlrbk(cur);
sqldis(cur);
return(1);

}
else

printf("ONE HUNDRED DOLLARS ADDED TO CHECKING \n");

/* COMMIT TRANSACTION */

➅ if (rcd = sqlcmt(cur))
printf("FAILURE ON COMMIT, rcd = %d\n",rcd);

else
printf("TRANSFER FROM SAVINGS TO CHECKING

COMPLETED\n");

/* DISCONNECT FROM DATABASE */
...

}

1. Declare the UPDATE command for the first table.

2. Declare the UPDATE command for the second table.

3. The sqlcex function compiles and executes the UPDATE command for the fir
table in one step. You can use the sqlcex function in place of the sqlcom and sqlexe
functions if the SQL statement does not contain bind variables and if you pla
execute it only once.

4. If the UPDATE command for the first table compiled and executed successf
the UPDATE command for the second table is compiled and executed.

5. If the second UPDATE command is not successful, call the sqlrbk function to
undo all data modifications.

6. If the second UPDATE command is successful, call the sqlcmt function to make
permanent all data modifications and release any and all locks.
3-24 SQL Application Programming Interface Reference

Transactions

ore,
Setting up a distributed transaction
This example shows how to set up a distributed transaction using the sqlset function
in conjunction with the SQLPDTR parameter.

Note: Connection handles are not supported for use with distributed transactions. Theref
this example reflects the use of cursors to connect to multiple databases.

#include "sql.h"
#include <stdio.h>

void main(argc, argv)
int argc; /* argument count */
char*argv[];/* -> argument vector */
{

➀ SQLTDPV dtr=1; /*Distributed transaction turned on*/
SQLTCUR cur1; /* cursor 1*/
SQLTCUR cur2; /* cursor 2 */
SQLTRCD rcd; /* return code */
int account_number;
int transfer_amount;
char* Decrement_Account = "Update account set

balance=balance-:1 where account_num = :2";
char* Increment_Account = "Update account set

balance=balance+:1 where account_num = :2";

account_number = 14560;
 transfer_amount = 500;
 if (rcd=sqlset(0, SQLPDTR, (SQLTDAP)&dtr, 0))
 failure(rcd,"SQLSET");
 if (rcd=sqlcnc(&cur1, "DALLAS/SYSADM/SYSADM", 0))
 failure(rcd,"CONNECT TO DALLAS");
 if (rcd=sqlcnc(&cur2, "AUSTIN/SYSADM/SYSADM", 0))
 failure(rcd,"CONNECT TO AUSTIN");

/*
 First decrement the balance from DALLAS
 */
 if (rcd = sqlcom(cur1, Decrement_Account, 0))
 {

sqlrbk(cur1);
failure(rcd,"COMPILE of Decrement_Account");

 }
 if (rcd = sqlbnu(cur1,(SQLTBNN)2,

(SQLTDAP)(&account_number), sizeof(int),0,SQLPSIN, 0))
 {
SQL Application Programming Interface Reference 3-25

Chapter 3 Using the SQL/API
 sqlrbk(cur1);
 failure(rcd,"BIND of account_number for

Decrement_Account");
 }
 if (rcd = sqlbnu(cur1,(SQLTBNN)1,

(SQLTDAP)(&transfer_amount), sizeof(int),0, SQLPSIN,0))
 {
 sqlrbk(cur1);
 failure(rcd, "BIND of transfer_amount for

Decrement_Account");
 }
 if (rcd = sqlexe(cur1))
 {

sqlrbk(cur1);
 failure(rcd,"EXECUTE of Decrement_Account");

}

 /*
 Now increment the balance from AUSTIN

*/
 if (rcd = sqlcom(cur2,Increment_Account, 0))
 {
➁ sqlrbk(cur1);
 failure(rcd,"COMPILE of Increment_Account");
 }
 if (rcd = sqlbnu(cur2,(SQLTBNN)2,

(SQLTDAP)(&account_number), sizeof(int), 0, SQLPSIN,
0))

 {
sqlrbk(cur1);

 failure(rcd,"BIND of account_number for
Increment_Account");

 }
 if (rcd = sqlbnu(cur2,(SQLTBNN)1,(SQLTDAP)

(&transfer_amount), sizeof(int),0, SQLPSIN, 0))
 {
 sqlrbk(cur1);

 failure(rcd,"BIND of transfer_amount for
Increment_Account");

 }
if (rcd = sqlexe(cur2))

 {
 sqlrbk(cur1);
 failure(rcd,"EXECUTE of Increment_Account");

 }

 ➂ if (rcd=sqlcmt(cur1))
3-26 SQL Application Programming Interface Reference

Cursors

here
MIT.

task

 a
o

le in
{
failure(rcd,"COMMIT");

}

} /* end MAIN */

int failure(rcd,str)
SQLTRCD rcd;
char *str;
{
printf("ERROR IN %s: %d\n",str,rcd);
exit(0);
}

1. Turn on distributed transaction mode.

2. Each of the rollback statements (sqlrbk(cur)) imply a rollback on cur2.

3. This distributed transaction requires only a single COMMIT statement, since t
is only one transaction. You can use any of the cursors to perform the COM

Cursors
The term cursor refers to one of four things in the SQL/API:

• When the cursor belongs to an explicit connection handle, it identifies a
or activity within a transaction. This task or activity can be compiled/
executed independently within a single connection thread.

When an application connects to a database using the sqlcch function call,
SQLBase returns a connection handle. When the connection handle is
included in a function call to open a new cursor, the function call returns
cursor handle. You use the cursor handle in subsequent SQL/API calls t
identify the connection thread.

• When a cursor belongs to an implicit connection handle, it identifies a
database connection.

When an application connects to a database using the sqlcnc or sqlcnr
function calls, SQLBase returns a cursor handle. You use the cursor hand
subsequent SQL/API calls to identify the connection.

• A row position in a result set.

• A work space in memory used for processing a SQL command.
SQL Application Programming Interface Reference 3-27

Chapter 3 Using the SQL/API

here

t
nt a

a
dle is

,

n
bases
ad and
Cursor work space information
You can retrieve information about a SQL command associated with a particular
cursor using the SQL/API functions listed below.

For most of the functions, pass both a cursor handle and a pointer to a variable w
the value is returned. The variables are defined in sql.h with typedefs.

Cursors and connection handles
To perform tasks that access a single database, you can first create an explicit
connection handle using the sqlcch function call in your SQL/API application and
then open cursors within the connection handle using the sqlopc function call. Within
an sqlopc call, you can assign each cursor its own SQL command. All cursors tha
access the single database belong to the explicit connection handle and represe
single transaction.

If you have used the sqlcnc or sqlcnr function calls, your cursors connect directly to
specified database, under a user name and password. An implicit connection han
automatically created for you and all cursors that connect to the same database
regardless of the user name and password belong to the implicit connection.

By explicitly creating multiple connection handles on Win32 applications, you ca
have multiple transactions that may access the same database or different data
within the same application. Each connection handle represents a separate thre

Function Description Typedef

sqlcty Command TYpe - The SQL command type. Sql.h
defines a code for each command type.

SQLTCTY

sqlepo Error POsition - The offset (starting with 0) of the error
within the SQL command which caused the syntax error.

SQLTEPO

sqlnbv Number of Bind Variables - The number of bind
variables associated with a SQL command.

SQLTNBV

sqlnsi Number of SELECT Items - The number of items in the
query’s SELECT list.

SQLTNSI

sqlrbf Rollback flag - The status of the system rollback flag: 1
after a server-initiated rollback and 0 otherwise.

SQLTRBF

sqlrcd Return code - The return code of the most recent SQL/
API function: a 0 if the function was successful and a
non-zero value otherwise.

SQLTRCD

sqlrow Number of rows - The number of rows affected by the
SQL command.

SQLTROW
3-28 SQL Application Programming Interface Reference

Cursors

ulti-

 the

tion
 by

aintains

re part

he

o
 cur1
r, it
and
 table
e
can concurrently enter an API and execute independently. This is known as a m
threaded application. For details on creating multi-threaded applications with
SQLBase, read Chapter 6, Creating Multi-threaded Applications.

Connecting to the same database
Cursors that are part of the same implicit or explicit connection handle allow a
transaction to connect to the same database. This is useful, for example, when
updating a column in one table based on the value in a column of another table.
Having already executed a SELECT command on the first cursor, you can
subsequently fetch each row of the result set with that same cursor and UPDATE
fetched rows with a second cursor.

Because all of an application’s cursors that are associated with the same connec
handle are part of the same transaction, a commit or rollback (implicit or explicit)
any one of the transaction’s cursors commits or rolls back the work done by all of the
transaction’s cursors.

Connecting to different databases
When implicit or explicit connection handles exist for different databases, the
databases can be located on the same or different servers and each database m
its own transaction and rollback information.

Consider an application with six connection handles, which are connected to six
different databases. The application has established six separate transactions.

Because only those cursors that are connected to the same connection handle a
of the same transaction, a commit or rollback (implicit or explicit) request by the
application commits or rolls back only the work done by that connection handle.

Using multiple cursors and connection handles (ex16.c)
This example connects to two cursors (cur1 and cur2). One cursor (cur1) sets t
select buffers, the other cursor (cur2) compiles the SQL UPDATE command.

This program scans an employee table and asks a supervisor which employee t
award a bonus. It compiles and executes the SQL SELECT command using the
cursor. Then it sets the select buffers using the cur1 cursor. Using the cur2 curso
compiles the SQL UPDATE command. Next it fetches a row with the cur1 cursor
ask the supervisor to enter the desired bonus amount, then updates the BONUS
utilizing the cur2 cursor. It continues fetching until an end of fetch. Next it asks th
supervisor to specify the desired bonus amount.

➀ SQLTCUR cur1 = 0;/* scan cursor */
SQLTCUR cur2 = 0;/* update cursor */
SQLTRCD rcd1 = 0;/* return code (cur1) */
SQLTRCD rcd2 = 0;/* return code (cur2) */
SQL Application Programming Interface Reference 3-29

Chapter 3 Using the SQL/API
void failure(char*); /* error handler */

main()
{

 int dollars; /* amount of the bonus */
 int employe; /* employe to grant bonus */
 char empnam[21]; /* employe name fetched */

char buf[80]; /* input buffer area */
 long lnum; /* long number */

➁ static char selcom[] =/* SQL select string */
 "SELECT EMP_NO,EMP_NAME FROM EMP";

static char updcom[] =/* SQL update string */
 "UPDATE BONUS SET BONUS_AMOUNT =

:dollars WHERE BONUS_EMP_NO = :employe";

 /* CONNECT TO BOTH CURSORS (use the demo database and all
/* defaults) */

➂ if (rcd1 = sqlcnc(&cur1, "DEMO", 0))
 failure("FIRST CONNECT");

 if (rcd2 = sqlcnc(&cur2, "DEMO", 0))
 failure("SECOND CONNECT");

 /* COMPILE AND EXECUTE SELECT COMMAND (selcom) */

➃ if (rcd1 = sqlcex(cur1,selcom,0))
 failure("COMPILE OF SELECT COMMAND");

/* SET FETCH BUFFERS (select EMP_NO into employee */
/* & EMP_NAME into empnam) */
/*

➄ if (rcd1 = sqlssb(cur1,1,SQLPUIN,(char &employe,
sizeof(employe),0,SQLNPTR,SQLNPTR))

 failure("SET FIRST SELECT BUFFER");

 if (rcd1 = sqlssb(cur1,2,SQLPSTR,empnam,
sizeof(empnam),0,SQLNPTR,SQLNPTR))

 failure("SET SECOND SELECT BUFFER");

 /* COMPILE UPDATE COMMAND (updcom) */

➅ if (rcd2 = sqlcom(cur2,updcom,0))
 failure("COMPILE OF UPDATE");
3-30 SQL Application Programming Interface Reference

Cursors
 /* BIND UPDATE VARIABLES (bind variables with variables */
/* of same name) */

➆ if (rcd2 = sqlbnd(cur2,"dollars",0,(char *)
&dollars,sizeof(dollars),0,SQLPUIN))

 failure("DOLLARS BIND");

 if (rcd2 = sqlbnd(cur2,"employe",0,(char *)
&employe,sizeof(employe),0,SQLPUIN))

 failure("EMPLOYE BIND");

 /* FETCH ALL EMPLOYEES AND SPECIFY ANY BONUS AMOUNTS */

➇ while (!(rcd1 = sqlfet(cur1)))
 for (;;)
 {
 printf("\nEnter Bonus Amount for %s ",empnam);
 fflush(stdout);
 fgets(buf,sizeof(buf),stdin);/* read bonus amount */
 lnum = atol(buf); /* convert dollar amount */
 if (strlen(buf) <= 0 ||/* invalid number? or */

 lnum < 0 || /* negative bonus amt? or */
 lnum > 32000) /* too big a bonus? */

continue; /* ask user for amt again */
 if (!lnum) /* no amount? */

break; /* no bonus for employe */
 dollars = (int)lnum;/* set bonus dollar amt */
➈ if (rcd2 = sqlexe(cur2))/* perform update */

failure("UPDATE");
 break;
 }

if (rcd1 != 1)
 failure("FETCH");

 /* DISCONNECT BOTH CURSORS */

➉if (rcd1 = sqldis(cur1))
 failure("DISCONNECT OF SELECT CURSOR");

 cur1 = 0;

 if (rcd2 = sqldis(cur2))
 failure("DISCONNECT OF UPDATE CURSOR");

 return(0);
}

SQL Application Programming Interface Reference 3-31

Chapter 3 Using the SQL/API

t

the
voidfailure(ep)
char* ep; /* -> failure msg string */
{
 SQLTEPO epo; /* error position */
 char errmsg[SQLMERR];/* error msg text buffer */

 printf("Failure on %s \n", ep);

 if (rcd1)/* error on cursor 1? */
 {
 sqlerr(rcd1, errmsg);
 sqlepo(cur1, &epo);
 }

 if (rcd2)/* error on cursor 2? */
 {
 sqlerr(rcd2, errmsg);
 sqlepo(cur2, &epo);
 }

 if (cur1)/* cursor 1 exists? */
 sqldis(cur1);

 if (cur2)/* cursor 2 exists? */
 sqldis(cur2);

 printf("%s(error: %u, position: %u) \n",errmsg,rcd1,epo);
 exit(1);
}
1. Declare two cursors and two return codes.

2. Declare the SELECT and the UPDATE commands.

3. Perform two sqlcnc functions. Both connections are to the same database, bu
each connection is associated with a different cursor.

4. Compile and execute the SELECT command with the sqlcex function. The
SELECT command is associated with the first cursor.

5. Perform the sqlssb function to set up the areas in the program that will receive
fetched rows.

6. Compile the UPDATE command with the sqlcom function. The UPDATE
command is associated with the second cursor.

7. Bind the data for the UPDATE command with the sqlbnd function. The first
sqlbnd function binds the bonus dollars entered by the user. The second sqlbnd
function binds the employee number from the fetched row.
3-32 SQL Application Programming Interface Reference

LONG VARCHAR handling

f the

y, the

e
rite

QL

u can

8. The while loop displays each fetched row.

9. The for loop prompts the user to enter a bonus amount for each fetched row. I
user enters an amount, the UPDATE command is executed with the sqlexe
function. If the user does not enter an amount and just presses the return ke
next row is fetched.

10. After displaying and processing the fetched rows, disconnect both cursors.

LONG VARCHAR handling
The LONG VARCHAR data type can hold values longer than 254 bytes. Since th
length of the data can be unlimited, you must set up a program loop to read or w
LONG VARCHAR data in specified portions.

Reading LONG VARCHAR data . Use sqlrlo to read a LONG VARCHAR after
fetching a row with sqlfet. The sqlrlo function identifies the receive buffer for a
LONG VARCHAR, so you do not need to call sqlssb.

Writing LONG VARCHAR data . Use sqlwlo to write a LONG VARCHAR after a
compile (sqlcom) and bind (sqlbld or sqlbln), but before an execute (sqlexe).

The sqlbld function associates a bind variable with an alphanumeric name in a S
command to a program variable. The sqlbln function associates a bind variable with a
numeric name in a SQL command to a program variable.

Getting LONG VARCHAR length . Use sqlgls to return the number of bytes in a
LONG VARCHAR column after fetching a row with sqlfet.

Positioning in LONG VARCHAR data . Use sqllsk to set a position within a
LONG VARCHAR from which to start reading.

Ending a LONG VARCHAR operation . You must process LONG VARCHAR
columns one at a time and the entire long operation must be complete before yo
process another LONG VARCHAR. After reading or writing a LONG VARCHAR,
call sqlelo to end the long operation.

The example programs ex14.c and ex13.c show how to read and write LONG
VARCHAR columns.
SQL Application Programming Interface Reference 3-33

Chapter 3 Using the SQL/API

AR

e
Reading LONG VARCHAR columns (ex14.c)
The following flowchart shows the sequence of operations to read LONG VARCH
columns.

This example reads data from a LONG VARCHAR column. Call the sqlrlo function
to read a LONG VARCHAR after executing a SELECT statement and fetching th
row.

#include "sql.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

SQLTCUR cur; /* SQLBase cursor number */
SQLTRCD rcd; /* Error number */

Start

Access cycle to read a LONG VARCHAR
with a SELECT statement

Compile
SQL statement

End LONG
operation

Execute
SQL statement

Fetch row

End

sqlcom

sqlelo

sqlexe

sqlfet

Read LONG

All LONG
VARCHAR
data read?

No

Yes

VARCHAR data
sqlrlo
3-34 SQL Application Programming Interface Reference

LONG VARCHAR handling
char errmsg[SQLMERR]; /* Error msg text buffer */
void failure(); /* Error handler*/

main()
{

int count; /* Saying number */
SQLTDAL length; /* Length of data read */
char* cp; /* Character pointer */
char buf[50]; /* Buffer to read long */

➀ staticchar select [] = /* SELECT statement */
"SELECT SAY_NO, SAY_TEXT FROM SAYINGS";

/* CONNECT TO THE DATABASE */

if(rcd=sqlcnc(&cur,"ISLAND",0))
{

sqlerr(rcd,errmsg); /* get error message text */
printf("%s \n",errmsg);
return(1);

}

➁ /* COMPILE SELECT STATEMENT */

if (sqlcom(cur,select,0))
failure("COMPILE OF SELECT");

/* SET SELECT BUFFER FOR SAYINGS NUMBER */

➂ if (sqlssb(cur, 1, SQLPUIN,(charR*)&count,
sizeof(count), 0, SQLNPTR, SQLNPTR))

failure("SET SELECT BUFFER");

/* EXECUTE SELECT STATEMENT */

➃ if (sqlexe(cur))
failure("EXECUTE OF SELECT");

/* FETCH DATA */

➄ while (!(rcd = sqlfet(cur)))
{

printf("\nSAYING NUMBER %d \n",count);
for (;;) /* Read long data */
{

memset(buf,' ',sizeof(buf)); /* Clear input */
/* buffer */
SQL Application Programming Interface Reference 3-35

Chapter 3 Using the SQL/API
➅ if (sqlrlo(cur, 2, buf, sizeof(buf) - 1,
&length))

failure("READING LONG DATA");

➆ if (!length) /* End of long data? */
{

➇ if (sqlelo(cur) /* End long operation */
failure("ENDING LONG OPERATION");

break;
}
buf[sizeof(buf) - 1] = '\0'; /* Add string * /

 /* terminator */
while (cp = strchr(buf,'\n'))/* Remove */

 /* newline char */
*cp = ' ';

while (cp = strchr(buf,'\t')) /* Remove tab */
/* characters */

*cp = ' ';
printf("%s\n",buf); /* Print long data */

}
}

if (rcd != 1)
failure("FETCH");

/* DISCONNECT FROM THE DATABASE */
if (sqldis(cur))

failure("DISCONNECT");
} /* end MAIN */

void failure (ep)
char* ep; /* ->failure msg char string*/
{

SQLTEPO epo; /*Error position*/
printf("Failure on %s \n", ep);

sqlrcd(cur, &rcd); /*Get the Error*/
sqlepo(cur,&epo); /*Get Error position*/
sqlerr(rcd,errmsg); /*Get error message text*/

sqldis(cur);

printf("&s (error:%u, position: %u)
\n",errmsg,rcd,epo);

exit(1);
}

3-36 SQL Application Programming Interface Reference

LONG VARCHAR handling

h the
set
1. Declare the SELECT statement.

2. Compile the SELECT statement.

3. Set the areas in the program that will receive the fetched (non-long) data wit
sqlssb function. Note that the LONG VARCHAR column does not need to be
up with the sqlssb function.

4. Execute the SELECT statement.

5. Call the sqlfet function.

6. Perform the sqlrlo function to read the LONG VARCHAR column. The
arguments are cursor, column number, buffer, and bytes to read. The sqlrlo
function performs the equivalent function of sqlssb.

7. Continue to read until the length returned by sqlrlo is zero.

8. End the long operation with the sqlelo function.
SQL Application Programming Interface Reference 3-37

Chapter 3 Using the SQL/API

set

 you
Writing LONG VARCHAR columns (ex13.c)
The following flowchart shows the sequence of operations to write LONG
VARCHAR columns.

This example reads a flat file called sayings.1 that contains text and writes the text to
a LONG VARCHAR column.

Since the length of the LONG VARCHAR is unlimited (and unknown), you must
up a loop to write the value in fixed portions. You must process LONG VARCHAR
data columns one at time and the entire long operation must be complete before
can process the next LONG VARCHAR.

 LONG VARCHARs have their own bind functions.

Start

Access cycle to write a LONG VARCHAR
with an INSERT or UPDATE statement

Compile
SQL statement

End LONG
operation

Execute
SQL statement

Bind LONG

End

sqlcom

sqlelo

sqlexe

sqlbln

Write LONG

All LONG
VARCHAR data

written?

No

Yes

VARCHAR data
sqlwlo

VARCHAR data
or

sqlbld
3-38 SQL Application Programming Interface Reference

LONG VARCHAR handling
Call sqlwlo to write a LONG VARCHAR after compiling an INSERT or UPDATE
statement but before executing the statement.

#include "sql.h"
#include "errsql.h"
#include <stdio.h>
#include <stdlib.h>

SQLTCUR cur; /* SQLBase cursor number */
SQLTRCD rcd; /* Error number */
char errmsg[SQLMERR]; /* Error msg text buffer */
void failure(char*); /* Error handler */

main()
{

FILE* fp; /* File pointer */
SQLTROW rows; /* Number of rows */
int count; /* Saying number to use */
char buf[80]; /* Long varchar write buf */

➀ static char create [] = /*CREATE TABLE statement*/
"CREATE TABLE SAYINGS (SAY_NO NUMBER NOT NULL,

SAY_TEXT LONG VARCHAR)";
static char insert [] = /*INSERT statement*/

"INSERT INTO SAYINGS VALUES (:1, :2)";
/*CONNECT TO THE DATABASE*/
if (rcd = sqlcnc(&cur,"DEMO",0))
{

sqlerr(rcd, errmsg);/* Get Error message text */
printf("%s \n",errmsg);
return(1);

}

/* CREATE SAYINGS TABLE */
if (rcd = sqlcex(cur, create,0))
{

if (rcd != EXEETVS)/* Not error if tbl exists */
failure("CREATE SAYINGS TABLE");

}
else

printf("SAYINGS TABLE CREATED\n");

/* COMPUTE SAYINGS NUMBER */

if (sqlgnr(cur, "SAYINGS", 0, &rows))
failure("GET NUMBER OF ROWS");
SQL Application Programming Interface Reference 3-39

Chapter 3 Using the SQL/API
count = (int)rows + 1; /* Compute sayings number */

/* COMPILE INSERT STATEMENT */

➁ if (sqlcom(cur, insert, 0))
failure("COMPILE OF INSERT");

/* BIND BY NUMBER*/

➂ if (sqlbnn(cur, 1, (SQLTDAP) &count, sizeof(count), 0,
SQLPUIN))
failure("BINDING COUNT");

➃ if (sqlbln(cur,2))
failure("BINDING LONG");

/* WRITE LONG DATA */
if (!(fp = fopen("SAYINGS.1", "r")))/* Open saying * /

 /* text file */
failure("FILE OPEN");

while (fgets(buf,sizeof(buf),fp))/* Read the saying */
/*text */

➄ if (sqlwlo(cur,buf,0))
failure("WRITE LONG");

if (fclose(fp))
failure("FILE CLOSE");

/* END LONG OPERATION */

➅ if (sqlelo(cur))
failure("ENDING LONG OPERATION");

/* EXECUTE INSERT STATEMENT */

➆ if (sqlexe(cur))
failure("EXECUTE");

else
printf("SAYING NUMBER %d SUCCESSFULLY

INSERTED\n",count);

/* DISCONNECT FROM THE DATABASE */

if (sqldis(cur))
failure("DISCONNECT"));

} /* end MAIN */
3-40 SQL Application Programming Interface Reference

Calling stored commands and procedures

e.

 for
NDS
void failure(ep)
char* ep; /*->failure msg string*/
{

SQLTEPO epo; /*Error position*/

printf("Failure on &s \n", ep);
sqlrcd(cur, &rcd); /*Get the error*/

sqlepo(cur, &epo); /*Get error position*/
sqlerr(rcd, errmsg); /* Get error message text*/
sqldis(cur);
printf("%s (error, %u, position: &u)

\n",errmsg,rcd,epo);
exit(1);

} /* end MAIN */

1. Declare the SQL commands.

2. Compile the INSERT command with the sqlcom function.

3. Bind the non-long data with sqlbnn.

4. Use the sqlbln function to bind the LONG VARCHAR input area to the INSERT
command.

5. Read the input data for the LONG VARCHAR data. The while loop reads 80 bytes
of input data at a time with fgets and then performs the sqlwlo function. The loop
repeats until fgets reads a null.

6. Call the sqlelo function when all the data has been written for the column valu

7. Call the sqlexe function to execute the INSERT command.

Calling stored commands and procedures
You can execute stored commands and procedures from SQL/API. Using the sqlsto
function, you can store a SQL query, data manipulation command, or procedure
later execution. SQLBase stores the command or procedure in the SYSCOMMA
system catalog table of a database.

Note that the sqldst function allows you to drop a stored command or procedure.

For details on creating stored procedures, read Chapter 7, Procedures, Triggers, and
Events, of the SQL Language Reference Manual.
SQL Application Programming Interface Reference 3-41

Chapter 3 Using the SQL/API

:

Executing a stored procedure from SQL/API (ex23.c)
Assume you have stored the following procedure (which uses a table called
CHECKING with columns ACCOUNTNUM number and BALANCE number) to
update and return bank account balances:

PROCEDURE: WITHDRAW
Parameters

Number: nAccount
Number: nAmount
Receive Number: nNewBalance

Local Variables
String: sUpdate
String: sSelect

Actions
Set sUpdate = 'UPDATE CHECKING \

set BALANCE = BALANCE - :nAmount \
where ACCOUNTNUM = :nAccount'

Call SqlImmediate(sUpdate)
Set sSelect = 'SELECT BALANCE from CHECKING \

where ACCOUNTNUM = :nAccount \
into :nNewBalance'

Call SqlImmediate(sSelect)
\
1,100,,
/

The following SQL/API code shows how the procedure WITHDRAW is executed

#include "sql.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void failure(); /* error handler */
SQLTCUR cur;
/*
This program shows how a stored procedure (WITHDRAW,
which has already been stored before) will get executed
*/
main()
{

int nAccount=1; /* Account number */
int nAmount=100; /* Amount value */
int nNewBalance; /* Value of new balance */
int n; /* number value */

 /*
 CONNECT TO THE DATABASE
 */
3-42 SQL Application Programming Interface Reference

Calling stored commands and procedures
 if (sqlcnc(&cur, "island", 0))
 failure("Connect to island");
 /*
 Retrieve the stored procedure
 */
➀ if (sqlret(cur,(SQLTDAP)"WITHDRAW",0))

failure("WITHDRAW");

➁ // bind variables
if (sqlbnn(cur, 1, (SQLTDAP)&nAccount,sizeof(nAccount),
0,SQLPSIN)||sqlbnn(cur, 2,
(SQLTDAP)&nAmount,sizeof(nAmount), 0,SQLPSIN)
||sqlbnn(cur, 3,
(SQLTDAP)&nAmount,sizeof(nAmount), 0,SQLPSIN)
||sqlbnn(cur, 3,
(SQLTDAP)&nNewBalance,sizeof(nNewBalance), 0,SQLPSIN))
failure("SQLBNN");

➂ // set select buffer for receive parameter(s)
if (sqlssb(cur, (SQLTSLC)1, SQLPSIN,
(SQLTDAP)&nNewBalance,sizeof(int),0,0,0))
failure("SQLSSB");

➃ // execute
if (sqlexe(cur))
failure("SQLEXECUTE");

➄ // fetch result
n=sqlfet(cur);
printf("%d\n",n);
printf("The value of new balance is %d\n",nNewBalance);

 if (sqldis(cur))

 failure("DISCONNECT");
return(0);

}

void failure(ep)
char* ep; /* -> failure msg string */

{

 printf("Failure on %s \n", ep);
 sqldis(cur);
 exit(1);
}

SQL Application Programming Interface Reference 3-43

Chapter 3 Using the SQL/API

e the
1. Retrieve the stored procedure with the sqlret function.

2. Bind values for all input and output parameters in the stored procedure. Not
procedure has two input variables and one (output) receive variable.

3. Set the SELECT buffer for the receive parameter with the sqlssb function.

4. Execute the stored procedure with the sqlexe function.

5. Fetch the result set with the sqlfet function.

Functions used with procedures and commands
The following functions can be used with procedures and stored commands:

SQL/API
Function

Description

sqlbnd Bind input data by name.

sqlbnn Bind input data by number.

sqlbnv Get the number of input parameters.

sqlcbv Clear bind variables.

sqlcex Compile and execute a non-stored command or non-stored
procedure.

sqlcom Compile a non-stored command or non-stored procedure.

sqlcty Return the command type.

sqldes Describe output parameters in terms of internal data types and
lengths.

sqldii Describe an INTO variable.

sqldsc Describe output parameters in terms of external data types and
lengths.

sqldst Drop a stored command or stored procedure.

sqlepo Retrieve error position.

sqlexe Execute a command or procedure that has either been
previously-compiled or stored.

sqlfet Fetch next row from result set.
3-44 SQL Application Programming Interface Reference

Bulk execute mode

e. The
unt of

d

ssage
Note: If you simultaneously compile and execute a procedure with the sqlcex function,
SQLBase does not attempt to optimize the SQL statements contained within the procedur
reason for this is that it offers no real performance advantage, and it incurs a certain amo
overhead.

Bulk execute mode
The bulk execute feature reduces network traffic for multi-row inserts, deletes, an
updates. In bulk execute mode, SQLBase buffers data values so that many rows can be
sent to the server in one message.

Three SQL/API functions support the bulk execute feature:

• sqlblk - turns bulk execute mode on or off.

• sqlbef - flushes data in the bulk execute buffer.

• sqlber - returns error codes for bulk execute operations.

The number of operations per message depends upon the size of the output me
buffer which you can set with the sqloms function.

You can use the bulk execute feature with chained commands if the chained
commands do not contain SELECT statements.

You cannot turn on bulk execute while the autocommit feature is on.

sqlget Return the statement trace status (enabled/disabled) with the
SQLPTRC parameter, and the file name of the trace output file
with the SQLPTRF parameter.

sqlnbv Retrieve number of bind variables.

sqlnii Get the number of INTO variables.

sqlret Retrieve a command or procedure.

sqlsto Store a SQL command or procedure in the SYSCOMMANDS
system catalog table of a database

SQL/API
Function

Description
SQL Application Programming Interface Reference 3-45

Chapter 3 Using the SQL/API

xt.
 the
Error handling
All SQLBase error messages are stored in a common error message file called
error.sql. This file must be present on all client and server computers that run
SQLBase software.

As the diagram below shows, for each error message there is an:

• Error message text

• Error reason

• Error remedy

The first line of any error contains an error code, a mnemonic, and a message te
When an application detects an error condition, it uses the error code to look up
message text.

Finding error.sql
SQLBase uses this search order to find error.sql:

1. Current directory

2. CENTURA directory on the current drive

3. Root directory on the current drive

4. Directories specified by the PATH or DPATH environment variable

If the SQLBASE environment variable is set, SQLBase looks only in the directory to
which it points. It does not follow the search order outlined above.

00353 EXE NSY Not a synonym

Reason: Attempting to execute a DROP SYNONYM and the named
 synonym is not a synonym, but a table name.

Remedy: Modify the DROP SYNONYM statement to use a synonym
 name, or if you really want to drop a table, then use a DROP
 TABLE statement.

Error code

Mnemonic

Message text
3-46 SQL Application Programming Interface Reference

Error handling

ssful,

rn

t,

QL
Checking the return code
Each SQL/API function returns a code that indicates the success or failure of the
function. You should always check the return code and continue processing
accordingly. For example:

if (rcd = sqlcnc(&cur,dbname,0))
{
printf("FAILURE ON CONNECT %d\n",rcd);
exit(1);
}

else
printf("Connection Established \n");

As another example, if the most-recently executed SQL statement was not succe
you may want to rollback the transaction, disconnect, and exit:

if (rcd = sqlcex(cur, chkupdt, 0))
{
printf("FAILED UPDATING CHECKING (TRANSACTION ROLLBACK),

rcd = %d\n",rcd);
sqlrbk(cur);
sqldis(cur);
exit(1);
}

Retrieving the return code
If, unlike the examples above, you did not check the return code when calling a
particular function, you can use the sqlrcd function to retrieve the return code for the
most-recent SQL/API function.

Retrieving the message text
The error.sql file contains message text for every return code. Use the sqlerr function
to retrieve the error message text (without the mnemonic) associated with a retu
code. Otherwise, use the sqlfer function to retrieve the error message text and the
mnemonic associated with a return code.

In the second example, the application receives the return code into the variablercd.
The application could have used the sqlerr function to retrieve the error message tex
and displayed it or written it to a file before disconnecting.

Retrieving the syntax error position
The sqlepo function returns the error position within the most-recently executed S
statement when SQLBase detects a syntax error.
SQL Application Programming Interface Reference 3-47

Chapter 3 Using the SQL/API

d

’
lines

e

d of
nt
ate

curs,

 your
Retrieving the rollback flag
The sqlrbf function returns the rollback flag which is set to 1 after a server-initiate
rollback caused by a deadlock or system failure.

Retrieving the reason and remedy
You can use the sqletx function to retrieve one or more of the following for a given
error code:

• Error message text

• Error reason

• Error remedy

The example program ex07.c shows how to handle errors returned from SQL/API
functions.

Translating errors
You can create a file that maps SQLBase return codes to other RDBMS vendors
return codes or to return codes that you define yourself. The file should contain
in this format:

x,y

where x is a SQLBase return code found in error.sql and y is the corresponding return
code that you want SQLBase to return. (There should be no white space after th
comma.)

Suppose, for example, that you want SQLBase to return DB2 error codes instea
SQLBase error codes. You need to map SQLBase return codes to their equivale
DB2 return codes. Consider the following: SQLBase returns a value of 1 to indic
an end of fetch condition, while DB2 returns a value of 100. If you want your
application to return the value 100 instead of 1 when an end of fetch condition oc
specify this entry in the translation file:

1,100

When the end of fetch condition causes an error, your application must call the sqltec
function to translate the return code from 1 to 100.

As another example, if a CREATE TABLE command specifies the same column
name more than once, SQLBase returns 924, but DB2 returns -612. If you want
application to convert 924 to -612, then create this entry in the translation file:

924,-612

Your application must call the sqltec function when an error occurs in order for the
return code to be converted from 924 to -612.
3-48 SQL Application Programming Interface Reference

Error handling

t a
ant

 that

ade.
to be

/

If you call the sqltec function and the SQLBase return code does not exist, you ge
non-zero return code meaning that the translation did not occur. If you always w
some translation to occur, specify an asterisk ("*") as the x value to indicate a global
translation. You could specify a generic catch-all return code like 999 to indicate
a system error was reported for an error code not found in the translation table.

For example, SQLBase return code 101 means that an invalid function call was m
If DB2 has no corresponding return code, you can cause a generic value of 999
returned when error 101 occurs by specifying:

*,999

When the application calls sqltec, it does not find SQLBase error 101, so it returns
999.

The errorfile configuration keyword
Specify the name of the translation file with the errorfile keyword in a client’s sql.ini
file. Configure the keyword as shown below:

errorfile=filename

where filename is the name of the translation file.

Read the Configuration chapter in the Database Administrator’s Guide for more
information about this keyword.

Error handling (ex20.c)
The void function from ex20.c is called if an error occurs when you execute a SQL
API function.

...
void failure ();
main ()
{
...
}

➀ void failure(p)
➁ char* p; /* Pointer to a string */

{
➂ SQLTEPO epo; /* Error position */
➃ if (cur) /* Is cursor connected? */

{
➄ sqlrcd (cur, &rcd); /* Get the error */
➅ sqlepo (cur, &epo); /* Get error position */
➆ sqldis (cur);

}
➇ printf ("Failure on %s rcd=%d, epo=%d\n", p, rcd,

epo);
SQL Application Programming Interface Reference 3-49

Chapter 3 Using the SQL/API

 set

I

ndling

and a
➈ exit (1);
}

1. Declare the function.

2. The function has one argument which is a pointer to a character string. You
this argument to a specific value when you call the function.

3. The variable epo receives the error position in a SQL command in step 6.

4. Check to see that the cursor is still connected.

5. Use the sqlrcd function to retrieve the return code for the most-recent SQL/AP
function.

6. Use the sqlepo function to retrieve the error position within a SQL command.

7. Disconnect from the database.

8. Print an error message that shows the string that was passed to the error-ha
function, the return code, and the error position.

9. Call the exit function to terminate the program.

Errors
This section describes the following information:

• The common message files called error.sql and message.sql that are shared
by SQLBase client and server programs.

• The SQLBase error window.

About error.sql
All SQLBase error messages are stored in a common error message file called
error.sql. This file must be present on all client and server computers that run
SQLBase software.

As the diagram below shows, each error message has message text, a reason,
remedy.
3-50 SQL Application Programming Interface Reference

Error handling

onic
rror

is
.

y for a

The error message text line contains an error code (in this case, 00353), a mnem
(EXE NSY), and a message text (Not a synonym). When a program detects an e
condition, it uses the error code to look up the error message.

About message.sql
The message.sql file contains prompts, confirmations, and non-error messages. Th
file must be present on all client and server computers that run SQLBase software

SQLBase uses this search order to find error.sql and message.sql on a client or server:

1. Current directory.

2. \SQLBASE directory on the current drive.

3. The root directory.

4. Directories specified by the PATH environment variable.

Displaying errors
SQLBase provides a window that displays the message text, reason, and remed
given error code. The program looks up this information in error.sql.

The error window program is installed on the client machine when you install
SQLBase client software, and is assigned an icon in the client program group or
folder.

00353 EXE NSY Object <name> specified in DROP SYNONYM
is not a synonym

Reason: Attempting to execute a DROP SYNONYM
and the named synonym is not a synonym but a
table or view name.

Remedy: Modify the DROP SYNONYM statement to
use a synonym name or if you really want to
drop a table then use a DROP TABLE
statement.
SQL Application Programming Interface Reference 3-51

Chapter 3 Using the SQL/API

g

To access the error window, click on the Dberror icon. You access the following
window:

To display information about a specific error, enter the error code in the Error
Number field, and click Lookup!

Tokenized error messages
SQLBase returns one or more error message tokens when an error occurs and
substitutes them into an error message’s variables if you call sqltem(). For example, if
you incorrectly specify the directory name from which to restore a database or lo
files, SQLBase displays error 5132:

 Missing FROM <directory> clause

as:

 Missing FROM C:\DEMOBKP clause

Use this parameter with the sqlget function to retrieve the object name (token)
returned in an error message.

Use this parameter with the sqlset function to set the error token string to customize
user errors.

Creating a user-defined error
Assume a table emp with referential integrity constraints from which someone
attempts to delete a row that contains information about a manager who still has
employees assigned to him. SQLBase would return error 383:
3-52 SQL Application Programming Interface Reference

Error handling

l

an

 a

nds

is
re

de
d
Cannot delete row until all the dependent rows are deleted

You can create an error message specific to this particular violation of referentia
integrity by using the ALTER TABLE command and editing the error.sql file:

1. Edit the error.sql file to contain the new error message. With SQLPEMT, you c
set the error token string and customize the error to:

20001 xxx xxx<manager_name> cannot be removed until all
subordinates are reassigned

2. Add the new error message:

ALTER TABLE emp ADD USERERROR 20001 FOR ‘DELETE_PARENT’
OF PRIMARY KEY;

The next time someone attempts to delete a row that contains information about
manager who still has employees assigned to him, SQLBase would return error
20001:

<manager name> cannot be removed until all subordinates are
reassigned

Your application is responsible for supplying the error token with which SQLBase
replaces the variable (manager_name).

The error message token string must be a series of null-terminated strings that e
with a double-null terminator, for example:

“first token\0second token\0third token\0\0”

Returning an error
Use the sqltem (Tokenize Error Message) to return a tokenized error message. Th
function formats an error message with tokens in order to provide users with mo
informational error messages.

The sqltem function returns one or more of the following from the error.sql file for the
specified cursor handle:

• Error message

• Error reason

• Error remedy

Each API function call returns a code. You can retrieve the most recent return co
with the sqltem function, and use it to look up the error message, error reason, an
error remedy.

For example, formerly, SQLBase error 175:

SQL OLC Cannot open local client workstation file
SQL Application Programming Interface Reference 3-53

Chapter 3 Using the SQL/API

ase

e as
Base

n-

r for

ng on,
pped

is now:

SQL OLC Cannot open local client workstation file <filename>

where filename is a variable that gets replaced with the name of the file that SQLB
was unable to open.

Tokenizing error messages makes integrity error checking much more informativ
well. Instead of reporting only that a data page is corrupt or an index is bad, SQL
reports the table or index name too.

Non-SQLBase database servers
By default, the sqltem function returns the native error code and message from no
SQLBase database servers, but does not return the error reason or remedy.

For example, if you are connected to the Informix server and you receive an erro
a table that already exists, the error returned is Informix error code 310:

An attempt was made to create a tablespace which already
exists

not SQLBase’s equivalent 338:

 Table, view, or synonym <name> already exists

If you are accessing a non-SQLBase database server and have set error mappi
any non-SQLBase error that doesn’t have a corresponding SQLBase error is ma
to a generic error message. You can use the sqltem function to retrieve the native error
code and message that caused the problem.

Note: The other error message handling functions (sqlerr, sqlfer, and sqletx) use a specified
return code to retrieve the corresponding error message from the error.sql file. An error message
returned by any of these functions contains the variable, not the object name; only the sqltem
function replaces the variable with an actual object name.

Example
#include <sql.h>

char emt [SQLMEMT + 1];/* Error message token */
/* buffer */

SQLTCUR cur; /* Cursor */
SQLTRCD rcd; /* Return code */

strcpy(emt, "Bob Mitchell");
if (rcd = sqlset (cur, SQLPEMT, emt, 0))/* Set error */

/* message tokens */
{

3-54 SQL Application Programming Interface Reference

Back up and restore

e of

.

lso

an
Base

ought

ndo

 media

ts
ing a
age a
our
printf("Failure Setting Error Message Tokens (rcd =
%d)\n", rcd);

}

Back up and restore
You can recover from media failures and operator errors which have damaged a
database if you make backups of a database and its log files regularly.

There are three phases to the process:

• Backup

Copying a database and its logs to a backup directory. There are two typ
backups: online and offline.

• Restore

Copying a backup of a database and its log files to a database directory

• Recovery

Applying one or more log files to a database to bring it up-to-date. This is a
called a rollforward.

Recovery
There are two kinds of recovery: crash recovery and media recovery. SQLBase
performs crash recovery, and the DBA is responsible for media recovery.

Crash recovery
A database can be damaged in a number of ways such as by a power failure or
operator error in bringing down the server. When an event like this happens, SQL
tries to restore the database to a consistent state by performing crash recovery
automatically when a user connects to a crashed database that has just been br
back online. Crash recovery consists of using the transaction logs to redo any
committed transactions which had not yet been written to the database and to u
any uncommitted transactions which were still active when the server crashed.

There are situations where SQLBase will not be able to return a database to a
consistent state such as when the transaction logs have been damaged during a
failure.

Media recovery
Maintenance is a necessary part of a DBA's job, and involves preparing for even
such as a disk head crash, operating system crash, or a user accidentally dropp
database object. You can recover from media failures and user errors which dam
database if you back up a database and its log files regularly. Making backups of y
SQL Application Programming Interface Reference 3-55

Chapter 3 Using the SQL/API

you

 how

ogs
the
of that

 of

d
s.

her
rash
eless

cted
clude:

ince

P
h a

database and log files from which you can restore the database is the only way
can prevent loss of data.

How often you backup the database and its log files is up to you and depends on
much data you can afford to lose. In general, the following are good guidelines:

• Backup the database once a week.

• Backup the transaction log files once a day.

You can minimize loss of data due to a media failure by backing up transaction l
frequently. You should backup all logs since the last database backup so that in
case of a media failure they can be used to recover the database up to the point
last log backup.

In addition, you should save the database and log files from the last several sets
backups taken. For example, if you make a backup of the database and its logs
(snapshot) every Sunday, and make log backups every night, a backup set woul
consist of the Sunday snapshot, and Monday through Saturday's log file backup
Never rely on just one backup!

Important: Never delete transaction log files. SQLBase automatically deletes log files eit
when they are backed up or when they are no longer needed for transaction rollback or c
recovery, depending on whether the SQLPLBM parameter is on or off. A database file is us
without its associated log files.

Online backups
An online backup is a copy of a database (.dbs) file and its log (.log) files that you
make using an API function while the server program is running (users are conne
to the database and transactions are in progress). The online backup options in

• sqlbss

Backs up only the database file and those log files needed to restore the
database to a consistent state. This includes the current active log file s
the sqlbss call forces a log rollover. This command is the only backup
command which does not require LOGBACKUP to be on. If LOGBACKU
is on, the log files left in the database directory should be backed up wit
sqlblf call. SQLBase will then delete them automatically.

• sqlbdb

Backs up the database file. You should never back up a database without also
backing up the log files with it.

• sqlblf

Backs up the log files and then deletes them.
3-56 SQL Application Programming Interface Reference

Back up and restore

 the
 up 24

n
 the

edia.

. For

 is

l
 now
ed up
. In

 the
may

as

e

 was
e
The advantage of an online backup is that users can access the database while
backup is being done. This is important to sites which require the database to be
hours a day.

Offline backups
An offline backup is a copy of the database file and log files that you make with a
operating system utility or command (such as COPY) after successfully bringing
server down.

The advantage of an offline backup is that you can back up directly to archival m
Online backup commands will not back up files to a tape drive, for example.

Before you can make an offline backup, you must shut down the server gracefully
details on shutting down the server, read Chapter 6, Starting and Stopping SQLBase
in the Database Administrator’s Guide.

You make an offline backup using an operating system command or utility. Below
an example of an offline backup done using the COPY command:

• COPY C:\CENTURA\MYDBS\MYDBS.DBS
C:\BACKUPS\MYDBS.BAK

• COPY C:\CENTURA*.LOG C:\BACKUPS

Follow an offline backup with a sqlset call specifying the SQLPNLB parameter to tel
SQLBase that an offline backup of one or more log files has occurred. SQLBase
knows that these backed up log files are candidates for deletion. If you had back
the log files with an API function, the files would have been automatically deleted
the above case, the value of SQLPNLB would be 3.

You restore an offline backup in one of two ways:

• If the backup consists of only a database file, restore it by copying it over
existing damaged database file, making sure the extension is .dbs (you
have changed it, for example, to .bkp when you backed it up), and then
connecting to the database. All changes made since the offline backup w
done will be lost.

• If the backup consists of a database file and one or more log files, use th
sqlrdb function to restore the database and then call the sqlrof function to
apply the logs to bring it up-to-date. The sqlrdb copies the backup to the
database subdirectory, and the sqlrof applies the committed and logged
changes made to the database since the offline backup of the database
taken. If SQLBase cannot find the log files to rollforward, you can restor
them by either a sqlrlf call (which automatically does a sqlcrf) or with a copy
utility, and then call the sqlcrf function explicitly to apply the log files.
SQL Application Programming Interface Reference 3-57

Chapter 3 Using the SQL/API

can

o

u

 up a
l

r

should

 up-to-

ted
s
In order for the sqlrdb call to work, the name of the database backup file must be
database_name.bkp.

Backing up a database and its log files
The recommended way to backup a database and its log files is with the sqlbss
function call because it is easy and provides you with a backup from which you
recover the database in one step.

The sqlbdb and sqlblf function calls are provided for sites with large databases wh
wish to do incremental backups. Between database backups (both sqlbss and sqlbdb),
you should back up log files using the sqlblf function. For example, you could back
up the database and logs every Sunday, while on Monday through Saturday, yo
could back up only the logs.

A backup directory can be on a client or server computer. Once you have backed
database and its log files to a directory, you can copy the backup files to archiva
media and delete the backup files from the client or server disk.

Before you can use sqlbdb or sqlblf, you must set log backup mode on using the
SQLPLBM parameter and the sqlset function. It is best to set SQLPLBM on just afte
you create a database and then not change the setting.

Restoring and recovering a database and its log files
Users cannot be connected to the database during a restore and recovery. You
deinstall a multi-user database using the sqlded function, perform the restore and
rollforward, and then install the database with the sqlind function.

If a database becomes damaged, you can restore it from backup with the sqlrss
function if you created the backup with the sqlbss function. After calling sqlrss, no
further action is necessary because the command will copy not only the backup
database file but also the backup log files to the database subdirectory.

If you did not make the backup with sqlbss or did a sqlbss and want to rollforward as
much as possible, you can restore the database with the sqlrdb function or a file copy
utility.

To rollforward changes made after the database backup and bring the database
date, call the sqlrof function:

• Roll forward through all log files available (the default). This recovers as
much of the user's work as possible.

• Roll forward to the end of the backup restored. This recovers all commit
work up to the point when the database backup was completed. This i
essentially a sqlrss.
3-58 SQL Application Programming Interface Reference

Back up and restore

ks"

, you
data

 or
to
f

.
 most

this

kup
The
kup

all the

the

r
• Roll forward to a specified date and time. This allows you to recover a
database up to a specific point in time, and in effect rolls back large "chun
of committed and logged work that you no longer want applied to the
database. For example, if data is erroneously entered into the database
would want to restore the database to the state it was in before the bad
was entered.

You must have backed up all the database's log files and must apply them in order
the rollforward will fail. If you are missing any of the log files, you will not be able
continue rolling forward from the point of the last consecutive log. For example, i
you have 1.log, 2.log, 4. log, and 5.log, but 3.log is missing, you will only be able to
recover the work logged up to 2.log. 4.log and 5.log cannot be applied to the database
An unbroken sequence of log files is required to recover a database backup to its
recent state.

The rollforward operation stops if SQLBase cannot find a log file that it needs. In
situation, you can restore the appropriate log file with a sqlrlf function call. The sqlrlf
function copies the log files needed to recover a restored database from the bac
directory to the current log directory and applies them to the restored database.
sqlrlf function continues restoring logs until it has exhausted all the logs in the bac
directory that can be applied.

If there are more logs to be processed than can fit on disk at one time, you can c
sqlrlf function repeatedly to process all the necessary logs.

If a log file requested is not available, you can call sqlenr to end recovery using the
data restored up to that point.

In summary, the general steps to performing media recovery are:

1. Call sqlrdb to restore the database.

2. Call sqlrof to declare where rollforward recovery is to terminate.

3. Call sqlgnl and sqlrlf in a loop to restore and apply any logs needed to perform
wanted rollforward recovery. The sqlgnl function returns the name of the next log
file needed for recovery and sqlrlf restores one or more logs from the specified
backup directory.

4. Call sqlenr to finish the media recovery process and prepare the database fo
active use.
SQL Application Programming Interface Reference 3-59

Chapter 3 Using the SQL/API

.

dia.

n.
uts

 the

e

end
Example
The example program ex17.c shows how to perform backup and restore operations

Load and unloading databases
This section describes how to use the SQL/API to load and unload databases.

Loading
There are two ways you can load database information using the
SQL/API:

• Using the sqlldp function.

• Creating a customized SQL/API function.

It is recommended that you use the standard sqlldp function whenever possible. You
should only create a custom load function when you need to manipulate the load
buffer, such as when you are retrieving database information from a different me

Using the sqlldp function
Generally, you use the sqlldp function (Load Operation) to load database informatio
The following example shows how this function calls the LOAD command and inp
a file name that exists online:

static char loadcmd[] =
"LOAD SQL db.unl ON SERVER";
ret = sqlldp(cur, loadcmd, 0);

Creating a customized SQL/API load function
You can also create a customized program to manipulate the load input buffer in
client yourself. For example, you may wish to create a load program that loads
information that does not exist online, but perhaps on a tape or an archived file.

The following example creates a SQLTAPI function called loadx. This is a
customized load function, which processes the load command. You can invoke a
program such as this directly from your application program.

This sample operation is similar to writing a LONG VARCHAR type column to th
database.

The example loadx function processes the load operation and sends it to the back
for compilation and execution. If the load source file resides on the server, the
execution is handled completely at the server. If it is on the client, this function
handles the retrieval of load data and sends it to the server, in chunks.
3-60 SQL Application Programming Interface Reference

Load and unloading databases

n

This function returns a code after the load operation. If the load operation was
successful, this field will contain a zero. In all other cases, this field will contain a
error code indicating the error encountered. The error.sql file contains a list of error
codes and corresponding error messages.

#include "sql.h"
#include "errsql.h"
#include "stdio.h"

#define BUFFER_SIZE 1024/* read 1k buffers */

SQLTAPI loadx(cur, cmdp, cmdl)
 SQLTCUR cur; /* cursor number */
 SQLTDAP cmdp; /* -> command buffer */
 SQLTDAL cmdl; /* command length */

{
 SQLTRCD rcd; /* return code */
 SQLTDPV on_client; /* source file ON CLIENT? */
 int len; /* length */
 FILE *fp; /* file type */
 char fname[SQLMFNL+1];/* load file name */
 SQLTDAL flen; /* load file length */
 char buf[BUFFER_SIZE];/* load data buffer */
 int no_more_data; /* flag for indicating end of data */

 if ((rcd = sqlcom(cur, cmdp, cmdl))|| /* compile the */
/* load command */

➀ (rcd = sqlget(cur, /* get ON CLIENT value */
 (SQLTPTY)SQLPCLI,
 (SQLTDAP)&on_client,&len)))

 {
 return(rcd);
 }

 if (on_client)
 {

/* get the load file name */
➁ if (rcd = sqlget(cur, SQLPFNM,fname,&flen))

 return(rcd);
fname[flen] = 0;

/* open the local source file for obtaining the
/* load data.*/

 if ((fp = fopen(fname, "r")) == NULL)
return(SQLECOF);

/* Bind the long data by number. */
if (rcd = sqlbln(cur, 1))
SQL Application Programming Interface Reference 3-61

Chapter 3 Using the SQL/API

to

he

nds it
return(rcd);

➂ no_more_data = 0;
while(!no_more_data)

 {
/* read a chunk of the file */
len = fread(buf, 1, BUFFER_SIZE, fp);
if (len != BUFFER_SIZE) /*current file */

/* reaches EOF*/
no_more_data = 1;

➃ if (rcd = sqlwlo(cur, buf, len))/* send the */
/* data to server */

 {
sqlelo(cur); /* end the write operation */
return(rcd);

 } /* end if */
} /* end while */

if ((rcd = sqlelo(cur)) != 0)/* end the long write */
return(rcd);

fclose(fp);

if ((rcd = sqlexe(cur)) != 0)/* execute the load */
 return(rcd);
} /* end if */
else
{

➄ if (rcd = sqlexe(cur)) /* execute the load */
return(rcd);

} /* end else */

return(rcd = 0); /* success */
} /* end function */

1. The sqlget function returns the value of the ON CLIENT/ON SERVER clause
the LOAD command. The default value is ON CLIENT.

2. Source file is on the client. The code reads the load data and sends it to the
backend (SERVER). The load data is sent to the server in a way similar to t
inserting of LONG VARCHAR value.

3. This code segment reads chunks of unloaded data from the load file, and se
to the server, using the sqlwlo function call until there is no more data to send.
3-62 SQL Application Programming Interface Reference

Load and unloading databases

er for

ad

e
s

tion
4. Some data was read from load file. The code sends this data over to the serv
processing.

5. The sqlexe for the load file on server case executes the load command.

Unloading
There are two ways you can unload database information using the
SQL/API:

• Using the sqlunl function.

• Creating a customized SQL/API function.

It is recommended that you use the standard sqlunl function whenever possible. You
should only create a custom load function when you need to manipulate the unlo
buffer in the client, such as when you need to unload information to an archive.

Using the sqlunl function
Generally, you use the sqlunl function (Unload) to unload database information. Th
following example calls the UNLOAD command and inputs a file name that exist
online:

static char unlcmd[] =
"UNLOAD COMPRESS DATA SQL db.unl ALL ON SERVER ;";
ret = sqlunl(cur, unlcmd, 0);

Creating a customized unload function
The following example creates a SQLTAPI function called unloadx. This is a
customized unload function, which processes the UNLOAD command. You can
invoke a program such as this directly from your application program.

This function processes the unload command and sends it to the backend for
compilation and execution. If the unload file destination is on the server, the execu
is handled completely at the server. If it is on the client, this function retrieve the
unload data from the server and writes it to the destination file.

#include "sql.h"
#include "stdio.h"
#include "errsql.h"

#define BUFFER_SIZE 1024/* read 1k buffers */

SQLTAPI unloadx (cur, cmdp, cmdl)
 SQLTCUR cur; /* cursor number */
 SQLTDAP cmdp; /* -> command buffer */
 SQLTDAL cmdl; /* command length */

{

SQL Application Programming Interface Reference 3-63

Chapter 3 Using the SQL/API
 SQLTDPVon_client; /* ON CLIENT flag */
 int len; /* length indicator */
 char fname[SQLMFNL+1]; /* unload file name*/
 SQLTDALflen; /* file name length*/
 SQLTRCDrcd; /* return code */
 FILE *fp; /* unload file pointer*/
 char buf[BUFFER_SIZE]; /* unload data buffer*/

➀ if ((rcd = sqlcom(cur, cmdp, cmdl))|| /* compile unload
*/

/* command */
/* get ON CLIENT value */
(rcd = sqlget(cur, (SQLTPTY)SQLPCLI,

(SQLTDAP)&on_client,&len)))
 {
 return(rcd); /* if error, report it */
 }

 if (on_client)
 {

/* get the unload file name */
➁ if (rcd = sqlget(cur, SQLPFNM,(SQLTDAP)fname,

(SQLTDAL*)(&flen)))
 return(rcd); /* if error, report it */

fname[flen] = 0; /* null terminate the */
/* the filename */

/* Create and open the unload file. */
if ((fp = fopen(fname, "w")) == NULL)

return(SQLECOF);/* error: cannot create file
*/

/* execute the unload command */
if (rcd = sqlexe(cur))

return(rcd);

/* Retrieve the unload data. */
while(!(rcd = sqlfet(cur)))/* while not end of */

/* fetch */
{

while(1)
{

➁ if (rcd = sqlrlo(cur, (SQLTSLC)1, buf,
(SQLTDAL)BUFFER_SIZE, &len))

return(rcd);/* if error report it */

➂ if (len) /* any data retrieved ? */
3-64 SQL Application Programming Interface Reference

Load and unloading databases

t

ilar
the

ly on
{
fwrite(buf, 1, len, fp);/* write * /

/ *data into unload file */
}
else

break; /* reached the end of data */
 } /* end while */

if (rcd = sqlelo(cur))/* end of */
/ * long for this fetch */

return(rcd);
} /* end while */

if (rcd > 1) /* if not end of fetch */
 return(rcd); /* report error */

fclose(fp); /* close the unload file*/
 } /* end if */

else /* unload is on the server*/
{

➃ if (rcd = sqlexe(cur))/* just execute the
/* unload command */

return(rcd);
}
return(rcd = 0); /* return success */
}

1. This segment compiles the unload command and gets the information abou
whether the unload happens on the client or on the server.

2. Destination file is on the client. The code retrieves the unload data in a way sim
to the retrieving of a LONG VARCHAR value. The retrieved data is stored in
destination file on client.

3. The unload data is fetched and written to the unload file until end of data is
reached.

4. The unload file is on the server, so the unload operation is handled complete
the server.
SQL Application Programming Interface Reference 3-65

Chapter 3 Using the SQL/API

is

ile
Microsoft Windows applications
The sqlini function initializes the library used for Microsoft Windows and sets up a
callback function so that control can pass to Windows while a SQL/API function
executing. You can successfully yield to other tasks or even continue processing
within the current task as long as you avoid any interaction with the SQL/API wh
the application is yielding.

Call the sqlini function before the first sqlcnc. Call the sqldon function before exiting
a Microsoft Windows application.

Define LINT_ARGS in your program before other include files.

You must declare all pointers used as arguments for SQL/API functions as far
pointers. This happens automatically when you include sql.h.

The example program ex21.c shows how to use SQL/API functions in a Microsoft
Windows program.
3-66 SQL Application Programming Interface Reference

rief

SQL Application Programming Interface Reference
Chapter 4

SQL/API Functions by
Category

This chapter groups the SQL/API functions by functional category, and provides b
descriptions of the functions.
SQL Application Programming Interface Reference 4-1

Chapter 4 SQL/API Functions by Category

s
Function categories
This chapter identifies the following SQL/API categories in the SQL/API, and list
the functions in each one.

• Backup and restore functions

• Binding functions

• Bulk execute mode functions

• Compiling and executing functions

• Connecting and disconnecting functions

• Database administration functions

• Environment control functions

• Error handling functions

• Load and Unload functions

• LONG VARCHAR operation functions

• Query functions

• Restriction mode and result set mode functions

• Server file and directory access functions

• Server security functions

• SQLBase internal number functions

• Stored command/procedure functions

• Transaction control functions

• Miscellaneous functions

Backup and restore

Function Description

sqlbdb Backup DataBase

sqlblf Backup Log Files

sqlbss Backup SnapShot

sqlcrf Continue RollForward

sqlenr ENd Rollforward

sqlgnl Get Next Log
4-2 SQL Application Programming Interface Reference

Function categories
Binding

Bulk execute mode

sqlrdb Restore DataBase

sqlrel RELease log

sqlrlf Restore Log Files

sqlrof ROllForward

sqlrss Restore SnapShot

Function Description

sqlbld Bind Long Data by name

sqlbln Bind Long data by Number

sqlbna Bind data by NAme (with null indicator)

sqlbnd BiNd Data by name

sqlbnn BiNd data by Number

sqlbnu Bind data by NUmber (with null
indicator)

sqlcbv Clear Bind Variables

sqlnbv Number of Bind Variables

Function Description

sqlbbr Bulk execute Return

sqlbef Bulk Execute Flush

sqlber Bulk Execute Return

sqlblk BuLK insert mode

Function Description
SQL Application Programming Interface Reference 4-3

Chapter 4 SQL/API Functions by Category
Compiling and executing

Connecting and disconnecting

Database administration

Function Description

sqlcex Compile and EXecute

sqlcom COMpile

sqlexe EXEcute

Function Description

sqlcch Create Connection Handle

sqlcnc CoNnect Cursor

sqlcnr Connect with No Recovery

sqldch Destroy Connection Handle

sqldis DISconnect

sqldon DONe

Function Description

sqlcdr Cancel Database Request

sqlcre CREate database

sqldbn Database Names

sqlded DEinstall Database

sqldel DELete database

sqldir DIRectory of databases

sqlind INstall Database

sqlldp LoaD oPeration

sqlsdn ShutDowN database

sqlsdx ShutDown database eXtended
4-4 SQL Application Programming Interface Reference

Function categories
Environment control

Error handling

sqlunl UNLOAD Command

Function Description

sqlgbc Get Backend Cursor

sqlget GET database parameter

sqlgsi Get Server Information

sqlims Input Message Size

sqloms Output Message Size

sqlrsi Reset Statistical Information

sqlscp Set Cache Pages

sqlset SET database parameter

sqlsta STAtistics

Function Description

sqlepo Error POsition

sqlerr ERRor message

sqletx Error message TeXt

sqlfer Full ERror message

sqlrbf Roll Back Flag

sqlrcd Return CoDe

sqltec Translate Error Code

sqltem Tokenize Error Message

sqlxer eXternal ERror

Function Description
SQL Application Programming Interface Reference 4-5

Chapter 4 SQL/API Functions by Category
Load and Unload operations

LONG VARCHAR operations

Queries

Function Description

sqlldp Load operation

sqlunl Unload operation

Function Description

sqlelo End Long Operation

sqlgls Get Long Size

sqllsk Long SeeK

sqlrlo Read LOng

sqlwlo Write LOng

Function Description

sqldes DEScribe items in a SELECT

sqldsc DeSCribe item of SELECT

sqlfet FETch next row from result set

sqlfqn Fully Qualified column Name

sqlgdi Get Describe Information

sqlgfi Get Fetch Information

sqlnrr Number of Rows in Result set

sqlnsi Number of SELECT Items

sqlssb Set Select Buffer
4-6 SQL Application Programming Interface Reference

Function categories
Restriction mode and result set mode

Server file and directory access

Function Description

sqlcrs Close Result Set

sqldrs Drop Result Set

sqlprs Position in Result Set

sqlrrs Restart ReStriction mode and Result Set
mode

sqlspr StoP Restriction mode

sqlsrs Start ReStriction mode and Result Set
mode

sqlstr STart Restriction mode

sqlurs Undo Result Set

Function Description

sqldox Directory Open eXtended

sqldrc DiRectory Close

sqldro DiRectory Open

sqldrr DiRectory Read

sqlfgt File GeT

sqlfpt File Put

sqlmcl reMote CLose server file

sqlmdl reMote DeLete server file or directory

sqlmop reMote OPen server file

sqlmrd reMote ReaD server file

sqlmsk reMote SeeK server file

sqlmwr reMote WRite server file
SQL Application Programming Interface Reference 4-7

Chapter 4 SQL/API Functions by Category
Server security

SQLBase internal numbers

Stored commands and procedures

Function Description

sqlcsv Connect to SerVer

sqldsv Disconnect from SerVer

sqlsab Server ABort process

sqlsds ShutDown Server

sqlstm Server TerMinate

Function Description

sqlxad eXtended ADd

sqlxcn eXtended Character to Number

sqlxda eXtended Date Add

sqlxdp eXtended convert Date to Picture

sqlxdv eXtended DiVide

sqlxml eXtended MuLtiply

sqlxnp eXtended convert Numeric to Picture

sqlxpd eXtended convert Picture to Date

sqlxsb eXtended SuBtract

Function Description

sqldst Drop STored SQL command/procedure

sqlret RETrieve compiled SQL command/
procedure

sqlsto STOre compiled SQL command/
procedure
4-8 SQL Application Programming Interface Reference

Function categories
Transaction control

Miscellaneous

Function Description

sqlcmt CoMmiT

sqlrbk RollBacK

Function Description

sqlclf Change process activity Log File

sqlcpy CoPY

sqlcty Command TYpe

sqldii Describe Into Variable

sqlexp EXecution Plan

sqlgbi Get Backend Information

sqlgnr Get Number of Rows

sqlini INItialize (Microsoft Windows)

sqllab LABel information

sqlnii Get number of Into Variables

sqlrow number of ROWs

sqlscl Set CLient name

sqlscn Set Cursor Name

sqlsil Set Isolation Level

sqltio TIme Out
SQL Application Programming Interface Reference 4-9

 the

SQL Application Programming Interface Reference
Chapter 5

SQL/API Function
Reference

This chapter is organized alphabetically by SQL/API function name, and contains
syntax, a detailed description, and an example for each function.
SQL Application Programming Interface Reference 5-1

Chapter 5 SQL/API Function Reference

 that

-

s

e
sqlbbr - Bulk execute Return

Syntax
#include <sql.h>

SQLTAPI sqlbbr(cur, rcd, errbuf, buflen, errrow, rbf, errseq)

SQLTCUR cur; /* Cursor handle */
SQLTXER PTR rcd; /* Return code */
SQLTDAP err buf; /* Ptr to receiving buffer */
SQLTDAL PTR buflen;/* Length of receiving buffer */
SQLTBIR PTR errrow;/* Error row number */
SQLTRBF PTR rbf; /* Roll back flag */
SQLTBIR errseq;/* Error sequence number */

Description
This function returns the error return code of the previous bulk execute operation
took place against a non-SQLBase database server.

This function is like sqlber, but it also returns the error message text from the non
SQLBase database server.

You can also call sqlbbr when processing against SQLBase databases. This mean
that you can use sqlbbr for database-independent applications.

In bulk execute mode, several rows are processed in one call to sqlexe. If sqlexe
returns an error, use sqlbbr to find the row that caused the error. Rows that are
processed are numbered consecutively. When you call sqlbbr, you specify the error
sequence number (errseq) and sqlbbr returns the row number in errrow.

For example, if you INSERT 6 rows, they are numbered 1, 2, 3, 4, 5, and 6. If th
rows numbered 2, 4, and 6 caused an error, you would call sqlbbr and specify 1 in
errseq and sqlbbr would return 2 in errrow (meaning row 2 caused an error).
Continue to call sqlbbr, incrementing the number in errseq each time. When sqlbbr
returns 0 in rcd, there are no more errors. This is shown in the table below.

rcd errrow errseq

First sqlbbr call - 2 1

Second sqlbbr call - 4 2

Third sqlbbr call - 6 3
5-2 SQL Application Programming Interface Reference

sqlbbr - Bulk execute Return

ow

e

 in

tor:

 to get
ceeds
 zero
Parameters
cur

The cursor handle associated with this function.

rcd

A pointer to the variable where this function returns the status code for the r
that caused the error.

Some database servers may return zero value when the operation was not
successful, so you should also check to see if errrow is greater than zero.

errbuf

A pointer to the buffer where this function copies the error message text.

buflen

A pointer to the variable where this function returns the number of bytes in th
retrieved error message text.

errrow

A pointer to the variable where this function returns the row number that was
error.

rbf

A pointer to the variable where this function returns the rollback status indica

errseq

The sequence number of the error to retrieve. Set the errseq parameter to 1
the first error, 2 to get the second error, and so on. If the errseq parameter ex
the number of error messages returned for the last bulk execute, rcd is set to
to show there are no more error messages.

Fourth sqlbbr call 0 - 4

0 No Rollback

1 Rolled back
SQL Application Programming Interface Reference 5-3

Chapter 5 SQL/API Function Reference

ed up

e

kup.

ch
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Related functions
sqlbef sqlber sqlblk

sqlbdb - Backup DataBase

Syntax
include <sql.h>

SQLTAPI sqlbdb (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Length of database name */
SQLTFNP bkpdir; /* Backup directory */
SQLTFNL bkpdirl; /* Backup directory length */
SQLTBOO local; /* True: backup directory on local (client)

node */
SQLTBOO over; /* True: overwrite existing file */

Description
This function copies a database to the specified directory. The database is back
to a file with the name:

database-name.BKP

If this function finds a control file in the backup directory, the function performs a
segmented backup based on the contents of the control file. For details, read th
Database Administrator’s Guide.

Transactions that are committed when the backup starts are included in the bac
Active transactions are not included.

Before you can use sqlbdb, you must turn on log backup mode using the SQLPLBM
parameter and the sqlset function. You only need to do this once for a database (su
as just after it has been created), and the setting stays on until you turn it off.
5-4 SQL Application Programming Interface Reference

sqlbdb - Backup DataBase
Once a database file is backed up to a directory, you can transfer the backup to
archival media; then delete the backup files from the hard disk.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

bkpdir

A pointer to the string that contains the backup directory name.

bkpdirl

The length of the string pointed to by bkpdir. If the string pointed to by bkpdir is
null-terminated, specify 0 and the system will compute the length.

local

Destination of backup:

over

Overwrite indicator:

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

0 Backup directory on server.

1 Backup directory on local (client) node.

0 Do not overwrite existing file.

1 Overwrite existing file.
SQL Application Programming Interface Reference 5-5

Chapter 5 SQL/API Function Reference
Example
SQLTSVH shandle;
char* svrname;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;
SQLTCUR cur1;

static char dbname1[] = "omed";
strcpy(svrname,”SERVER1”);
password = 0;

bkpdir = "\\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO OMED */

if (rcd = sqlcnc(&cur1,dbname1,0))
apierr("SQLCNC");

else
printf("Connected to OMED \n");

/* SET LOGBACKUP MODE ON */

lbmset=1;
if (rcd = sqlset(cur1,SQLPLBM,(ubyte1p)&lbmset,0))

apierr("SQLSET");
else

printf("Logbackupmode is set to %d \n", lbmset);

/* MAKE BACKUP DIRECTORIES */

system("mkdir \\backup");
system("mkdir \\backup\\omed");

/* CONNECT TO SERVER*/
5-6 SQL Application Programming Interface Reference

sqlbdb - Backup DataBase
if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* BACKUP DATABASE */

if (rcd =
sqlbdb (shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLBDB");
else

printf("Backed Up Database \n");

/* RELEASE LOG */

if (rcd = sqlrel(cur1))
apierr("SQLREL");

else
printf("Released Logs \n");

/* BACKUP LOGS */

if (rcd =
sqlblf(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLBLF");
else

printf("Backed Up Logs \n");

Related functions
sqlblf sqlenr sqlrlf
sqlbss sqlgnl sqlrof
sqlcrf sqlrdb sqlrss
sqlcsv sqlrel
SQL Application Programming Interface Reference 5-7

Chapter 5 SQL/API Function Reference
sqlbef - Bulk Execute Flush

Syntax
#include <sql.h>

SQLTAPI sqlbef (cur)

SQLTCUR cur; /* Cursor handle */

Description
This function flushes the data (if any) in the bulk execute buffer to the server for
processing.

Parameters
cur

The cursor handle associated with this function.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
/* Set bulk execute mode on */

if (sqlblk(cur, 1))
goto cleanup;

/* Compile the insert statement */

if (sqlcom(cur, "insert into test values (:1)"))
goto cleanup;

/* Bind the data and insert the row */

for (i = 0; i < N; i++)
{

if (sqlbnn(cur, 1, &data[i], 0, 0, SQLPBUF))
goto cleanup;

if (sqlexe(cur))
{

5-8 SQL Application Programming Interface Reference

sqlbef - Bulk Execute Flush
/* Error occurred on the execution of the bulk execute,
retrieve the error messages by calling sqlber() */

for (j = 1; ; j++)
{

/* Retrieve the next error message */

if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;

/* Break out of loop, if no more error messages */

if (!rcd)
break;

/* Report the error */

printf("error on row #%d, rcd = %d0, rownum, rcd);
}

}
}

/* Flush out the unprocessed bulk execute buffer to the server
*/

if (sqlbef (cur))
{

for (j = 1; ; j++)
{

if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;

if (!rcd)
break;

printf("error on row #%d, rcd = %d0, rownum, rcd);
}

}

/* Reset bulk execute mode */

if (sqlblk(cur, 0))
goto cleanup;
SQL Application Programming Interface Reference 5-9

Chapter 5 SQL/API Function Reference

n.

e
Related functions
sqlbbr sqlber sqlblk

sqlber - Bulk Execute Return

Syntax
#include <sql.h>

SQLTAPI sqlber (cur, rcd, errrow, rbf, errseq)

SQLTCUR cur; /* Cursor handle */
SQLTRCD PTR rcd; /* Return code */
SQLTBIR PTR errrow; /* Error row number */
SQLTRBF PTR rbf; /* Roll back flag */
SQLTBIR errseq; /* Error sequence number */

Description
This function returns the error return code for the previous bulk execute operatio

In bulk execute mode, several rows are processed in one call to sqlexe. If sqlexe
returns an error, use sqlber to find the row that caused the error. Rows that are
processed are numbered consecutively. When you call sqlber, you specify the error
sequence number (errseq) and sqlber returns the row number in errrow.

For example, if you INSERT 6 rows, they are numbered 1, 2, 3, 4, 5, and 6. If th
rows numbered 2, 4, and 6 caused an error, you would call sqlber and specify 1 in
errseq and sqlber would return 2 in errrow (meaning row 2 caused an error).
Continue to call sqlber, incrementing the number in errseq each time. When sqlber
returns 0 in rcd, there are no more errors. This is shown in the table below.

rcd errrow errseq

First sqlber call - 2 1

Second sqlber call - 4 2

Third sqlber call - 6 3

Fourth sqlber call 0 - 4
5-10 SQL Application Programming Interface Reference

sqlber - Bulk Execute Return

ow

 in

tor:

Parameters
cur

The cursor handle associated with this function.

rcd

A pointer to the variable where this function returns the status code for the r
that caused the error.

errrow

A pointer to the variable where this function returns the row number that was
error.

rbf

A pointer to the variable where this function returns the rollback status indica

errseq

The sequence number of the error to retrieve. Set the errseq parameter to 1 to get
the first error, 2 to get the second error, and so on. If the errseq parameter exceeds
the number of error messages returned for the last bulk execute, rcd is set to zero
to show there are no more error messages.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
The following example shows how to use the sqlber function when errors happen
during a bulk execute operation.

/* Set bulk execute mode on */

if (sqlblk(cur, 1))
goto cleanup;

/* Compile the insert statement */

0 No Rollback

1 Rolled back
SQL Application Programming Interface Reference 5-11

Chapter 5 SQL/API Function Reference
if (sqlcom(cur, "insert into test values (:1)"))
goto cleanup;

/* Binding the data and insert the row */

for (i = 0; i < N; i++)
{

if (sqlbnn(cur, 1, &data[i], 0, 0, SQLPBUF))
goto cleanup;

if (sqlexe(cur))
{

/* Error occurred on the execution of the bulk execute,
retrieve the error messages by calling sqlber() */

for (j = 1; ; j++)
{

/* Retrieve the next error message */

if (sqlber (cur, &rcd, &rownum, &rbf, j))
goto cleanup;

/* Break out of loop, if no more error messages */

if (!rcd)
break;

/* Report the error */

printf("error on row #%d, rcd = %d0, rownum, rcd);
}

}
}

/* Flush out the unprocessed bulk execute buffer to the
server */

if (sqlbef(cur))
{

for (j = 1; ; j++)
{

if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;

if (!rcd)
break;

printf("error on row #%d, rcd = %d0, rownum, rcd);
}

}

5-12 SQL Application Programming Interface Reference

sqlbld - Bind Long Data by name

ed
/* Reset bulk execute mode */

if (sqlblk(cur, 0))
goto cleanup;

Related functions
sqlbbr sqlbef sqlblk

sqlbld - Bind Long Data by name

Syntax
#include <sql.h>

SQLTAPI sqlbld (cur, bnp, bnl)

SQLTCUR cur; /* Cursor handle */
SQLTBNP bnp; /* Name of variable */
SQLTBNL bnl; /* Length of variable name */

Description
This function associates an alphanumeric bind variable (such as: comments) for a
LONG VARCHAR column with a variable defined in the program.

The function is called after the sqlcom function and before the sqlwlo function. Note
that sqlwlo (not sqlbld) specifies the variable that stores the data.

Only one LONG VARCHAR column can be processed at a time. The complete
sequence of functions which bind, write, and end the operation must be complet
before the next bind for a LONG VARCHAR.

Parameters
cur

The cursor handle associated with this function.

bnp

A pointer to a string that contains the bind variable name.
SQL Application Programming Interface Reference 5-13

Chapter 5 SQL/API Function Reference

ero
bnl

The length of the string pointed to by bnp. If the string pointed to by bnp is null-
terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-z
value, it was unsuccessful.

Example
static char ins[] = /* sql statement */

"insert into mytable values (:id, :comm)";
short ret; /* return code */

ret = sqlbld (cur, "comm", 0);

Related functions
sqlbln sqlcbv sqlrlo
sqlbna sqlelo sqlwlo
sqlbnu sqlnbv

sqlblf - Backup Log Files

Syntax
#include <sql.h>

SQLTAPI sqlblf (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Length of database name */
SQLTFNP bkpdir; /* Backup directory */
SQLTFNL bkpdirl; /* Backup directory length */
SQLTBOO local; /* True: backup directory on local

(client) node */
SQLTBOO over; /* True: overwrite existing file */
5-14 SQL Application Programming Interface Reference

sqlblf - Backup Log Files

ed up

M
ch

d to
Description
This function copies unpinned log files to the specified directory. When this
command completes successfully, SQLBase deletes the log files that were back
from the current log directory.

Before you can use sqlblf, you must set log backup mode to ON using the SQLPLB
parameter and the sqlset function. You only need to do this once for a database (su
as just after it has been created), and the setting stays on until you turn it off.

Once the log files are backed up to a directory, the backup files can be transferre
archival media and then deleted from the hard disk.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

bkpdir

A pointer to the string that contains the backup directory name.

bkpdirl

The length of the string pointed to by bkpdir. If the string pointed to by bkpdir is
null-terminated, specify zero and the system will compute the length.

local

Destination of backup:

0 Backup directory on server.

1 Backup directory on local (client) node.
SQL Application Programming Interface Reference 5-15

Chapter 5 SQL/API Function Reference
over

Overwrite indicator:

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTSVH shandle;
char* svrname;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;
SQLTCUR cur1;

static char dbname1[] = "omed";
strcpy(svrname,”SERVER1”);
password = 0;

bkpdir = "\\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO OMED */

if (rcd = sqlcnc(&cur1,dbname1,0))
apierr("SQLCNC");

else
printf("Connected to OMED \n");

/* SET LOGBACKUP MODE ON */

0 Do not overwrite existing file.

1 Overwrite existing file.
5-16 SQL Application Programming Interface Reference

sqlblf - Backup Log Files
lbmset=1;
if (rcd = sqlset(cur1,SQLPLBM,(ubyte1p)&lbmset,0))

apierr("SQLSET");
else

printf("Logbackupmode is set to %d \n", lbmset);

/* MAKE BACKUP DIRECTORIES */

system("mkdir \\backup");
system("mkdir \\backup\\omed");

/* CONNECT TO SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* BACKUP DATABASE */

if (rcd =
sqlbdb(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLBDB");
else

printf("Backed Up Database \n");

/* RELEASE LOG */

if (rcd = sqlrel(cur1))
apierr("SQLREL");

else
printf("Released Logs \n");

/* BACKUP LOGS */

if (rcd =
sqlblf (shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLBLF");
else

printf("Backed Up Logs \n");

Related functions
sqlbdb sqlenr sqlrlf
sqlbss sqlgnl sqlrof
sqlcrf sqlrdb sqlrss
sqlcsv sqlrel
SQL Application Programming Interface Reference 5-17

Chapter 5 SQL/API Function Reference

rver in

 buffer

tain

t
sqlblk - BuLK execute

Syntax
#include <sql.h>

SQLTAPI sqlblk (cur, blkflg)

SQLTCUR cur; /* Cursor handle */
SQLTFLG blkflg; /* 0 = off; 1 = on */

Description
This function turns on bulk execute mode.

In bulk execute mode, rows are buffered so that many rows can be sent to the se
one message. This improves the performance of bulk operations on a table,
particularly across a network.

The number of rows per message depends upon the size of the output message
which can be set with the sqloms function.

After performing the operations, use the sqlbef function to physically complete the
INSERT, UPDATE, or DELETE.

You can use the bulk execute feature with chained commands if they do not con
SELECT commands.

The bulk execute feature cannot be turned on at the same time that the autocommi
feature is turned on.

Bulk execute mode is a cursor-specific setting.

Parameters
cur

The cursor handle associated with this function.

blkflg

Bulk execute mode setting:

0 Off

1 On
5-18 SQL Application Programming Interface Reference

sqlblk - BuLK execute
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
/* Set bulk execute mode on */

if (sqlblk (cur, 1))
goto cleanup;

/* Compile the insert statement */

if (sqlcom(cur, "insert into test values (:1)"))
goto cleanup;

/* Binding the data and insert the row */

for (i = 0; i < N; i++)
{

if (sqlbnn(cur, 1, &data[i], 0, 0, SQLPBUF))
goto cleanup;

if (sqlexe(cur))
{

/* Error occurred on the execution of the bulk execute,
retrieve the error messages by calling sqlber() */

for (j = 1; ; j++)
{

/* Retrieve the next error message*/

if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;

/* Break out of loop, if no more error messages*/

if (!rcd)
break;

/* Report the error */

printf("error on row #%d, rcd = %d0, rownum, rcd);
}

SQL Application Programming Interface Reference 5-19

Chapter 5 SQL/API Function Reference
}
}

/* Flush out the unprocessed bulk execute buffer to the
server*/

if (sqlbef(cur))
{

for (j = 1; ; j++)
{

if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;

if (!rcd)
break;

printf("error on row #%d, rcd = %d0, rownum, rcd);
}

}

/* Reset bulk execute mode */

if (sqlblk (cur, 0))
goto cleanup;

Related functions
sqlbbr sqlber sqloms
sqlbef

sqlbln - Bind Long data by Number

Syntax
#include <sql.h>

SQLTAPI sqlbln (cur, bnn);

SQLTCUR cur; /* Cursor handle */
SQLTBNN bnn; /* Bind variable number */

Description
This function associates a numeric bind variable (such as :3) for a LONG VARCHAR
column with a variable defined in the program.
5-20 SQL Application Programming Interface Reference

sqlbln - Bind Long data by Number

f
d for

rs
The function is called after the sqlcom function and before the sqlwlo function. Note
that sqlwlo (not sqlbln) specifies the variable that stores the data.

Only one LONG VARCHAR column can be processed at a time. The sequence o
binding, writing, and ending the operation must be completed before the next bin
a LONG VARCHAR.

Parameters
cur

The cursor handle associated with this function.

bnn

The number of the bind variable in the SQL command. Bind variable numbe
must be unique in SQL commands.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
static char ins[] = "insert into mytable values (:1, :2)";
short ret; /* return code */

ret = sqlbln (cur, 2);

Related functions
sqlbld sqlcbv sqlrlo
sqlbna sqlelo sqlwlo
sqlbnu sqlnbv
SQL Application Programming Interface Reference 5-21

Chapter 5 SQL/API Function Reference

use

mes
sqlbna - Bind data by NAme (with null indicator)

Syntax
#include <sql.h>

SQLTAPI sqlbna (cur, bnp, bnl, dap, dal, sca, pdt, nli);

SQLTCUR cur; /* Cursor handle */
SQLTBNP bnp; /* Name of bind variable */
SQLTBNL bnl; /* Length of bind variable name */
SQLTDAP dap; /* Bind data buffer */
SQLTDAL dal; /* Bind data length */
SQLTSCA sca; /* Scale of packed decimal data */
SQLTPDT pdt; /* Bind program data type */
SQLTNUL nli /* Null indicator */

Description
This function associates an alphanumeric bind variable (such as :comments) for a
column with a variable defined in the program.

The sqlbna function is identical to sqlbnd with one exception: sqlbna has an
additional argument for the null indicator. This function is used with SQLNetwork
routers and gateways to bind null values for non-SQLBase databases. You can
this function with SQLBase databases, but SQLBase ignores the nli argument.

Call this function after sqlcom and before sqlexe.

Parameters
cur

The cursor handle associated with this function.

bnp

A pointer to the string that contains the bind variable name. Bind variable na
must be unique in SQL commands.

bnl

The length of the string pointed to by bnp. If the string pointed to by bnp is null-
terminated, specify zero and the system will compute the length.
5-22 SQL Application Programming Interface Reference

sqlbna - Bind data by NAme (with null indicator)

uses

al

ed to
dap

A pointer to the variable that will be associated to the bind variable.

dal

The length of the value pointed to by dap.

If the value pointed to by dap is a string and null-terminated, specify zero and the
system will compute the length.

In all other cases, a calculated length of zero or a specified length of zero ca
the column to contain a null value.

sca

The scale (number of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-decim
data type, specify zero.

pdt

The program data type of the program variable being bound. Data is convert
the program data type if the SQL data is compatible.

The program data types are shown below. These are defined in sql.h.

Program Data Type Description

SQLPBUF Character buffer

SQLPDAT Internal datetime

SQLPDOU Double

SQLPDTE Date only

SQLPEBC EBCDIC buffer

SQLPFLT Float

SQLPLON Long text string

SQLPLBI Long binary buffer

SQLPLVR Char/long varchar >254

SQLPNBU Numeric buffer

SQLPNST Numeric string

SQLPNUM Internal numeric
SQL Application Programming Interface Reference 5-23

Chapter 5 SQL/API Function Reference

t
nli

Null indicator. Before calling sqlbna, set this argument to indicate whether or no
the value being bound is null:

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Related functions
sqlbld sqlbnn sqlcbv
sqlbln sqlbnu sqlnbv
sqlbnd

SQLPSCH Character

SQLPSIN Integer

SQLPSLO Long

SQLPSPD Signed packed decimal

SQLPSSH Short

SQLPSTR String (null-terminated)

SQLPTIM Time only

SQLPUCH Unsigned character

-1 The data being bound is null. The SQLNetwork router or gateway
will generate the native null character for the database server.

 0 The data being bound is not null.

Program Data Type Description
5-24 SQL Application Programming Interface Reference

sqlbnd - BiNd Data by name

mes
sqlbnd - BiNd Data by name

Syntax
#include <sql.h>

SQLTAPI sqlbnd (cur, bnp, bnl, dap, dal, sca, pdt);

SQLTCUR cur; /* Cursor handle */
SQLTBNP bnp; /* Name of bind variable */
SQLTBNL bnl; /* Length of bind variable name */
SQLTDAP dap; /* Bind data buffer */
SQLTDAL dal; /* Bind data length */
SQLTSCA sca; /* Scale of packed decimal data */
SQLTPDT pdt; /* Bind program data type */

Description
This function associates an alphanumeric bind variable (such as :comments) for a
column with a variable defined in the program.

Call this function after sqlcom and before sqlexe.

Parameters
cur

The cursor handle associated with this function.

bnp

A pointer to the string that contains the bind variable name. Bind variable na
must be unique in SQL commands.

bnl

The length of the string pointed to by bnp. If the string pointed to by bnp is null-
terminated, specify zero and the system will compute the length.

dap

A pointer to the variable that will be associated to the bind variable.

dal

The length of the value pointed to by dap.
SQL Application Programming Interface Reference 5-25

Chapter 5 SQL/API Function Reference

uses

mal

ed to
If the value pointed to by dap is a string and null-terminated, specify zero and the
system will compute the length.

In all other cases, a calculated length of zero or a specified length of zero ca
the column to contain a null value.

sca

The scale (number of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-deci
data type, specify zero.

pdt

The program data type of the program variable being bound. Data is convert
the program data type if the SQL data is compatible.

The program data types are shown below. These are defined in sql.h.

Program Data Type Description

SQLPBUF Character buffer

SQLPDAT Internal datetime

SQLPDOU Double

SQLPDTE Date only

SQLPEBC EBCDIC buffer

SQLPFLT Float

SQLPLON Long text string

SQLPLBI Long binary buffer

SQLPLVR Char/long varchar >254

SQLPNBU Numeric buffer

SQLPNST Numeric string

SQLPNUM Internal numeric

SQLPSCH Character

SQLPSIN Integer

SQLPSLO Long

SQLPSPD Signed packed decimal
5-26 SQL Application Programming Interface Reference

sqlbnd - BiNd Data by name
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
static char insitem = /* SQL insert statement */

"insert into item values (:item, :name)";

int item; /* item number */
char name[25]; /* item name */
short ret; /* return code */

/* Bind integer data */

ret = sqlbnd(cur,"item",0,&item,sizeof(item),0,SQLPUIN);

/* Use defaults for pdt and bnl */

ret = sqlbnd (cur,"name",0,name,25,0,SQLPBUF);

Related functions
sqlbld sqlbnn sqlcbv
sqlbln sqlbnu sqlnbv
sqlbna

SQLPSSH Short

SQLPSTR String (null-terminated)

SQLPTIM Time only

SQLPUCH Unsigned character

Program Data Type Description
SQL Application Programming Interface Reference 5-27

Chapter 5 SQL/API Function Reference

rs

.

uses
sqlbnn - BiNd data by Number

Syntax
#include <sql.h>

SQLTAPI sqlbnn (cur, bnn, dap, dal, sca, pdt);

SQLTCUR cur; /* Cursor handle */
SQLTBNN bnn; /* Bind variable number */
SQLTDAP dap; /* Bind data buffer */
SQLTDAL dal; /* Bind data length */
SQLTSCA sca; /* Scale of packed decimal data */
SQLTPDT pdt; /* Bind program data type */

Description
This function associates a numeric bind variable (such as :3) for a column with a
variable defined in the program.

You must call this function after sqlcom and before sqlexe.

Parameters
cur

The cursor handle associated with this function.

bnn

The number of the bind variable in the SQL command. Bind variable numbe
must be unique in SQL commands.

dap

A pointer to the program variable that will be associated to the bind variable

dal

The length of the value pointed to by dap.

If the value pointed to by dap is a string and null-terminated, specify zero and the
system will compute the length.

In all other cases, a calculated length of zero or a specified length of zero ca
the column to contain a null value.
5-28 SQL Application Programming Interface Reference

sqlbnn - BiNd data by Number

al

ed to
sca

The scale (number of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-decim
data type, specify zero.

pdt

The program data type of the program variable being bound. Data is convert
the program data type if the SQL data is compatible.

The program data types are shown below. These are defined in sql.h.

Program Data Type Description

SQLPBUF Character buffer

SQLPDAT Internal datetime

SQLPDOU Double

SQLPDTE Date only

SQLPEBC EBCDIC buffer

SQLPFLT Float

SQLPLON Long text string

SQLPLBI Long binary buffer

SQLPLVR Char/long varchar >254

SQLPNBU Numeric buffer

SQLPNST Numeric string

SQLPNUM Internal numeric

SQLPSCH Character

SQLPSIN Integer

SQLPSLO Long

SQLPSPD Signed packed decimal

SQLPSSH Short

SQLPSTR String (null-terminated)

SQLPTIM Time only
SQL Application Programming Interface Reference 5-29

Chapter 5 SQL/API Function Reference
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
char len = 7; /* length of phone number */
short ret; /* API return code */
char pnum[8]; /* phone number */

static char updt[] = /* SQL statement */
"UPDATE CUST SET PHONE = :1 WHERE CURRENT OF CURSOR";

ret = sqlbnn (cur, 1, pnum, sizeof(pnum) ,0, SQLPBUF);

Related functions
sqlbld sqlbnd sqlcbv
sqlbln sqlbnu sqlnbv
sqlbna

SQLPUCH Unsigned character

SQLPUIN Unsigned integer

SQLPULO Unsigned long

SQLPUPD Unsigned packed decimal

SQLPUSH Unsigned short

Program Data Type Description
5-30 SQL Application Programming Interface Reference

sqlbnu - Bind data by NUmber

se this

rs
sqlbnu - Bind data by NUmber

Syntax
#include <sql.h>

SQLTAPI sqlbnu (cur, bnn, dap, dal, sca, pdt, nli);

SQLTCUR cur; /* Cursor handle */
SQLTBNN bnn; /* Bind variable number */
SQLTDAP dap; /* Bind data buffer */
SQLTDAL dal; /* Bind data length */
SQLTSCA sca; /* Scale of packed decimal data */
SQLTPDT pdt; /* Bind program data type */
SQLTNUL nli /* Null indicator */

Description
This function associates a numeric bind variable (such as :3) for a column with a
variable defined in the program.

The sqlbnu function is identical to sqlbnn with one exception: sqlbnu has an
additional argument for the null indicator. This function is used with SQLNetwork
routers and gateways to bind null values for non-SQLBase databases. You can u
function with SQLBase databases, but SQLBase ignores the nli argument.

Call this function after sqlcom and before sqlexe.

Parameters
cur

The cursor handle associated with this function.

bnn

The number of the bind variable in the SQL command. Bind variable numbe
must be unique in SQL commands.

dap

A pointer to the program variable that will be associated to the bind variable.

dal

The length of the value pointed to by dap.
SQL Application Programming Interface Reference 5-31

Chapter 5 SQL/API Function Reference

uses

mal

ed to
If the value pointed to by dap is a string and null-terminated, specify zero and the
system will compute the length.

In all other cases, a calculated length of zero or a specified length of zero ca
the column to contain a null value.

sca

The scale (number of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-deci
data type, specify zero.

pdt

The program data type of the program variable being bound. Data is convert
the program data type if the SQL data is compatible.

The program data types are shown below. These are defined in sql.h.

Program Data Type Description

SQLPBUF Character buffer

SQLPDAT Internal datetime

SQLPDOU Double

SQLPDTE Date only

SQLPEBC EBCDIC buffer

SQLPFLT Float

SQLPLON Long text string

SQLPLBI Long binary buffer

SQLPLVR Char/long varchar >254

SQLPNBU Numeric buffer

SQLPNST Numeric string

SQLPNUM Internal numeric

SQLPSCH Character

SQLPSIN Integer

SQLPSLO Long

SQLPSPD Signed packed decimal
5-32 SQL Application Programming Interface Reference

sqlbnu - Bind data by NUmber

t
nli

Null indicator. Before calling sqlbnu, set this argument to indicate whether or no
the value being bound is null:

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Related functions
sqlbld sqlbnd sqlcbv
sqlbln sqlbnn sqlnbv
sqlbna

SQLPSSH Short

SQLPSTR String (null-terminated)

SQLPTIM Time only

SQLPUCH Unsigned character

SQLPUIN Unsigned integer

SQLPULO Unsigned long

SQLPUPD Unsigned packed decimal

SQLPUSH Unsigned short

-1 The data being bound is null. The SQLNetwork router or gateway
will generate the native null character for the database server.

 0 The data being bound is not null.

Program Data Type Description
SQL Application Programming Interface Reference 5-33

Chapter 5 SQL/API Function Reference

cified

es
 a

an
sqlbss - Backup SnapShot

Syntax
#include <sql.h>

SQLTAPI sqlbss (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTFNP bkpdir; /* Backup directory */
SQLTFNL bkpdirl; /* Backup directory length */
SQLTBOO local; /* True: backup directory on local

(client) node */
SQLTBOO over; /* True: overwrite existing file */

Description
This function copies a database and its associated transaction log files to the spe
directory.

The sqlbss function is the recommended way to backup a database and its log fil
because there is only one step (sqlrss) needed to bring a database and its log files to
consistent state.

Transactions that are committed when the backup is started are included in the
backup. Active transactions are not included.

This function call forces a log rollover (sqlrlf) automatically.

Once a database and its transaction log files are backed up to a directory, you c
transfer the copies to archival media and then delete them from the hard disk.

You cannot call sqlbss while in Read-Only (RO) isolation level.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.
5-34 SQL Application Programming Interface Reference

sqlbss - Backup SnapShot
dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

bkpdir

A pointer to the string that contains the backup directory name.

bkpdirl

The length of the string pointed to by bkpdir. If the string pointed to by bkpdir is
null-terminated, specify zero and the system will compute the length.

local

Destination of backup:

over

Overwrite indicator:

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTSVH shandle;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;

0 Backup directory on server.

1 Backup directory on local (client) node.

0 Do not overwrite existing file.

1 Overwrite existing file.
SQL Application Programming Interface Reference 5-35

Chapter 5 SQL/API Function Reference
SQLTBOO local,over;

static char dbname1[] = "island"; /* default database
/* name */

static char srvname[] = "SERVER1”; /* server name */

password = 0;
local=1;
over=1;

/* CONNECT TO SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* MAKE BACKUP DIRECTORIES */

system("mkdir \\backup\\snapshot");

bkpdir = "\\BACKUP\\SNAPSHOT";
bkpdirl = strlen(bkpdir);

/* BACKUP SNAPSHOT */

if (rcd =
sqlbss (shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLBSS");
else

printf("Backup Snapshot Database \n");

Related functions
sqlbdb sqlenr sqlrlf
sqlblf sqlgnl sqlrof
sqlcrf sqlrdb sqlrss
sqlcsv sqlrel
5-36 SQL Application Programming Interface Reference

sqlcbv - Clear Bind Variables

e).
sqlcbv - Clear Bind Variables

Syntax
#include <sql.h>

SQLTAPI sqlcbv(cur)

SQLTCUR cur; /* Cursor handle */

Description
This function clears all information stored for bind variables for a cursor.

When a program variable is bound, information about the variable is saved. This
includes pointers to the data and the name of the bind variable (if bound by nam
This function clears this information and frees the memory that stores it.

Parameters
cur

The cursor handle associated with this function.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
if (rcd = sqlcbv (cur))

apierr("SQLCBV");
else

printf("Cleared Bind Variables \n");

Related functions
sqlbld sqlbnd sqlbnu
sqlbln sqlbnn sqlnbv
sqlbna
SQL Application Programming Interface Reference 5-37

Chapter 5 SQL/API Function Reference

on

me,

em
t

.

sqlcch - Create Connection Handle

Syntax
#include <sql.h>

SQLTAPI sqlcch(hConp, dbnamp, dbnaml, flag)

SQLTCNH PTR hConp; /* Connection handle */
SQLTDAP dbnamp; /* Pointer to identification string */
SQLTDAL dbnaml; /* Identification string length */
SQLTMOD flag; /* future flag */

Description
This function establishes a new connection to the specified database. It issues a
connection handle to identify the database. There can be a maximum of 256
connection handles.

Parameters
hConp

A pointer to a connection handle where this function returns a new connecti
handle.

dbnamp

A pointer to an identification string that contains the database name, userna
and password, separated by forward slashes:

databasename/username/password

If the database name, username, or password is not specified, then the syst
uses the current default. For example, you can specify the following connec
string in which case the default database name and username are used:

//password

These rules are used:

• The characters before the first forward slash are the database name

• Any characters after the first forward slash and before the second
forward slash are the username.

• Any characters after a second forward slash are the password.
5-38 SQL Application Programming Interface Reference

sqlcch - Create Connection Handle

.INI.

m
The default database name, username, and password are determined by:

• The defaultdatabase, defaultuser, and defaultpassword keywords in SQL

• The default of DEMO/SYSADM/SYSADM

dbnaml

The length of the string pointed to by dbnamp. If the string pointed to by the
dbnamp is null-terminated, you can specify zero for the dbnaml and the syste
will compute the length.

flag

Future flag. Currently not defined. You can specify zero for this parameter.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTCNH hCon; /* Connection Handle*/
SQLTCUR cur; /* Cursor */
SQLTRCD rcd; /* return code */

if (rcd = sqlcch(&hCon, “PAYROLL/BOSS/SECRET”,0,0))
{

printf(“Failure establihsing a connection (rcd =%d)\n”,rcd);
exit(0);

}
else printf(“New connection established\n”);

if(rcd = sqlopc(&cur, hCon, 0))
{

printf(“Failure on cursor open (rcd = %d)\n”, rcd);
exit(0);

}
else printf(“New cursor opened\n”);

.

.

.
if(rcd = sqldis(cur))
{

printf(“Failure closing cursor (rcd = %d)\n”, rcd);
exit(0);

}

SQL Application Programming Interface Reference 5-39

Chapter 5 SQL/API Function Reference

the
else printf(“Cursor closed\n”);

if (rcd = sqldch(hCon))
{

printf(“Failure terminating connection (rcd = %d)\n”, rcd);
exit(0);

}
else printf(“Connection terminated\n”);

Related functions
sqldch sqldis sqlopc

sqlcdr - Cancel Database Request

Syntax
#include <sql.h>

SQLTAPI sqlcdr (shandle, cur)

SQLTSVH shandle; /* Server Handle */
SQLTDAP cur; /* Cursor Handle */

Description
This function cancels a SQL command.

When a database request is in progress and taking too long, sqlcdr can be invoked
from another process to send a cancel message to the server. If the server is
processing a request, it stops processing it and rollbacks the transaction and the
process that started the request returns an error code.

If the server receives the cancel message before or after processing a request,
message is ignored.

Parameters
shandle

The server handle returned by sqlcsv.

cur

The cursor handle associated with the request that you want to cancel.
5-40 SQL Application Programming Interface Reference

sqlcex - Compile and EXecute

e
ful.

s the

tains
tion

base

e
Return value
This function returns zero if the cancel message was received by the server whil
processing a request. If this function returns a non-zero value, it was unsuccess

Related functions
sqlsab sqlsdn sqlstm

sqlcex - Compile and EXecute

Syntax
#include <sql.h>

SQLTAPI sqlcex (cur,dap,dal);

SQLTCUR cur; /* Cursor handle */
SQLTDAP dap; /* Command buffer */
SQLTDAL dal; /* Length of SQL command */

Description
This function takes a SQL command or non-stored procedure as input, generate
compiled version of the command/procedure, and executes it. No data is bound.

Use this function to compile and execute a SQL command or procedure that con
no bind variables and only needs to be executed once; examples are data defini
and data control commands (CREATE, DROP, GRANT, REVOKE) and data
manipulation commands which meet these criteria.

This function also enables server-level commands to create, delete, or alter data
areas and storage groups.

All compiled commands for all cursors that the program has connected to the
database are destroyed by:

• Commits (explicit or implicit, including implicit by autocommit or by chang
in isolation level).

• Rollbacks (including rollbacks caused by a deadlock).

Note: You cannot compile and execute a procedure as static before storing it with the sqlsto
function.
SQL Application Programming Interface Reference 5-41

Chapter 5 SQL/API Function Reference

 and
Parameters
cur

The cursor handle associated with this function.

For these SQL commands, use the server handle returned by sqlcsv instead:

ALTER DATABASE
ALTER DBAREA
ALTER STOGROUP
CREATE DATABASE
CREATE DBAREA
CREATE STOGROUP
DEINSTALL DATABASE
DROP DATABASE
DROP DBAREA
DROP STOGROUP
INSTALL DATABASE
SET DEFAULT STOGROUP

dap

A pointer to the variable that contains the command or procedure to compile
execute.

dal

The length of the variable pointed to by dap. If the value pointed to by dap is
null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
char* name; /* name */
char *pswd; /* password */
short ret; /* return code */
char errmsg [SQLMERR];

static char grant[] =
"GRANT CONNECT TO %s IDENTIFIED BY %s";

char buf[100]
5-42 SQL Application Programming Interface Reference

sqlclf - Change process activity Log File

his
y to a
sprintf (buf, grant, name, pswd);
if (sqlcex (cur, buf, 0)) /* Compile and execute */
{

sqlrcd(cur, &ret); /* Get return code */
sqlerr(ret, &errmsg); /* Get error text */
printf("%s\n", errmsg);

}

Related functions
sqlcom sqlcsv sqlexe

sqlclf - Change process activity Log File

Syntax
#include <sql.h>

SQLTAPI sqlclf (shandle, logfile, startflag)

SQLTSVH shandle; /* Server handle */
SQLTDAP logfile; /* Log file name to open */
SQLTFMD startflag; /* Start activity log flag */

Description
This function opens a new process activity log file for the database server. Use t
function to write the messages that appear on the Process Activity server displa
file. This function is useful for multi-user servers.

Instead of using the sqlclf function, you could use the sqlset function and the
SQLPALG parameter.

To turn on logging, specify a file name and set startflag to 1. To turn off logging,
specify a null filename or set startflag to 0.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
SQL Application Programming Interface Reference 5-43

Chapter 5 SQL/API Function Reference

If
Parameters
shandle

The server handle returned by sqlcsv.

logfile

A pointer to the null-terminated string that contains the name of the log file.
null, logging is turned off.

startflag

Indicates whether to start or stop writing to the log file:

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
main()
{

SQLTSVH shandle;
SQLTDAP srvname;
char *password;
char *logfile;
int startflag;

srvname = "SERVER1";
password = 0;
startflag = 1;
logfile = "ACTIVITY.LOG";

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* CHANGE ACTIVITY LOG FILE */

0 Stop logging

1 Start logging
5-44 SQL Application Programming Interface Reference

sqlcmt - CoMmiT

 be

d

he
printf("change activity log file to %s\n", logfile);
if (rcd = sqlclf (shandle,logfile,startflag))

apierr("SQLCLF");
else

printf("Successful change and start of server activity log
file\n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions
sqlcsv sqlset

sqlcmt - CoMmiT

Syntax
#include <sql.h>

SQLTAPI sqlcmt(cur);

SQLTCUR cur; /* Cursor handle */

Description
This function commits a database transaction and starts a new transaction. All
changes to the database since the last commit are made permanent and cannot
undone.

Before a commit, all changes made since the start of the transaction can be rolle
back.

A commit releases all locks held by a transaction except when cursor-context
preservation is on.

This function commits the work of all cursors that an application has connected to t
database or connection handle.
SQL Application Programming Interface Reference 5-45

Chapter 5 SQL/API Function Reference

 a
m.

tion

dles
Connecting to a database or connection handle causes an implicit commit of a
transaction. After establishing this connection to the database, SQLBase issues
COMMIT to establish the starting point of the first transaction in the logging syste
However, subsequent connections to other cursors are not specifically database
connections, and do not cause SQLBase to issue a COMMIT or activate any
transaction control devices. Also, they do not alter the flow of the current transac
and destroy compiled commands.

This function destroys all compiled commands for all cursors and connection han
connected to the database except when cursor-context preservation is on.

The database can also be committed by executing a SQL COMMIT command.

Parameters
cur

The cursor handle associated with this function.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
ret = sqlcmt (cur);

Related functions
sqlrbk

sqlcnc - CoNnect Cursor

Syntax
#include <sql.h>

SQLTAPI sqlcnc (curp, dbnamp, dbnaml)

SQLTCUR PTR curp; /* Cursor handle */
SQLTDAP dbnamp; /* Connect string */
SQLTDAL dbnaml; /* Connect string length */
5-46 SQL Application Programming Interface Reference

sqlcnc - CoNnect Cursor

cific

n

dle.

rent

ate
 the
or
r 3.

 and

.

em

Description
This function applies to applications in which you are connecting cursors to a spe
database that belong to a single transaction.

This function connects to a database and issues a cursor handle that identifies a
implicit connection to a specific database. All cursors that you connect to this
database belong to a single transaction and to the same implicit connection han

This function can connect to a new database or connect a new cursor to the cur
database.

Note: To create multiple, independent connections, SQLBase allows you to explicitly cre
multiple connection handles. You can use connection handles for multiple transactions to
same database within an application, or for creating multi-threaded Win32 applications. F
details on creating connection handles, read the section on connection handles in Chapte

Parameters
curp

A pointer to the variable where this function returns the cursor handle.

dbnamp

A pointer to the connect string that contains the database name, username,
password separated by forward slashes:

database/username/password

These rules are used:

• The characters before the first forward slash are the database name

• Any characters after the first forward slash and before the second
forward slash are the username.

• Any characters after the second forward slash are the password.

If the database name, username, or password is not specified, then the syst
uses the current default. For example, you can specify the following connect
string in which the default database name and username are used:

//password

The default database name, username, and password are determined by:

• The defaultdatabase, defaultuser, and defaultpassword keywords in
sql.ini.
SQL Application Programming Interface Reference 5-47

Chapter 5 SQL/API Function Reference
• The default of DEMO/SYSADM/SYSADM.

dbnaml

The length of the string pointed to by dbnamp. If the string pointed to by dbnamp
is null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTCUR cur; /* Cursor handle */
SQLTRCD rcd; /* Return code */

if (rcd = sqlcnc (&cur, "PAYROLL/BOSS/SECRET", 0))
{

printf("Failure on connect (rcd = %d)\n",rcd);
exit(0);

}
else

printf("Connection established\n");

Related functions
sqlcnr sqldis

sqlcnr - Connect with No Recovery

Syntax
#include <sql.h>

SQLTAPIsqlcnr(curp, dbnamp, dbnaml)

SQLTCUR PTR curp; /* Cursor handle */
SQLTDAP dbnamp; /* Connect string */
SQLTDAL dbnaml; /* Connect string length */
5-48 SQL Application Programming Interface Reference

sqlcnr - Connect with No Recovery

cific

ate
 the
or

off
 a
ction

ff,

rent

. All

 and

.

Description
This function applies to applications in which you are connecting cursors to a spe
database that belong to a single transaction.

Note: To create multiple, independent connections, SQLBase allows you to explicitly cre
multiple connection handles. You can use connection handles for multiple transactions to
same database within an application, or for creating multi-threaded Win32 applications. F
details, read the section on connection handles in Chapter 3.

This function connects to a database with recovery (transaction logging) turned
and issues a cursor handle that is associated with a single, implicit connection to
database. All cursors that you connect to this database belong to a single transa
and to the same implicit connection handle.

You must understand the implications of this function. When recovery is turned o
transaction logging is not performed and transaction rollbacks are not possible.

This function can connect to a new database or connect a new cursor to the cur
database.

Turning off recovery has an effect only when it is the first connect to the database
subsequent connects to this database by any user must be done with sqlcnr. If a user
tries a subsequent connect with sqlcnc, they will get an error.

Parameters
curp

A pointer to the variable where this function returns the cursor handle.

dbnamp

A pointer to the connect string that contains the database name, username,
password separated by forward slashes:

database/username/password

These rules are used:

• The characters before the first forward slash are the database name

• Any characters after the first forward slash and before the second
forward slash are the username.

• Any characters after a second forward slash are the password.
SQL Application Programming Interface Reference 5-49

Chapter 5 SQL/API Function Reference

em
t
If the database name, username, or password is not specified, then the syst
uses the current default. For example, you can specify the following connec
string in which the default database name and username are used:

//password

The default database name, username, and password are determined by:

• The defaultdatabase, defaultuser, and defaultpassword keywords in
sql.ini.

• The default of DEMO/SYSADM/SYSADM.

dbnaml

The length of the string pointed to by dbnamp. If the string pointed to by dbnamp
is null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTCUR cur;/* Cursor handle */
SQLTRCD rcd;/* Return code */

if (rcd = sqlcnr (&cur, "PAYROLL/BOSS/SECRET", 0))
{

printf("Failure on connect (rcd = %d)\n",rcd);
exit(0);

}
else

printf("Connection with recovery turned off\n");

Related functions
sqlcnc sqldis
5-50 SQL Application Programming Interface Reference

sqlcom - COMpile a SQL command/procedure

 the
 or

e
sqlcom - COMpile a SQL command/procedure

Syntax
#include <sql.h>

SQLTAPI sqlcom (cur,cmdp,cmdl);

SQLTCUR cur; /* Cursor handle */
SQLTDAP cmdp; /* SQL command or procedure*/
SQLTDAL cmdl; /* Length of SQL command */

Description
This function compiles a SQL command or non-stored procedure and stores it in
work space associated with the cursor. No data is bound. After a SQL command
procedure has been compiled, it can be executed or stored.

There are 3 steps in compiling:

1. Parse:

• Check that the command or procedure is formulated correctly.

• Break the statement into components for the optimizer.

• Verify names of columns and tables in the system catalog.

2. Optimize:

• Replace view column names and table names with real names.

• Gather statistics on data storage from the system catalog.

• Identify possible access paths.

• Calculate the cost of each alternate path.

• Choose the best path.

3. Generate execution code:

• Produce an application plan for execution.

All compiled commands for all cursors that the program has connected to the
database are destroyed by:

• Commits (explicit or implicit, including implicit by autocommit or by chang
in isolation level).

• Rollbacks (including rollbacks caused by a deadlock).
SQL Application Programming Interface Reference 5-51

Chapter 5 SQL/API Function Reference
Note: You cannot compile a procedure as static before storing it with the sqlsto function.

Parameters
cur

The cursor handle associated with this function.

For these SQL commands, use the server handle returned by sqlcsv instead:

ALTER DATABASE
ALTER DBAREA
ALTER STOGROUP
CREATE DATABASE
CREATE DBAREA
CREATE STOGROUP
DEINSTALL DATABASE
DROP DATABASE
DROP DBAREA
DROP STOGROUP
INSTALL DATABASE
SET DEFAULT STOGROUP

cmdp

A pointer to the string that contains the SQL command.

cmdl

The length of the string pointed to by cmdp. If the string pointed to by cmdp is
null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
static char sqlcmd[] =

"SELECT A, B FROM TAB WHERE C = :1";
ret = sqlcom (cur, sqlcmd, 0);
5-52 SQL Application Programming Interface Reference

sqlcpy - CoPY data from one table to another

xist
 the

o a

 data
rget

tion

 each
Related functions
sqlcex sqlexe sqlsto
sqlcsv

sqlcpy - CoPY data from one table to another

Syntax
#include <sql.h>

SQLTAPI sqlcpy (fcur, selp, sell, tcur, isrtp, isrtl)

SQLTCUR fcur; /* Cursor handle for SELECT */
SQLTDAP selp; /* SELECT command */
SQLTDAL sell; /* Length of SELECT command */
SQLTCUR tcur; /* Cursor handle for INSERT */
SQLTDAP isrtp; /* INSERT command */
SQLTDAL isrtl; /* Length of INSERT command */

Description
This function copies data from one table to another. The destination table must e
and the data type of the destination columns must be compatible with the data in
corresponding source columns. For example, you cannot copy alphabetic data t
numeric column. The source table and the destination table can be in different
databases.

This function needs two cursors: one for the SELECT command that retrieves the
from the source table, and one for an INSERT command that adds rows to the ta
table.

The application must issue COMMITs following a transaction that uses this func
to ensure that changes are made permanent.

Each item in the SELECT statement must correspond on a one-to-one basis with
bind variable in the INSERT command. For example, bind variable :1 corresponds to
the first SELECT list item and bind variable :2 corresponds to the second SELECT
list item.

Parameters
fcur

The cursor handle associated with the SELECT command.
SQL Application Programming Interface Reference 5-53

Chapter 5 SQL/API Function Reference

ta

cted

rror.
selp

A pointer to the string that contains the SELECT command that retrieves da
from the source table.

sell

The length of the string pointed to by selp. If the string pointed to by selp is null-
terminated, specify zero and the system will compute the length.

tcur

The cursor handle associated with the INSERT command.

isrtp

A pointer to the string that contains the INSERT command that adds the sele
data to the target table.

isrtl

The length of the string pointed to by isrtp. If the string pointed to by isrtp is
null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

The error returned by this function does not indicate the cursor that caused the e
Check the return code for each cursor to establish the source of the error.

Example
SQLTCUR cur1 = 0; /* select cursor */
SQLTCUR cur2 = 0; /* insert cursor */
SQLTRCD rcd1 = 0; /* return code (cur1) */
SQLTRCD rcd2 = 0; /* return code (cur2) */

main()
{
static char select[] = /* SQL select statement */

"SELECT EMP_NO,EMP_NAME FROM EMP";
static char insert[] = /* SQL insert statement */

"INSERT INTO TMP (TMP_NO, TMP_NAME) VALUES (:1, :2)";

/* CONNECT TO BOTH CURSORS */

if (sqlcnc(&cur1, "DEMO", 0))
5-54 SQL Application Programming Interface Reference

sqlcpy - CoPY data from one table to another
failure("SELECT CURSOR CONNECT");

if (sqlcnc(&cur2, "DEMO", 0))
failure("INSERT CURSOR CONNECT");

/* PERFORM COPY OPERATION */

if (sqlcpy (cur1,select,0,cur2,insert,0))
failure("COPY OPERATION");

/* COMMIT BOTH CURSORS */

if (sqlcmt(cur1) || sqlcmt(cur2))
failure("COMMIT");

/* DISCONNECT BOTH CURSORS */

if (sqldis(cur1))
failure("DISCONNECT OF SELECT CURSOR");

cur1 = 0;

if (sqldis(cur2))
failure("DISCONNECT OF INSERT CURSOR");

}

failure(ep)
char* ep; /* -> failure msg string */
{

SQLTEPO epo; /* error position */
char errmsg[SQLMERR]; /* error msg text buffer */

printf("Failure on %s \n", ep);
sqlrcd(cur1,&rcd1); /* get return codes */
sqlrcd(cur2,&rcd2);

if (rcd1) /* error on cursor 1? */
{

sqlerr(rcd1, errmsg);
sqlepo(cur1, &epo);
printf("%s(error: %u, position: %u) \n",errmsg,rcd1,epo);

}
if (rcd2) /* error on cursor 2? */

{
sqlerr(rcd2, errmsg);
sqlepo(cur2, &epo);
SQL Application Programming Interface Reference 5-55

Chapter 5 SQL/API Function Reference

rror if

, for
printf("%s(error: %u, position: %u)
\n",errmsg,rcd1,epo);

}

if (cur1) /* cursor 1 exists? */
sqldis(cur1);

if (cur2) /* cursor 2 exists? */
sqldis(cur2);

exit(1);
}

sqlcre - CREate database

Syntax
#include <sql.h>

SQLTAPI sqlcre (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */

Description
This function physically creates a database on the specified server, returns an e
the database already exists, and adds the dbname keyword to sql.ini.

In SQLBase, a database contains a database file placed in a sub-directory. The
database file must have the extension .dbs, for example, demo.dbs. The name of the
sub-directory must be the same as the database file name without the extension
example, \demo.

Do not specify an extension for a database name (demo.xyz is invalid). SQLBase
automatically assigns a database name extension of .dbs.

Usually the database sub-directory is placed in the \Centura directory. This is the
default, but it can be set to any location using the dbdir keyword in sql.ini.

The maximum length of the database name is 8 characters.
5-56 SQL Application Programming Interface Reference

sqlcre - CREate database
Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
main()
{

srvname = "SERVER1";
password = 0;

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&handle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* CREATE DATABASE */

if (rcd = sqlcre (handle,"DEMOX",0))
apierr("SQLCRE");

else
printf("Database DEMOX Created \n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

SQL Application Programming Interface Reference 5-57

Chapter 5 SQL/API Function Reference

n the

ry
t call
Related functions
sqlcsv sqldel sqlind
sqlded

sqlcrf - Continue RollForward

Syntax
#include <sql.h>

SQLTAPI sqlcrf (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Length of database name */

Description
Call this function after a rollforward operation has stopped because it cannot ope
next transaction log file.

Ordinarily, the sqlrlf function is used to restore the logs and sqlcrf is used to continue
the rollforward. However, you can also restore the logs directly to the log directo
using other means such as a tape backup or optical disk. If this is done, you mus
this function explicitly to continue the rollforward process.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.
5-58 SQL Application Programming Interface Reference

sqlcrf - Continue RollForward
Example
static char dbname1[]=”omed”;
/* RESTORE DATABASE */

if (rcd =
sqlrdb(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLRDB");
else

printf("Restored Database \n");

/* ROLLFORWARD TO END */

sqlrof(shandle,dbname1,0,mode,0,0);

/* RESTORE LOGS USING OPERATING SYSTEM COPY */

system("DEL \\centura\\omed*.log");
system("COPY \\backup\\omed*.log \\centura\\omed");

/* CONTINUE ROLLFORWARD */

sqlcrf (shandle,dbname1,0);

/* END ROLLFORWARD */

if (rcd = sqlenr(shandle,dbname1,0))
apierr("SQLENR");

else
printf("End Rollforward \n");

Related functions
sqlbdb sqlenr sqlrlf
sqlblf sqlgnl sqlrof
sqlbss sqlrdb sqlrss
sqlcsv sqlrel
SQL Application Programming Interface Reference 5-59

Chapter 5 SQL/API Function Reference

f row
. A
r you
t later

l

t set
sqlcrs - Close ReStriction and Result Set modes

Syntax
#include <sql.h>

SQLTAPI sqlcrs (cur,rsp,rsl);

SQLTCUR cur; /* Cursor handle */
SQLTDAP rsp; /* Result set name */
SQLTDAL rsl; /* Result set name length */

Description
This functions turns off both result set mode and restriction mode.

This function lets you optionally save the result set by specifying a name in rsp. To
use a saved result set later, call the sqlrrs function and specify the saved result set
name. The sqlrrs function turns on result set mode and restriction mode.

The sqldrs function drops a saved result set.

Be cautious about using saved result sets. Internally, a saved result set is a list o
identifiers (ROWIDs) that is stored in the SYSROWIDLISTS system catalog table
ROWID changes whenever the row is updated. If one of the rows is updated afte
have saved and closed a result set, you will get an error if you open the result se
and try to fetch the row.

Parameters
cur

The cursor handle associated with this function.

rsp

A pointer to the string that contains the name of the result set. Specify a nul
string (SQLNPTR) to close the result set without saving it.

rsl

The length of the string pointed to by rsp. If the string pointed to by rsp is null-
terminated, specify zero and the system will compute the length. If the resul
is not being saved, specify zero.
5-60 SQL Application Programming Interface Reference

sqlcsv - Connect to SerVer

tive
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
/* Save current result set as "saveres" */

ret = sqlcrs (cur, "saveres", 0);

Related functions
sqlcrs sqlrrs sqlsrs
sqldrs sqlscn sqlstr
sqlprs sqlspr sqlurs

sqlcsv - Connect to SerVer

Syntax
#include <sql.h>

SQLTAPI sqlcsv (handlep, serverid, password)

SQLTSVH PTR handlep;/* Returned server handle */
SQLTDAP serverid;/* Null-terminated server identifier */
SQLTDAP password;/* Null-terminated server password */

Description
This function connects a user to a server to perform administrative operations.

This function returns a server handle that is required for the following administra
operations:

• Create or delete a database

• Install or deinstall a database

• Backup or restore a database

• Backup or restore log files

• Initiate rollforward recovery

• Abort a server process
SQL Application Programming Interface Reference 5-61

Chapter 5 SQL/API Function Reference

letter.

ween
• Terminate the server

Parameters
handlep

A pointer to the variable where this function returns the server handle.

serverid

A pointer to the null-terminated string that contains the name of the server.

The server name is set by the servername keyword in sql.ini. The maximum
length of a server name is 8 characters. The server name must begin with a

password

A pointer to the null-terminated string that contains the server password.

The password keyword in sql.ini sets a password for a server. This keyword
follows a server keyword in sql.ini.

If the server password is set, a case-insensitive comparison is performed bet
the server password and the sqlcsv password.

The maximum length of a server password is 8 characters.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
main()
{

srvname = "SERVER1";
password = 0;

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv (&handle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* DISCONNECT FROM THE SERVER */
5-62 SQL Application Programming Interface Reference

sqlcty - Command TYpe
if (rcd = sqldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

Related functions
All of the functions below require the server handle returned by sqlcsv.

sqlbdb sqldrr sqlmop
sqlblf sqldsv sqlmrd
sqlbss sqlenr sqlmsk
sqlclf sqlfgt sqlmwr
sqlcre sqlfpt sqlrdb
sqlcrf sqlgnl sqlrlf
sqlded sqlgsi sqlrof
sqldel sqlind sqlrss
sqldrc sqlmcl sqlsab
sqldro sqlmdl sqlstm

sqlcty - Command TYpe

Syntax
#include <sql.h>

SQLTAPI sqlcty (cur, cty);

SQLTCUR cur; /* Cursor handle */
SQLTCTY PTR cty; /* Variable */

Description
This function returns the command type of the SQL command currently being
processed. The command type is set after sqlcom or sqlexe.

Parameters
cur

The cursor handle associated with this function.
SQL Application Programming Interface Reference 5-63

Chapter 5 SQL/API Function Reference

on
cty

A pointer to the variable where this function returns the command type. For
example, if the previously-compiled command was an UPDATE, this function
returns 4. The command types are defined in sql.h.

Note that sqlcty returns the SQLTSEL command type for either a SELECT or
PROCEDURE command that is compiled and current. Either command can
return results to sqlfet. To determine the actual command type, use the sqlget
function in conjunction with the SQLPWFC parameter. See the documentati
for sqlget for more information.

Identifier in
sql.h

Value
returned

in cty
Operation

SQLTSEL 1 SELECT or PROCEDURE

SQLTINS 2 INSERT

SQLTCTB 3 CREATE TABLE

SQLTUPD 4 UPDATE

SQLTDEL 5 DELETE

SQLTCIN 6 CREATE INDEX

SQLTDIN 7 DROP INDEX

SQLTDTB 8 DROP TABLE

SQLTCMT 9 COMMIT

SQLTRBK 10 ROLLBACK

SQLTACO 11 Add column

SQLTDCO 12 Drop column

SQLTRTB 13 Rename table

SQLTRCO 14 Rename column

SQLTMCO 15 Modify column

SQLTGRP 16 GRANT privilege on table

SQLTGRD 17 GRANT DBA

SQLTGRC 18 GRANT CONNECT
5-64 SQL Application Programming Interface Reference

sqlcty - Command TYpe
SQLTGRR 19 GRANT RESOURCE

SQLTREP 20 REVOKE privilege on table

SQLTRED 21 REVOKE DBA

SQLTREC 22 REVOKE CONNECT

SQLTRER 23 REVOKE RESOURCE

SQLTCOM 24 COMMENT ON

SQLTWAI 25 Wait

SQLTPOS 26 Post

SQLTCSY 27 CREATE SYNONYM

SQLTDSY 28 DROP SYNONYM

SQLTCVW 29 CREATE VIEW

SQLTDVW 30 DROP VIEW

SQLTRCT 31 Row count

SQLTAPW 32 ALTER PASSWORD

SQLTLAB 33 LABEL ON

SQLTCHN 34 Chained command

SQLTRPT 35 Repair table

SQLTSVP 36 SAVEPOINT

SQLTRBS 37 ROLLBACK to savepoint

SQLTUDS 38 UPDATE STATISTICS

SQLTCDB 39 CHECK DATABASE

SQLTFRN 40 Non-SQLBase DBMS commands

SQLTAPK 41 Add primary key

SQLTAFK 42 Add foreign key

SQLTDPK 43 Drop primary key

Identifier in
sql.h

Value
returned

in cty
Operation
SQL Application Programming Interface Reference 5-65

Chapter 5 SQL/API Function Reference
SQLTDFK 44 Drop foreign key

SQLTCDA 45 CREATE DBAREA

SQLTADA 46 ALTER DBAREA

SQLTDDA 47 DROP DBAREA

SQLTCSG 48 CREATE STOGROUP

SQLTASG 49 ALTER STOGROUP

SQLTDSG 50 DELETE STOGROUP

SQLTCRD 51 CREATE DATABASE

SQLTADB 52 ALTER DATABASE

SQLTDDB 53 DROP DATABASE

SQLTSDS 54 SET DEFAULT STOGROUP

SQLTIND 55 INSTALL DATABASE

SQLTDED 56 DEINSTALL DATABASE

SQLTARU 57 Add referential integrity user error

SQLTDRU 58 Drop referential integrity user error

SQLTMRU 59 Modify referential integrity user error

SQLTSCL 60 Set client

SQLTCKT 61 CHECK TABLE

SQLTCKI 62 CHECK INDEX

SQLTOPL 63 PL/SQL Stored Procedure

SQLTUNL 85 UNLOAD

SQLTLDP 86 LOAD

SQLTPRO 87 Stored procedure

SQLTGEP 88 GRANT EXECUTE ON

SQLTREE 89 REVOKE EXECUTE ON

Identifier in
sql.h

Value
returned

in cty
Operation
5-66 SQL Application Programming Interface Reference

sqlcty - Command TYpe
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
int cmnd; /* command type */
short ret; /* return code */

ret = sqlcty (cur, &cmnd);

Related functions
sqlcom sqlexe

SQLTTGC 90 CREATE TRIGGER

SQLTTGD 91 DROP TRIGGER

SQLTVNC 92 CREATE EVENT

SQLTVND 93 DROP EVENT

SQLTSTR 94 START AUDIT

SQLTAUD 95 AUDIT MESSAGE

SQLTSTP 96 STOP AUDIT

SQLTACM 97 ALTER COMMAND

SQLTXDL 98 LOCK DATABASE

SQLTXDU 99 UNLOCK DATABASE

SQLTDBT 102 DBATTRIBUTE

SQLTATG 103 ALTER TRIGGER

Identifier in
sql.h

Value
returned

in cty
Operation
SQL Application Programming Interface Reference 5-67

Chapter 5 SQL/API Function Reference
sqldbn - DataBase Names

Syntax
#include <sql.h>

SQLTAPI sqldbn (serverid, buffer, length)

SQLTDAP serverid; /* Server identifier */
SQLTDAP buffer; /* Directory list */
SQLTDAL length; /* Buffer length */

Description
This function returns a list of the databases on the specified server.

Use this function instead of sqldir.

Parameters
serverid

A pointer to a null-terminated string that contains the name of the server
specified in sql.ini. Specify a null server name to get a directory of local
databases.

buffer

A pointer to the variable where this function returns the database names.

Each name is null-terminated. The end of the list is marked by an extra null-
terminator. For example, the database names demo, payables, and emp are
returned in this format:

demo\0payables\0emp\0\0

length

The length of the area pointed to by buffer.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.
5-68 SQL Application Programming Interface Reference

sqldbn - DataBase Names
Example
main()
{

srvname="SERVER1";

/* DIRECTORY OF DATABASES */

if (rcd = sqldbn (srvname,buffer,len))
apierr("SQLDBN");

else
{

j = 0;
printf("Directory of Databases : ");
while ((buffer[j] != '\n') && (j< 20))

{
if (buffer[j] == '\0')

{
printf(", ");

}
else

{
printf("%c",buffer[j]);

}
j++;

}
printf("\n");

}
}

Related functions
sqldir
SQL Application Programming Interface Reference 5-69

Chapter 5 SQL/API Function Reference

 it is
.
ction

ault
ation.

ase
d
sqldch - Destroy Connection Handle

Syntax
#include <sql.h>

SQLTAPI sqldch (hCon);

SQLTCNH hCon; /* Connection handle */

Description
This function terminates a specific connection. Before terminating a connection,
good programming practice to commit the transaction and close all open cursors
This function automatically closes any open cursors before destroying the conne
handle.

When terminating a connection, this function commits or rolls back the current
transaction before terminating the connection. By default, sqldch will COMMIT the
transaction for a SQLBase server before terminating the connection. For the def
behavior of servers other than SQLBase, read your applicable server document

To modify the default connect closure behavior for both SQLBase and non-SQLB
servers, use the sqlset() function call with the SQLPCCB parameter. For details, rea
information on the sqlset function in this chapter.

Parameters
hCon

The handle to the connection to be terminated.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
if (rcd = sqldch(hCon))
{

printf(“Failure terminating connection (rcd = %d)\n”, rcd);
exit(0);
5-70 SQL Application Programming Interface Reference

sqlded - DEinstall Database
}
else printf(“Connection terminated\n”);

Related functions
sqlcch sqlopc sqldis

sqlded - DEinstall Database

Syntax
#include <sql.h>

SQLTAPI sqlded (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */

Description
This function:

• Deinstalls the specified database from the network.

• Removes the dbname keyword from sql.ini.

This function does not physically delete the database.

You cannot deinstall a database that has a user connected.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.
SQL Application Programming Interface Reference 5-71

Chapter 5 SQL/API Function Reference
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
main()
{

srvname = "SERVER1";
password = 0;

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&handle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

if (rcd = sqlcre(handle,"DEMOX",0))
apierr("SQLCRE");

else
printf("Database DEMOX Created \n");

/* DEINSTALL DATABASE */

if (rcd = sqlded (handle,"DEMOX",0))
apierr("SQLDED");

else
printf("Database DEMOX Deinstalled \n");

/* INSTALL DATABASE */

if (rcd = sqlind(handle,"DEMOX",0))
apierr("SQLIND");

else
printf("Database DEMOX Installed \n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

5-72 SQL Application Programming Interface Reference

sqldel - DELete database
Related functions
sqlcre sqldel sqlind
sqlcsv

sqldel - DELete database

Syntax
#include <sql.h>

SQLTAPI sqldel (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */

Description
This function physically deletes the entire database directory for a database including
all associated transaction log files on the server. If the log is redirected, the log
directory for the database is also completely removed.

This function removes the dbname keyword from sql.ini.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.
SQL Application Programming Interface Reference 5-73

Chapter 5 SQL/API Function Reference
Example
main()
{

srvname = "SERVER1";
password = 0;

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&handle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* DELETE DATABASE */

if (rcd = sqldel (handle,"DEMOX",0))
apierr("SQLDEL");

else
printf("Database DEMOX Deleted \n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions
sqlcre sqlded sqlind
sqlcsv
5-74 SQL Application Programming Interface Reference

sqldes - DEScribe items in a SELECT list

al

LY,

DIS
SQL Application Programming Interface Reference

Chapter 5

sqldes - DEScribe items in a SELECT list

Syntax
#include <sql.h>

SQLTAPI sqldes (cur, slc, ddt, ddl, chp, chlp, prep, scap)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select column number */
SQLTDDT PTRddt; /* Database data type */
SQLTDDL PTRddl; /* Database data length */
SQLTCHP chp; /* Column heading buffer */
SQLTCHL PTRchlp; /* Column heading length */
SQLTPRE PTRprep; /* Numeric precision */
SQLTSCA PTRscap; /* Numeric scale */

Description
This function returns the database data type and length for a column in a SELECT
list.

This function differs from sqldsc which returns the external data type and length. The
external data type is defined in the SYSCOLUMNS system catalog table. Extern
data types match program data types in sql.h.

The following diagram shows how the value of the SQLPDIS parameter (SQLDE
SQLDDLD, or SQLDNVR) controls when (and if) describe information for a
SELECT statement is available for sending to a client. You can specify the SQLP
parameter’s value using the sqlset function.
SQL Application Programming Interface Reference 5-75

Chapter 5

When describe information is available, given the different SQLPDIS parameter
settings.

This table summarizes the information illustrated above:

SQLPDIS constant Value When describe information is available

SQLDELY
early

(default)

0 The server sends describe information after
sqlcom; subsequent calls to sqldes, sqldsc, or
sqlgdi are legal until after a call to sqlexe.

The server also sends describe information after
sqlcex; subsequent calls to sqldes, sqldsc, or
sqlgdi are legal until after a call to sqlfet.

SQLDDLD
delayed

1 The server sends describe information after
sqlexe. Calling sqldes, sqldsc, or sqlgdi after
calling sqlexe but before the first sqlfet is legal;
calling sqldes, sqldsc, or sqlgdi at any other time
is illegal.

The server also sends describe information after
sqlcex; subsequent calls to sqldes, sqldsc, or
sqlgdi are legal until after a call to sqlfet.

Use this setting to reduce message traffic for
database servers that do not support compile
(sqlcom) operations (like Microsoft’s SQL
Server).

SQLDELY (early)
call sqldes, sqldsc,
or sqlgdi after sqlcom

sqlcom

sqlexe

sqlfet

sqlcex

sqlfet

SQLDELY (early) or
SQLDDLD (delayed)
call sqldes, sqldsc, or sqlgdi
after sqlcex and before sqlfet

and before sqlexe

SQLDDLD (delayed)
call sqldes, sqldsc,
or sqlgdi after sqlexe
and before sqlfet

}
} }
5-76 SQL Application Programming Interface Reference

sqldes - DEScribe items in a SELECT list

f the
You can pass null pointers (SQLNPTR) for arguments that you do not want.

You can retrieve the number of columns in the SELECT list with the sqlnsi function
call.

Parameters
cur

The cursor handle associated with this function.

slc

The column number (starting with 1) in the SELECT list about which to return
information.

ddt

A pointer to the variable where this function returns the database data type o
column.

SQLDNVR
never

2 The server never sends describe information;
any call to sqldes, sqldsc, or sqlgdi is illegal.

When SQLPDIS is set to SQLDNVR, sqlnsi
always returns 0. You must hard code the
number of SELECT items so that the application
knows how many times to call sqlssb.

Use this setting to reduce message traffic when
the application always knows the number and
type of columns in a SELECT statement and
never makes calls to sqldes, sqldsc, or sqlgdi.

Number Typedef in sql.h Data Type

1 SQLDCHR Character

2 SQLDNUM Number

3 SQLDDAT Date/time

4 SQLDLON Long

5 SQLDDTE Date (only)

6 SQLDTIM Time (only)

SQLPDIS constant Value When describe information is available
SQL Application Programming Interface Reference 5-77

Chapter 5

.

lay

ned

ic
ddl

A pointer to the variable where this function returns the length of the column

Note that the length returned for numeric and date/time columns are for disp
and printing. Use the sqldsc function to get the length as stored in SQLBase’s
internal format.

chp

A pointer to the variable where this function returns the column heading defi
in the SYSCOLUMNS system catalog table.

chlp

A pointer to the variable where this function returns the length of the string
pointed to by chp.

prep

A pointer to the variable where this function returns the precision of a numer
column.

scap

A pointer to the variable where this function returns the scale, if any, of a
numeric column.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Data Type Returns

Character Size specified when column was defined

Numeric 27 (22 digits of precision plus room for scientific
notation)

Date/time 26

Long 0

Date (only) 10

Time (only) 15
5-78 SQL Application Programming Interface Reference

sqldii - Describe Into variable
Example
static char select[] = "SELECT * FROM TEST";

char ddt; /* Datatype */
char colnam[50]; /* Column heading buffer */
unsigned char i;
unsigned char ddl; /* Data length */
int prec, scale; /* Precision, scale */
int hdl; /* Heading length */
uchar nsi; /* Number of SELECT items */

sqlnsi(cur, &nsi);
for (i = 1; i <= nsi; i++)

{
memset(colnum, '\0', 50);
if sqldes (cur,i,&ddt,&ddl,colnam,&hdl,&prec,&scale))

{
. .. process error

}
printf("%d %d %s %d %d %d\n”, ddt, ddl, colnam, hdl,

prec, scale);
}

Related functions
sqlcom sqldsc sqlexe
sqlgdi sqlnsi

sqldii - Describe Into variable

Syntax
#include <sql.h>

SQLTAPI sqldii (cur, ivn, inp, inl);

SQLTCUR cur; /* Cursor handle*/
SQLTSLC ivn; /* INTO variable position number */
SQLTDAP inp; /* INTO variable name */
SQLTCHL PTR inl; /* INTO variable name length*/
SQL Application Programming Interface Reference 5-79

Chapter 5
Description
This function describes an INTO variable.

Parameters
cur

The cursor handle associated with this function.

ivn

The relative position of the INTO variable, starting at 1.

inp

A pointer to the string that contains the name of the INTO variable.

inl

A pointer to the variable where this function returns the length of the INTO
variable’s name.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
#include "sql32.h"
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>

/*-- */
/* */
/* Example of a simple fetch */
/* */
/* Run EMP.SQ L via SQLTALK to initialize tables and data */
/* */
/*---*/

SQLTCUR cur; /* SQLBASE cursor number*/
SQLTRCD rcd; /* error number */
char errmsg[SQLMERR]; /* error msg text buffer*/
void failure(char*); /* error routine*/
5-80 SQL Application Programming Interface Reference

sqldii - Describe Into variable
main()
{
 char name[20];/* employee name buffer */
 SQLTCHL PTR nii;
 SQLTCHL PTR inl;
 SQLTSLC ivn;
 SQLTDAP inp;
 static char selcmd [] = /* SQL SELECT statement */

 "SELECT EMP_NAME into :name FROM EMP ";
 /*
 CONNECT TO THE DATABASE
 */

 if (rcd = sqlcnc(&cur, "ISLAND", 0))
 {
 sqlerr(rcd, errmsg);/* get error message text */
 printf("%s \n",errmsg);
 return(1);
 }

 /*
 COMPILE SELECT STATEMENT
 */

 if (sqlcom(cur, selcmd, 0))
 failure("SELECT COMPILE");

 /*
 PERFORM sqldii
 */

 if (sqldii(cur,1,name,inl))
failure ("SQLDII");

 else
printf("The length of the into variable is
%d\n",*inl);

 /*
 SET UP SELECT BUFFER
 */

 if (sqlssb(cur, 1, SQLPBUF, name, 20, 0, SQLNPTR,
SQLNPTR))

failure("SET SELECT BUFFER");

 /*
 EXECUTE SELECT STATEMENT
SQL Application Programming Interface Reference 5-81

Chapter 5
 */

 if (sqlexe(cur))
 failure("EXECUTING SELECT");

 /*
 FETCH DATA
 */
 for (;;)
 {
 memset(name,' ',20); /* clear employe name buf */

 if (rcd = sqlfet(cur)) /* fetch the data */
break;

 printf("%s\n", name); /* print employe name */
 }

 if (rcd != 1) /* failure on fetch */
 failure("FETCH");

 /*
 DISCONNECT FROM THE DATABASE
 */

 if (rcd = sqldis(cur))
failure("DISCONNECT");

}

void failure(ep)
char* ep; /* failure msg string */
{

 SQLTEPO epo; /* error position */

 printf("Failure on %s \n", ep);

 sqlrcd(cur, &rcd); /* get the error */
 sqlepo(cur, &epo); /* get error position */
 sqlerr(rcd, errmsg); /* get error message text */

 sqldis(cur); /* disconnect cursor */

 printf("%s (error: %u, position: %u)
\n",errmsg,rcd,epo);

 exit(1);
}

5-82 SQL Application Programming Interface Reference

sqldir - DIRectory of databases

ch
tor.
Related functions
sqlnii

sqldir - DIRectory of databases

Syntax
#include <sql.h>

SQLTAPI sqldir (svrno, buffer, length)

SQLTSVN svrno; /* Server number */
SQLTDAP buffer; /* Database names */
SQLTDAL length; /* Length of buffer */

Description
This function returns a list of database names on the specified server.

This function is provided for backwards compatibility with earlier versions of
SQLBase. When creating new applications, do not use this function; use the sqldbn
function instead.

Parameters
svrno

A numeric literal that specifies the server. The system appends this literal to
"server" to form the server name set in sql.ini.

Specify a zero to return a list of local databases.

buffer

A pointer to the variable where this function returns the database names. Ea
name is null-terminated. The end of the list is marked by an extra null-termina
For example, the database names demo, payables and emp are returned in this
format:

demo\0payables\0emp\0\0

length

The length of the value pointed to by buffer. The list of database names is
truncated if buffer is not large enough.
SQL Application Programming Interface Reference 5-83

Chapter 5

et,
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
char buf[100]; /* database directory buffer */
short ret; /* return code */
short srvr; /* server number */

srvr = 1;

ret = sqldir (srvr, buf, sizeof(buf));
if (ret)

... process error

Related functions
sqldbn

sqldis - DISconnect from cursor

Syntax
#include <sql.h>

SQLTAPI sqldis (cur);

SQLTCUR cur; /* Cursor handle */

Description
This function disconnects a cursor. If you are closing the final cursor, note the
difference in behavior between cursors connected through implicit, or explicit
connections. For details, read the section Connection Handles, in Chapter 3, Using
the SQL/API.

If you are disconnecting a final cursor that is connected implicitly with the sqlcnc or
the sqlcnr function, a COMMIT is performed before the cursor is disconnected. If
you are using the sqlcnc() function call, you can use the sqlset() API function call
with the SQLPCCB parameter and specify the ROLLBACK option. When this is s
a roll back is performed before the cursor is disconnected.
5-84 SQL Application Programming Interface Reference

sqldis - DISconnect from cursor

at

single
ction

sor

ero
If you are disconnecting a final cursor that is connected explicitly with the sqlopc
function, the cursor remains pending and is not automatically committed. Note th
cursors connected with the sqlopc function belong to a specific connection handle.
Each connection handle represents a single transaction and its connection to a
database. The transaction is either committed or rolled back only when the conne
handle is terminated using the sqldch function call.

You can specify whether a transaction is rolled back or committed by:

• using the sqlset() API function call with the SQLPCCB parameter. By
default, the setting is server dependent and in the case of SQLBase the
DEFAULT is COMMIT.

• explicitly executing a COMMIT, ROLLBACK, sqlcmt(), or sqlrbk() when
the connection handle is terminated.

• setting the connect closure behavior to ROLLBACK when opening a cur
with the sqlopc() function call.

Parameters
cur

A cursor handle of cursor to be closed.

Return value
If this function returns zero, it was successful. If this function returns a non-z
value, it was unsuccessful.

Example
if(rcd = sqldis(cur))
{

printf(“Failure closing cursor (rcd = %d)\n”, rcd);
exit(0);

}
else printf(“Cursor closed\n”);

Related functions
sqlcch sqlopc sqldch
SQL Application Programming Interface Reference 5-85

Chapter 5

d
sqldon - DONe

Syntax
#include <sql.h>

SQLTAPI sqldon ()

Description
This function does a rollback and disconnects all open cursors.

This function is often used in conjunction with sqlini. If sqlini was called, sqldon
must be called before the program exits to free allocated resources.

See testwin.c for an example of how to use this function. This online file is provide
with your SQLBase shipment.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
int PASCAL WinMain (hInstance, hPrevInstance, lpszCmdLine,

cmdShow)

HANDLE hInstance;
HANDLE hPrevInstance;
LPSTR lpszCmdLine;
int cmdShow;

{
short ret; /* return code */

extern int far pascal yieldpgm();
sqlini(MakeProcInstance(yieldpgm,hInstance));
...
if (ret = sqldis(cur)) /* disconnect */

... process error

sqldon (); /* Disconnect all cursors */
return;

}

5-86 SQL Application Programming Interface Reference

sqldox - Directory Open eXtended

r

 can

o
Related functions
sqlini

sqldox - Directory Open eXtended

Syntax
#include <sql.h>

SQLTAPI sqldox (shandle, dirname, attribute)

SQLTSVH shandle; /* Server Handle */
SQLTDAP dirname; /* Directory name to open */
SQLTFLG attribute; /* file attribute to use on read */

Description
This function opens the file directory specified by dirname on the database serve
associated with shandle.

After you open a directory, you use sqldrr to read the file names in the directory. Only
those file names that match the file attribute (defined in sql.h) will be returned.

Use the sqldrc function to close the directory.

The sqldro function does not return a handle for the directory because a program
only have one directory opened at a time. If you perform sqldro when a directory is
already open, the current open directory is automatically closed.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.

dirname

A pointer to a null-terminated string that contains the name of the directory t
open.
SQL Application Programming Interface Reference 5-87

Chapter 5

s
attribute

File attribute flags which can be logically ORed to return combinations of file
that match the attribute flag.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTSVH shandle;
SQLTDAP srvname;
SQLTFLG fattribute;
char *password;
char *dirname;
int modulo;
char buffer[3000];

srvname = "SERVER1";
password = 0;
dirname = "\\CENTURA";
fattribute = SQLADIR;
/* CONNECT TO SERVER */

if (rcd = sqlcsv(&shandle, srvname, password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* directory open, read and close */
printf("Directory open, read and close \n");

printf("\nOpen a directory of %s\n", dirname);

Flag Description

SQLARDO Read Only

SQLAHDN Hidden Files

SQLASYS system Files

SQLAVOL Volume Label

SQLADIR Subdirectories
5-88 SQL Application Programming Interface Reference

sqldox - Directory Open eXtended
if ((rcd = sqldox(shandle, dirname, fattribute)) != 0)
apierr("SQLDRO");

else
{

printf("Directory opened successfully, rcd=%d\n", rcd);
module = 0;
 while ((rcd = sqldrr(shandle, buffer)) == 0)
{

 if ((modulo++ % 3) == 0)
 printf("\n");
 printf("%-13s", buffer);

}
printf("\n");
printf("sqldrr() = %u\n", rcd);
if (rcd = sqldrc(shandle))

 apierr("SQLDRC");
else

 printf("Directory closed successfully, rcd=
%d\n", rcd);

}

printf("End of directory open, read, and close\n");

/* DISCONNECT FROM SERVER */

if (rcd = sqldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

Related functions
sqlcsv sqldrc sqldrr
SQL Application Programming Interface Reference 5-89

Chapter 5

cally
sqldrc - DiRectory Close

Syntax
#include <sql.h>

SQLTAPI sqldrc(shandle)

SQLTSVH shandle; /* Server handle */

Description
This function closes the directory on the database server associated with shandle that
the program opened with the sqldro function.

Call this function after sqldrr has read the last file name in the directory.

A program can only have one directory opened at a time. If you perform a sqldro
function when a directory is already open, the current open directory is automati
closed.

Parameters
shandle

The server handle returned by sqlcsv.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTSVH shandle;
SQLTDAP srvname;
char *password;
char *dirname;
int modulo;
char buffer[3000];

srvname = "SERVER1";
password = 0;
dirname = "\\CENTURA";
5-90 SQL Application Programming Interface Reference

sqldrc - DiRectory Close
/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* directory open, read and close */

printf("Directory open, read, close \n");

printf("\nOpen a directory of %s\n", dirname);
if ((rcd = sqldro(shandle, dirname)) != 0)

apierr("SQLDRO");
else

{
printf("Directory opened successfully,

rcd=%d\n",rcd); modulo = 0;
while ((rcd = sqldrr(shandle, buffer)) == 0)

{
if ((modulo++ % 3) == 0)
printf("\n");
printf("%-13s", buffer);

}
printf("\n");
printf("sqldrr() = %u\n", rcd);

if (rcd = sqldrc (shandle))
apierr("SQLDRC");

else
printf("Directory closed successfully, rcd=

%d\n",rcd);

}
printf("End of directory open, read, and close\n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");
SQL Application Programming Interface Reference 5-91

Chapter 5

 can

o
Related functions
sqlcsv sqldro sqldrr

sqldro - DiRectory Open

Syntax
#include <sql.h>

SQLTAPI sqldro (shandle, dirname)

SQLTSVH shandle; /* Server handle */
SQLTDAP dirname; /* Directory name to open */

Description
This function opens the file directory specified by dirname on the database server
associated with shandle.

After you open a directory, you use sqldrr to read the file names in the directory.

Use the sqldrc function to close the directory.

The sqldro function does not return a handle for the directory because a program
only have one directory opened at a time. If you perform sqldro when a directory is
already open, the current open directory is automatically closed.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.

dirname

A pointer to a null-terminated string that contains the name of the directory t
open.
5-92 SQL Application Programming Interface Reference

sqldro - DiRectory Open
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTSVH shandle;
SQLTDAP srvname;
char *password;
char *dirname;
int modulo;
char buffer[3000];

srvname = "SERVER1";
password = 0;
dirname = "\\CENTURA";

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* directory open, read and close */
printf("Directory open, read, close \n");

printf("\nOpen a directory of %s\n", dirname);
if ((rcd = sqldro (shandle, dirname)) != 0)

apierr("SQLDRO");
else

{
printf("Directory opened successfully, rcd=%d\n",rcd);
modulo = 0;
while ((rcd = sqldrr(shandle, buffer)) == 0)

{
if ((modulo++ % 3) == 0)

printf("\n");
printf("%-13s", buffer);

}
printf("\n");
printf("sqldrr() = %u\n", rcd);
if (rcd = sqldrc(shandle))

apierr("SQLDRC");
else
SQL Application Programming Interface Reference 5-93

Chapter 5

the
printf("Directory closed successfully, rcd=
%d\n",rcd);

}
printf("End of directory open, read, and close\n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

Related functions
sqlcsv sqldrc sqldrr

sqldrr - DiRectory Read

Syntax
#include <sql.h>

SQLTAPI sqldrr (shandle, filename)

SQLTSVH shandle; /* Server handle */
SQLTDAP filename; /* File name buffer */

Description
This function reads a file name in the directory on the database server into the
variable specified by filename.

This function is called after a sqldro function.

The sqldrr function returns one file name per call. The file name returned is only
base name for the file; the name does not include the directory name prefix.

Parameters
shandle

The server handle returned by sqlcsv.
5-94 SQL Application Programming Interface Reference

sqldrr - DiRectory Read

me

ate
filename

A pointer to the variable where this function returns the file name. The file na
is null-terminated.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

This function returns an error code after the last file name has been read to indic
that the end of the directory has been reached.

Example
SQLTSVH shandle;
SQLTDAP srvname;
char *password;
char *dirname;
int modulo;
char buffer[3000];

srvname = "SERVER1";
password = 0;
dirname = "\\CENTURA";

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* directory open, read and close */
printf("Directory open, read, close \n");

printf("\nOpen a directory of %s\n", dirname);
if ((rcd = sqldro(shandle, dirname)) != 0)

apierr("SQLDRO");
else

{
printf("Directory opened successfully,

rcd=%d\n",rcd);
modulo = 0;

while ((rcd = sqldrr (shandle, buffer)) == 0)
{

SQL Application Programming Interface Reference 5-95

Chapter 5

if ((modulo++ % 3) == 0)
printf("\n");

printf("%-13s", buffer);
}

printf("\n");
printf("sqldrr() = %u\n", rcd);

if (rcd = sqldrc(shandle))
apierr("SQLDRC");

else
printf("Directory closed successfully,

rcd= %d\n",rcd);

}
printf("End of directory open, read, and close\n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

Related functions
sqlcsv sqldrc sqldro

sqldrs - Drop Result Set

Syntax
#include <sql.h>

SQLTAPI sqldrs (cur,rsp,rsl)

SQLTCUR cur; /* Cursor handle */
SQLTDAP rsp; /* Result set name buffer */
SQLTDAL rsl; /* Result set name length */

Description
This function drops a saved result set. The result set must have been created by
calling sqlcrs and specifying a name.
5-96 SQL Application Programming Interface Reference

sqldsc - DeSCribe item in a SELECT command
Parameters
cur

The cursor handle associated with this function.

rsp

A pointer to the string that contains the name of the result set.

rsl

The length of the string pointed to by rsp. If the string pointed to by rsp is null-
terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
/* Drop result set "saveres" */

ret = sqldrs (cur, "saveres", 0);

Related functions
sqlcrs sqlrrs sqlstr
sqldrs sqlspr sqlurs
sqlprs sqlsrs

sqldsc - DeSCribe item in a SELECT command

Syntax
#include <sql.h>

SQLTAPI sqldsc (cur, slc, edt, edl, chp, chlp, prep, scap)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select column number */
SQLTDDT PTR edt; /* External data type */
SQLTDDL PTR edl; /* External data length */
SQLTCHP chp; /* Column heading buffer */
SQLTPTR PTR chlp; /* Column heading length */
SQL Application Programming Interface Reference 5-97

Chapter 5

LY,

DIS
SQLTPRE PTR prep; /* Numeric precision */
SQLTSCA PTR scap; /* Numeric scale */

Description
This function returns external data type and length for a column in a SELECT list.

The external data type is defined in the SYSCOLUMNS system catalog table.
External data types match program data types in sql.h. This function differs from
sqldes which returns the database data type and length.

The following diagram shows how the value of the SQLPDIS parameter (SQLDE
SQLDDLD, or SQLDNVR) controls when (and if) describe information for a
SELECT statement is available for sending to a client. You can specify the SQLP
parameter’s value using the sqlset function.

When describe information is available, given the different SQLPDIS parameter
settings

This table summarizes the information illustrated above:

SQLPDIS constant Value When describe information is available

SQLDELY
early

(default)

0 The server sends describe information after
sqlcom; subsequent calls to sqldes, sqldsc, or
sqlgdi are legal until after a call to sqlexe.

The server also sends describe information after
sqlcex; subsequent calls to sqldes, sqldsc, or
sqlgdi are legal until after a call to sqlfet.

SQLDELY (early)
call sqldes, sqldsc,
or sqlgdi after sqlcom

sqlcom

sqlexe

sqlfet

sqlcex

sqlfet

SQLDELY (early) or
SQLDDLD (delayed)
call sqldes, sqldsc, or sqlgdi
after sqlcex and before sqlfet

and before sqlexe

SQLDDLD (delayed)
call sqldes, sqldsc,
or sqlgdi after sqlexe
and before sqlfet

}
} }
5-98 SQL Application Programming Interface Reference

sqldsc - DeSCribe item in a SELECT command
Specify null pointers (SQLNPTR) for arguments that you do not want.

You can retrieve the number of columns in the SELECT lists with the sqlnsi function.

Parameters
cur

The cursor handle associated with this function.

slc

The column number (starting with 1) in the SELECT list to get information
about. You can use the column number to set up a loop and call sqldsc for each
column in the SELECT list.

SQLDDLD
delayed

1 The server sends describe information after
sqlexe. Calling sqldes, sqldsc, or sqlgdi after
calling sqlexe but before the first sqlfet is legal;
calling sqldes, sqldsc, or sqlgdi at any other time
is illegal.

The server also sends describe information after
sqlcex; subsequent calls to sqldes, sqldsc, or
sqlgdi are legal until after a call to sqlfet.

Use this setting to reduce message traffic for
database servers that do not support compile
(sqlcom) operations (like Microsoft’s SQL
Server).

SQLDNVR
never

2 The server never sends describe information;
any call to sqldes, sqldsc, or sqlgdi is illegal.

When SQLPDIS is set to SQLDNVR, sqlnsi
always returns 0. You must hard code the
number of SELECT items so that the application
knows how many times to call sqlssb.

Use this setting to reduce message traffic when
the application always knows the number and
type of columns in a SELECT statement and
never makes calls to sqldes, sqldsc, or sqlgdi.

SQLPDIS constant Value When describe information is available
SQL Application Programming Interface Reference 5-99

Chapter 5

 the
edt

A pointer to the variable where this function returns the external data type of
column.

Number Typdef in sql.h Data type

1 SQLEINT INTEGER

2 SQLESMA SMALLINT

3 SQLEFLO FLOAT

4 SQLECHR CHAR

5 SQLEVAR VARCHAR

6 SQLELON LONGVAR

7 SQLEDEC DECIMAL

8 SQLEDAT DATE

9 SQLETIM TIME

10 SQLETMS TIMESTAMP

11 SQLEMON MONEY

12 SQLEDOU DOUBLE

13 SQLEGPH GRAPHIC

14 SQLEVGP VARGRAPHIC

15 SQLELGP LONG VARGRAPHIC

16 SQLEBIN BINARY

17 SQLEVBI VAR BINARY

18 SQLELBI LONG BINARY

19 SQLEBOO BOOLEAN

20 SQLELCH CHAR >254

21 SQLELVR VARCHAR >254
5-100 SQL Application Programming Interface Reference

sqldsc - DeSCribe item in a SELECT command

of

th.

ic

edl

A pointer to the variable where this function returns the external data length
the column:

Note that the length returned for numeric and datetime columns are as stored in
SQLBase's internal format. Use the sqldes function to get the length for printing and
display.

chp

A pointer to the variable where this function returns the column heading.

chlp

A pointer to the variable where this function returns the column heading leng

prep

A pointer to the variable where this function returns the precision of a numer
column.

scap

A pointer to the variable where this function returns the scale, if any, of a of a
numeric column.

Data type Returns

INTEGER 4

SMALLINT 2

FLOAT 4 or 8

CHAR Size specified when column was defined.

VARCHAR Size specified when column was defined.

LONGVAR 0

DECIMAL 8

DATE 4

TIME 3

TIMESTAMP 10
SQL Application Programming Interface Reference 5-101

Chapter 5
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
main()
{

SQLTNSI nsi; /* number of select items
SQLTSLC i; /* column number to describe
SQLTDDT edt; /* external data type
SQLTDDL edl; /* external data length
char buf[19];/* buffer for column name
SQLTPTR chl; /* column header length
SQLTPRE prec;/* precision
SQLTSCA scale;/* scale

static char dbnam[] = "demox";
static char selcom[] = "SELECT * FROM TEST";

...

/* COMPILE THE SELECT COMMAND */

if (rcd = sqlcom(cur, selcom, 0))
apierr("SQLCOM");

if (rcd = sqlnsi(cur,&nsi))
apierr("SQLNSI");

/* DESCRIBE */

for (i = 1; i <= nsi; i++)
{

memset(buf, '\0', sizeof(buf)); /* fill the buffer with
nulls */

if (rcd = sqldsc (cur,i,&edt,&edl,buf,&chl,&prec,&scale))
apierr("SQLDSC");

printf("i=%d, edt=%d, edl=%d, colname=%s, chl=%d, prec=%d,
scale=%d\n", i,edt,edl,buf,chl,prec,scale);

}

if (rcd = sqldis(cur))
apierr("SQLDIS");

}

5-102 SQL Application Programming Interface Reference

sqldst - Drop STored command/procedure

re to
Related functions
sqldes sqlgdi sqlnsi

sqldst - Drop STored command/procedure

Syntax
#include <sql.h>

short sqldst (cur, cnp, cnl);

SQLTCUR cur; /* Cursor handle */
SQLTDAP cnp; /* Command/procedure name buffer */
SQLTDAL cnl; /* Command/procedure name length */

Description
This function drops a stored command or stored procedure.

Parameters
cur

The cursor handle associated with this function.

cnp

A pointer to a string that contains the name of the SQL command or procedu
drop.

cnl

The length of the string pointed to by cnp. If the string pointed to by cnp is null-
terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
ret = sqldst (cur, "myquery", 0);
SQL Application Programming Interface Reference 5-103

Chapter 5

tive
Related functions
sqlsto

sqldsv - Disconnect from SerVer

Syntax
#include <sql.h>

SQLTAPI sqldsv (handle)

SQLTSVH handle; /* Server handle */

Description
This function disconnects from a server.

After the server connection is broken, you will not be able to perform administra
functions.

Parameters
shandle

The server handle returned by sqlcsv.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
main()
{

srvname = "SERVER1";
password = 0;

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&handle,srvname,password))
apierr("SQLCSV");

else
5-104 SQL Application Programming Interface Reference

sqlelo - End Long Operation
printf("Connection Established to Server \n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv (handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions
sqlcsv

sqlelo - End Long Operation

Syntax
#include <sql.h>

SQLTAPI sqlelo (cur)

SQLTCUR cur; /* Cursor handle */

Description
This function ends a LONG VARCHAR operation. This function removes the
overhead necessary for handling LONG VARCHAR columns.

Parameters
cur

The cursor handle associated with this function.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
ret= sqlelo (cur);
SQL Application Programming Interface Reference 5-105

Chapter 5

n the
sh
Related functions
sqlbld sqlgls sqlrlo
sqlbln sqllsk sqlwlo

sqlenr - ENd Rollforward

Syntax
#include <sql.h>

SQLTAPI sqlenr (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Length of database name */

Description
Call this function after a rollforward operation has stopped because it cannot ope
next transaction log file. If the next log file is not available, call this function to fini
the rollforward recovery based on the logs processed up to that point.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.
5-106 SQL Application Programming Interface Reference

sqlenr - ENd Rollforward
Example
SQLTSVH shandle;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbname1[] = "omed";

password = 0;
bkpdir = "\\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);
printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */

if (rcd =
sqlrdb(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLRDB");
else

printf("Restored Database \n");

/* ROLLFORWARD TO END */

sqlrof(shandle,dbname1,0,mode,0,0);

lognum=0;

/* The loop below assumes that all log file backups */
/* are on disk.*/
/* If a log file backup is not on disk, lognum is set */
/*to a */
/* non-zero value which causes the loop to terminate. */

while (lognum == 0)
SQL Application Programming Interface Reference 5-107

Chapter 5

d by
{
/* GET NEXT LOG */
sqlgnl(shandle,dbname1,0,&lognum);

/* RESTORE LOG FILES */
sqlrlf(shandle,dbname1,0,bkpdir,bkpdirl,local,over);

}
/* END ROLLFORWARD */

if (rcd = sqlenr (shandle,dbname1,0))
apierr("SQLENR");

else
printf("End Rollforward \n");

Related functions
sqlbdb sqlcsv sqlrlf

sqlblf sqlgnl sqlrof

sqlbss sqlrdb sqlrss

sqlcrf sqlrel

sqlepo - Error POsition

Syntax
#include <sql.h>

SQLTAPI sqlepo (cur, epo)

SQLTCUR cur; /* Cursor handle */
SQLTEPO PTR epo; /* Error position */

Description
This function returns the error position in the SQL command now being processe
the specified cursor. The error position is set after sqlcom or sqlcex.

When a SQL/API function returns an error, the offset of the error in the SQL
command is set. The error position is meaningful after a compile or an execute
because it points to the position in a SQL command where a syntax error was
detected.
5-108 SQL Application Programming Interface Reference

sqlerr - ERRor message

he

. The
Parameters
cur

The cursor handle associated with this function.

epo

A pointer to a variable where this function returns the error position offset. T
first character in the SQL command is position zero.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTEPO errpos; /* error position */
short ret; /* return code */

if (!sqlcom(cur, sqlcmd, 0))
ret = sqlepo (cur, &errpos);

Related functions
sqlcom sqlcex

sqlerr - ERRor message

Syntax
#include <sql.h>

SQLTAPI sqlerr (error, msg)

SQLTRCD error; /* Error code */
SQLTDAP msg; /* Message text */

Description
This function returns the text of the error message associated with the error code
text comes from the file error.sql.
SQL Application Programming Interface Reference 5-109

Chapter 5

ith

remedy

 error

The
Each SQL/API function returns a code. You can retrieve the most recent code w
the function sqlrcd function.

The file error.sql contains message text for every return code. Each entry in error.sql
contains the error code, mnemonic, message text, and the message reason and
for that code.

When a program detects an error condition, it uses the error code to look up the
message. Use the sqlerr function to retrieve the error message text (without the
mnemonic) associated with a return code. Use the sqlfer function to retrieve the error
message text and the mnemonic associated with a return code.

Parameters
error

The error code to retrieve the message text for.

msg

A pointer to the variable where this function returns the error message text.
error message text is a null-terminated string. SQLMERR is a constant in sql.h
that indicates the size of the error message text buffer. This function always
returns error message text.

Return value
This function returns zero if the value specified in error exists in error.sql. If this
function returns a non-zero value, it means that the value in error does not exist in
error.sql. The text returned in msg will also indicate this.

Example
char errmsg [SQLMERR]; /* buffer for error msg */
short ret; /* return code */

if (ret = sqlexe(cur))
{

sqlerr (ret, errmsg); /* get error message */
printf("%s \n", errmsg);/* print error message */

}

Related functions
sqletx sqlrcd sqlxer sqlfer
5-110 SQL Application Programming Interface Reference

sqletx - Error message TeXt

e
 it
edy.

ng
t the
sqletx - Error message TeXt

Syntax
#include <sql.h>

SQLTAPI sqletx (rcd, msgtyp, bfp, bfl, txtlen)

SQLTRCD rcd; /* Error code to get text for */
SQLTPTY msgtyp; /* Message text type */
SQLTDAP bfp; /* Ptr to receiving buffer */
SQLTDAL bfl; /* Length of receiving buffer */
SQLTDAL PTR txtlen; /* Length of retrieved text */

Description
This function retrieves one or more of the following from the error.sql file for the
specified error code:

• Error message

• Error reason

• Error remedy

Each API function call returns a code. You can retrieve the most recent error cod
with the sqlrcd function. When an application program detects an error condition,
can use the error code to look up the error message, error reason, and error rem

Parameters
rcd

The error code to retrieve information for.

msgtyp

You can specify the following message types individually or together by addi
the constants together. For example, a value of seven indicates that you wan
error message text, reason, and remedy all returned in the buffer that bfp points
to.

Constant name Value Explanation

SQLXMSG 1 Retrieve error message text. The sqlerr
function does the same thing.
SQL Application Programming Interface Reference 5-111

Chapter 5

son,

ecify

dy.

hat

bfp

A pointer to the buffer where this function copies the error message text, rea
or remedy.

bfl

Length of the buffer pointed at by bfp.

If you are retrieving the error message text, reason, and remedy, you can sp
the sql.h constant SQLMETX for this argument. SQLMETX is always set to a
value that is large enough to hold the error message text, reason, and reme

If you are only retrieving the error message text, you can specify the sql.h
constant SQLMERR for this argument. SQLMERR is always set to a value t
is large enough to hold the error message text.

txtlen

A pointer to the variable where this function returns the number of bytes
retrieved.

For example, if the buffer is 100 bytes and requested text is 500 bytes, this
function returns 100 bytes in bfp and a value of 500 in txtlen. The application
program could then allocate a larger buffer to retrieve the entire text string.

Specify a null pointer if you do not want the total length of the text.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
This example retrieves the error message text, reason, and remedy after calling
sqlcom.

SQLTCUR cur; /* cursor value*/
SQLTRCD rcd; /* error code to get text for */
char buf[1000]; /* buffer to receive the text */
SQLTDAL txtlen; /* length of returned text */

SQLXREA 2 Retrieve error message reason.

SQLXREM 4 Retrieve error message remedy.

Constant name Value Explanation
5-112 SQL Application Programming Interface Reference

sqlexe - EXEcute a SQL command/procedure

e

if (rcd = sqlcom(cur, "CREATE TABLE EMP (LASTNAME
CHAR(20))", 0))

{
sqletx (rcd, SQLXMSG + SQLXREA + SQLXREM, buf,

sizeof(buf), &txtlen)
printf("Error Explanation:\n%s\n", buf);

}

If you only wanted the remedy text, you would call the sqletx function as follows:

sqletx (rcd, SQLXREM, buf, sizeof(buf), &txtlen)

Related functions
sqlerr sqlrcd sqlxer

sqlfer

sqlexe - EXEcute a SQL command/procedure

Syntax
#include <sql.h>

SQLTAPI sqlexe (cur)

SQLTCUR cur; /* Cursor handle */

Description
This function executes a previously-compiled command or procedure.

The command or procedure executed can be one compiled earlier in the current
application or one that was stored and retrieved.

If the command or procedure contains bind variables, data must be bound befor
execution.

Parameters
cur

The cursor handle associated with this function.

To execute the following SQL commands, use the server handle returned by
sqlcsv instead:
SQL Application Programming Interface Reference 5-113

Chapter 5
ALTER DATABASE
ALTER DBAREA
ALTER STOGROUP
CREATE DATABASE
CREATE DBAREA
CREATE STOGROUP
DEINSTALL DATABASE
DROP DATABASE
DROP DBAREA
DROP STOGROUP
INSTALL DATABASE
SET DEFAULT STOGROUP

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
if (ret = sqlexe (cur))

{
... process error

}

Related functions
sqlcex sqlcom sqlcsv
5-114 SQL Application Programming Interface Reference

sqlexp - EXecution Plan

tion
Each
nd.

e

 a

T
sqlexp - EXecution Plan

Syntax
include <sql.h>

SQLTAPI sqlexp (cur, buffer, length)

SQLTCUR cur; /* Cursor handle */
SQLTDAP buffer; /* Execution plan buffer */
SQLTDAL length; /* Length of buffer */

Description
This function returns the execution plan for a compiled SQL command. The execu
plan shows the tables, views, indexes, and optimizations for the SQL command.
line in the plan represents one table or view needed to process the SQL comma

Table and views for the SQL command are listed in the order in which they will b
processed.

The SELECT column contains a number that identifies all the tables or views for
given SELECT.

The TABLE column contains the name of the table or view. System generated
temporary tables are identified in the TABLE column as TEMP TABLE. For views
and temporary tables, the table identifier is followed by the number of the SELEC
which will be processed to produce the rows for the table or view.

The INDEX column contains the name of the index to use for the table. TEMP
INDEX indicates a system-generated temporary index.

OPTIONS shows the processing options which have been selected.

ANTI JOIN An optimization of the NOT IN operator.

INDEX
MERGE

Optimize joining of tables where appropriate indexes are available in
each table.

OR LIST OR LIST optimization which occurs with an OR operator or an IN
operator with a list of values.

OUTJOIN Outer join has been specified.

QUICK TERM IN optimization. When doing a join for purposes of satisfying an IN
with a subselect, "quickly terminate" on the first satisfaction of the IN
condition.
SQL Application Programming Interface Reference 5-115

Chapter 5

e
cter.
Parameters
cur

The cursor handle associated with this function.

buffer

A pointer to the variable where this function returns the execution plan for th
command. Each line of the execution plan is terminated with a linefeed chara
The end of the execution plan is terminated with a null.

length

The length of the value pointed to by buffer.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
First, set up an area to receive the execution plan:

char buf [2000]

Then, compile a SQL command such as the one shown below:

SELECT DISTINCT S#, P#, QTY FROM SPJ
WHERE QTY =

(SELECT MAX(QTY) FROM SPJ SPJY, S
WHERE SPJY.P# = SPJ.P#
AND SPJY.S# = S.S#
AND S.CITY = 'ATHENS')

Call the sqlexp function:

ret = sqlexp (cur, buf, sizeof (buf));

The area buf will contain an execution plan as shown below.

EXECUTION PLAN:

SELECT TABLE INDEX OPTIONS
========= ================= ============ =========
1 SPJ
1 TEMP TABLE-SEL TEMP INDEX
2 S
2 SPJ SPJX INDEXMERGE
5-116 SQL Application Programming Interface Reference

sqlfer - Full ERror message

ode

h the

 error

xt.
in
sqlfer - Full ERror message

Syntax
#include <sql.h>

SQLTAPI sqlfer (error, msg)

SQLTRCD error; /* Error code */
SQLTDAP msg; /* Message buffer */

Description
This function returns the full text of the error message associated with the error c
specified by error. The text that this function returns comes from error.sql.

Each SQL/API function returns a code. You can retrieve the most recent code wit
function sqlrcd function.

The file error.sql contains message text for every return code. Each entry in error.sql
contains the error code, the mnemonic, and the message text for that code.

When a program detects an error condition, it uses the error code to look up the
message. Use the sqlerr function to retrieve the error message text (without the
mnemonic) associated to a return code. Use the sqlfer function to retrieve the error
message text and the mnemonic associated to a return code

Parameters
error

The error code to retrieve the message text for.

msg

A pointer to the variable where this function returns the full error message te
The error message text is a null-terminated string. SQLMERR is a constant
sql.h that indicates the size of the error message text. This function always
returns error message text.

Return value
This function returns zero if the value in error exists in error.sql. If this function
returns a non-zero value, it means that the value in error does not exist in error.sql.
The text returned in msg will also indicate this.
SQL Application Programming Interface Reference 5-117

Chapter 5
Example
#include "sql.h"
#include "stdio.h"

#define ERR_NUMS 12

main()
{

SQLTRCDerror; /* error code */
introw_num;
charmsg_buf[200];

staticintmsg_line[ERR_NUMS] =
{

1, 4, 2104, 9001, 9100, 9286, 9287, 9288, 9289, 9301,
171, 3001

};

for (row_num=0;row_num<ERR_NUMS;row_num++)
{

sqlfer (msg_line[row_num],msg_buf);
printf("Output from SQLFER(): %s\n",msg_buf);

}

}

Related functions
sqlerr sqlrcd sqlxer

sqletx
5-118 SQL Application Programming Interface Reference

sqlfet - FETch next row from result set

 (1)

tch
tput.

n.
sqlfet - FETch next row from result set

Syntax
#include <sql.h>

SQLTAPI sqlfet (cur)

SQLTCUR cur; /* Cursor handle */

Description
This function fetches the next row resulting from a query. A successful sqlexe or
sqlcex must come before this function. This function returns an end of fetch value
when there are no more rows to fetch.

This function is associated with fetchable commands. In SQLBase, a fetchable
command is one that can return a result through sqlfet. The SELECT and
PROCEDURE commands are fetchable commands. This means that you can fe
results from a SELECT or PROCEDURE command until you reach the end of ou

Retrieve LONG VARCHAR columns with the sqlrlo function.

If there is an error, the return code will not indicate the column that caused the
problem. Check the pfc variable (set up with sqlssb) or use sqlgfi to determine the
column in error.

Parameters
cur

The cursor handle associated with this function.

Return value
This function returns the values shown in the table below during normal operatio
Any other value returned means that an error occurred.

Returned Value Meaning

0 Row was fetched.

1 End of fetch (last row has been fetched).

2 Update performed since last fetch.
SQL Application Programming Interface Reference 5-119

Chapter 5

o
Example
ret = sqlfet (cur);

Related functions
sqlcex sqlgfi sqlssb

sqlexe

sqlfgt - GeT File from server

Syntax
#include <sql.h>

SQLTAPI sqlfgt(shandle, srvfile, lclfile)

SQLTSVH shandle; /* Server handle */
SQLTDAP srvfile; /* Server filename */
SQLTDAP lclfile; /* Local file name */

Description
This function copies the file specified by srvfile on the database server associated t
shandle to the file lclfile on the client computer.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.

3 Delete performed since last fetch.

Returned Value Meaning
5-120 SQL Application Programming Interface Reference

sqlfgt - GeT File from server

e

e
srvfile

A pointer to the null-terminated string that contains the name of the file on th
database server to copy.

lclfile

A pointer to the null-terminated string that contains the name of the file on th
client computer where the server file is copied.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
main()
{

SQLTSVH shandle;
SQLTDAP srvname;
char *password;
char *srvfile;
char *lclfile;

srvname = "SERVER1";
password = 0;
srvfile = "sql.h";
lclfile = "localsql.h";

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

if (rcd = sqlfgt (shandle, srvfile, lclfile))
apierr("SQLFGT");

else
printf("Successful Get File from Server \n");

srvfile = "srvsqlfl.h";

if (rcd = sqlfpt(shandle, srvfile, lclfile))
apierr("SQLFPT");

else
SQL Application Programming Interface Reference 5-121

Chapter 5

e
printf("Successful Put File to Server \n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions
sqlcsv sqlfpt

sqlfpt - PuT File to server

Syntax
#include <sql.h>

SQLTAPI sqlfpt (shandle, srvfile, lclfile)

SQLTSVH shandle; /* Server handle */
SQLTDAP srvfile; /* Server file name */
SQLTDAP lclfile; /* Local file name */

Description
This function copies the file specified by lclfile on the client computer to the file
srvfile on the database server associated to shandle.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.

srvfile

A pointer to the null-terminated string that contains the name of the file on th
database server where the client file is copied.
5-122 SQL Application Programming Interface Reference

sqlfpt - PuT File to server

e
lclfile

A pointer to the null-terminated string that contains the name of the file on th
client computer to copy.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
main()
{

SQLTSVH shandle;
SQLTDAP srvname;
char *password;
char *srvfile;
char *lclfile;

srvname = "SERVER1";
password = 0;
srvfile = "sql.h";
lclfile = "localsql.h";

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

if (rcd = sqlfgt(shandle, srvfile, lclfile))
apierr("SQLFGT");

else
printf("Successful Get File from Server \n");

srvfile = "srvsqlfl.h";

if (rcd = sqlfpt (shandle, srvfile, lclfile))
apierr("SQLFPT");

else
printf("Successful Put File to Server \n");

/* DISCONNECT FROM THE SERVER */
SQL Application Programming Interface Reference 5-123

Chapter 5

eved

uses
if (rcd = sqldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions
sqlcsv sqlfgt

sqlfqn - Fully-Qualified column Name

Syntax
#include <sql.h>

SQLTAPI sqlfqn (cur, col, nameptr, namelen)

SQLTCUR cur; /* Cursor handle */
SQLTFLD field; /* Field number */
SQLTDAP nameptr; /* Column name */
SQLTDAL PTR namelen; /* Length of column name */

Description
This function returns the fully-qualified name of a column in a SELECT list. The
function can be called only after a SELECT command has been compiled or retri
because this is the only time the information is available.

An attempt to get a SELECT list element that is not a database column name ca
an error. This can happen when a SELECT list item is an expression, a view column
name derived from an expression, or a constant.

This function is faster than a query on the SYSCOLUMNS system catalog table.

This function differs from sqldes and sqldsc because it returns the fully-qualified
name of the underlying table of a column in a SELECT list. The sqldes and sqldsc
functions only return the column heading.

Parameters
cur

The cursor handle associated with this function.
5-124 SQL Application Programming Interface Reference

sqlfqn - Fully-Qualified column Name

the

ied
field

The column number that indicates the sequence number (starting with 1) of
item in the SELECT list for which the fully-qualified name is wanted.

nameptr

A pointer to the variable where this function returns the name. The fully-qualif
name of a column has this form:

username.columnname.tablename

namelen

A pointer to the variable where this function returns the length of the name.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
#define NOTCOL 5131 /* select list element not a

column name error */

static char select[] = "select name, phone, from empview; ";
char colname[50];
uint cvl;
uint col;
short ret;/* return code */

/* get fully qualified name */

memset(colname, ' ', sizeof(colname));/*initialize */
for (col=1, col <= 2, col++)
{

if (ret = sqlfqn (cur, col, colname, &cvl))
{

if (ret == NOTCOL)
continue;/* not a real column */

else
... process error

}
ProcessName (colname, cvl);

}

SQL Application Programming Interface Reference 5-125

Chapter 5

.

dle.
Related functions
sqldsc sqldes

sqlgbc - Get Backend Cursor

Syntax
#include <sql.h>

SQLTAPI sqlgbc (cursor, curp)

SQLTCUR cursor; /* Cursor Handle */
SQLTCUR PTR curp; /* Cursor Handle */

Description
This function retrieves the backend cursor handle for the supplied cursor handle

Parameters
cursor

A cursor handle returned by sqlcnc.

curp

A pointer to the variable where this function returns the backend cursor han

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTCUR cur; /* Cursor handle */
SQLTCUR curp; /* Cursor handle */
SQLTRCD rcd; /* Return code */

if (rcd = sqlcnc(&cur, "PAYROLL/BOSS/SECRET", 0))
{

 printf("Failure on connect (rcd = %d \n", rcd);
 exit(0);
5-126 SQL Application Programming Interface Reference

sqlgbi - Get Backend Information

pplied

le.

ber.
}
else
{

 if ((rcd = sqlgbc(cur, &curp)) != 0)
 {
 apierr("SQLGBC");
 }
 else

 {
 printf("Backend Cursor: %d \n", curp);

 }
}

sqlgbi - Get Backend Information

Syntax
#include <sql.h>

SQLTAPI sqlgbi (cursor, curp, pnmp)

SQLTCUR cursor; /* Cursor Handle */
SQLTCUR PTR curp; /* Backend cursor handle ptr */
SQLTPNM PTR pnmp; /* Backend process number ptr */

Description
This function retrieves the backend cursor handle and process number for the su
cursor handle.

Parameters
cursor

A cursor handle returned by sqlcnc.

curp

A pointer to the variable where this function returns the backend cursor hand

pnmp

A pointer to the variable where this function returns the backend process num
SQL Application Programming Interface Reference 5-127

Chapter 5
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTCUR cur; /* Cursor handle */
SQLTCUR curp; /* Backend cursor handle */
SQLTPNM pnmp; /* Backend process number */
SQLTRCD rcd; /* Return code */

if (rcd = sqlcnc(&cur, "PAYROLL/BOSS/SECRET", 0))
{

 printf("Failure on connect (rcd = %d \n", rcd);
 exit(0);

}
else
{

 if ((rcd = sqlgbi(cur, &curp, &pnmp)) != 0)
 {
 apierr("SQLGBC");

}
else
{

 printf("Backend Cursor: %d Backend Process: %d \n",
curp, pnmp);
 }
}

sqlgdi - Get Describe Information

Syntax
#include <sql.h>

SQLTAPI sqlgdi (cur, gdidef);

SQLTCUR cur; /* Cursor handle */
SQLTPGD gdidef; /* Describe structure */
5-128 SQL Application Programming Interface Reference

sqlgdi - Get Describe Information

d

Description
This function returns descriptive information about a column in a SELECT list.

This function returns all the descriptive information that sqldes and sqldsc return as
well as the column label and the null indicator.

The diagram below shows how the SQLPDIS settings (SQLDELY, SQLDDLD, an
SQLDNVR) control when describe information is available. You can specify the
SQLPDIS parameter’s value by calling the sqlset function.

The following table explains how the setting of the SQLPDIS parameter controls
when you can call sqlgdi. The SQLPDIS parameter controls when (and if) describe
information for a SELECT statement is sent to a client.

SQLPDIS setting
(constant)

Value When you can call sqlgdi

SQLDELY
early

(default)

0 The server sends describe information after sqlcom;
subsequent calls to sqldes, sqldsc, or sqlgdi are legal
until after a call to sqlexe.

The server also sends describe information after
sqlcex; subsequent calls to sqldes, sqldsc, or sqlgdi
are legal until after a call to sqlfet.

SQLDELY (early)
call sqldes, sqldsc,
or sqlgdi after sqlcom

sqlcom

sqlexe

sqlfet

sqlcex

sqlfet

SQLDELY (early) or
SQLDDLD (delayed)
call sqldes, sqldsc, or sqlgdi
after sqlcex and before sqlfet

and before sqlexe

SQLDDLD (delayed)
call sqldes, sqldsc,
or sqlgdi after sqlexe
and before sqlfet

}
} }
SQL Application Programming Interface Reference 5-129

Chapter 5

You can retrieve the number of columns in the SELECT list with the sqlnsi function
and then use the number of columns in a loop that calls sqlgdi for each column.

Parameters
cur

The cursor handle associated with this function.

gdidef

This is a structure that you define in the program where this function returns
information about a column. The structure and typedefs below are defined in
sql.h:

struct gdidefx
{
ubyte1 gdichb[31]; /* Column heading */
SQLTCHL gdichl; /* Column heading length */
ubyte1 gdilbb[31]; /* Label */
SQLTLBL gdilbl; /* Label length */
SQLTSLC gdicol; /* SELECT column number */
SQLTDDT gdiddt; /* Database data type */
SQLTDDL gdiddl; /* Database data length */
byte2 gdiedt; /* External data type */

SQLDDLD
delayed

1 The server sends describe information after sqlexe.
Calling sqldes, sqldsc, or sqlgdi after calling sqlexe
but before the first sqlfet is legal; calling sqldes,
sqldsc, or sqlgdi at any other time is illegal.

The server also sends describe information after
sqlcex; subsequent calls to sqldes, sqldsc, or
sqlgdi are legal until after a call to sqlfet.

Use this setting to reduce message traffic for
database servers that do not support compile
(sqlcom) operations (like Microsoft’s SQL Server).

SQLDNVR
never

2 The server never sends describe information; any
call to sqldes, sqldsc, or sqlgdi is illegal.

When SQLPDIS is set to SQLDNVR, sqlnsi always
returns 0. You must hard code the number of
SELECT items so that the application knows how
many times to call sqlssb.

Use this setting to reduce message traffic when the
application always knows the number and type of
columns in a SELECT statement and never makes
calls to sqldes, sqldsc, or sqlgdi.
5-130 SQL Application Programming Interface Reference

sqlgdi - Get Describe Information
SQLTDDT gdiedl; /* External data length */
SQLTPRE gdipre; /* Decimal precision */
SQLTSCA gdisca; /* Decimal scale */
byte2 gdinul; /* Null indicator */
byte1 gdifil[50]; /* Reserved */
};
typedef struct gdidefx gdidef;
typedef struct gdidefx SQLTGDI;
typedef struct gdidefx* SQLTPGD;
#define GDISIZ sizeof(gdidef)

The table below explains the elements in the structure. You only need to fill-in gdicol
before calling sqlgdi.

Element Explanation

gdichb The column heading (name) defined in the
SYSCOLUMNS system catalog table.

gdichl The length of the column heading.

gdilbb The label defined in the SYSCOLUMNS system catalog
table.

gdilbl The length of the column label.

gdicol The column number (starting with 1) in the SELECT
list.

gdiddt A pointer to the variable where this function returns the
database data type of the column:

Typedef in sql.h Number Data type

SQLDCHR 1 Character

SQLDNUM 2 Numeric

SQLDDAT 3 Date-time

SQLDLON 4 Long

SQLDDTE 5 Date (only)

SQLDTIM 6 Time (only)
SQL Application Programming Interface Reference 5-131

Chapter 5
gdiddl The database length of the column:

Data type Length

Character Size specified when column was
defined.

Numeric 27 (22 digits of precision plus room
for scientific notation).

Date-time 26

Long 0

Date (only) 10

Time (only) 15

gdiedt The external data type of the column:

Typdef in sql.h Number Data type

SQLEINT 1 INTEGER

SQLESMA 2 SMALLINT

SQLEFLO 3 FLOAT

SQLECHR 4 CHAR

SQLEVAR 5 VARCHAR

SQLELON 6 LONGVAR

SQLEDEC 7 DECIMAL

SQLEDAT 8 DATE

SQLETIM 9 TIME

SQLETMS 10 TIMESTAMP

SQLEMON 11 MONEY

SQLEDOU 12 DOUBLE

SQLEGPH 13 GRAPHIC

SQLEVGP 14 VARGRAPHIC

SQLELGP 15 LONG
VARGRAPHIC

SQLEBIN 16 BINARY

SQLEVBI 17 VAR BINARY

SQLELBI 18 LONG BINARY

SQLEBOO 19 BOOLEAN

Element Explanation
5-132 SQL Application Programming Interface Reference

sqlgdi - Get Describe Information
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
sqlgdi (cur, gdidef);

Related functions
sqldes sqllab sqlnsi

sqldsc

gdiedl The external length of the column:

Data type Length

INTEGER 4

SMALLINT 2

FLOAT 4 or 8

CHAR Size specified when column was
defined.

VARCHAR Size specified when column was
defined.

LONGVAR 0

DECIMAL 8

DATE 4

TIME 3

TIMESTAMP 10

gdipre Precision for a numeric column.

gdisca Scale, if any, for a numeric column.

gdinul Null indicator:

-1 Column can contain null value.

 0 Column cannot contain null value.

gdifil Reserved.

Element Explanation
SQL Application Programming Interface Reference 5-133

Chapter 5

nd

n
sqlget - GET parameter

Syntax
#include <sql.h>

SQLTAPI sqlget (cur/shandle, parm, pbuf, len)

SQLTCUR cur/shandle;/* Database cursor or server
handle */

SQLTPTY parm; /* Parameter type */
SQLTDAP pbuf; /* Information buffer */
SQLTDAL PTR len; /* Information length */

Description
This function retrieves individual database parameters. Pass a parameter type a
retrieve a corresponding value and length.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameter Description

SQLPAID Adapter Identifier. This parameter allows the setting of an network adapter
identification string.

If you call sqlset and specify the SQLPAID parameter, it changes the setting of the
adapter_id keyword in win.ini.

SQLPALG Process Activity file name. The file to which SQLBase writes the messages displayed o
a multi-user servers Process Activity screen.

SQLPANL Apply net log. This parameter disables internal condition checking while a netlog is
being applied.

This keyword is useful to Centura technical support and development personnel only.

If you call sqlset and specify the SQLPANL parameter, it changes the setting of the
applynetlog keyword in sql.ini.

0 = Off
1 = On
5-134 SQL Application Programming Interface Reference

sqlget - GET parameter

d
t

TA

he

T
r

s

d set
,

ult

 the

w
SQLPAPT Activate process timing. When this parameter is on (1), activation times are accumulate
for prepares, executes and fetches. Activation times are accumulated at three differen
levels; system, process, and cursor. By default, this parameter is turned off.

0 = Off
1 = On

Note that if you are using the sqlset function to set the SQLPCTL (command time limit)
parameter, parameter settings for the SQLPAPT (activate process timing) and SQLPS
(statistics for server) parameters can be affected in the following ways:

• When you enable a command time limit (by specifying a non-zero value in either t
cmdtimeout keyword of the server’s sql.ini file or with the SQLPCTL parameter),
SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatically
turned on.

• If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPAP
(process timing) are automatically turned off, unless you explicitly turned on eithe
parameter after you enabled a command time limit.

• If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (proces
timing), your command time limit (if you enabled on) is turned off and sql.ini is
updated to reflect cmdtimeout=0.

It is recommended that if you set a value for any of these three parameters, you shoul
the same value for the other two. For example, if you set SQLPAPT parameter On (1)
you should also set SQLPCTL and SQLPSTA parameters On (1).

SQLPAUT Autocommit. Commits the database automatically after each SQL command. By defa
this parameter is Off (0) and SQLBase commits the database only when you issue a
COMMIT command.

Autocommit is cursor-specific. When you set autocommit On (1) for a cursor and then
perform an operation with that cursor, SQLBase commits all of the transaction’s cursors.
Performing operations with cursors that do not have autocommit set on does not affect
rest of the transaction’s cursors.

You cannot have autocommit and bulk execute on simultaneously.

SQLPAWS OS averaging window size. This parameter specifies the number of samples of the CPU
% Utilization value to keep for determining the average value. You can specify a windo
size of 1 to 255. The default setting is one (1). If you call sqlset and specify the
SQLPAWS parameter, it changes the setting of the osavgwindow keyword in sql.ini.

0 = Off
1 = 255 units

Parameter Description
SQL Application Programming Interface Reference 5-135

Chapter 5

nt to

ible.

e

er’s

In
SQLPBLK Bulk execute mode. Reduces the network traffic for multi-row inserts, deletes, and
updates. In bulk execute mode, data values are buffered so that many rows can be se
the server in one message.

Increasing the size of the output message buffer (with the sqloms function) increases the
number of operations that can be buffered in one message to the server, thereby
improving performance.

This setting is cursor specific.

If this is On (1), as many operations are buffered in the output message buffer as poss

By default, bulk execute mode is Off (0). Bulk execute mode cannot be on at the sam
time as the autocommit (SQLPAUT) option.

SQLPBRN Database brand.

SQLBALB - HP Allbase
SQLBAPP - SQLHost Application Services
SQLBAS4 - IBM AS/400 SQL/400
SQLBDB2 - IBM DB2
SQLBDBC - Teradata DBC Machines
SQLBIGW - Informix
SQLBIOL - Informix On-Line
SQLBNTW - NetWare SQL
SQLBORA - Oracle
SQLBSQB - Centura SQLBase
SQLBSHR - Teradata ShareBase

SQLPBRS Backend result sets. If the database server supports backend result sets, this paramet
value is 1 (Yes); otherwise, its value is 0 (No).

SQLPCAC Size of database cache (in KBytes). This parameter sets the cache which buffers
database pages in memory. The larger the cache, the less the disk input and output.
other words, as you increase the value of the cache setting, disk access is reduced.

The default cache size for Windows is 500K; for all other platforms, the default is 2M.
The minimum is 15K and the maximum is 32767K.

If you call sqlset and specify the SQLPCAC parameter, it changes the setting of the
cache keyword in sql.ini, but the new setting does not take effect until SQLBase is
restarted.

Parameter Description
5-136 SQL Application Programming Interface Reference

sqlget - GET parameter

. In
n

tion

pt

it
e

ing
el

roup
SQLPCCB Connect Closure Behavior. This parameter specifies the connect closure behavior that
occurs when you terminate a connection using the sqldch function. Valid options are
COMMIT, ROLLBACK, or DEFAULT. The default is 0 which means that connect
closure behavior is dependent on the database server to which the user is connected
the case of SQLBase, the DEFAULT setting (0) issues a COMMIT before a connectio
handle is terminated. To determine the DEFAULT behavior for other servers, read the
applicable server documentation.

Setting this parameter on (1) instructs the server to issue a COMMIT before a connec
handle is terminated, while a setting of (2) issues a ROLLBACK.

This option also specifies whether a COMMIT or ROLLBACK is issued before
disconnecting to a cursor with an implicit connection using the sqlcnc function.

SQLPCCK Client check. This parameter tells SQLBase to send the client a RECEIVE upon recei
of a request.

By default, clientcheck is off (0). When SQLBase has finished executing a command,
issues a SEND request to the client with the results of the command. If successful, th
server then issues a RECEIVE request and waits to receive another command.

Setting this parameter on (1) instructs SQLBase to issue a RECEIVE request before
beginning execution of the command, not after it finishes executing the command. Do
so allows SQLBase to detect a situation where the client session is dropped or a canc
request is made during command processing.

If you call sqlset and specify the SQLPCCK parameter, it changes the setting of the
clientcheck keyword in sql.ini.

0 = Off
1 = On

SQLPCGR Contiguous cache pages in cache group. This parameter specifies the number of
contiguous cache pages to allocate. For example if you set cache at 3000, and cacheg
at 30, SQLBase allocates 100 cache groups, consisting of 30 pages each.

To set the number of cache pages per group to 50:

cachegroup = 50

The default is 30.

If you call sqlset and specify the SQLPCGR parameter, it changes the setting of the
cachegroup keyword in sql.ini.

SQLPCHS Retrieved chained command contains a SELECT command.

0 = Chained command does not contain a SELECT command.
1 = Chained command does contain a SELECT command.

This setting is cursor-specific.

Parameter Description
SQL Application Programming Interface Reference 5-137

Chapter 5

e

s

n a
s are
tch

 is

SQLPCIS Client identifier. This parameter returns a client identification string.

The client identification string will consist of:

MAIL_ID\NETWORK_ID\ADAPTER_ID\APP_ID\CLIENT_NAME

Each of these identification strings can be returned separately by calling sqlget with th
appropriate parameter.

SQLPCLG Commit logging. When this parameter is On (1), SQLBase causes every database
transaction in which data was modifed to log a row of data. The data that is logged
contains the transaction’s identifier (Transaction ID) and a unique sequence number.

When the COMMIT operation is executed for a transaction that is modified, the data i
logged in the system utility table SYSCOMMITORDER. The SYSCOMMITORDER
table lists transactions that operated on the database in the order in which they were
committed. For details on the SYSCOMMITORDER table, see “Appendix C,” in the
Database Administrator’s Guide. Turning the SQLPCLG parameter Off (0), which is
the default, stops commit logging.

Turning the SQLPCLG parameter Off (0), which is the default, stops commit logging.
You must have DBA privileges to set the SQLPCLG parameter and to use DDL
commands with the SQLPCLG parameter.

Note that commit logging is also supported for replication with Centura Ranger.

SQLPCLI LOAD/UNLOAD Client Value. The load/unload’s ON CLIENT clause value.

0 = Off (file is on the server)
1 = On (file is on the server)

This parameter indicates where the load/unload file will reside. Before using this
parameter, compile the load/unload statement first.

SQLPCLN Client name. The name of a client computer.

SQLPCMP Message compression. When message compression is On (1), messages sent betwee
client and the database server or gateway are compressed. This means that message
shorter, and more rows can be packed into a single message during bulk insert and fe
operations.

The compression algorithm collapses repeating characters (run-length encoding).
SQLBase performs the compression incrementally as each component of a message
posted.

By default, message compression is Off (0) because it incurs a CPU cost on both the
client and server machines.

This parameter is cursor-specific.

SQLPCSV Commit server status. Indicates whether commit service is enabled for the server.

0 = Off
1 = On

Parameter Description
5-138 SQL Application Programming Interface Reference

sqlget - GET parameter

nt.

an

o)

ics

he

T
r

s

d set
,
SQLPCTF LOAD/UNLOAD control file indicator. Indicates whether a file is a load/unload control
file.

0 = Not a control file
1 = Is control file

You can use this parameter in conjunction with the SQLPCTF parameter (control
filename) to obtain information about a file after you compile the load/unload stateme

SQLPCTI Checkpoint time interval. How often SQLBase should perform a recovery checkpoint
operation. SQLBase’s automatic crash recovery mechanism requires that recovery
checkpoints be done.

The default checkpoint time interval is one minute. This should yield a crash recovery
time of less than a minute. If your site can tolerate a longer crash recovery time, you c
increase this interval to up to 30 minutes.

Depending on the applications running against the database server, a checkpoint
operation can affect performance. If this happens, you can increase the checkpoint
interval until you attain the desired performance.

SQLPCTL Command time limit. The amount of time (in seconds) to wait for a SELECT, INSERT,
UPDATE, or DELETE statement to complete execution. After the specified time has
elapsed, SQLBase rolls back the command.

Valid values range from 1 to 43,200 seconds (12 hours maximum), and include 0 (zer
which indicates an infinite time limit.

Note that if you are using the sqlset function to set the SQLPCTL (command time limit)
parameter, settings for the SQLPAPT (activate process timing) and SQLPSTA (statist
for server) parameters can be affected in the following ways:

• When you enable a command time limit (by specifying a non-zero value in either t
cmdtimeout keyword of the server’s sql.ini file or with the SQLPCTL parameter),
SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatically
turned on.

• If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPAP
(process timing) are automatically turned off, unless you explicitly turned on eithe
parameter after you enabled a command time limit.

• If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (proces
timing), your command time limit (if you enabled on) is turned off and sql.ini is
updated to reflect cmdtimeout=0.

It is recommended that if you set a value for any of these three parameters, you shoul
the same value for the other two. For example, if you set SQLPCTL parameter On (1)
you should also set SQLPAPT and SQLPSTA parameters On (1).

Parameter Description
SQL Application Programming Interface Reference 5-139

Chapter 5

ter
 set.

en in

 and
ith

n

.

pile
SQLPCTS Character set file name. This parameter identifies a file that specifies different values for
the ASCII character set.

This is useful for non-English speaking countries where characters in the ASCII charac
set have different hex values than those same characters in the U.S. ASCII character

If you call sqlset and specify the SQLPCTS parameter, it changes the setting of the
characterset keyword in sql.ini.

SQLPCTY Country file section (for example, France). This parameter tells SQLBase to use the
settings in the specified section of the country.sql file. SQLBase supports English as the
standard language, but it also supports many national languages including those spok
Europe and Asia. You specify information that enables SQLBase to support another
language in the country.sql file. If you call sqlset and specify the SQLPCTY parameter, it
changes the setting of the country keyword in sql.ini.

SQLPCXP Execution plan cost. SQLBase uses a cost-based optimizer to determine the most
efficient way to access data based on the available indexes, system catalog statistics,
the composition of a SQL command. The access plan SQLBase chooses is the one w
the lowest estimated cost.

SQLPDBD DBDIR keyword information . The drive, path, and database directory name informatio
specified for the sql.ini’s DBDIR keyword.

SQLPDBM Database mode. Indicates whether the database is local or remote.

SQLMDBL = local
SQLMRTR = remote

SQLPDBN Database name. The name of the database that you are accessing.

SQLPDDB Default database name. This overrides the SQLBase default database name of DEMO

SQLPDDR Database directory. The drive, path, and directory name where the
database you are connected to resides.

SQLPDIS Describe information control. When (and if) SQLBase sends describe information for a
SELECT command to a client.

This parameter is cursor-specific.

SQLDELY (0) means early and is the default value. The server sends describe
information after a call to sqlcom. Call sqldes, sqldsc, or sqlgdi after sqlcom and before
sqlexe. The server also sends describe information after a call to sqlcex. Call sqldes,
sqldsc, or sqlgdi after sqlcex and before sqlfet.

SQLDDLD (1) means delayed. The server sends describe information after a call to
sqlexe. Call sqldes, sqldsc, or sqlgdi after sqlexe, but before the first sqlfet. Calling sqldes,
sqldsc, or sqlgdi at any other time is illegal. The server also sends describe information
after sqlcex. Call sqldes, sqldsc, or sqlgdi after sqlcex and before sqlfet.

Use this setting to reduce message traffic for database servers that do not support com
(sqlcom) operations.

Parameter Description
5-140 SQL Application Programming Interface Reference

sqlget - GET parameter

ber

nly

ou

ge.
SQLDNVR (2) means never. The server never sends describe
information. Any call to sqldes, sqldsc, or sqlgdi is illegal. When you set SQLPDIS to
SQLDNVR, sqlnsi always returns zero (0). You must hard-code the number of columns
in the SELECT command so that the
application knows how many times to call sqlssb.

Use this setting to reduce message traffic when the application always knows the num
and type of columns in a SELECT command and never makes calls to sqldes, sqldsc, or
sqlgdi.

SQLPDLK Deadlocks. The number of deadlocks that have occurred since the server was started.

SQLPDMO Demo version of database.

0 = No
1 = Yes

SQLPDPW Default password.

SQLPDTL Database command time limit. This parameter sets the amount of time (in seconds) to
wait for a SELECT, INSERT, UPDATE or DELETE command to complete execution.
This only includes the time to prepare and execute, not the time to fetch. After the
specified time has elapsed, SQLBase rolls back the command. The time limit is valid o
for the database requested. A global server command time limit is available by using
SQLPCTL.

0 = no time limit
1 = 43,000 secs

SQLPDTR Set distributed transaction mode. If this parameter is on (1), all subsequent
CONNECTs and SQL statements will be part of a distributed transaction. Currently, y
can have one distributed transaction per session.

The default for this parameter is off (0).

0 = Off
1 = On

SQLPDUS Default username.

SQLPEMT Error message tokens. One or more object names (tokens) returned in an error messa

Parameter Description
SQL Application Programming Interface Reference 5-141

Chapter 5

. The

r. To
(*)

turn
, you
y:

e
in
 use
SQLPERF Error filename. Specifies a file that contains entries to translate standard

SQLBase return codes into user-defined return codes:

errorfile=filename

The file contains entries for error code translation in the form:

sbrcd,udrcd

where sbrcd is a SQLBase return code found in error.sql, and udrcd is a user-defined
return code. The sbrcd value must be a positive integer; the udrcd can be a positive or
negative integer. There can be no white space between the values or after the comma
client application converts the sbrcd value to the udrcd value using the sqltec API
function. For example, SQLBase returns a value of '1' to indicate an end-of-fetch
condition, while DB2 returns a value of '100'. If you want an application to convert all
SQLBase return codes of '1' to '100', the entry in the errorfile would look like this:

1,100

When your application calls the sqltec function, if the SQLBase return code doesn't exist,
SQLBase returns a non-zero return code that means that the translation did not occu
force translation to occur, you can create a global translation entry using the asterisk
character and a generic return code (like '999').

For example, assume an errorfile of SQLBase return codes and corresponding DB2 re
codes. For those SQLBase return codes that have no corresponding DB2 return code
can force the application to return the generic return code '999' with the following entr

*,999

If you call sqlset and specify the SQLPERF parameter, it changes the setting of the
errorfile keyword in sql.ini.

SQLPEXE Database server program name.

SQLPEXP Execution plan. Retrieves the execution plan of the last SQL statement that SQLBase
compiled.

SQLPEXS Extension size (in MBytes for partitioned databases, and in KBytes for
non-partitioned databases).

SQLBase databases grow dynamically as data is added, and expand in units called
extensions. When a database becomes full, SQLBase must add another extension (or
extent) to the database.

SQLPFNM LOAD/UNLOAD filename . The name of the load/unload file. This can also be the nam
of the load/unload control filename. The client application uses this parameter to obta
the filename after the load/unload statement is compiled at the back end. You can also
this in conjunction with the SQLPCTF (control file value parameter).

Parameter Description
5-142 SQL Application Programming Interface Reference

sqlget - GET parameter

e

ince
res

 the

ulti-
s

nce
On

 if

his
SQLPFRS Frontend result sets. SQLBase supports backend result sets, but for those database
servers that do not, Centura offers frontend result sets
(maintained on the client computer). For SQLBase, SQLPFRS is Off (0). For databas
servers that don’t support backend end result sets, like DB2, SQLPFRS is On (1).

This parameter is cursor-specific.

SQLPFT Fetchthrough mode.

If fetchthrough is On (1), rows are fetched from the database server even if they are
available from the client’s input message buffer. Since data could have been updated s
you last fetched it (into the input message buffer), using the fetchthrough feature ensu
that you see the most up-to-date data. If fetchthrough is Off (0), rows are fetched from
client’s input message buffer when possible.

In fetchthrough mode, rows are fetched from the backend one at a time; there is no m
row buffering. Because of this, and the network traffic involved, fetchthrough increase
response time.

Note for procedures, if you want the On Procedure Fetch section to execute exactly o
for every fetch call from the client, returning one row at a time, set fetchthrough mode
at the client (the default is Off).

If the result set you are fetching was created by a SELECT command that included an
aggregate function, defined a complex view, or included a DISTINCT, GROUP BY,
HAVING, UNION, or ORDER BY clause, then SQLBase creates a virtual table. The
rows of this virtual table cannot be mapped to the rows in the database. For this reason,
a row in the result set is UPDATEd, when you fetch it, it will not reflect the UPDATE
even if fetchthrough is On.

This parameter is cursor-specific.

SQLPGBC Global cursor. The COBOL SQLPrecompiler uses this parameter.

Note that COBOL SQLPrecompiler is not released with the standard SQLBase 6.0. T
parameter is listed here for the sake of completeness.

SQLPGCD Group commit delay ticks.

SQLPGCM Group commit count.

SQLPHEP Heap size of DOS TSR executables. For a single-user database server, the heap is the
space available for sorting, cursor workspace, and cache. For dbrouter.exe, the heap is the
memory used by message buffers for communicating with the server.

Note that the DOS platform is not released with the standard SQLBase 6.0. This
parameter is listed here for the sake of completeness.

SQLPHFS Read-only history file size (in KBytes). If read-only mode is enabled, this parameter
limits the size of the read-only history file. The default size is 1 MByte (1000 KBytes).

Parameter Description
SQL Application Programming Interface Reference 5-143

Chapter 5

ack

er

o
ded

rect

rs

SQLPISO Isolation level of all the cursors that the program connects to the
database. See the sqlsil function for an explanation of the isolation levels.

SQLILRR = Repeatable Read
SQLILCS = Cursor Stability
SQLILRO = Read-Only
SQLILRL = Release Locks

SQLPLBM Transaction log backup mode. By default, this parameter is not enabled (0) and
SQLBase deletes log files as soon as they are not needed to perform transaction rollb
or crash recovery. This is done so that log files do not accumulate and fill up the disk.

If SQLPLBM is Off (0), you are not able to recover the database if it is damaged by us
error or a media failure.

This parameter must be On (1) when you back up databases (sqlbdb) and log files (sqlblf),
but does not need to be On when you back up snapshots (sqlbss).

SQLPLCK Lock limit allocations. This parameter specifies the maximum number of lock entries t
allocate. SQLBase allocates lock entries dynamically (in groups of 100) on an as-nee
basis.

The default setting is 0, which means that there is no limit on the number of locks
allocated; as many lock entries can be allocated as memory permits.

If you call sqlset and specify the SQLPLCK parameter, it changes the setting of the locks
keyword in sql.ini.

SQLPLDR Transaction log directory. The disk drive and directory that contains the log files.
SQLBase creates log files in the home database directory by default, but you can redi
them to a different drive and directory with the sql.ini’s lodgir keyword.

SQLPLDV Load version. Retrieves the load version you set when you called sqlset with this
parameter.

This parameter is cursor-specific.

SQLPLFF Support long data with front-end result sets. Lets (1) you or prevents (0) you from
reading and writing long data when using front end result sets with SQLNetwork route
and gateways.

This parameter is cursor-specific.

SQLPLFS Transaction log file size (in KBytes). The default log file size is 1 MByte (1000 KBytes)
and the smallest size is 100,000 bytes.

SQLPLGF Get log file offset. You can use this parameter to see how much of a log file has been
written.

Parameter Description
5-144 SQL Application Programming Interface Reference

sqlget - GET parameter

or

 the

.

SQLPLOC Local/remote database server. Specifies whether the database being accessed is local
remote.

0 = Remote
1 = Local engine

SQLPLSS Last SQL statement. Retrieves the last SQL statement that SQLBase compiled.

SQLPLRD Local result set directory. If the database server does not support backend result sets,
this parameter retrieves the name of the directory on the client computer that contains
frontend result set file. By default, this is the current working directory.

SQLPMID E-Mail Identifier. This parameter allows the setting of an E-Mail identification string.

If you call sqlset and specify the SQLPMID parameter, it changes the setting of the
mail_id keyword in win.ini.

SQLPMUL Multi-user version of SQLBase. Specifies whether the database server you are
accessing is multi-user (1) or single-user (0).

SQLPNCK Check network transmission errors. This parameter enables and disables a checksum
feature that detects transmission errors between the client and the server. To use this
feature, both the client and the server must enable netcheck.

 The default is off (0).

If you call sqlset and specify the SQLPNCK parameter, it changes the setting of the
netcheck keyword sql.ini.

0 = Off
1 = On

SQLPNCT Netcheck algorithm. This parameter specifies the algorithm SQLBase uses when
netcheck is enabled. Configure this keyword only when you enable netcheck.

By default, checksum(0) is enabled. To switch to CRC/16:

netchecktype = 1

If you call sqlset and specify the SQLPNCT parameter, it changes the setting of the
netchecktype statement in sql.ini.

0 = Checksum
1 = CRC/16

SQLPNDB Mark as brand new database. Used in conjunction with COUNTRY.DBS.

0 = False
1 = True

SQLPNID Network identifier. This parameter allows the setting of an Network identification string

If you call sqlset and specify the SQLPNID parameter, it changes the setting of the
network_id keyword in win.ini.

Parameter Description
SQL Application Programming Interface Reference 5-145

Chapter 5

rver

aff.

t
 is

rs.

ase
SQLPNIE Null indicator error . Controls what sqlfet returns in sqlssb’s pfc parameter when the
value is null:

0 = sqlfet returns zero (default).
1 = sqlfet returns FETRNUL (7).

SQLPNLB Next transaction log file to back up. An integer that specifies the number of the next log
file to back up.

SQLPNLG Net log file. This parameter invokes a diagnostic server utility that records database
messages to a specified log file. This utility logs all messages that pass between a se
and clients on a network.

Do not use the netlog utility unless instructed to do by Centura’s Technical Support st

By default, the netlog utility is off.

If you call sqlset and specify the SQLPNLG parameter, it changes the setting of the
netlog keyword in sql.ini.

SQLPNPB Do not prebuild result sets.

If SQLPNPB is Off (0), SQLBase prebuilds result sets. The database server releases
shared locks before returning control to the client. The
client application must wait until the entire result set is built before it can fetch the first
row.

If SQLPNPB is On (1), SQLBase doesn’t prebuild result sets if the client is in result se
mode and Release Locks (RL) isolation level. The advantage of having SQLPNPB on
that the client does not have to wait very long before fetching the first row. SQLBase
builds the result set as the client fetches data.

By default, SQLPNPB is On (1) for single-user engines and Off (0) for multi-user serve

This parameter is cursor-specific.

SQLPNPF Net prefix character. This parameter allows SQLBase to distinguish a database on one
server from an identically-named database on another server and to circumvent the
network's requirement of name uniqueness. You can specify a value with which SQLB
prefaces each database name on the server.

If you have a netprefix entry in the server's sql.ini file, all clients connecting to databases
on that server must specify the same netprefix value in their configuration files.

If you call sqlset and specify the SQLPNPF parameter, it changes the setting of the
netprefix keyword in sql.ini.

Parameter Description
5-146 SQL Application Programming Interface Reference

sqlget - GET parameter

erver

ible.

e

de

,

et).

 use

se
e

 the
SQLPOBL Optimized bulk execute mode. This is similar to, but even faster than, bulk execute
mode (SQLPBLK) which reduces the network traffic for multi-row inserts, deletes, and
updates. The difference is that if an error occurs, SQLBase rolls back the entire
transaction.

In bulk execute mode, data values are buffered so that many rows can be sent to the s
in one message.

Increasing the size of the output message buffer (with the sqloms function) increases the
number of operations that can be buffered in one message to the server, thereby
improving performance.

This setting is cursor specific.

If this is On (1), as many operations are buffered in the output message buffer as poss

By default, bulk execute mode is Off (0). Bulk execute mode cannot be on at the sam
time as the autocommit (SQLPAUT) option.

SQLPOFF Optimize first fetch. This parameter lets you set the optimization mode for a particular
cursor. All queries that are compiled or stored in this cursor inherit the optimization mo
in effect.

0 = optimizes the time it takes to return the entire result set.
1 = optimize the time it takes to fetch the first row of the result set.

If you call sqlget and specify the SQLPOFF parameter, it overrides the setting for
optimizefirstfetch in sql.ini for the particular cursor. If you do not specify this parameter
the optimization mode for the cursor is determined by the setting of the
optimizefirstfetch value of the server. If sql.ini does not have an optimizefirstfetch
keyword, the default setting is 0 (optimize the time it takes to return the entire result s

Note that a parameter that was earlier stored, retrieved, and executed will continue to
the execution plan with which it was compiled.

SQLPOMB Output buffer message size. This parameter sets the size (in bytes) of the output
message buffer.

The output message buffer is allocated on both the client computer and on the databa
server. The client builds an output message in this buffer and sends it to a buffer of th
same size on the database server. It is called an output message buffer because it is output
from the client's point of view.

The most important messages sent from the client to the database server are SQL
commands to compile or a row of data to insert.

A larger output message buffer does not reduce network traffic unless bulk execute is on.

SQLBase automatically maintains an output message buffer large enough to hold any
SQL command or a row to insert of any length (given available memory). Despite the
specified output message buffer size, SQLBase dynamically allocates more space for
output message buffer if needed.

A large output message buffer can help performance when writing LONG VARCHAR
columns.

Parameter Description
SQL Application Programming Interface Reference 5-147

Chapter 5

join
,
d B)

acle

SQLPOOJ Oracle outer join. This parameter enables and disables Oracle-style join processing.
Oracle's outer join implementation differs from the ANSI and industry standard
implementation. To paraphrase the ANSI standard, the correct semantics of an outer
are to display all the rows of one table that meet the specified constraints on that table
regardless of the constraints on the other table. For example, assume two tables (A an
with the following rows:

Table A (a int) Table B (b int)
1 1
2 2
3 3
4
5

If you issue the following SQL command:

SELECT a, b
FROM A, B
WHERE A.a = B.b (+)
AND B.b IS NULL;

the ANSI result is:

Table A (a int) Table B (b int)
1
2
3
4
5

Assuming the same two tables and the same SQL command, the correct result for Or
is:

Table A (a int) Table B (b int)
4
5

If you set oracleouterjoin=1; you receive the Oracle result shown directly above. If you
call sqlset and specify the SQLPOOJ parameter, it changes the setting of the
oracleouterjoin keyword in sql.ini.

0 = Off
1 = On

SQLPORID Oracle row ID. Retrieves the Oracle row ID affected by the most recent operation. Use
this parameter in applications that access an Oracle
database through SQLRouter/Oracle or SQLGateway/Oracle.

Parameter Description
5-148 SQL Application Programming Interface Reference

sqlget - GET parameter

r

a’s

55
s. If

g

n

lt
SQLPOPL Optimizer techniques. Tells you which optimizing techniques that SQLBase is using fo
all clients that connect to a server.

You can fall back on old optimizing techniques after upgrading to newer versions of
SQLBase by using the sqlset function to set this value to 1. If you discover better
performance of a query when this parameter is set to 1, you should report it to Centur
Technical Support team. Be sure not to include compilation time in the comparison of
settings 1 and 2.

1 = SQLBase is using old optimizing techniques.
2 = SQLBase is using current optimizing techniques (default).

SQLPOSR OS statistics sample rate. This parameter specifies the frequency at which operating
system statistics (CPU % Utilization) are gathered. You can specify a setting of 0 to 2
seconds. The default setting is zero (0), which disables the gathering of CPU statistic
you call sqlset and specify the SQLPOSR parameter, it changes the setting of the
ossamplerate keyword in sql.ini.

0 = Off
1 = 255 secs

SQLPOVR LOAD/UNLOAD overwrite value. Indicates whether the unload command contained an
OVERWRITE clause.

0 = No OVERWRITE clause
1 = OVERWRITE clause specified

SQLPPAR Partitioned database. Indicates the database is partitioned.

0 = No
1 = Yes

SQLPPCX Cursor context preservation.

If cursor context preservation is On (1), SQLBase prevents a COMMIT from destroyin
an active result set, thereby enabling an application to maintain its position after a
COMMIT, INSERT, or UPDATE.

Locks are kept on pages required to maintain the fetch position. Be aware that this ca
block other applications trying to access the same data. Also, locks can prevent other
applications from doing DDL operations.

By default, cursor context preservation is Off (0). A COMMIT destroys a cursor’s resu
set or compiled command.

SQLBase does not preserve cursor context after an isolation level change or a system-
initiated ROLLBACK, such as a deadlock, timeout, etc. SQLBase does preserve cursor
context after a user-initiated ROLLBACK if both of the following are true:

1) The application is in Release Locks (RL) isolation level.
2) A data definition language (DDL) statement was not performed.

Parameter Description
SQL Application Programming Interface Reference 5-149

Chapter 5

 if

n

ase

s
his
If the result set you are fetching was created by a SELECT command that included an
aggregate function, defined a complex view, or included a DISTINCT, GROUP BY,
HAVING, UNION, or ORDER BY clause, then SQLBase creates a virtual table. The
rows of this virtual table cannot be mapped to the rows in the database. For this reason,
a row in the result set is UPDATEd, when you fetch it, it will not reflect the UPDATE
even if fetchthrough is On.

This parameter is cursor-specific.

SQLPPDB Access to partitioned databases. While this parameter is TRUE, users can access
partitioned databases; when FALSE (0), user access to
partitioned databases is disabled, allowing you to restore MAIN.DBS.

SQLPPLF Preallocate transaction log files. By default, this parameter is Off (0) and a log files
grows in increments of 10% of its current size. This uses space conservatively, but ca
lead to a fragmented log file which can affect
performance. If this parameter is On (1), log files are created full size (preallocated).

SQLPPLV Level of Process Activity display. The level (0 - 4) of detail of the
messages on a multi-user server’s Process Activity display.

SQLPPTH Path separator on server machine. This is useful for remote file operations.

SQLPREC Recovery. If this parameter is On (1), SQLBase performs transaction
logging. Transaction logging enables SQLBase to roll back changes made to a datab
before a COMMIT, and to recover from a system failure. If this parameter is Off (0),
SQLBase does not perform transaction logging.

SQLPRES Restriction mode. If this parameter is On (1), SQLBase uses the result of one query a
the basis for the next query. Each subsequent query further restricts the result set. If t
parameter is Off (0), each successive query overwrites the result set created by the
previous query.

SQLPRID Retrieve current row ID. This parameter retrieves a row’s current ROWID. This is
useful to see if a row’s ROWID has changed as a result of an UPDATE command.

SQLPROD Read-only database. Makes a database accessible on a read-only basis. SQLBase
disallows you from executing data definition language (DDL) or data manipulation
language (DML) commands.

If this parameter is On (1), SQLBase disables both the Read-Only
isolation level and transaction logging.

Parameter Description
5-150 SQL Application Programming Interface Reference

sqlget - GET parameter

re
led;

etries a

),

, use

r

r is

d
SQLPROM Read-only transaction mode. Allows users connecting to any of the databases on the
server to use the RO (read-only) isolation level. The RO isolation level allows users to
have a consistent view of data during their session.

If this parameter is On (1), SQLBase allows users to use the RO isolation level. All futu
server sessions for all databases on the server are started with RO transactions enab
SQLBase maintains a read-only history file that contains multiple copies of modified
database pages; when users try to access pages changed by other users, SQLBase r
copy of the original page from the history file.

Read-only transactions can affect performance, so, by default, this parameter is Off (0
prohibiting users from setting the RO isolation level.

If you call sqlset and specify the SQLPROM parameter, it changes the setting of the
readonly keyword in sql.ini, but the new setting does not take effect until you restart
SQLBase.

0 = Off
1 = On

NOTE: To turn on RO transaction mode for a single database and the current session
the SQLPROT parameter.

SQLPROT Read-only transaction mode. If this parameter is On (SQLVON), SQLBase allows
applications to set the read-only (RO) isolation level on for a single database and the
current server session. SQLBase maintains a read-only history file that contains one o
more copies of pages that have been modified.

Read-only transactions can affect performance, so, by default, this
parameter is Off (SQLVOFF), prohibiting use of the RO isolation level.

If this parameter is set to the default (SQLVDFL), SQLBase uses the
readonly keyword setting in the sql.ini file to determine whether to allow read-only
transactions. If you do not provide a value for this
keyword, SQLBase uses the internal default (SQLVOFF).

NOTE: To turn on RO transaction mode for a single database and the current server
session, use the SQLPROM parameter.

SQLPRTO Rollback on lock timeout. This parameter is On (1) by default and
SQLBase rolls back an entire transaction when there is a lock timeout. If this paramete
Off (0), SQLBase rolls back only the current command.

This parameter is cursor-specific.

SQLPSCR Scroll mode. Otherwise known as result set mode, scroll mode lets you scroll back an
forth through a result set and retrieve any row in the result set without sequentially
fetching forward. Once you have
positioned the cursor on a row, later fetches start from that row.

Scroll mode is On if this parameter is 1, and Off if it is 0.

This parameter is cursor-specific.

Parameter Description
SQL Application Programming Interface Reference 5-151

Chapter 5

cs

he

SQLPSIL Silent mode. This parameter turns the display for multi-user server on (0) and off (1).

To set the display of the server screens off:

silent = 1

By default, multi-user server displays are on (0).

If you call sqlset and specify the SQLPSIL parameter, it changes the setting of the silent
statement in sql.ini.

0 = On
1 = Off

SQLPSTA Statistics for server. This parameter collects the following timer and counter
information:

Timers:
Compile.
Execute.
Fetch.

Counters:
Physical disk writes.
Physical disk reads.
Virtual disk writes
Virtual disk reads.
Total number of disconnects.
Total number of connects.
Hash joins - number of joins that have occurred.
Sorts - number of sorts that have been performed
Deadlocks - number of deadlocks that have occurred.
Process switches - number of process switches.
Full table scan - number of times a full table scan occurred.
Index use - number of times an index has been used.
Transactions - number of completed transactions.
Command type executed - one counter for each command type.

The default for this parameter is off (0).

0 = off
1 = on

Note that if you are using the sqlset function to set the SQLPCTL (command time limit)
parameter, settings for the SQLPAPT (activate process timing) and SQLPSTA (statisti
for server) parameters can be affected in the following ways:

• When you enable a command time limit (by specifying a non-zero value in either t
cmdtimeout keyword of the server’s sql.ini file or with the SQLPCTL parameter),
SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatically
turned on.

Parameter Description
5-152 SQL Application Programming Interface Reference

sqlget - GET parameter

T
r

s

d set
,

en

ns of

ads.

.

es
• If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPAP
(process timing) are automatically turned off, unless you explicitly turned on eithe
parameter after you enabled a command time limit.

• If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (proces
timing), your command time limit (if you enabled on) is turned off and sql.ini is
updated to reflect cmdtimeout=0.

It is recommended that if you set a value for any of these three parameters, you shoul
the same value for the other two. For example, if you set SQLPSTA parameter On (1)
you should also set SQLPCTL and SQLPSTA parameters On (1).

SQLPSVN Name of server. This parameter shows the name of the server you are connected to.
Setting this parameter will only change the setting in sql.ini. To activate the new setting,
the server must be restarted. You must have DBA authority to set this parameter.

SQLPSWR Write defaults. Changes to defaultdatabase, defaultuser, or defaultpassword are writt
to sql.ini.

0 = No
1 = Yes

SQLPTCO Time colon only. This parameter configures SQLBase to recognize when a delimiter
other than a colon(:) is being used to separate the hours, minutes, and seconds portio
a time value.

The default is off (0).

If you call sqlset and specify the SQLPTCO parameter, it changes the setting of the
timecolononly keyword in sql.ini.

0 = No
1 = Yes

SQLPTHM Thread mode. This parameter specifies whether to use native threads or SQLBase
threads. A value of 1 indicates SQLBase threads and a value of 2 indicates native thre
Note for Windows 95, SQLBase now uses Windows 95 native threads only.

By default, threadmode is 1, except on Windows 95 where the default is 2.

On NetWare platforms, if you are running in Ring 0, Centura recommends using
SQLBase threads which invoke stack switching. This should yield better performance
Novell disallows stack switching in Ring 3, so be sure to set threadmode to 2 when in
Ring 3.

If you call sqlset and specify the SQLPTHM parameter, it changes the setting of the
threadmode keyword in sql.ini.

SQLPTMS Timestamp. If this parameter is TRUE (1), SQLBase timestamps the
messages on a multi-user server’s Process Activity display; if FALSE (0), SQLBase do
not.

Parameter Description
SQL Application Programming Interface Reference 5-153

Chapter 5

r

-out

t
he

SQLPTMO Client request time out. This parameter specifies the time period that the server waits fo
a client to make a request. If the client does not make a request within the specified
period, SQLBase rolls back the client session, processes, and transactions. The time
clock restarts each time the client makes a request.

The time-out value is 0 (infinite by default, and the maximum value is 200 minutes.

If you call sqlset and specify the SQLPTMO parameter, it changes the setting of the
timeout statement in sql.ini.

SQLPTMZ Time zone. This parameter sets the value of SYSTIMEZONE, a SQLBase keyword tha
returns the time zone as an interval of Greenwich Mean Time. SYSTIMEZONE uses t
expression (SYSTIME - TIMEZONE) to return the current time in Greenwich Mean
Time.

By default, timezone is 0.

If you call sqlset and specify the SQLPTMZ parameter, it changes the setting of the
timezone keyword in sql.ini.

SQLPTPD Temp directory. This parameter specifies the directory where SQLBase places
temporary files. In the course of processing, SQLBase can create several kinds of
temporary files: sort files, read-only history files, and general-use files.

To specify d:\tmp as the temporary directory:

tempdir = d:\tmp

You must set tempdir for read-only databases.

If you call sqlset and specify the SQLPTPD parameter, it changes the setting of the
tempdir keyword in sql.ini.

SQLPTRC Trace stored procedures. Enables or disables statement tracing for procedures.

0 = Off
1 = On

SQLPTRF Tracefile name. Directs statement output to a file on the server. If you do not set this
parameter to a file name, the statement output goes to the server’s Process Activity
screen.

SQLPTSL Transaction span limit. The number of log files that SQLBase allows an active
transaction to span. When SQLBase creates a new log file, it checks this limit for all
active transactions and rolls back any transaction that violates the limit. By default, the
transaction span limit is zero (0) which disables the limit checking.

Parameter Description
5-154 SQL Application Programming Interface Reference

sqlget - GET parameter

s at

.

e
e

000
 *
SQLPTSS Thread stack size. This parameter specifies the stack size.

By default, threadstacksize is 10 kilobytes and the minimum value is 8192 bytes.

You should not decrease the default value. Running complex queries when
threadstacksize is set to 8192 can result in a stack overflow error.

If you receive stack overflow errors, increase the value of threadstacksize by 512 byte
a time.

If you call sqlset and specify the SQLPTSS parameter, it changes the setting of the
threadstacksize keyword in sql.ini.

SQLPUID Application identifier. This parameter allows the setting of an user identification string

If you call sqlset and specify the SQLPUID parameter, it changes the setting of the
app_id keyword win.ini.

SQLPUSR Number of users. This parameter specifies the maximum number of client applications
that can connect to the server simultaneously. This means, for example, that a server
configured with users=5 could support five clients running one application each, or on
client running five applications, or two clients with one running two applications and th
other running three applications, and so on.

The default value of users is 128, and the maximum is 800.

If you call sqlset and specify the SQLPUSR parameter, it changes the setting of the users
keyword in sql.ini.

SQLPVER Release version. The version number of the SQLBase server program.

SQLPWFC Which Fetchable Command. The type of fetchable command:

• SQLTSEL (1) is a SELECT command.

• SQLTPRO (87) is a PROCEDURE command.

• 0 is returned for all other commands (such as INSERT or UPDATE).

SQLPWKA Work space allocation unit. This parameter specifies the basic allocation unit of a work
space. For example, if a SQL command requires 5000 bytes and the default value of 1
is in effect, SQLBase makes 5 memory allocation requests to the operating system (5
100 = 5000).

The default is 1000 bytes.

If you call sqlset and specify the SQLPWKA parameter, it changes the setting of the
workalloc keyword in sql.ini.

Parameter Description
SQL Application Programming Interface Reference 5-155

Chapter 5

erver
e on
ed to

 type
ase

o

.

Parameters
cur

A cursor handle if the parameter is associated with a cursor or database. A s
handle if the parameter is associated with a server. A value of ‘No’ in the tabl
the next page indicates that a cursor handle and a server handle is not need
retrieve the information for the parameter.

parm

The name of the parameter to retrieve. The parameter types are defined in sql.h
and are shown in the table that begins on the next page.

pbuf

A pointer to the variable where this function returns the parameter. The data
and size of the variable depends on the parameter. For strings like the datab
directory (SQLPDDR), the variable must be at least SQLMFNL bytes long.
SQLMFNL is defined in sql.h under "maximum sizes".

len

Specify an address or a pointer to the length. After making this call, len is the
number of bytes in the value pointed to by pbuf. The following table shows
whether you need to specify a length for a parameter. If it is not necessary t
designate a parameter length, specify zero (0).

SQLPWKL Maximum work space limit. This parameter specifies a maximum memory limitation
for SQL commands. For example, if you specify:

worklimit = 4000

SQLBase cannot execute SQL commands requiring more than 4000 bytes of memory

The default is NULL, meaning that no memory limitation exists.

If you call sqlset and specify the SQLPWKL parameter, it changes the setting of the
worklimit statement in sql.ini.

SQLPWTO Lock wait timeout. The number of seconds for SQLBase to wait for a database lock to
be acquired. After the specified time has elapsed,
SQLBase rolls back the command or transaction.

The default is 300 seconds. Valid timeout values are:

1 - 1800 inclusive (1 second to 30 minutes)
0 = never wait; return error immediately
1 = wait forever

This parameter is only relevant for multi-user servers and it is transaction-specific.

Parameter Description
5-156 SQL Application Programming Interface Reference

sqlget - GET parameter
Parameter Types
The following table lists:

• parm - the parameter type.

• cur - whether the parameter requires a cursor handle.

• pbuf - the size of the variable pointed to by pbuf.

• len - whether you need to specify a length for the
parameter.

The parameter types and pbuf types and sizes are defined in sql.h.

parm cur pbuf len

SQLPAID Yes SQLMFNL Yes

SQLPAIO No SQLTDPV No

SQLPALG Yes SQLMFNL Yes

SQLPANL No SQLTDPV No

SQLPAPT Yes SQLTDPV No

SQLPAUT Yes SQLTDPV No

SQLPAWS Yes SQLTDPV No

SQLPBLK Yes SQLTDPV No

SQLPBRN Yes SQLTDPV No

SQLPBRS Yes SQLTDPV No

SQLPCAC Yes SQLTDPV No

SQLPCCK No SQLTDPV No

SQLPCGR No SQLTDPV No

SQLPCHS Yes SQLTDPV No

SQLPCIS Yes SQLMFNL Yes

SQLPCLG Yes SQLTDPV Yes

SQLPCLI Yes SQLTDPV No

SQLPCLN Yes SQLMFNL Yes

SQLPCMP Yes SQLTDPV No
SQL Application Programming Interface Reference 5-157

Chapter 5
SQLPCSV Yes SQLTDPV No

SQLPCTF Yes SQLTDPV No

SQLPCTI Yes SQLTDPV No

SQLPCTL Yes SQLTDPV No

SQLPCTS No SQLMNPL Yes

SQLPCTY No SQLMFNL Yes

SQLPCXP Yes SQLMFNL Yes

SQLPDBM No SQLTDPV No

SQLPDBN Yes SQLMFNL Yes

SQLPDDB No Character field of size
SQLMDNM + 1

Yes

SQLPDDR Yes SQLMFNL Yes

SQLPDIS Yes SQLTDPV No

SQLPDLK Yes SQLTDPV Yes

SQLPDMO Yes SQLTDPV No

SQLPDTL Yes SQLTDPV No

SQLPDTR No SQLTDPV No

SQLPDUS No Character field of size
SQLMSID + 1

Yes

SQLPEMT Yes SQLMXER Yes

SQLPERF No SQLMFNL Yes

SQLPEXE Yes SQLMFNL Yes

SQLPEXP Yes SQLMFNL Yes

SQLPEXS No SQLMFNL No

SQLPFNM Yes SQLMFNL No

SQLPFRS Yes SQLTDPV No

SQLPFT Yes SQLTDPV No

parm cur pbuf len
5-158 SQL Application Programming Interface Reference

sqlget - GET parameter
SQLPGBC No Pass the address of a
cursor

No

SQLPGCD Yes SQLTDPV No

SQLPGCM Yes SQLTDPV No

SQLPHEP Yes SQLTDPV No

SQLPHFS Yes SQLTDPV No

SQLPISO Yes SQLMFNL Yes

SQLPLBM Yes SQLTDPV No

SQLPLCK No SQLTDPV No

SQLPLDR Yes SQLMFNL Yes

SQLPLDV Yes SQLMFNL Yes

SQLPLFF Yes SQLTDPV No

SQLPLFS Yes SQLTDPV No

SQLPLGF Yes SQLTDPV No

SQLPLOC Yes SQLTDPV No

SQLPLRD Yes SQLMFNL Yes

SQLPLSS Yes SQLMFNL Yes

SQLPMID Yes SQLMFNL Yes

SQLPMUL Yes SQLTDPV No

SQLPNCK No SQLTDPV No

SQLPNCT No SQLTDPV No

SQLPNDB Yes SQLTDPV No

SQLPNID Yes SQLMFNL Yes

SQLPNIE No SQLTDPV No

SQLPNLB Yes SQLTDPV No

SQLPNLG No SQLMFNL Yes

parm cur pbuf len
SQL Application Programming Interface Reference 5-159

Chapter 5
SQLPNPB Yes SQLTDPV No

SQLPNPF No SQLMFNL Yes

SQLPOFF Yes SQLTDPV No

SQLPOMB Yes SQLTDPV No

SQLPOOJ No SQLTDPV No

SQLPORID Yes SQLMFNL No

SQLPOPL Yes SQLTDPV No

SQLPOSR Yes SQLTDPV No

SQLPOVR Yes SQLTDPV No

SQLPPAR Yes SQLTDPV No

SQLPPCX Yes SQLTDPV No

SQLPPDB No SQLTDPV No

SQLPPLF Yes SQLTDPV No

SQLPPLV Yes SQLTDPV No

SQLPPTH Yes SQLTDPV No

SQLPREC Yes SQLTDPV No

SQLPRES Yes SQLTDPV No

SQLPRID Yes Character field of size
RIDSIZ * 2 + 1

Yes

SQLPROD Yes SQLTDPV No

SQLPROT Yes SQLTDPV No

SQLPRTO Yes SQLTDPV No

SQLPSCR Yes SQLTDPV No

SQLPSIL No SQLTDPV No

SQLPSTA Yes SQLTDPV No

SQLPSTC No PQLTDPV No

parm cur pbuf len
5-160 SQL Application Programming Interface Reference

sqlget - GET parameter
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQLPSVN Yes SQLMFNL Yes

SQLPSWR No SQLTDPV No

SQLPTCO No SQLTDPV No

SQLPTHM No SQLTDPV No

SQLPTMS Yes SQLTDPV No

SQLPTMO No SQLTDPV No

SQLPTMZ No SQLDPV No

SQLPTPD No SQLMFNL Yes

SQLPTRC Yes SQLTDPV No

SQLPTRF Yes Character field size of
SQLMFNL + 1

Yes

SQLPTSL Yes SQLTDPV No

SQLPTSS No SQTDPV No

SQLPUID Yes SQKMFNL Yes

SQLPUSR No SQLTDPV No

SQLPVER Yes SQLMFNL Yes

SQLPWFC Yes SQLTDPV Yes

SQLWKA No SQLTDPV No

SQLWKL No SQLTDPV No

SQLPWTO Yes SQLTDPV No

parm cur pbuf len
SQL Application Programming Interface Reference 5-161

Chapter 5

r a

et
Example
chardbn[SQLMDNM + 1]; /* database name buffer */
SQLTDAL dbl; /* database name length */
SQLTRCD rcd; /* return code*/

if (rcd = sqlget (0, SQLPDDB, dbn, &dbl))/* get dbname */
printf("Failure Getting Database Name (rcd = %d)\n",rcd);

dbn[dbl] = 0; /* concatenate null terminator */
printf("Default Database Name: %s\n", dbn);

Related functions
sqlset

sqlgfi - Get Fetch Information

Syntax
#include <sql.h>

SQLTAPI sqlgfi (cur,slc, cvl, fsc)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select column */
SQLTCDL PTR cvl; /* Value length */
SQLTFSC PTR fsc; /* Fetch status code */

Description
This function returns information about a column fetched by the most-recent sqlfet.
The length of the column data in the SELECT buffer and the fetch return code fo
specific column value are returned.

Parameters
cur

The cursor handle associated with this function.

slc

The sequence number of the column in the SELECT list (starting with 1) to g
information about.
5-162 SQL Application Programming Interface Reference

sqlgfi - Get Fetch Information

ived,

ed
 is

he

 the

he

cvl

A pointer to the variable where this function returns the length of the data
received into the select buffer from the previous sqlfet. If the column contains
null values, this function returns zero.

If the size of the buffer where the data is fetched is smaller than the data rece
the data is truncated and an error is returned in fsc.

If the data received is less than the size of the buffer where the data is fetch,
then cvl is set to the actual length received. For example, if the string "TEST"
received into a 20 character variable, cvl is set to 4.

You can pass a null pointer (SQLNPTR) if this information is not wanted by t
application.

fsc

A pointer to the variable where this function returns the fetch status code for
column retrieved by the previous sqlfet.

You can pass a null pointer (SQLNPTR) if this information is not wanted by t
application.

The following is a list of the fetch status codes which can be returned. These
codes are defined in sql.h.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Status Code Value Explanation

FETRTRU 1 Data was truncated.

FETRSIN 2 Signed number fetched into unsigned field.

FETRDNN 3 Data is not numeric.

FETRNOF 4 Numeric overflow.

FETRDTN 5 Data type not supported.

FETRDND 6 Data is not a date.
SQL Application Programming Interface Reference 5-163

Chapter 5
Example
static char sqlsel[] = "select name, phone, apt from

tenants";
char fsc; /* fetch status code */
unsigned char cvl; /* column value length */
char col = 1; /* first column*/
short ret; /* return code*/
uchar nsi; /* number of select items */

sqlnsi(cur, &nsi);/* get # of select items */
while (!(ret = sqlfet(cur)))/* fetch each row */

{ /* get fetch info for each column */
while (col++ <= nsi)
{

if (sqlgfi (cur, col, &cvl, &fsc))
break; /* error */

if (fsc)
do something/* Process fetch status */

}
if (ret) break;

}

Related functions
sqlfet
5-164 SQL Application Programming Interface Reference

sqlgls - Get Long Size

e

 list.

e

rs
SQL Application Programming Interface Reference

SQL/API Function
Reference

Chapter 5

sqlgls - Get Long Size

Syntax
#includes <sql.h>

SQLTAPI sqlgls (cur, slc , size)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select number */
SQLTLSI PTR size; /* Size of long column */

Description
This function returns the length of the data in a LONG VARCHAR column. This
function is called after sqlfet to determine the size to read. The returned size can b
passed to sqlrlo.

Parameters
cur

The cursor handle associated with this function.

slc

The column sequence number (starting with 1) of the column in the SELECT

size

A pointer to the variable where this function returns the number of bytes in th
LONG VARCHAR column.

Note: Be sure to return this value into an unsigned long variable to accommodate numbe
greater than 32K.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.
SQL Application Programming Interface Reference 5-165

Chapter 5 SQL/API Function Reference

ry.
Example
static char select[] = ‘select name, biography from people

where birthplace = :1";

/* Get length of biography column */

long size;
ret = sqlgls (cur, 2, &size);

Related functions
sqlelo sqllsk sqlrlo

sqlgnl - Get Next Log

Syntax
#include <sql.h>

SQLTAPI sqlgnl (shandle, dbname, dbnamel, lognum)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTLNG PTR lognum; /* Returned log number */

Description
This function returns the name of the next transaction log file needed for recove

If the specified transaction log file is not available, you should call the sqlenr function
to finish the recovery of the database.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.
5-166 SQL Application Programming Interface Reference

sqlgnl - Get Next Log

isk.
dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

lognum

A variable where this function returns the number of the next log file. This
function returns zero in this variable if the next log file needed is already on d

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTSVH shandle;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static chardbname1[] = "omed";

password = 0;
bkpdir = "\\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);
printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */

if (rcd =
sqlrdb(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLRDB");
else
SQL Application Programming Interface Reference 5-167

Chapter 5 SQL/API Function Reference
printf("Restored Database \n");
/* ROLLFORWARD TO END */

sqlrof(shandle,dbname1,0,mode,0,0);

lognum=0;
/*

The loop below assumes that all log file backups are on
disk.
If a log file backup is not on disk, lognum is set to a

non-
zero value which causes the loop to terminate.

*/
while (lognum == 0)

{
/* GET NEXT LOG */
sqlgnl (shandle,dbname1,0,&lognum);

/* RESTORE LOG FILES */

sqlrlf(shandle,dbname1,0,bkpdir,bkpdirl,local,over);
}

/* END ROLLFORWARD */

if (rcd = sqlenr(shandle,dbname1,0))
apierr("SQLENR");

else
printf("End Rollforward \n");

Related functions
sqlbdb sqlcsv sqlrel

sqlblf sqlenr sqlrlf

sqlbss sqlrdb sqlrof

sqlcrf
5-168 SQL Application Programming Interface Reference

sqlgnr - Get Number of Rows

e
sqlgnr - Get Number of Rows

Syntax
#include <sql.h>

SQLTAPI sqlgnr (cur, tbname, tbnaml, rows)

SQLTCUR cur; /* Cursor handle */
SQLTDAP tbname; /* Table name */
SQLTDAL tbnaml; /* Table name length */
SQLTROW PTR rows; /* Total number of rows */

Description
This function returns the number of rows in the specified table from the system
catalog. It is faster than executing a SELECT COUNT(*) command without a
WHERE clause. You can only use this function for SQLBase databases.

Parameters
cur

The cursor handle associated with this function.

tbname

A pointer to the string that contains the table name.

tbnaml

The length of the string pointed to by tbname. If the string pointed to by tbname
is null-terminated, specify zero and the system will compute the length.

rows

A pointer to the variable where this function returns the number of rows in th
table.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.
SQL Application Programming Interface Reference 5-169

Chapter 5 SQL/API Function Reference
Example
/* Get the number of rows in the CUSTOMER table */

long custcnt;
short ret; /* return code */

ret = sqlgnr (cur, "CUSTOMER", 0, &custcnt);

Related functions
sqlepo sqlnrr sqlrow

sqlgsi - Get Server Information

Syntax
#include <sql.h>
#include <sqlsrv.h>
#include <gsiext.h>

SQLTAPI sqlgsi(shandle, infoflags, buffer, buflen, rbuflen)

SQLTSVH shandle; /* Server handle */
SQLTFLG infoflags; /* Information flags */
SQLTDAP buffer; /* Buffer to read into */
SQLTDAL buflen; /* Size of data buffer */
SQLTDAL PTR rbuflen; /* Length of read */

Description
This function returns server information.

The format of the information returned by this function is defined in sqlsrv.h and
gsiext.h.

Parameters
shandle

The server handle returned by sqlcsv.
5-170 SQL Application Programming Interface Reference

sqlgsi - Get Server Information

of

 the
ag

ause
infoflags

Server information flags which can be logically OR’d to return combinations
information.

The actual length of data returned for any information type is determined by
extended information flag (SQLXGSI). If you OR the extended information fl
with other server information flags, additional information follows the default
information structure.

Note: SQLGDBS only returns information on databases that the server is listening on bec
that is the only time the information is available. Use the sqldbn function to find the databases
that the server is listening on.

Flag
SQLXGSI

flag
sqlsrv.h

structure
gsiext.h

structure
Information

SQLGCFG No cfgdef Configuration information

SQLGCFG Yes cfgdef cfgdefi Extended configuration
information

SQLGCUR No curdef Cursor information

SQLGCUR Yes curdef curdefi Extended cursor information

SQLGDBS No dbsdef Database information

SQLGLCK Yes lckdef Lock information

SQLGOSS No --- ostdef Operating system statistics

SQLGPRC No prcdef Process information

SQLGPRC Yes prcdef prcdefi Extended process information

SQLGPWD No --- Send password

SQLGSTT No sttdef Statistics

SQLRCLN Yes fgidef Filter by client name

SQLRDBN Yes fgidef Filter by database name

SQLRPNM Yes fgidef Filter by process number

SQLRUSN Yes fgidef Filter by user name

SQLXGSI No --- --- Return extended information.
SQL Application Programming Interface Reference 5-171

Chapter 5 SQL/API Function Reference

, or

ch
buffer

A pointer to the variable where this function returns the server information.

Using the filter flags to filter the amount of returned information requires the
fgidef structure to be placed at the beginning of the buffer and filled with the
filter information. The fgidef structure will be sent to the server. The returned
information will be restricted to the process number, client name, user name
database name, depending on the filter flags set.

As defined in sqlsrv.h, the information returned has a message header (hdrdef)
that contains the length (hdrlen) of the entire message including the message
header.

The message header is followed by a separate section for each type of
information requested. These sections start with a section header (mshdef) that
contains the information type (mshflag) contained in the section, the total
number of entries (mshten), the number of entries in the message (mshnen), and
the number of bytes in that section (including the section header). Finally, ea
section contains the requested information.

Message header (hdrdef)

hdrlen
gdrrsv

Section header (mshdef)

mshflg: cfgdef, curdef, dbsdef, prcdef, or sttdef
mshten
mshnen
mshlen

Information entries

.

.

.

5-172 SQL Application Programming Interface Reference

sqlgsi - Get Server Information

ise
ffer.

he
The sqlgsi function will not overflow the message buffer. The mshten and
mshnen fields are equal if the message buffer contains all the entries; otherw
mshnen indicates how many entries were actually placed in the message bu

If not all the information is present, you can pass a larger buffer size or use t
filter flags to break the request into multiple requests.

buflen

The length of the value pointed to by buffer.

rbuflen

A pointer to the variable where this function returns the length of the server
information.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
See the example program ex22.c for a comprehensive example.

SQLTSVH handle;
char buf[4000];
SQLTDAL blen;
SQLTRCD rcd;

if ((rcd = sqlcsv(&handle, srvname, password)) != 0)
{

Section header (mshdef)

mshflg: cfgdef, curdef, dbsdef, prcdef, or sttdef
mshten
mshnen
mshlen

Information entries

.

.

.

SQL Application Programming Interface Reference 5-173

Chapter 5 SQL/API Function Reference

The
se
se

 the
 of

 The
ssage

hile

 into

f

e input
sqlgsi (handle, SQLGDBS | SQLGSTT, buf, sizeof(buf),
&blen);

sqldsv(handle);
}

Related functions
sqlcsv sqlsta

sqlims - Input Message Size

Syntax
#include <sql.h>

SQLTAPI sqlims(cur, insize)

SQLTCUR cur; /* Cursor number */
SQLTDAL insize; /* Input message buffer size */

Description
This function changes the maximum size (in bytes) of the input message buffer.
input message buffer is allocated on both the client computer and on the databa
server. The database server builds an input message in this buffer on the databa
server computer and sends it across the network to a buffer of the same size on
client. It is called an input message buffer because it is input from the client's point
view.

There is one input message buffer per connected cursor on the client computer.
server maintains an input message buffer that is the size of the largest input me
buffer on the client computer.

The input message buffer can receive a return code indicating that the specified
operation was successful, the data that is being fetched, and other information. W
fetching data from the database, SQLBase compacts as many rows as possible
one input message buffer.

Each sqlfet call reads the next row from the input message buffer until they are
exhausted. At this instant, SQLBase transparently fetches the next input buffer o
rows depending on the isolation level.

A large input message buffer can help performance while fetching data from the
database because it reduces the number of network messages. Note that a larg
message buffer can affect system throughput because of concurrency. Any row
5-174 SQL Application Programming Interface Reference

sqlims - Input Message Size

 the
nput

s

 at
ically

ze of

 you
currently in the input message buffer can have a shared lock on it (depending on
isolation level) preventing other users from changing that row. Therefore, a large i
message buffer can cause more shared locks to remain than are necessary.

See the explanation of sqlsil for more information about how each isolation level use
the input message buffer.

SQLBase automatically maintains an input message buffer large enough to hold
least one row of data. Despite the specified input message size, SQLBase dynam
allocates more space if necessary.

A large input message buffer helps performance when reading LONG VARCHAR
columns.

This function can also improve overall system performance by decreasing the si
the input message buffer when an application does not need to fetch data.

Parameters
cur

The cursor handle associated with this function. Each cursor has one input
message buffer associated with it on the client.

insize

The size of the input message buffer in bytes. Specify a zero to indicate that
want to use the default input message buffer size in sql.h (2000).

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
main()
{

SQLTDAL insize=500;
SQLTDAL outsize=500;

staticchardbnam[] = "demox";/* database name */

/* CONNECT TO THE DATABASE */

cur = 0;
SQL Application Programming Interface Reference 5-175

Chapter 5 SQL/API Function Reference
if (rcd = sqlcnc(&cur, dbnam, 0))/* perform connect
operation */

apierr("SQLCNC");

if (rcd = sqlims (cur,insize))
apierr("SQLIMS");

else
printf("Input Message Size set to = %d \n", insize);

if (rcd = sqloms(cur,outsize))
apierr("SQLOMS");

else
printf("Output Message Size set to = %d \n", outsize);

/* DISCONNECT FROM THE DATABASE */

if (rcd = sqldis(cur))/* failure on disconnect? */
apierr("SQLDIS");

}

Related functions
sqloms sqlsil

sqlind - INstall Database

Syntax
#include <sql.h>

SQLTAPI sqlind (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */

Description
This function installs a database on the network and adds a dbname keyword to
sql.ini.

This function does not physically create a database. Call sqlcre to create a database.
5-176 SQL Application Programming Interface Reference

sqlind - INstall Database
Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
main()
{

srvname = "SERVER1";
password = 0;

/* CONNECT TO THE SERVER */

if (rcd = sqlcsv(&handle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

if (rcd = sqlcre(handle,"DEMOX",0))
apierr("SQLCRE");

else
printf("Database DEMOX Created \n");

/* DEINSTALL DATABASE */

if (rcd = sqlded(handle,"DEMOX",0))
apierr("SQLDED");

else
printf("Database DEMOX Deinstalled \n");

/* INSTALL DATABASE */

if (rcd = sqlind (handle,"DEMOX",0))
SQL Application Programming Interface Reference 5-177

Chapter 5 SQL/API Function Reference

 or

g
n is

T

ts

ion
 a
apierr("SQLIND");
else

printf("Database DEMOX Installed \n");

/* DISCONNECT FROM THE SERVER */

if (rcd = sqldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions
sqlcre sqlded sqldel
sqlcsv

sqlini - INItialize

Syntax
#include <sql.h>

SQLTAPI sqlini (callback)

SQLTPFP callback; /* Callback yield function */

Description
This function initializes the dynamic library used for a Windows 3.x, Windows 95,
Windows NT application.

This function also sets up a callback function so control can pass to the operatin
system while a function is executing on the server. Although this callback functio
not necessary in single-user mode, you should use it to maintain portability to a
multi-user environment. Callback is only needed by Windows 3.x, not Windows N
nor Windows 95.

For a Windows 3.x application, this function initializes the dynamic library and se
up a callback function so the application will yield control while it is waiting for a
response form the database server. This callback function is necessary to allow
smooth multi-tasking of other Windows applications. Although this callback funct
is not necessary in single-user mode, you should use it to maintain portability to
multi-user environment.
5-178 SQL Application Programming Interface Reference

sqlini - INItialize

ce.

ains
For Windows, you might call the sqlini function as follows:

sqlini(MakeProcInstance(YieldProc, hInstance));

Windows NT and Windows 95 do not use a callback function. However, the
application must still call the sqlini function so that other initialization can take pla
On these platforms, call the sqlini function in your program as follows:

sqlini((SQLTPFP) (0));

Call this function before the first database connect.

You must ensure that SQLBase is not called in the yield function. If SQLBase is
called while in the yield function, the results are unpredictable.

See testwin.c for an example of how to use this function.

Parameters
callback

A far pointer to a callback function that is called to yield to other applications
when the server is processing a request. If this argument is null, control rem
with the application. If you specify a non-null callback function, it is ignored.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
int PASCAL WinMain(hInstance, hPrevInstance, lpszCmdLine,

cmdShow)

HANDLE hInstance;
HANDLE hPrevInstance;
LPSTR lpszCmdLine;
int cmdShow;

{

shortrcd;

if (rcd = sqlini (MakeProcInstance(YieldProc, hInstance)))
{

prints("Cannot initialize API interface - %u\n",rcd);
return FALSE;

}

SQL Application Programming Interface Reference 5-179

Chapter 5 SQL/API Function Reference

stem

is

mn
int FAR PASCAL YieldProc()
{

MSG msg;

while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
return TRUE;/* return successfully*/

}
}

Related functions
sqldon

sqllab - LABel information

Syntax
#include<sql.h>

SQLTAPI sqllab(cur, slc, lpb, lblp)

SQLTCUR cur; /* Cursor number */
SQLTSLC slc; /* Select column number */
SQLTCHP lbp; /* Buffer to retrieve label */
SQLTCHL lblp; /* Label name length */

Description
This function returns label information for the specified column in a SELECT
command.

Labels are text strings that document table columns. Labels are stored in the sy
catalog table SYSTABLES in the LABEL column. LABELs can be up to 30
characters in length.

A successful compile of a SELECT command must come immediately before th
function.

An application can loop through all the columns to get the label information colu
by column. The sqlnsi function returns the number of columns in a SELECT list.
5-180 SQL Application Programming Interface Reference

sqllab - LABel information

ns in
Parameters
cur

The cursor handle associated with this function.

slc

The column number (starting with 1) in the SELECT list to get information
about. The column number can be used to set up a loop to describe all colum
the SELECT list.

lbp

A pointer to the variable where this function returns the label.

lblp

A pointer to the variable where this function returns the length of the label.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTCUR cur1 = 0; /* SQLBASE cursor */

main()

SQLTSLC slc; /* Select list column */
SQLTCHL chl; /* Column header length */
uchar chbuf[300]; /* Column header buffer */

if (sqllab (curlab, slc, chbuf, &chl))
... process error

chbuf[chl] = '\0';
printf("Label header = %s\n" chbuf);
printf("Label header length = %d\n", chl);

Related functions
sqlgdi sqlnsi
SQL Application Programming Interface Reference 5-181

Chapter 5 SQL/API Function Reference

ution

sqlldp - LoaD oPeration

Syntax
#include <sql.h>

SQLTAPI sqlldp (cur, cmdp, cmdl)

SQLTCUR cur; /* cursor number */
SQLTDAP cmdp; /* -> command buffer */
SQLTDAL cmdl; /* command length */

Description
This function processes the LOAD command and sends it to the backend for
compilation and execution. If the load source file resides on the server, the exec
is handled completely at the server. If it is on the client, this function handles the
retrieval of load data and sends it to the server, in chunks.

Parameters
cur

The cursor handle associated with this function.

cmdp

A pointer to the string that contains the LOAD command.

cmdl

The length of the string pointed to by cmdp. If the string pointed to by cmdp is
null-terminated, specify zero and the system will compute the length.

Return Value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful, and returns an error code.

Example
The following sample program calls the LOAD command and inputs a file name that
exists online:

static char loadcmd[] =
"LOAD SQL db.unl ON SERVER";
5-182 SQL Application Programming Interface Reference

sqllsk - Long SeeK

 the

 In

 an
ret = sqlldp(cur, loadcmd, 0);

You can also create a customized program to manipulate the load input buffer in
client. For an example, see the Loading and unloading databases section in the
chapter Using the SQL/API.

Related functions
sqlunl

sqllsk - Long SeeK

Synopsis
#include <sql.h>

SQLTAPI sqllsk (cur,slc,pos)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select column */
SQLTLSI pos; /* Desired byte position */

Description
This function sets the position to start reading within a LONG VARCHAR column.
other words, you do not have to start sqlrlo reading a LONG VARCHAR at the first
byte.

You cannot seek to a position within a LONG VARCHAR to start writing with
sqlwlo. The sqlwlo function must write the entire LONG VARCHAR column.

You must call this function after sqlfet and before sqlrlo.

If the requested byte position is beyond the end of the data, this function returns
error.

Parameters
cur

The cursor handle associated with this function.

slc

The column number in the SELECT list. The first column is column 1.
SQL Application Programming Interface Reference 5-183

Chapter 5 SQL/API Function Reference

pos

The byte position within the LONG VARCHAR column to start reading. Byte
position 1 is the first byte in the LONG VARCHAR column.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
static char sqlsel[] = "select biography from people where

name = :1"

/* position read to last 80 bytes of the long */
long size;

/* Get size of long */
if (!(ret = sqlgls(cur, 1, &size)))

{
if (!(ret = sqllsk (cur, 1, size-80))/* set position */
... process error (sqllsk)

}
else

process error

Related functions
sqlrlo sqlfet sqlelo

sqlmcl - reMote CLose server file

Syntax
#include <sql.h>

SQLTAPI sqlmcl (shandle, fd)

SQLTSVH shandle; /* Server handle */
SQLTFLH fd; /* File handle */

Description
This function closes a file on the server.
5-184 SQL Application Programming Interface Reference

sqlmcl - reMote CLose server file
You must first open the server file using sqlmop.

Parameters
shandle

The server handle returned by sqlcsv.

fd

The file handle returned by sqlmop.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
{

unsigned char buffer[1024];
SQLTSVH handle;
SQLTSVN srvno;
SQLTDAP password;
SQLTFLH fdin;
SQLTFLH fdout;
SQLTDAL len;
SQLTDAL rlen;

...
if ((ret = sqlcsv(&handle, srvno, password)) == 0)

{
if ((rcd = sqlmop(handle, &fdin, "infile",SQLORDONLY |

SQLOBINARY)) == 0)
{

if ((rcd = sqlmop(handle, &fdout, "outfile",SQLOCREAT
| SQLOTRUNC | SQLOWRONLY | SQLOBINARY)) == 0)

{
for (;;)

{
rcd = sqlmrd(handle, fdin, buffer, sizeof(buffer),

&len);
if (rcd != 0 || rlen == 0)

break;
rcd = sqlmwr(handle, fdout, buffer, len, &rlen);
if (rcd != 0 || len != rlen)

break;
}

SQL Application Programming Interface Reference 5-185

Chapter 5 SQL/API Function Reference

lete.
rcd = sqlmcl (handle, fdout);
}
rcd = sqlmcl(handle, fdin);

}
sqldsv(handle);
}

}

Related functions
sqlcsv sqlmop sqlmsk
sqlmdl sqlmrd sqlmwr

sqlmdl - reMote DeLete server file

Syntax
#include <sql.h>

SQLTAPI sqlmdl (shandle, filename)

SQLTSVH shandle; /* Server handle */
SQLTDAP filename; /* File name to delete */

Description
This function deletes a file on the server.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.

filename

A pointer to the null-terminated string that contains the name of the file to de
5-186 SQL Application Programming Interface Reference

sqlmop - reMote OPen server file
Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
sqlmdl (shandle, filename);

Related functions
sqlcsv sqlmop sqlmsk
sqlmcl sqlmrd sqlmwr

sqlmop - reMote OPen server file

Syntax
#include <sql.h>
#include <sqlsrv.h>

SQLTAPI sqlmop (shandle, fdp, filename, openmode)

SQLTSVH shandle; /* Server handle */
SQLTFLH PTR fdp; /* File handle */
SQLTDAP filename; / * File name to open or create */
SQLTFMD openmode; /* File open mode */

Description
This function opens or creates a file on the server.

There is a limit of four file handles open per each server connect.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.
SQL Application Programming Interface Reference 5-187

Chapter 5 SQL/API Function Reference

en

or

fdp

The file handle returned by sqlmop.

filename

A pointer to the null-terminated string that contains the name of the file to op
or create.

openmode

The type of operations allowed. This argument is formed by combining one
more of the constants in the following table.

When more than one constant is specified, the constants are joined with the
bitwise OR operator (|). These constants are defined in sqlsrv.h and are listed in
the table below.

Constant Description

SQLOAPPEND Reposition the file pointer at the end of the file
before every write.

SQLOCREAT Create and open a new file for writing. Has no
effect if filename exists.

SQLOEXCL Return an error value if filename exists. Used only
with SQLOCREAT.

SQLORDONLY Open file for reading only. If this is specified,
neither SQLORDWR nor SQLOWRONLY can be
given.

SQLORDWR Open file for both reading and writing. If this is
specified, neither SQLORDONLY nor
SQLOWRONLY can be specified.

SQLOTRUNC Open and truncate an existing file to zero length.
The file must have write permission. The file
contents are destroyed.

SQLOWRONLY Open file for writing only. If this is given, neither
SQLORDONLY nor SQLORDWR can be given.

SQLOBINARY Open file in binary mode.

SQLOTEXT Open file in text mode.

SQLODIRCREA Create directory.
5-188 SQL Application Programming Interface Reference

sqlmop - reMote OPen server file
Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
This example copies infile on the server to outfile on the server.

{
unsigned char buffer[1024];
SQLTSVH handle;
SQLTSVN srvno;
SQLTDAP password;
SQLTFLH fdin;
SQLTFLH fdout;
SQLTDAL len;
SQLTDAL rlen;

...
if ((ret = sqlcsv(&handle, srvno, password)) == 0)

{
if ((rcd = sqlmop(handle, &fdin, "infile", SQLORDONLY |

SQLOBINARY)) == 0)
{
if ((rcd = sqlmop (handle, &fdout, "outfile", SQLOCREAT

| SQLOTRUNC | SQLOWRONLY | SQLOBINARY)) == 0)
{
for (;;)

{
rcd = sqlmrd(handle, fdin, buffer, sizeof(buffer),

&len);
if (rcd != 0 || rlen == 0)
break;

rcd = sqlmwr(handle, fdout, buffer, len, &rlen);
if (rcd != 0 || len != rlen)

break;
}

rcd = sqlmcl(handle, fdout);
}
rcd = sqlmcl(handle, fdin);

}
sqldsv(handle);
}

}

SQL Application Programming Interface Reference 5-189

Chapter 5 SQL/API Function Reference

.
er.
Related functions
sqlcsv sqlmop sqlmsk
sqlmcl sqlmrd sqlmwr
sqlmdl

sqlmrd - reMote ReaD server file

Syntax
#include <sql.h>

SQLTAPI sqlmrd (shandle, fd, buffer, len, rlen)

SQLTSVH shandle; /* Server handle */
SQLTFLH fd; /* File handle */
SQLTDAP buffer; /* Read buffer */
SQLTDAL len; /* Read length */
SQLTDAL PTR rlen; /* Number of bytes read */

Description
This function reads len bytes from the file associated with fd into buffer. The read
operation begins at the current position of the file pointer associated with the file
After the read operation, the file pointer is positioned at the next unread charact

Parameters
shandle

The server handle returned by sqlcsv.

fd

The file handle returned by sqlmop.

buffer

A pointer to the variable where this function returns the data that is read.

len

The number of bytes to read.
5-190 SQL Application Programming Interface Reference

sqlmrd - reMote ReaD server file

 into
rlen

A pointer to the variable where this function returns the number of bytes read
buffer.

When this function returns zero in rlen, it has reached the end of file.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
{

unsigned char buffer[1024];
SQLTSVH handle;
SQLTSVN srvno;
SQLTDAP password;
SQLTFLH fdin;
SQLTFLH fdout;
SQLTDAL len;
SQLTDAL rlen;

...
if ((ret = sqlcsv(&handle, srvno, password)) == 0)

{
if ((rcd = sqlmop(handle, &fdin, "infile", SQLORDONLY |

SQLOBINARY)) == 0)
{
if ((rcd = sqlmop(handle, &fdout, "outfile", SQLOCREAT

| SQLOTRUNC | SQLOWRONLY | SQLOBINARY)) == 0)
{
for (;;)

{
rcd = sqlmrd (handle, fdin, buffer, sizeof(buffer),

rlen);
if (rcd != 0 || rlen == 0)

break;
rcd = sqlmwr(handle, fdout, buffer, len, &rlen);
If (rcd != 0 || len != rlen)

break;
}

rcd = sqlmcl(handle, fdout);
}
rcd = sqlmcl(handle, fdin);

}
sqldsv(handle);
}

}

SQL Application Programming Interface Reference 5-191

Chapter 5 SQL/API Function Reference
Related functions
sqlcsv sqlmop sqlmwr
sqlmdl sqlmsk

sqlmsk - reMote SeeK server file

Syntax
#include <sql.h>

SQLTAPI sqlmsk (shandle, fd, offset, whence, roffset);

SQLTSVH shandle; /* Server handle */
SQLTFLH fd; /* File handle */
SQLTLNG offset; /* Seek offset */
SQLTWNC whence; /* Seek origin */
SQLTLNGPTR roffset; /* Resulting seek address */

Description
This function moves the file pointer for fd to a new location that is offset bytes from
whence. This function returns the new location in roffset. The next operation on the
file occurs at the new roffset location.

Parameters
shandle

The server handle returned by sqlcsv.

fd

The file handle returned by sqlmop.

offset

The number of bytes from whence.

whence

The position where the seek begins:

0 Seek relative to beginning of file.

1 Seek relative to current position.
5-192 SQL Application Programming Interface Reference

sqlmwr - reMote WRite server file

e
end
 of
roffset

The resulting offset of the new position from the beginning of the file.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
sqlmsk (shandle, fhandle, offset, whence, roffset);

Related functions
sqlcsv sqlmdl sqlmrd
sqlmcl sqlmop sqlmwr

sqlmwr - reMote WRite server file

Syntax
#include <sql.h>

SQLTAPI sqlmwr (shandle, fd, buffer, len, rlen);

SQLTSVH shandle; /* Server handle */
SQLTFLH fd; /* File handle */
SQLTDAP buffer; /* Data to write */
SQLTDAL len; /* Length of buffer */
SQLTDAL PTR rlen; /* Number of bytes written */

Description
This function writes len bytes from the buffer into the file associated with fd. The
write operation begins at the current position of the file pointer associated with th
given file. If the file is opened for appending, the operation begins at the current
of the file. After the write operation, the file pointer is incremented by the number
bytes actually written.

2 Seek relative to end of file.
SQL Application Programming Interface Reference 5-193

Chapter 5 SQL/API Function Reference

ally
Parameters
shandle

The server handle returned by sqlcsv.

fd

The file handle returned by sqlmop.

buffer

A pointer to the variable that contains the data to write.

len

The number of bytes to write from buffer.

rlen

A pointer to the variable where this function returns the number of bytes actu
written.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
{

unsigned char buffer[1024];
SQLTSVH handle;
SQLTSVN srvno;
SQLTDAP password;
SQLTFLH fdin;
SQLTFLH fdout;
SQLTDAL len;
SQLTDAL rlen;

...
if ((ret = sqlcsv(&handle, srvno, password)) == 0)

{
if ((rcd = sqlmop(handle, &fdin, "infile", SQLORDONLY |

SQLOBINARY)) == 0)
{
if ((rcd = sqlmop(handle, &fdout, "outfile", SQLOCREAT

 SQLOTRUNC | SQLOWRONLY | SQLOBINARY)) == 0)
{
for (;;)

{

5-194 SQL Application Programming Interface Reference

sqlnbv - Number of Bind Variables

eing
rcd = sqlmrd(handle, fdin, buffer, sizeof(buffer),
rlen);

if (rcd != 0 || rlen == 0)
break;

rcd = sqlmwr (handle, fdout, buffer, len, &rlen);
if (rcd != 0 || len != rlen)

break;
}

rcd = sqlmcl(handle, fdout);
}
rcd = sqlmcl(handle, fdin);

}
sqldsv(handle);
}

}

Related functions
sqlcsv sqlmdl sqlmrd
sqlmcl sqlmop sqlmsk

sqlnbv - Number of Bind Variables

Syntax
#include <sql.h>

SQLTAPI sqlnbv (cur, nbv)

SQLTCUR cur /* Cursor handle */
SQLTNBV PTR nbv; /* Variable */

Description
This function returns the number of bind variables in the current SQL command b
processed for the specified cursor. The number of bind variables is set after the
compile.

Parameters
cur

The cursor handle associated with this function.
SQL Application Programming Interface Reference 5-195

Chapter 5 SQL/API Function Reference
nbv

A pointer to the variable where this function returns the number of bind
variables.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
unsigned char nbv; /* number of bind variables */
short ret; /* return code */

ret = sqlnbv (cur, &nbv);

Related functions
sqlbld sqlbnd sqlbnu
sqlbln sqlbnn sqlcbv
sqlbna sqlbss

sqlnii - get the Number of Into variables

Syntax
#include <sql.h>

SQLTAPI sqlnii (cur,nii)

SQLTCUR cur; /* Cursor handle*/
SQLTCHL PTR nii; /* INTO variable name length*/

Description
This function retrieves the number of INTO variables.

Parameters
cur

The cursor handle associated with this function.
5-196 SQL Application Programming Interface Reference

sqlnii - get the Number of Into variables
nii

A pointer to the variable where this function returns the number of INTO
variables.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
#include "sql32.h"
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
/*-- */
/* */
/* Example of a simple fetch */
/* */
/* Run EMP.SQL via SQLTALK to initialize tables and data */
/* */
/*-- */

SQLTCUR cur; /* SQLBASE cursor number*/
SQLTRCD rcd; /* error number */
char errmsg[SQLMERR]; /* error msg text buffer*/
void failure(char*); /* error routine */
main()
{
 char name[20]; /* employee name buffer */
 SQLTCHL PTR nii;
 static char selcmd [] = /* SQL SELECT statement */

 "SELECT EMP_NAME into :name FROM EMP ";

 /*
 CONNECT TO THE DATABASE
 */

 if (rcd = sqlcnc(&cur, "ISLAND", 0))
 {
 sqlerr(rcd, errmsg); /* get error message text */
 printf("%s \n",errmsg);
 return(1);
 }
SQL Application Programming Interface Reference 5-197

Chapter 5 SQL/API Function Reference
 /*
 COMPILE SELECT STATEMENT
 */

 if (sqlcom(cur, selcmd, 0))
 failure("SELECT COMPILE");

 /*
 PERFORM sqlnii
 */

 if (sqlnii(cur,nii))
failure ("SQLNII");

 else
printf("Number of select items is %d\n",*nii);

 /*
 SET UP SELECT BUFFER
 */

 if (sqlssb(cur, 1, SQLPBUF, name, 20, 0, SQLNPTR,
SQLNPTR))

 failure("SET SELECT BUFFER");
/*

 EXECUTE SELECT STATEMENT
 */

 if (sqlexe(cur))
 failure("EXECUTING SELECT");

 /*
 FETCH DATA
 */

 for (;;)
 {
 memset(name,' ',20);/* clear employe name buf */

 if (rcd = sqlfet(cur))/* fetch the data */
 break;

 printf("%s\n", name);/* print employe name */
 }

 if (rcd != 1) /* failure on fetch */
 failure("FETCH");
5-198 SQL Application Programming Interface Reference

sqlnrr - Number of Rows in Result set

e
 /*
 DISCONNECT FROM THE DATABASE
 */

 if (rcd = sqldis(cur))
 failure("DISCONNECT");

}
void failure(ep)
char* ep; /* failure msg string */
{

 SQLTEPO epo; /* error position */

 printf("Failure on %s \n", ep);

 sqlrcd(cur, &rcd); /* get the error */
 sqlepo(cur, &epo); /* get error position */
 sqlerr(rcd, errmsg); /* get error message text */

 sqldis(cur); /* disconnect cursor*/

 printf("%s (error: %u, position: %u) \n",errmsg,rcd,epo);
 exit(1);

}

sqlnrr - Number of Rows in Result set

Syntax
#include <sql.h>

SQLTAPI sqlnrr(cur, rcountp)

SQLTCUR cur; /* Cursor handle */
SQLTROW PTR rcountp; /* Number of rows */

Description
This function retrieves the number of rows in a result set.

INSERTs into the result set increase the row count but DELETEs, which appear as
blanked-out rows in result set mode, do not decrease the row count. However, th
deleted rows disappear on the next SELECT.

The program must be in result set mode (enabled with the sqlsrs function).
SQL Application Programming Interface Reference 5-199

Chapter 5 SQL/API Function Reference

e
Parameters
cur

The cursor handle associated with this function.

rcountp

A pointer to the variable where this function returns the number of rows in th
result set.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
main()
{

char* p; /* misc. pointer */
FILE* in; /* input file */
SQLTDAP cp; /* character pointer */

SQLTDAL length; /* length */
SQLTPDL pdl; /* program buffer length */
int rows=0; /* number of rows */
SQLTDDT ddt; /* database data type */
SQLTPDT pdt; /* program data type */
SQLTBNN bnn; /* bind number */
SQLTSLC slc; /* select list column */
SQLTNBV nbv; /* number of bind variables */
SQLTNSI nsi; /* number of select items */
SQLTROW nrows=0;
char line[200]; /* I/O line */
nt i;

...

static char selcom[] = /* SELECT command */
"SELECT A FROM X WHERE A < 1000";

if (rcd = sqlcnc(&cur, dbnam, 0))
apierr("SQLCNC");

else
printf("Connection Established to Database DEMO \n");

...
5-200 SQL Application Programming Interface Reference

sqlnrr - Number of Rows in Result set
if (rcd = sqlcom(cur, selcom, 0))
apierr("SQLCOM");

cp = line; /* set pointer to input line */
if (rcd = sqlnsi(cur, &nsi))/* get # select items */

apierr("SQLNSI");
for (slc = 1; slc <= nsi; slc++)/* get information on each
column */

{
if (rcd = sqldes(cur, slc, &ddt, &pdl,SQLNPTR, SQLNPTR,

SQLNPTR, SQLNPTR))
apierr("SQLDES");

if (rcd = sqlssb(cur, slc, pdt, cp, pdl, 0, SQLNPTR,
SQLNPTR))

apierr("SQLSSB");
cp += (pdl + 1);/* locate next area */

}

if (rcd = sqlexe(cur))/* failure on select execute? */
apierr("SQLEXE");

if (rcd = sqlnrr (cur, &nrows))
apierr("SQLNRR");

else
printf("Number of rows in Result Set = %d\n",nrows);

length = cp - line; /* compute the length */
cp = 0; / concatenate a zero to the string */
printf("data: \n");
for (i = 0; i < nrows; i++)

{
memset(line, ' ', length);/* fill the line with spaces

*/
if (rcd = sqlfet(cur)) /* failure or end of file?*/

break;
printf("%s\n", line); /* print the line */

}
printf("Number of rows fetched = %d \n", i);

if (rcd = sqldis(cur))
apierr("SQLDIS");

}

SQL Application Programming Interface Reference 5-201

Chapter 5 SQL/API Function Reference

et
nd

Related functions
sqlgnr sqlrow sqlsrs

sqlnsi - Number of Select Items

Syntax
#include <sql.h>

SQLTAPI sqlnsi (cur, nsi)

SQLTCUR cur; /* Cursor handle */
SQLTNSI PTR nsi; /* Number of SELECT items */

Description
This function returns the number of items in the SELECT list of a SQL command
now being processed by the specified cursor. The number of SELECT items is s
after sqlcom or sqlcex. For example, if you compiled and executed the SQL comma
SELECT * FROM EMP and the columns in EMP are ID, NAME, and DEPT, then
sqlnsi returns 3.

Parameters
cur

The cursor handle associated with this function.

nsi

A pointer to the variable where this function returns the number of SELECT
items.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
unsigned char nsi; /* command type */
short ret; /* return code */

ret = sqlnsi (cur, &nsi);
5-202 SQL Application Programming Interface Reference

sqloms - Output Message Size

to a

L

se it
large
an
ays
ut

d any
 the

ce for
Related functions
sqlcom sqlexe

sqloms - Output Message Size

Syntax
#include <sql.h>

SQLTAPI sqloms (cur,outsize)

SQLTCUR cur; /* Cursor number */
SQLTDAL outsize; /* Output message buffer size */

Description
This function sets the size (in bytes) of the output message buffer.

The output message buffer is allocated on both the client computer and on the
database server. The client builds an output message in this buffer and sends it
buffer of the same size on the database server. It is called an output message buffer
because it is output from the client's point of view.

The most important messages sent from the client to the database server are SQ
commands to compile or a row of data to insert.

A large output message buffer does not necessarily increase performance becau
only needs to be large enough to hold the largest SQL command to compile, or
enough to hold the largest row of data to insert. A large output message buffer c
allocate space unnecessarily on the both the client and the server. Rows are alw
inserted and sent one row at a time (except in bulk execute mode). A larger outp
message buffer does not reduce network traffic unless bulk execute is on.

SQLBase automatically maintains an output message buffer large enough to hol
SQL command or a row to insert of any length (given available memory). Despite
specified output message buffer size, SQLBase dynamically allocates more spa
the output message buffer if needed.

A large output message buffer can help performance when writing LONG
VARCHAR columns.
SQL Application Programming Interface Reference 5-203

Chapter 5 SQL/API Function Reference

ult
Parameters
cur

The cursor handle associated with this function. Each cursor has one output
message buffer associated with it on the client.

outsize

The size of the output message buffer in bytes. Specify zero to use the defa
message output buffer size in sql.h (1000).

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
main()
{

SQLTDAL insize=500;
SQLTDAL outsize=500;

static char dbnam[] = "demox";/* database name */

/* CONNECT TO THE DATABASE */

cur = 0;
if (rcd = sqlcnc(&cur, dbnam, 0))/* perform connect

operation */
apierr("SQLCNC");

if (rcd = sqlims(cur,insize))
apierr("SQLIMS");

else
printf("Input Message Size set to = %d \n", insize);

if (rcd = sqloms (cur,outsize))
apierr("SQLOMS");

else
printf("Output Message Size set to = %d \n", outsize);

/* DISCONNECT FROM THE DATABASE */

if (rcd = sqldis(cur))/* failure on disconnect? */
apierr("SQLDIS");

}

5-204 SQL Application Programming Interface Reference

sqlopc - OPen Cursor

rsors
Related functions
sqlims

sqlopc - OPen Cursor

Syntax
#include <sql.h>

SQLTAPI sqlopc (curp, hCon, flag)

SQLTCUR PTR curp; /* Cursor handle */
SQLTCHN hCon; /* Connection handle */
SQLTMOD flag; /* future flag */

Description
This function opens a new cursor for a specific connection. You can open 256 cu
per connection handle.

Parameters
curp

A pointer to a cursor handle where this function returns a cursor handle

hCon

The newly created cursor is associated with this connection handle.

flag

Future flag. Currently not defined. You can specify zero for this parameter.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
if(rcd = sqlopc(&cur, hCon, 0))
{

printf(“Failure on cursor open (rcd = %d)\n”, rcd);
exit(0);

}
else printf(“New cursor opened\n”);
SQL Application Programming Interface Reference 5-205

Chapter 5 SQL/API Function Reference

t. A

 result
 is
Related functions
sqlcch sqldis sqldch

sqlprs - Position in Result Set

Syntax
#include <sql.h>

SQLTAPI sqlprs (cur, row)

SQLTCUR cur; /* Cursor handle */
SQLTROW row; /* Row number wanted */

Description
When in result set mode, this function sets a row position in the current result se
later sqlfet returns the row at the position indicated by row. The first row is row zero.

In result set mode, once a result set has been created, you can get any row in the
set with the sqlprs function without sequentially fetching forward. Once the cursor
positioned, later fetches start from that row.

Parameters
cur

The cursor handle associated with this function.

row

The position (starting with 0) of the row to return in a later sqlfet. If the row is
not in the result set, this function returns an error.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
/* Set the position to a row in the result set of an array of
strings */

char *rows[100];
5-206 SQL Application Programming Interface Reference

sqlrbf - Roll Back Flag

 to
oyed
short ret;
long i;

i = getrow(); /* routine to get value of i */
if (ret = sqlprs (cur, i))

{
... process error

}
else

...

Related functions
sqlcrs sqlspr sqlstr
sqldrs sqlsrs sqlurs
sqlrrs

sqlrbf - Roll Back Flag

Syntax
#include <sql.h>

SQLTAPI sqlrbf (cur, rbf)

SQLTCUR cur; /* Cursor handle */
SQLTRBF PTR rbf; /* Rollback flag */

Description
This function returns the system rollback flag for the current transaction.

A rollback can happen automatically because of a deadlock or system failure.

The rollback flag is not set for a user-initiated rollback.

If the rollback flag is set, the work for all cursors that the program has connected
the database has been rolled back and all compiled commands have been destr
unless cursor-context preservation is on.

Parameters
cur

The cursor handle associated with this function (transaction).
SQL Application Programming Interface Reference 5-207

Chapter 5 SQL/API Function Reference

e is

e last

s

the
rbf

A pointer to the variable where this function returns the rollback flag. This
function returns a 1 if a server-initiated rollback occurred; otherwise, the valu
0.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
char rbkflag; /* rollback flag */
short ret; /* return code */

ret = sqlrbf (cur, &rbkflag);

Related functions
sqlerr sqlfer sqlrcd

sqlrbk - RollBacK

Syntax
#include <sql.h>

SQLTAPI sqlrbk (cur);

SQLTCUR cur; /* Cursor handle */

Description
This function rolls back the database to the state it was in at the completion of th
implicit or explicit COMMIT. All uncommitted work is undone. This function also
establishes the starting point of the next transaction.

This function rolls back all work done since the last commit for all cursors that the
application has connected to the database.

If cursor-context preservation is off, this function destroys all compiled command
for all cursors that the program has connected to the database. If cursor-context
preservation is on, this function does not destroy compiled commands if both of
following are true:
5-208 SQL Application Programming Interface Reference

sqlrcd - Return CoDe

e

e
• The application is in Release Locks (RL) isolation level.

• A DDL operation was not performed.

Parameters
cur

The cursor handle associated with this function.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
ret = sqlrbk (cur);

Related functions
sqlcmt sqlrbf

sqlrcd - Return CoDe

Syntax
#include <sql.h>

SQLTAPI sqlrcd (cur, rcd)

SQLTCUR cur; /* Cursor handle */
SQLTRCD PTR rcd; /* Return code */

Description
This function gets the return code for the most-recent SQL/API function. The sam
code is also returned directly from the function call.

Call the sqlerr or sqlfer function to get the text associated with the return code. Th
message text for the return code is in error.sql.
SQL Application Programming Interface Reference 5-209

Chapter 5 SQL/API Function Reference
Parameters
cur

The cursor handle associated with this function.

rcd

A pointer to the variable where this function returns the return code.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
short rcode; /* return code */

if (sqlexe(cur)) /* if execute fails */
sqlrcd (cur, &rcode); /* get the return code */

... process error

Related functions
sqlerr sqlfer sqlxer
sqletx

sqlrdb - Restore DataBase

Syntax
#include <sql.h>

SQLTAPI sqlrdb (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTFNP bkpdir; /* Backup directory */
SQLTFNL bkpdirl; /* Backup directory length */
SQLTBOO local; /* True: backup directory on local node */
SQLTBOO over; /* True: overwrite existing file */
5-210 SQL Application Programming Interface Reference

sqlrdb - Restore DataBase

lways

e
For
Description
This function restores a database from the specified directory. The database is a
restored from the file:

database-name.BKP

If this function finds a control file in the restore directory, the function performs th
restore operation based on the segmented backups specified in the control file.
details, read the Database Administrator’s Guide.

You cannot perform a restore while users are connected to the database.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

bkpdir

A pointer to the string that contains the backup directory name.

bkpdirl

The length of the string pointed to by bkpdir. If the string pointed to by bkpdir is
null-terminated, specify zero and the system will compute the length.

local

Source of backup:

0 Backup directory on server.

1 Backup directory on local (client) node.
SQL Application Programming Interface Reference 5-211

Chapter 5 SQL/API Function Reference
over

Overwrite indicator:

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTSVH shandle;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbname1[] = "omed";

password = 0;
bkpdir = "\\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);
printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER*/

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */

if (rcd =
sqlrdb (shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLRDB");
else

printf("Restored Database \n");

0 Do not overwrite existing file.

1 Overwrite existing file.
5-212 SQL Application Programming Interface Reference

sqlrdb - Restore DataBase
/* ROLLFORWARD TO END */

sqlrof(shandle,dbname1,0,mode,0,0);

lognum=0;

/*
The loop below assumes that all log file backups are on
disk. If a log file backup is not on disk, lognum is set
to a non-zero value which causes the loop to terminate.

*/
while (lognum == 0)

{
/* GET NEXT LOG */
sqlgnl(shandle,dbname1,0,&lognum);

/* RESTORE LOG FILES */
sqlrlf(shandle,dbname1,0,bkpdir,bkpdirl,local,over);

}

/* END ROLLFORWARD */

if (rcd = sqlenr(shandle,dbname1,0))
apierr("SQLENR");

else
printf("End Rollforward \n");

Related functions
sqlbdb sqlcsv sqlrlf
sqlblf sqlenr sqlrof
sqlbss sqlgnl sqlrss
sqlcrf sqlrel
SQL Application Programming Interface Reference 5-213

Chapter 5 SQL/API Function Reference

ull

most
sqlrel - RELease current log

Syntax
#include <sql.h>

SQLTAPI sqlrel (cur)
SQLTCUR cur; /* Cursor handle */

Description
This function releases the current active log file without waiting for it to fill
completely.

A new log file is created automatically when the current active log file becomes f
(this is called a log rollover). The sqlrel function forces a log rollover and is useful
when executed just prior to a backup. In releasing the current active log file,
SQLBase can back it up (if logbackup is enabled) and delete it. In doing so, the
up-to-date backup is created.

Parameters
cur

The cursor handle associated with this function.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTSVH shandle;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbname1[] = "omed";

password = 0;
5-214 SQL Application Programming Interface Reference

sqlrel - RELease current log
bkpdir = "\\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO OMED */

if (rcd = sqlcnc(&cur1,dbname1,0))
apierr("SQLCNC");

else
printf("Connected to OMED \n");

/* SET LOGBACKUP MODE ON */

lbmset=1;
if (rcd = sqlset(cur1,SQLPLBM,(ubyte1p)&lbmset,0))

apierr("SQLSET");
else

printf("Logbackupmode is set to %d \n", lbmset);

/* MAKE BACKUP DIRECTORIES */

system("mkdir \\backup");
system("mkdir \\backup\\omed");

/* CONNECT TO SERVER*/

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* BACKUP DATABASE */

if (rcd =
sqlbdb(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLBDB");
else

printf("Backed Up Database \n");

/* RELEASE LOG */

if (rcd = sqlrel (cur1))
apierr("SQLREL");

else
SQL Application Programming Interface Reference 5-215

Chapter 5 SQL/API Function Reference

or

and or
printf("Released Logs \n");

/* BACKUP LOGS */

if (rcd =
sqlblf(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLBLF");
else

printf("Backed Up Logs \n");

Related functions
sqlbdb sqlenr sqlrlf
sqlblf sqlgnl sqlrof
sqlbss sqlrdb sqlrss
sqlcrf

sqlret - RETrieve a stored command/procedure

Syntax
#include <sql.h>

SQLTAPI sqlret (cur, cnp, cnl)

SQLTCUR cur ; /* Cursor handle */
SQLTDAP cnp; /* Name of stored command/procedure*/
SQLTDAL cnl ; /* Length of stored name */

Description
This function retrieves a stored SQL command or stored procedure. Once a
command/procedure has been retrieved, data can be bound if needed and the
command/procedure can be executed.

Once a command or procedure is retrieved, it cannot be destroyed by a commit
rollback.

If another transaction changes the system catalog items that the retrieved comm
procedure depends on between the commit and the execute, the execute fails.

You cannot use stored commands while in restriction mode.
5-216 SQL Application Programming Interface Reference

sqlret - RETrieve a stored command/procedure

 used

.

TS

ins a

must
, if
Chained Commands
Several stored commands can be retrieved with one sqlret and executed with one
sqlexe. The sqlret function allows a list of stored command names separated by
commas.

Bind variables can be shared across commands. The same bind variable can be
in more than one command and it only needs to be bound once.

Commands with a CURRENT OF clause; cannot be part of a chained command

The command type of a chained command is SQLTCHN.

When using UPDATE in a chained command, you can specify the CHECK EXIS
clause to cause an error to be returned if at least one row is not updated.

You can use a SELECT command in a chained command with the following
restrictions:

• Only one SELECT command can be in a chained command.

• The SELECT command must be the last command in the chain.

• You cannot use bulk execute mode with a chained command that conta
SELECT.

You can check the SQLPCHS parameter with sqlget to see if the chained command
contains a SELECT.

Parameters
cur

The cursor handle associated with this function.

cnp

A pointer to the string that contains the name of the SQL command or SQL
commands to retrieve. If you are not the creator of the stored command, you
qualify the command name with the creator name and a period. For example
SYSADM created the command:

SYSADM.command-name
cnl

The length of the string pointed to by cnp. If the string pointed to by cnp is null-
terminated, specify zero and the system will compute the length.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.
SQL Application Programming Interface Reference 5-217

Chapter 5 SQL/API Function Reference
Examples
To retrieve a stored command:

ret = sqlret (cur, "myquery", 0);

This example repetitively executes the stored command the_cmd:

sqlret (cursor, "the_cmd", 0);/* retrieve the command */

for (;;)
{
sqlexe(cursor);/* execute the retrieved command */
...
sqlcmt(cursor);/* commit the work */
...

}

If you have the stored commands: do_first, do_next and do_last, then instead of:

sqlret (cursor, "do_first", 0);/* retrieve the first command
*/
sqlexe(cursor); /* execute it */
sqlret (cursor, "do_next", 0);/* retrieve the next command */
sqlexe(cursor); /* execute it */
sqlret (cursor, "do_last", 0);/* retrieve the last command */
sqlexe(cursor); /* execute it */

use:

/* retrieve all 3 commands */

sqlret (cursor, "do_first, do_next, do_last", 0);
sqlexe(cursor); /* execute them in sequence */

Related functions
sqldst sqlsto
5-218 SQL Application Programming Interface Reference

sqlrlf - Restore Log Files

d
at

g

ed up
sqlrlf - Restore Log Files

Syntax
#include <sql.h>

SQLTAPI sqlrlf(shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTFNP bkpdir; /* Backup directory */
SQLTFNL bkpdirl; /* Backup directory length */
SQLTBOO local; /* True: backup directory on local node */
SQLTBOO over; /* True: overwrite existing file */

Description
This function restores as many transaction log files as possible from the specifie
directory. It continues restoring logs until all the logs from the backup directory th
need to be applied to the database have been exhausted.

After each sqlrlf function call, SQLBase displays a message indicating the next lo
file to be restored. If the log file requested is not available, use the sqlenr function to
terminate media recovery and recover the database using the information obtain
to that point (if possible).

You cannot perform a restore while users are connected.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.
SQL Application Programming Interface Reference 5-219

Chapter 5 SQL/API Function Reference
dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

bkpdir

A pointer to the string that contains the backup directory name.

bkpdirl

The length of the string pointed to by bkpdir. If the string pointed to by bkpdir is
null-terminated, specify zero and the system will compute the length.

local

Source of backup:

over

Overwrite indicator:

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTSVH shandle;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbname1[] = "omed";

0 Backup directory on server.

1 Backup directory on local (client) node.

0 Do not overwrite existing file.

1 Overwrite existing file.
5-220 SQL Application Programming Interface Reference

sqlrlf - Restore Log Files
password = 0;
bkpdir = "\\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);
printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */

if (rcd = sqlrdb(shandle,dbname1,0,bkpdir,bkpdirl,local,over))
apierr("SQLRDB");

else
printf("Restored Database \n");

/* ROLLFORWARD TO END */

sqlrof(shandle,dbname1,0,mode,0,0);

lognum=0;

/*
The loop below assumes that all log file backups are on disk.
If a log file backup is not on disk, lognum is set to a non-
zero value which causes the loop to terminate.

*/
while (lognum == 0)

{
/* GET NEXT LOG */
sqlgnl(shandle,dbname1,0,&lognum);

/* RESTORE LOG FILES */
sqlrlf (shandle,dbname1,0,bkpdir,bkpdirl,local,over);

}

/* END ROLLFORWARD */

if (rcd = sqlenr(shandle,dbname1,0))
apierr("SQLENR");

else
printf("End Rollforward \n");
SQL Application Programming Interface Reference 5-221

Chapter 5 SQL/API Function Reference

th of

 of
 size
Related functions
sqlbdb sqlcsv sqlrel
sqlblf sqlenr sqlrof
sqlbss sqlgnl sqlrss
sqlcrf sqlrdb

sqlrlo - Read LOng

Syntax
#include <sql.h>

SQLTAPI sqlrlo (cur, slc, bfp, bufl, readl)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Column number */
SQLTDAP bufp; /* Data buffer */
SQLTDAL bufl; /* Length of buffer */
SQLTDAL PTR readl; /* Length of data read */

Description
This function reads data stored in a LONG VARCHAR column.

The number of bytes that can be read in one operation can be less than the leng
the LONG VARCHAR column. The sqlrlo function can be repeated while there is
data to read from the LONG VARCHAR column. This allows incremental reading
columns which contain large amounts of data without having to set up equivalent
data buffers.

The sqlrlo call is followed by sqlelo which ends the read operation for the LONG
VARCHAR column.

The maximum length that you can read in one call to sqlrlo is 32,767 bytes.

Parameters
cur

The cursor handle associated with this function.

slc

The sequence number (starting with 1) of the column in the SELECT list.
5-222 SQL Application Programming Interface Reference

sqlrlo - Read LOng

ta

d. If
bufp

A pointer to the variable where this function returns the LONG VARCHAR da
that was read.

bufl

The length of the variable pointed to by bufp.

readl

A pointer to the variable where this function returns the number of bytes rea
this value is zero, it means that the end of data was reached.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
static char sqlsel[] = "select text from documents where

caseno = 100";

char buffer[BUFSIZ]; /* output buffer */
int len = 1;
short ret;

while ((ret = sqlfet(cur)) == 0) /* till end of fetch */
{

while (len) /* till no more data */
{

if (ret = sqlrlo (cur, 1, buffer, BUFSIZ, &len))
... process error

}
if (sqlelo (cur)) /* end long for this fetch */

process error
}

Related functions
sqlelo sqllsk sqlwlo
SQL Application Programming Interface Reference 5-223

Chapter 5 SQL/API Function Reference

kup

er or
e

se
sqlrof - ROllForward

Syntax
#include <sql.h>

SQLTAPI sqlrof (shandle, dbname, dbnamel, mode, datetime,
 datetimel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTRFM mode; /* Rollforward mode */
SQLTDAP datetime; /* Date/time value: "mm/dd/yy hh:mm:ss" */
SQLTDAL datetimel;/* Length of date/time value */

Description
This function recovers a database by applying transaction log files to bring a bac
up-to-date after a sqlrdb.

A restore function cannot be performed while users are connected.

You must have backed up all the database's log files and must apply them in ord
the ROLLFORWARD will fail. If you are missing any of the log files, you will not b
able to continue rolling forward from the point of the last consecutive log. For
example, if you have 1.log, 2.log, 4.log and 5.log, but 3.log is missing, you will only
be able to recover the work logged up to 2.log. 4.log and 5.log cannot be applied to
the database. An unbroken sequence of log files is required by recover a databa
backup to its most consistent state.

Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.
5-224 SQL Application Programming Interface Reference

sqlrof - ROllForward

gth.
mode

The following rollforward modes are defined in sql.h:

datetime

A pointer to the string that specifies the date and time to roll forward to in the
format "mm/dd/yy hh:mm:ss".

datetimel

The length of the string pointed to by datetime. If the string pointed to by
datetime is null-terminated, specify zero and the system will compute the len

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTSVH shandle;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbname1[] = "omed";

password = 0;

Constant Description

SQLMEOL Rollforward to end of all available logs. This recovers as
much work as possible.

SQLMEOB Rollforward to end of backup. This recovers all
committed work up to the point when the database
backup was completed.

SQLMTIM Rollforward to specified time. This recovers a database
up to a specific point in time, and in effect rolls back
large "chunks" of committed and logged work that you
no longer want applied to the database. For example, if
data is erroneously entered into the database, you would
want to restore the database to the state it was in before
the bad data was entered.
SQL Application Programming Interface Reference 5-225

Chapter 5 SQL/API Function Reference
bkpdir = "\\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);
printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER*/

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */

if (rcd =
sqlrdb(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLRDB");
else

printf("Restored Database \n");

/* ROLLFORWARD TO END */

sqlrof (shandle,dbname1,0,mode,0,0);

lognum=0;
/*

The loop below assumes that all log file backups are on
disk.

If a log file backup is not on disk, lognum is set to a
non-

zero value which causes the loop to terminate.
*/
while (lognum == 0)

{
/* GET NEXT LOG */
sqlgnl(shandle,dbname1,0,&lognum);

/* RESTORE LOG FILES */
sqlrlf(shandle,dbname1,0,bkpdir,bkpdirl,local,over);

}

/* END ROLLFORWARD */

if (rcd = sqlenr(shandle,dbname1,0))
apierr("SQLENR");

else
printf("End Rollforward \n");
5-226 SQL Application Programming Interface Reference

sqlrow - number of ROWs

f
Related functions
sqlbdb sqlcsv sqlrel
sqlblf sqlenr sqlrlf
sqlbss sqlgnl sqlrss
sqlcrf sqlrdb

sqlrow - number of ROWs

Syntax
include <sql.h>

SQLTAPI sqlrow (cur, row)

SQLTCUR cur; /* Cursor handle */
SQLTROW PTR row; /* Variable */

Description
This function gets the number of rows affected by the most-recent UPDATE,
DELETE, INSERT, or sqlfet. This function is most useful for counting the number o
rows affected by an UPDATE or DELETE.

Parameters
cur

The cursor handle associated with this function.

row

A pointer to a variable where this function returns the number of rows.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.
SQL Application Programming Interface Reference 5-227

Chapter 5 SQL/API Function Reference

et

n be

f row
. A
r you
t later
Example
long rows; /* return code */

ret = sqlrow (cur, &rows)) /* get number of rows */

Related functions
sqlgnr sqlnrr

sqlrrs - restart Restriction and Result Set modes

Syntax
include <sql.h>

SQLTAPI sqlrrs; (cur,rsp,rsl)

SQLTCUR cur; /* Cursor handle */
SQLTDAP rsp; /* Result set name buffer */
SQLTDAL rsl; /* Result set name length */

Description
This function opens a saved result set and turns on restriction mode and result s
mode. The result set must have been saved with the sqlcrs function.

The SELECT command must be recompiled and re-executed before the rows ca
fetched with sqlfet.

Be cautious about using saved result sets. Internally, a saved result set is a list o
identifiers (ROWIDs) that is stored in the SYSROWIDLISTS system catalog table
ROWID changes whenever the row is updated. If one of the rows is updated afte
have saved and closed a result set, you will get an error if you open the result se
and try to fetch the row.

Parameters
cur

The cursor handle associated with this function.

rsp

A pointer to the string that contains name of the result set.
5-228 SQL Application Programming Interface Reference

sqlrsi - Reset Statistical Information
rsl

The length of the string pointed to by rsp. If the string pointed to by rsp is null-
terminated, specify zero and the system will compute the length.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
ret = sqlrrs (cur, "saveres", 0);

Related functions
sqlcrs sqlscn sqlstr
sqldrs sqlspr sqlurs
sqlprs sqlsrs

sqlrsi - Reset Statistical Information

Syntax
#include <sql.h>

SQLTAPI sqlrsi (shandle)

SQLTSVH shandle; /* Server handle */

Description
This function resets the statistical information counters in the server. After this
function completes the server's statistical counters will be reset.

Parameters
shandle

The server handle returned by sqlcsv.
SQL Application Programming Interface Reference 5-229

Chapter 5 SQL/API Function Reference

ere
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
sqlrsi (shandle);

sqlrss - Restore SnapShot

Syntax
#include <sql.h>

SQLTAPI sqlrss (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTFNP bkpdir; /* Backup directory */
SQLTFNL bkpdirl; /* Backup directory length */
SQLTBOO local; /* True: backup directory on local mode */
SQLTBOO over; /* True: overwrite existing file */

Description
This function restores and recovers a database and its associated log files that w
created with the sqlbss function. This is the only step necessary to recover the
database; you should not follow this call with the sqlrof function.

The database is always restored from the file:

database-name .BKP

A restore function cannot be performed while users are connected.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
5-230 SQL Application Programming Interface Reference

sqlrss - Restore SnapShot
Parameters
shandle

The server handle returned by sqlcsv.

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

bkpdir

A pointer to the string that contains the backup directory name.

bkpdirl

The length of the string pointed to by bkpdir. If the string pointed to by bkpdir is
null-terminated, specify zero and the system will compute the length.

local

Source of backup:

over

Overwrite indicator:

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTSVH shandle;
char* password;
SQLTDPV lbmset;
SQLTFNP bkpdir;

0 Backup directory on server.

1 Backup directory on local (client) node.

0 Do not overwrite existing files.

1 Overwrite existing files.
SQL Application Programming Interface Reference 5-231

Chapter 5 SQL/API Function Reference
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbname1[] = "omed";/* default database name */
static char dbname2[] = "xomed";/* default database name

*/
static char srvname[] = ""; /* server name */

password = 0;

local=1;
over=1;

/* CONNECT TO SERVER */

if (rcd = sqlcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* MAKE BACKUP DIRECTORIES */

system("mkdir \\backup\\snapshot");

bkpdir = "\\BACKUP\\SNAPSHOT";
bkpdirl = strlen(bkpdir);

/* BACKUP SNAPSHOT */

if (rcd =
sqlbss(shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLBSS");
else

printf("Backup Snapshot Database \n");

/* RESTORE SNAPSHOT */

if (rcd =
sqlrss (shandle,dbname1,0,bkpdir,bkpdirl,local,over))

apierr("SQLRSS");
else

printf("Restore Snapshot \n");
5-232 SQL Application Programming Interface Reference

sqlsab - Server ABort database process

 the

llback

lling
Related functions
sqlbdb sqlcsv sqlrel
sqlblf sqlenr sqlrlf
sqlbss sqlgnl sqlrof
sqlcrf sqlrdb

sqlsab - Server ABort database process

Syntax
#include <sql.h>

SQLTAPI sqlsab (shandle, pnum)

SQLTSVH shandle; /* Server handle */
SQLTPNM pnum; /* Server process number */

Description
This function aborts a database server process. You cannot abort a process that
server is currently processing. For example, if a client sends a SELECT statement to a
server, the process cannot be aborted until the server begins returning rows.

When a database process is aborted, it ends its network sessions and does a ro
of its transactions.

Parameters
shandle

The server handle returned by sqlcsv.

pnum

The process number to abort. Retrieve the database process numbers by ca
the sqlgsi function.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.
SQL Application Programming Interface Reference 5-233

Chapter 5 SQL/API Function Reference

r

he
Example
sqlsab (shandle, processno);

Related functions
sqlcdr sqlgsi sqlstm
sqlcsv sqlsdn

sqlscl - Set CLient name

Syntax
#include <sql.h>

SQLTAPI sqlscl (cur/shandle, namp, naml)

SQLTSVH cur/shandle;/* Database cursor or server handle */
SQLTDAP namp; /* Client name */
SQLTDAL naml; /* Length of client name */

Description
This function assigns a client name to a process.

Parameters
cur/shandle

The cursor handle returned by sqlcnc if the parameter is associated with a curso
or database. The server handle returned by sqlcsv if the parameter is associated
with a server.

namp

A pointer to a string that contains the client name. The maximum length of t
client name is 12 characters. Client names are case sensitive.

Specify a null value to de-assign a client name.

naml

The length of the string pointed to by namp. If the string pointed to by namp is
null-terminated, specify zero (0) and the system will compute the length.
5-234 SQL Application Programming Interface Reference

sqlscn - Set Cursor Name

and

 the
 name
Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Examples
SQLTSVH shandle; /* Server handle */
short rcd; /* Return code */

if (rcd = sqlscl (shandle, “Clname”, 0))
{

...process error
}

sqlscn - Set Cursor Name

Syntax
include <sql.h>

SQLTAPI sqlscn (cur, namp, naml)

SQLTCUR cur; /* Cursor handle */
SQLTDAP namp; /* Cursor name */
SQLTDAL naml; /* Length of cursor name */

Description
This function assigns a name to a cursor. A cursor name is used in a SQL comm
that contains a CURRENT OF clause or ADJUSTING clause.

There is some overhead for fetches when a a cursor name is assigned because
server must keep track of the current cursor position. You can deassign a cursor
by specifying an empty string in the namp argument. The server optimizes fetches
when a cursor name is not assigned.

Parameters
cur

The cursor handle for the cursor being named.
SQL Application Programming Interface Reference 5-235

Chapter 5 SQL/API Function Reference

f the
 same
namp

A pointer to the string that contains the cursor name. The maximum length o
cursor name is 8 characters. Cursor names are case insensitive ("c1" is the
as "C1").

To de-assign a cursor name, pass an empty string.

naml

The length of the string pointed to by namp. If the string pointed to by namp is
null-terminated, specify zero and the system will compute the length.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
short ret; /* return code */

if (ret = sqlscn (cur, "C1", 0))
{

... process error
}

5-236 SQL Application Programming Interface Reference

sqlscp - Set Cache Pages

ly
 cursor
SQL Application Programming Interface Reference

SQL/API Function
Reference

Chapter 5

SQL Application Programming Interface Reference

SQL/API Function

sqlscp - Set Cache Pages

Syntax
#include <sql.h>

SQLTAPI sqlscp(pages)

SQLTNPG pages; /* Number of cache pages */

Description
This function sets the number of cache pages to use for the next connect.

The size of the cache is set at server startup by the cache keyword in the configuration
file (sql.ini) and it cannot be changed while the server is running. This function on
changes the number of cache pages at the next connect and it must be the only
connected to a single-user database.

Parameters
pages

The number of cache pages to use in the next connect. If a value of zero is
specified, the default number of cache pages is used.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
main()
{

SQLTNPG pages=500;
static char dbnam[]="demox";/* database name */

/* CONNECT TO THE DATABASE */

cur = 0;
if (rcd = sqlcnc(&cur, dbnam, 0))/* perform connect */

apierr("SQLCNC");
SQL Application Programming Interface Reference 5-237

Chapter 5 SQL/API Function Reference

 a
rrent

e,

.

if (rcd = sqlscp (pages))
apierr("SQLSCP");

/* DISCONNECT FROM THE DATABASE */

if (rcd = sqldis(cur))/* failure on disconnect? */
apierr("SQLDIS");

}

sqlsdn - ShutDowN database

Syntax
#include <sql.h>

SQLTAPI sqlsdn (dbname, dbnaml)

SQLTDAP dbname; /* Database name */
SQLTDAL dbnaml; /* Database name length */

Description
This function prevents new connections to a database so that it can shut down
gracefully.

Only SYSADM can shut down a database.

After this function completes, anyone trying to connect to the database receives
"shutdown in progress" message. All current users remain connected and all cu
transactions continue.

Once this function completes, the only way to reactivate the database is to call sqlded
and sqlind to deinstall and install the database.

Parameters
dbname

A pointer to the string that contains the connect string, which is the usernam
database name, and password separated by forward slashes:

database/username/password

These rules are used:

• The characters before the first forward slash are the database name
5-238 SQL Application Programming Interface Reference

sqlsdn - ShutDowN database

tem

• Any characters after the first forward slash and before the second
forward slash are the user name.

• Any characters after the second forward slash are the password.

If the database name, user name, or password is not specified, then the sys
uses the current default. For example, you can specify a connect string as "//
password" and use the default database name and username.

The default database name, username:defaultuser name, and password are
determined by:

• The defaultdatabase, defaultuser, and defaultpassword keywords in
sql.ini.

• The default of DEMO/SYSADM/SYSADM.

dbnaml

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
sqlsdn (dbname, dbnaml);

Related functions
sqlsab sqlstm
SQL Application Programming Interface Reference 5-239

Chapter 5 SQL/API Function Reference

n a

 a
 all
 a

e
huts
en if
 or
sqlsds - ShutDown Server

Syntax
#include <sql.h>

SQLTAPI sqlsdx (shandle, shutdownflag)
SQLTSVH shandle; /* Server handle */
SQLTFLG shutdownflag; /* 0 = enable, 1 = shutdown */

/* 2 = reserved, */
/* 3 = shutdown w/ exit, */
/* 4 = shutdown w/crash */

Description
This function prevents new connections to a server. Only SYSADM can shut dow
server.

After this function completes, anyone trying to connect to the database receives
"shutdown server in progress" message All current users remain connected and
current transactions continue. SYSADM can reactivate the server with a call with
flag setting of zero.

Parameters
shandle

The server handle returned by sqlcsv.

shutdownflag

A flag to shutdown or bring the server back on-line. A value of zero brings th
server back on-line. A value of one shuts down the server. A value of three s
down the server after the users exit. A value of four shuts down the server ev
users are on it. If you select a value of four, you must have recovery enabled
your database will be corrupted.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
sqlsds (shandle, shutdownflag);
5-240 SQL Application Programming Interface Reference

sqlsdx - ShutDown database eXtended

 a

a
ent

all to

e,

.

em
/

sqlsdx - ShutDown database eXtended

Syntax
#include <sql.h>

SQLTAPI sqlsdx (dbname, dbnaml, flag)

SQLTDAP dbname; /* Database name */
SQLTDAL dbnaml; /* Database name length */
SQLTFLG shutdownflag;/* 0 = enable, 1 = shutdown */

Description
This function prevents new connections to a database so that it can shut down
gracefully or will bring the database back on-line. Only SYSADM can shut down
database.

After this function completes anyone trying to connect to the database receives
"shutdown in progress" message All current users remain connected and all curr
transactions continue.

Once this function completes, the SYSADM can reactivate the database with a c
sqlsdx with a flag setting of zero.

Parameters
dbname

A pointer to the string that contains the connect string, which is the usernam
database name, and password separated by forward slashes:

database/username/password

This parameters has the following guidelines:

• The characters before the first forward slash are the database name

• Any characters after the first forward slash and before the second
forward slash are the username.

• Any characters after the second forward slash are the password.

If the database name, username, or password is not specified, then the syst
uses the current default. For example, you can specify a connect string as "/
password" and use the default database name and username.
SQL Application Programming Interface Reference 5-241

Chapter 5 SQL/API Function Reference

me

.

 table
The default database name, username, and password are determined by:

• The defaultdatabase, defaultuser, and defaultpassword keywords in
sql.ini.

• The default of DEMO/SYSADM/SYSADM.

dbnaml

The length of the string pointed to by dbname. If the string pointed to by dbna
is null-terminated, specify zero and the system will compute the length.

shutdownflag

A flag to shutdown or bring the database back on-line. A value of one will
shutdown the database. A value of zero will bring the database back on-line

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
sqlsdx (dbname, dbnaml, shutdownflag);

sqlset - SET parameter

Syntax
#include <sql.h>

SQLTAPI sqlset (cur, param, pbuf, length)

SQLTCUR cur; /* Cursor handle */
SQLTPTY param; /* Parameter type */
SQLTDAP pbuf; /* Pointer to value */
SQLTDAL length; /* Length of value */

Description
This function sets a database parameter. The parameter types are shown in the
below.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
5-242 SQL Application Programming Interface Reference

sqlset - SET parameter

n

d

three

he

T
r

s

d set
,
Parameter Description

SQLPAID Adapter Identifier. This parameter allows the setting of a network adapter identificatio
string.

If you call sqlset and specify the SQLPAID parameter, it changes the setting of the
adapter_id keyword in win.ini.

SQLPALG Process Activity log file name The file to which SQLBase writes the messages displaye
on a multi-user server’s Process Activity screen.

To turn on logging, specify a pointer to the file name in the pbuf parameter. You must
have DBA authority to set this parameter.

SQLPANL Apply net log. This parameter disables internal condition checking while a netlog is
being applied.

This keyword is useful to Centura technical support and development personnel only.

If you call sqlset and specify the SQLPANL parameter, it changes the setting of the
applynetlog statement in sql.ini.

0 = Off
1 = On

SQLPAPT Activate process timing. When this parameter is On (1), activation times are
accumulated for prepares, executes and fetches. Activation times are accumulated at
different levels; system, process and cursor. By default, this parameter is turned off.

0 = Off
1 = On

Note that if you are using the sqlset function to set the SQLPAPT (activate process
timing) parameter, settings for the SQLPCTL (command time limit) timing) and
SQLPSTA (statistics for server) parameters can be affected in the following ways:

• When you enable a command time limit (by specifying a non-zero value in either t
cmdtimeout keyword of the server’s sql.ini file or with the SQLPCTL parameter),
SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatically
turned on.

• If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPAP
(process timing) are automatically turned off, unless you explicitly turned on eithe
parameter after you enabled a command time limit.

• If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (proces
timing), your command time limit (if you enabled on) is turned off and sql.ini is
updated to reflect cmdtimeout=0.

It is recommended that if you set a value for any of these three parameters, you shoul
the same value for the other two. For example, if you set SQLPAPT parameter On (1)
you should also set SQLPCTL and SQLPSTA parameters On (1).
SQL Application Programming Interface Reference 5-243

Chapter 5 SQL/API Function Reference

lt,

 the

w

d so

ible.

e

tput.
.

SQLPAUT Autocommit. Commits the database automatically after each SQL command. By defau
this parameter is Off (0) and SQLBase commits the database only when you issue a
COMMIT command.

Autocommit is cursor-specific. When you set autocommit On (1) for a cursor and then
perform an operation with that cursor, SQLBase commits all of the transaction’s cursors.
Performing operations with cursors that do not have autocommit set on does not affect
rest of the transaction’s cursors.

You cannot have autocommit and bulk execute on simultaneously.

SQLPAWS OS averaging window size. This parameter specifies the number of samples of the CPU
% Utilization value to keep for determining the average value. You can specify a windo
size of 1 to 255. The default setting is one (1). If you call sqlset and specify the
SQLPAWS parameter, it changes the setting of the osavgwindow keyword in sql.ini.

0 = Off
1 = 255 units

SQLPBLK Bulk execute mode. Reduces the network traffic for multi-row inserts, deletes, and
updates, particularly across a network. In bulk execute mode, data values are buffere
that many rows can be sent to the server in one message.

Increasing the size of the output message buffer (with the sqloms function) increases the
number of operations that can be buffered in one message to the server, thereby
improving performance.

This setting is cursor specific.

If this is On (1), as many operations are buffered in the output message buffer as poss

By default, bulk execute mode is Off (0). Bulk execute mode cannot be on at the sam
time as the autocommit (SQLPAUT) option.

SQLPCAC Size of database cache (in KBytes). This parameter sets the size of the cache, which
buffers database pages in memory. The larger the cache, the less the disk input and ou
In other words, as you increase the value of the cache setting, disk access is reduced

The default cache size for Windows is 500K; for all other platforms, the default is 2M.
The minimum is 15K and the maximum is 32767K.

If you call sqlget and specify the SQLPCAC parameter, it changes the setting of the
cache keyword in sql.ini, but the new setting does not take effect until SQLBase is
restarted.

Parameter Description
5-244 SQL Application Programming Interface Reference

sqlset - SET parameter

. In
n

tion

pt

it
e

ing
el

roup
SQLPCCB Connect Closure Behavior. This parameter specifies the connect closure behavior that
occurs when you terminate a connection using the sqldch function. Valid options are
COMMIT, ROLLBACK, or DEFAULT. The default is 0 which means that connect
closure behavior is dependent on the database server to which the user is connected
the case of SQLBase, the DEFAULT setting (0) issues a COMMIT before a connectio
handle is terminated. To determine the DEFAULT behavior for other servers, read the
applicable server documentation.

Setting this parameter on (1) instructs the server to issue a COMMIT before a connec
handle is terminated, while a setting of (2) issues a ROLLBACK.

This option also specifies whether a COMMIT or ROLLBACK is issued before
disconnecting to a cursor with an implicit connection using the sqlcnc function.

SQLPCCK Client check. This parameter tells SQLBase to send the client a RECEIVE upon recei
of a request.

By default, clientcheck is off (0). When SQLBase has finished executing a command,
issues a SEND request to the client with the results of the command. If successful, th
server then issues a RECEIVE request and waits to receive another command.

Setting this parameter on (1) instructs SQLBase to issue a RECEIVE request before
beginning execution of the command, not after it finishes executing the command. Do
so allows SQLBase to detect a situation where the client session is dropped or a canc
request is made during command processing.

If you call sqlset and specify the SQLPCCK parameter, it changes the setting of the
clientcheck keyword in sql.ini.

0 = Off
1 = On

SQLPCGR Contiguous cache pages in cache group. This parameter specifies the number of
contiguous cache pages to allocate. For example if you set cache at 3000, and cacheg
at 30, SQLBase allocates 100 cache groups, consisting of 30 pages each.

To set the number of cache pages per group to 50:

cachegroup = 50

The default is 30.

If you call sqlset and specify the SQLPCGR parameter, it changes the setting of the
cachegroup keyword in sql.ini.

SQLPCIS Client identifier. This parameter returns a client identification string.

The client identification string will consist of:

MAIL_ID\NETWORK_ID\ADAPTER_ID\APP_ID\CLIENT_NAME

Each of these identification strings can be returned separately by calling sqlget with the
appropriate parameter.

Parameter Description
SQL Application Programming Interface Reference 5-245

Chapter 5 SQL/API Function Reference

s
at

0).

s

e

n a

to a

 is

SQLPCLG Commit logging. When this parameter is On (1), SQLBase causes every database
transaction in which data was modified to log a row of data. The data that is logged
contains the transaction’s Transaction ID and a unique sequence number.

When the COMMIT operation is executed for a transaction that is modified, the data i
logged in the system utility table SYSCOMMITORDER. This table lists transactions th
operated on the database in the order in which they were committed. Turning the
SQLPCLG parameter Off (0) stops commit logging. By default, this parameter is Off (

You must have DBA privileges to set the SQLPCLG parameter and to use DDL
commands with this parameter.

The following example is a SQL API call to set the commit-order logging to Off (0). Thi
stops the insertion of rows into the SYSCOMMITORDER table during transaction
COMMIT operations.

SQLTDPV value=1;
if (rcd=sqlset(cur, SQLPCLG,(SQLTDAP)&value, 0)
 printf (“Cannot start commit logging \n”);

Note that commit logging is also supported for replication
with Centura Ranger.

SQLPCLI LOAD/UNLOAD Client Value. The load/unload’s ON CLIENT clause value.

0 = Off (file is on the server)
1 = On (file is on the server)

This parameter indicates where the load/unload file will reside. Before using this
parameter, compile the load/unload statement first.

SQLPCLN Client name. Sets/changes the name of a client computer on the server’s display for th
duration of the session.

SQLPCMP Message compression. When message compression is On (1), messages sent betwee
client and the database server or gateway are
compressed. This means that messages are shorter, and more rows can be packed in
single message during bulk insert and fetch operations.

The compression algorithm collapses repeating characters (run-length encoding).
SQLBase performs the compression incrementally as each component of a message
posted.

By default, message compression is Off (0) because it incurs a CPU cost on both the
client and server machines.

This parameter is cursor-specific.

SQLPCSV Commit server status. Indicates whether commit service is enabled for the server.

0 = Off
1 = On

Parameter Description
5-246 SQL Application Programming Interface Reference

sqlset - SET parameter

can

o)

TA

he

T
r

s

d set
,
SQLPCTI Checkpoint time interval. How often SQLBase performs a recovery checkpoint
operation. SQLBase’s automatic crash recovery mechanism requires that recovery
checkpoints be done.

The default checkpoint time interval is one minute. This should yield a crash recovery
time of less than a minute. If your site can tole rate a longer crash recovery time, you
increase this interval to up to 30 minutes.

Depending on the applications running against the database server, a checkpoint
operation can affect performance. If this happens, you can increase the checkpoint
interval until you attain the desired
performance.

You must be the DBA to set this parameter.

SQLPCTL Command time limit. The amount of time (in seconds) to wait for a SELECT, INSERT,
UPDATE, or DELETE statement to complete execution. After the specified time has
elapsed, SQLBase rolls back the command or transaction.

Valid values range from 1 to 43,200 seconds (12 hours maximum), and include 0 (zer
which indicates an infinite time limit.

The value of the parameter overrides and changes the cmdtimeout keyword in the
server’s sql.ini file.

Note that if you are using the sqlset function to set the SQLPCTL (command time limit)
parameter, parameter settings for the SQLPAPT (activate process timing) and SQLPS
(statistics for server) parameters can be affected in the following ways:

• When you enable a command time limit (by specifying a non-zero value in either t
cmdtimeout keyword of the server’s sql.ini file or with the SQLPCTL parameter),
SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatically
turned on.

• If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPAP
(process timing) are automatically turned off, unless you explicitly turned on eithe
parameter after you enabled a command time limit.

• If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (proces
timing), your command time limit (if you enabled on) is turned off and sql.ini is
updated to reflect cmdtimeout=0.

It is recommended that if you set a value for any of these three parameters, you shoul
the same value for the other two. For example, if you set SQLPAPT parameter On (1)
you should also set SQLPCTL and SQLPSTA parameters On (1).

Parameter Description
SQL Application Programming Interface Reference 5-247

Chapter 5 SQL/API Function Reference

ter
 set.

en in

ult

pile

in

ber
SQLPCTS Character set file name. This parameter identifies a file that specifies different values for
the ASCII character set.

This is useful for non-English speaking countries where characters in the ASCII charac
set have different hex values than those same characters in the U.S. ASCII character

If you call sqlset and specify the SQLPCTS parameter, it changes the setting of the
characterset keyword in sql.ini.

SQLPCTY Country file section (for example, France). This parameter tells SQLBase to use the
settings in the specified section of the country.sql file. SQLBase supports English as the
standard language, but it also supports many national languages including those spok
Europe and Asia. You specify information that enables SQLBase to support another
language in the country.sql file. If you call sqlset and specify the SQLPCTY parameter, it
changes the setting of the country keyword in sql.ini.

SQLPDBD DBDIR keyword information. Sets the drive, path, and database
directory name information for the sql.ini’s DBDIR keyword.

SQLPDDB Default database name. Sets the default database name, overriding the SQLBase defa
database name of DEMO. Setting this parameter changes the defaultdatabase keyword in
the section of sql.ini called [dbdfault] or [winclient].

SQLPDDR Database directory. The drive, path, and directory name where the database you are
connected to resides.

SQLPDIS Describe information control. When (and if) SQLBase sends describe information for a
SELECT command to a client.

This parameter is cursor-specific.

SQLDELY (0) means early and is the default value. The server sends describe
information after a call to sqlcom. Call sqldes, sqldsc, or sqlgdi after sqlcom and before
sqlexe. The server also sends describe information after a call to sqlcex. Call sqldes,
sqldsc, or sqlgdi after sqlcex and before sqlfet.

SQLDDLD (1) means delayed. The server sends describe information after a call to
sqlexe. Call sqldes, sqldsc, or sqlgdi after sqlexe, but before the first sqlfet. Calling sqldes,
sqldsc, or sqlgdi at any other time is illegal. The server also sends describe information
after sqlcex. Call sqldes, sqldsc, or sqlgdi after sqlcex and before sqlfet.

Use this setting to reduce message traffic for database servers that do not support com
(sqlcom) operations.

SQLDNVR (2) means never. The server never sends describe
information. Any call to sqldes, sqldsc, or sqlgdi is illegal. When you set SQLPDIS to
SQLDNVR, sqlnsi always returns zero (0). You must hard-code the number of columns
the SELECT command so that the
application knows how many times to call sqlssb.

Use this setting to reduce message traffic when the application always knows the num
and type of columns in a SELECT command and never makes calls to sqldes, sqldsc, or
sqlgdi.

Parameter Description
5-248 SQL Application Programming Interface Reference

sqlset - SET parameter

rd

nly

ou
SQLPDMO Demo version of database.

0 = No
1 = Yes

SQLPDPW Default password. Sets the default password, overriding the SQLBase default passwo
of SYSADM. Setting this parameter changes the defaultpassword keyword in the section
of sql.ini called [dbdfault] or [winclient].

SQLPDTL Database command time limit. This parameter sets the amount of time (in seconds) to
wait for a SELECT, INSERT, UPDATE or DELETE command to complete execution.
This only includes the time to prepare and execute, not the time to fetch. After the
specified time has elapsed, SQLBase rolls back the command. The time limit is valid o
for the database requested. A global server command time limit is available by using
SQLPCTL.

0 = no time limit
1 = 43,000 secs

SQLPDTR Set distributed transaction mode. If this parameter is on (1), all subsequent
CONNECTs and SQL statements will be part of a distributed transaction. Currently, y
can have one distributed transaction per session.

The default for this parameter is off (0).

0 = Off
1 = On

SQLPDUS Default user name. Sets the default user name, overriding the SQLBase default user
name of SYSADM. Setting this parameter changes the defaultuser keyword in the section
of sql.ini called [dbdfault] or [winclient].

SQLPEMT Error message tokens. Sets the error token strings used to customize user errors.

Parameter Description
SQL Application Programming Interface Reference 5-249

Chapter 5 SQL/API Function Reference

. The

r. To
(*)

turn
, you
y:

 the
SQLPERF Error filename. Specifies a file that contains entries to translate standard

SQLBase return codes into user-defined return codes:

errorfile=filename

The file contains entries for error code translation in the form:

sbrcd,udrcd

where sbrcd is a SQLBase return code found in error.sql, and udrcd is a user-defined
return code. The sbrcd value must be a positive integer; the udrcd can be a positive or
negative integer. There can be no white space between the values or after the comma
client application converts the sbrcd value to the udrcd value using the sqltec API
function. For example, SQLBase returns a value of '1' to indicate an end-of-fetch
condition, while DB2 returns a value of '100'. If you want an application to convert all
SQLBase return codes of '1' to '100', the entry in the errorfile would look like this:

1,100

When your application calls the sqltec function, if the SQLBase return code doesn't exist,
SQLBase returns a non-zero return code that means that the translation did not occu
force translation to occur, you can create a global translation entry using the asterisk
character and a generic return code (like '999').

For example, assume an errorfile of SQLBase return codes and corresponding DB2 re
codes. For those SQLBase return codes that have no corresponding DB2 return code
can force the application to return the generic return code '999' with the following entr

*,999

If you call sqlset and specify the SQLPERF parameter, it changes the setting of the
errorfile keyword in sql.ini.

SQLPEXP Execution plan. Retrieves the execution plan of the last SQL statement that SQLBase
compiled.

SQLPEXS Extension size (in MBytes for partitioned databases, and in KBytes for
non-partitioned databases).

SQLBase databases grow dynamically as data is added, and expand in units called
extensions. When a database becomes full, SQLBase must add another extension (or
extent) to the database.

When you set the size for a partitioned database, SQLBase rounds the number up to
next megabyte.

Parameter Description
5-250 SQL Application Programming Interface Reference

sqlset - SET parameter

 end

e
t

ince
res

 the

ulti-
s

nce
 to

 if

re

0
SQLPFRS Frontend result sets. SQLBase supports backend result sets, but for those database
servers that do not, Centura offers frontend result sets (maintained on the client
computer).

For SQLBase, SQLPFRS is Off (0). For database servers that do not support backend
result sets, like DB2, SQLPFRS is On (1).

You can use sqlset to turn off SQLBase’s backend result sets, and force result sets to b
maintained on the client computer. This is useful when you are using SQLBase to tes
client applications that will eventually access a database server that does not support
backend result sets.

This parameter is cursor-specific.

SQLPFT Fetchthrough mode.

If fetchthrough is On (1), rows are fetched from the database server even if they are
available from the client’s input message buffer. Since data could have been updated s
you last fetched it (into the input message buffer), using the fetchthrough feature ensu
that you see the most up-to-date data. If fetchthrough is Off (0), rows are fetched from
client’s input message buffer when possible.

In fetchthrough mode, rows are fetched from the backend one at a time; there is no m
row buffering. Because of this, and the network traffic involved, fetchthrough increase
response time.

Note for procedures, if you want the On Procedure Fetch section to execute exactly o
for every fetch call from the client, returning one row at a time, set fetchthrough mode
On (1) at the client (the default is Off).

If the result set you are fetching was created by a SELECT command that included an
aggregate function, defined a complex view, or included a DISTINCT, GROUP BY,
HAVING, UNION, or ORDER BY clause, then SQLBase creates a virtual table. The
rows of this virtual table cannot be mapped to the rows in the database. For this reason,
a row in the result set is UPDATEd, when you fetch it, it will not reflect the UPDATE
even if fetchthrough is On.

This parameter is cursor-specific.

SQLPGBC Global cursor. The 5.2/6.0 COBOL SQLPrecompiler uses this parameter. It is listed he
for the sake of completeness.

SQLPHFS Read-only history file size (in KBytes). If read-only mode is enabled, setting this
parameter limits the size of the read-only history file. The default size is 1 MByte (100
KBytes).

Parameter Description
SQL Application Programming Interface Reference 5-251

Chapter 5 SQL/API Function Reference

back
g.

s
 that
e

o
ded

rect

sion

rs
SQLPISO Isolation level. Sets the locking isolation level of all the cursors that the program
connects to a database. See the sqlsil function for an explanation of the isolation levels:

SQLILRR = Repeatable Read
SQLILCS = Cursor Stability
SQLILRO = Read-Only
SQLILRL = Release Locks

If you change isolation levels, SQLBase implicitly commits all cursors that the program
has connected to the database. In turn, the commit destroys all compiled commands.

SQLPLBM Transaction log backup mode. If media recovery is important to your site, set this
parameter On (1) to instruct SQLBase to backup all logs before deleting them.

This parameter is database-specific and you should set it On only once. The setting will
stay active until changed. You do not need to set this each time a database is brought
online. Resetting this option affects whether log files are deleted or saved for archivin
To avoid gaps in your log files, set this parameter once to On.

By default, this parameter is not enabled (0) and SQLBase deletes log files as soon a
they are not needed to perform transaction rollback or crash recovery. This is done so
log files do not accumulate and fill up the disk. If SQLPLBM is Off (0), you are not abl
to recover the database if it is damaged by user error or a media failure.

This parameter must be On (1) when you back up databases (sqlbdb) and log files (sqlblf),
but does not need to be On when you back up snapshots (sqlbss).

SQLPLCK Lock limit allocations. This parameter specifies the maximum number of lock entries t
allocate. SQLBase allocates lock entries dynamically (in groups of 100) on an as-nee
basis.

The default setting is 0, which means that there is no limit on the number of locks
allocated; as many lock entries can be allocated as memory permits.

If you call sqlset and specify the SQLPLCK parameter, it changes the setting of the locks
keyword in sql.ini.

SQLPLDR Transaction log directory. The disk drive and directory that contains the log files.
SQLBase creates log files in the home database directory by default, but you can redi
them to a different drive and directory with the sql.ini’s lodgir keyword.

SQLPLDV Load version. This parameter is not applicable to SQLBase v6.0. If the load file was
created by a previous SQLBase release, this parameter allows you to specify what ver
created the load file.

This parameter is cursor-specific.

SQLPLFF Support long data with front-end result sets. Lets (1) you or prevents (0) you from
reading and writing long data when using front end result sets with SQLNetwork route
and gateways.

This parameter is cursor-specific.

Parameter Description
5-252 SQL Application Programming Interface Reference

sqlset - SET parameter

u
8

al or

SQLPLFS Transaction log file size (in KBytes). The default log file size is 1 MByte (1000 KBytes)
and the smallest size is 100,000 bytes.

SQLBase rounds up the size of the actual log file by one MByte from the value that yo
specify. For example, if you set the log file size to 1024 KBtyes, the file will grow to 204
KBytes.

When the current log file grows to the specified size, SQLBase creates a new log file.
Specifying a large log file size ensures that log files are not created too frequently,
however, if the log file is too large, it wastes disk space.

SQLPLOC Local/remote database server. Specifies whether the database being accessed is loc
remote.

0 = Remote
1 = Local engine

SQLPLRD Local result set directory. If the database server does not support backend result sets,
this parameter sets the name of the directory on the client computer that contains the
frontend result set file. By default, the current working directory holds the result set.

SQLPMID E-Mail Identifier. This parameter allows the setting of an E-Mail identification string.

If you call sqlset and specify the SQLPMID parameter, it changes the setting of the
mail_id keyword in win.ini.

SQLPNCK Check network transmission errors. This parameter enables and disables a checksum
feature that detects transmission errors between the client and the server. To use this
feature, both the client and the server must enable netcheck.

 The default is off (0).

If you call sqlset and specify the SQLPNCK parameter, it changes the setting of the
netcheck keyword sql.ini.

0 = Off
1 = On

SQLPNCT Netcheck algorithm. This parameter specifies the algorithm SQLBase uses when
netcheck is enabled. Configure this keyword only when you enable netcheck

By default, checksum(0) is enabled. To switch to CRC/16:

netchecktype = 1

If you call sqlset and specify the SQLPNCT parameter, it changes the setting of the
netchecktype statement in sql.ini.

0 = Checksum
1 = CRC/16

SQLPNDB Mark as brand new database. Used in conjunction with COUNTRY.DBS.

0 = False
1 = True

Parameter Description
SQL Application Programming Interface Reference 5-253

Chapter 5 SQL/API Function Reference

.

g

rver

aff.

til

 is

rs.
SQLPNID Network identifier. This parameter allows the setting of an Network identification string

If you call sqlset and specify the SQLPNID parameter, it changes the setting of the
network_id keyword in win.ini.

SQLPNIE Null indicator error. Controls what sqlfet returns in sqlssb’s pfc parameter when the
value is null:

0 = sqlfet returns zero (default).
1 = sqlfet returns FETRNUL (7).

Note that to use the FETRNUL indicator in sqlssb’s PFC parameter, you must set the
SQLPNIE parameter to 1. Setting SQLPNIE affects all the cursors connected by the
application that set it; it does not affect other applications.

SQLPNLB Next transaction log file to back up. Specify the number (integer) of the next log file to
back up.

If SQLPLBM is On, you need to set this parameter after doing an offline backup. Setting
this parameter tells SQLBase that you did an offline backup and that there are now lo
files eligible for deletion.

For example, if you back up mydbs.dbs, 1.log, 2.log, and 3.log offline, you should set
SQLPNLB to 4. SQLBase then knows that 1.log, 2.log, and 3.log can be deleted, while
4.log and all other logs that follow need to be saved for archiving.

SQLPNLG Net log file. This parameter invokes a diagnostic server utility that records database
messages to a specified log file. This utility logs all messages that pass between a se
and clients on a network.

Do not use the netlog utility unless instructed to do by Centura’s Technical Support st

By default, the netlog utility is off.

If you call sqlset and specify the SQLPNLG parameter, it changes the setting of the
netlog keyword in sql.ini.

SQLPNPB Do not prebuild result sets.

If SQLPNPB is Off (0), SQLBase prebuilds result sets. The database server releases
shared locks before returning control to the client. The client application must wait un
the entire result set is built before it can fetch the first row.

If SQLPNPB is On (1), SQLBase does not prebuild result sets if the client is in result set
mode and Release Locks (RL) isolation level. The advantage of having SQLPNPB on
that the client does not have to wait very long before fetching the first row. SQLBase
builds the result set as the client fetches data.

By default, SQLPNPB is On (1) for single-user engines and Off (0) for multi-user serve

This parameter is cursor-specific.

Parameter Description
5-254 SQL Application Programming Interface Reference

sqlset - SET parameter

e

ase

erver

ible.

e

de

,

et).

the
SQLPNPF Net prefix character. This parameter allows SQLBase to distinguish a database on on
server from an identically-named database on another server and to circumvent the
network's requirement of name uniqueness. You can specify a value with which SQLB
prefaces each database name on the server.

If you have a netprefix entry in the server's sql.ini file, all clients connecting to databases
on that server must specify the same netprefix value in their configuration files.

If you call sqlset and specify the SQLPNPF parameter, it changes the setting of the
netprefix keyword in sql.ini.

SQLPOBL Optimized bulk execute mode. This is similar to, but even faster than, bulk execute
mode (SQLPBLK) which reduces the network traffic for multi-row inserts, deletes, and
updates. The difference is that if an error occurs, SQLBase rolls back the entire
transaction.

In bulk execute mode, data values are buffered so that many rows can be sent to the s
in one message.

Increasing the size of the output message buffer (with the sqloms function) increases the
number of operations that can be buffered in one message to the server, thereby
improving performance.

This setting is cursor specific.

If this is On (1), as many operations are buffered in the output message buffer as poss

By default, bulk execute mode is Off (0). Bulk execute mode cannot be on at the sam
time as the autocommit (SQLPAUT) option.

SQLPOFF Optimize first fetch. This parameter lets you set the optimization mode for a particular
cursor. All queries that are compiled or stored in this cursor inherit the optimization mo
in effect.

0 = optimizes the time it takes to return the entire result set.
1 = optimize the time it takes to fetch the first row of the result set.

If you call sqlget and specify the SQLPOFF parameter, it overrides the setting for
optimizefirstfetch in sql.ini for the particular cursor. If you do not specify this parameter
the optimization mode for the cursor is determined by the setting of the
optimizefirstfetch value of the server. If sql.ini does not have an optimizefirstfetch
keyword, the default setting is 0 (optimize the time it takes to return the entire result s

Note that a command that earlier stored, retrieved, and executed will continue to use
execution plan with which it was compiled.

Parameter Description
SQL Application Programming Interface Reference 5-255

Chapter 5 SQL/API Function Reference

join
,
d B)

acle
SQLPOOJ Oracle outer join. This parameter enables and disables Oracle-style join processing.
Oracle's outer join implementation differs from the ANSI and industry standard
implementation. To paraphrase the ANSI standard, the correct semantics of an outer
are to display all the rows of one table that meet the specified constraints on that table
regardless of the constraints on the other table. For example, assume two tables (A an
with the following rows:

Table A (a int) Table B (b int)
1 1
2 2
3 3
4
5

If you issue the following SQL command:

SELECT a, b
FROM A, B
WHERE A.a = B.b (+)
AND B.b IS NULL;

the ANSI result is:

Table A (a int) Table B (b int)
1
2
3
4
5

Assuming the same two tables and the same SQL command, the correct result for Or
is:

Table A (a int) Table B (b int)
4
5

If you set oracleouterjoin=1; you receive the Oracle result shown directly above. If you
call sqlset and specify the SQLPOOJ parameter, it changes the setting of the
oracleouterjoin keyword in sql.ini.

0 = Off
1 = On

Parameter Description
5-256 SQL Application Programming Interface Reference

sqlset - SET parameter

ll

er
ter

55
s. If

g

n

lt

 if
SQLPOPL Optimizer techniques. Determines the optimizing techniques that SQLBase uses for a
clients that connect to a server.

This parameter lets you fall back on old optimizing techniques after upgrading to new
versions of SQLBase. If you discover better performance of a query when this parame
is set to 1, you should report it to Centura’s Technical Support team. Be sure not to
include compilation time in the comparison of settings 1 and 2.

1 = SQLBase uses old optimizing techniques.
2 = SQLBase uses current optimizing techniques (default).

This parameter setting overrides the value of the optimizerlevel keyword in sql.ini.

SQLPOSR OS statistics sample rate. This parameter specifies the frequency at which operating
system statistics (CPU % Utilization) are gathered. You can specify a setting of 0 to 2
seconds. The default setting is zero (0), which disables the gathering of CPU statistic
you call sqlset and specify the SQLPOSR parameter, it changes the setting of the
ossamplerate keyword in sql.ini.

0 = Off
1 = 255 secs

SQLPPAR Partitioned database. Indicates if the database is partitioned.

0 = No
1 = Yes

SQLPPCX Cursor context preservation.

If cursor context preservation is On (1), SQLBase prevents a COMMIT from destroyin
an active result set, thereby enabling an application to maintain its position after a
COMMIT, INSERT, or UPDATE.

Locks are kept on pages required to maintain the fetch position. Be aware that this ca
block other applications trying to access the same data. Also, locks can prevent other
applications from doing DDL operations.

By default, cursor context preservation is Off (0). A COMMIT destroys a cursor’s resu
set or compiled command.

SQLBase does not preserve cursor context after an isolation level change or after a
system-initiated ROLLBACK, such as a deadlock, timeout, etc. SQLBase does preserve
cursor context after a user-initiated ROLLBACK if both of the following are true:

1) The application is in Release Locks (RL) isolation level.
2) A data definition language (DDL) statement was not performed.

If the result set you are fetching was created by a SELECT command that included an
aggregate function, defined a complex view, or included a DISTINCT, GROUP BY,
HAVING, UNION, or ORDER BY clause, then SQLBase creates a virtual table. The
rows of this virtual table cannot be mapped to the rows in the database. For this reason,
a row in the result set is UPDATEd, when you fetch it, it will not reflect the UPDATE
even if fetchthrough is On.

This parameter is cursor-specific.

Parameter Description
SQL Application Programming Interface Reference 5-257

Chapter 5 SQL/API Function Reference

s to
ore

n

tory

ith

re
led;
ed
etries a

, use
SQLPPDB Access to partitioned databases. Enables and disables access to
partitioned databases. When you set this parameter to TRUE, you enable user acces
partitioned databases; when FALSE (0), you disable user access, allowing you to rest
MAIN.DBS.

SQLPPLF Preallocate transaction log files. By default, this parameter is Off (0) and a log files
grows in increments of 10% of its current size. This uses space conservatively, but ca
lead to a fragmented log file which can affect
performance. If this parameter is On (1), log files are created full size (preallocated).

SQLPPLV Level of Process Activity display. Sets the level (0 - 4) of detail of the
messages on a multi-user server’s Process Activity display.

You must have DBA authority to set this parameter.

SQLPROD Read-only database. Makes a database accessible on a read-only basis. SQLBase
disallows you from executing data definition language (DDL) or data manipulation
language (DML) commands.

Before you can turn on this feature, you must set tempdir in the
autoexec.bat or the sql.ini file to point to the directory where
SQLBase should store its temporary files. The temporary files are stored in a subdirec
of the directory pointed to by tempdir. The name of this subdirectory is the same as the
database name.

You must be the only connected user to set this parameter.

If this parameter is On (1), SQLBase disables both the Read-Only
isolation level and transaction logging.

SQLPROM Read-only transaction mode. Allows users connecting to any of the databases on the
server to use the RO (read-only) isolation level. The RO isolation level allows users w
a consistent view of data during their session.

If this parameter is On (1), SQLBase allows users to use the RO isolation level. All futu
server sessions for all databases on the server are started with RO transactions enab
and SQLBase maintains a read-only history file that contains multiple copies of modifi
database pages; when users try to access pages changed by other users, SQLBase r
copy of the original page from the history file.

Read-only transactions can affect performance, so, by default, this
parameter is Off (0), prohibiting users from setting the RO isolation level.

If you call sqlset and specify the SQLPROM parameter, it changes the setting of the
readonly keyword in sql.ini, but the new setting does not take effect until you restart
SQLBase.

0 = Off
1 = On

NOTE: To turn on RO transaction mode for a single database and the current session
SQLPROT.

Parameter Description
5-258 SQL Application Programming Interface Reference

sqlset - SET parameter

r

r is
SQLPROT Read-only transaction mode.If this parameter is On (SQLVON), SQLBase allows
applications to set the RO (read-only) isolation level on for a single database and the
current server session. SQLBase maintains a read-only history file that contains one o
more copies of pages that have been modified.

Read-only transactions can affect performance so, by default, this
parameter is Off (SQLVOFF), prohibiting use of the RO isolation level.

If this parameter is set to the default (SQLVDFL), SQLBase uses the
readonly keyword setting in the sql.ini file to determine whether to allow read-only
transactions. If you do not provide a value for this
keyword, SQLBase uses the internal default (SQLVOFF).

You can turn on the RO isolation level only for multi-user versions of
SQLBase. If you set this feature on with a sqlset call, it applies to the
current database. If you set this feature on by modifying the readonly keyword setting in
sql.ini, the setting applies to all databases on the server. You can also turn on RO
isolation level for all databases on the server by using the SQLPROM parameter.

SQLPRTO Rollback on lock timeout. This parameter is On (1) by default and
SQLBase rolls back an entire transaction when there is a lock timeout. If this paramete
Off (0), SQLBase rolls back only the current command.

This parameter is cursor-specific.

SQLPSIL Silent mode. This parameter turns the display for multi-user server on (0) and off (1).

To set the display of the server screens off:

silent = 1

By default, multi-user server displays are on(0).

If you call sqlset and specify the SQLPSIL parameter, it changes the setting of the silent
statement in sql.ini.

0 = On
1 = Off

Parameter Description
SQL Application Programming Interface Reference 5-259

Chapter 5 SQL/API Function Reference

t)

he

or

 set
(1),
SQLPSTA Statistics for server. This parameter collects the following timer and counter
information:

Timers:
Compile.
Execute.
Fetch.

Counters:
Physical disk writes.
Physical disk reads.
Virtual disk writes
Virtual disk reads.
Total number of disconnects.
Total number of connects.
Hash joins - number of joins that have occurred.
Sorts - number of sorts that have been performed
Deadlocks - number of deadlocks that have occurred.
Process switches - number of process switches.
Full table scan - number of times a full table scan occurred.
Index use - number of times an index has been used.

 Transactions - number of completed transactions.
Command type executed - one counter for each command type.

The default for this parameter is off (0).

0 = off
1 = on

Note that if you are using the sqlset function to set the SQLPCTL (command time limi
parameter, it affects the setting of the SQLPSTA (statistics for server), as well as the
SQLPAPT (activate process timing) parameter. The following behavior occurs:

• When you enable a command time limit (by specifying a non-zero value in either t
CMDTIMEOUT keyword of the server’s sql.ini file or with the SQLPCTL
parameter), statistics for server and process timing are automatically turned on.

• If you turn off a command time limit, statistics gathering and process timing are
automatically turned off, unless you explicitly turned on either statistics gathering
process timing after you enabled a command time limit.

• If you explicitly turn off either statistics for server or process timing, your command
time limit (if you enabled on) is turned off and sql.ini is updated to reflect
CMDTIMEOUT=0.

It is recommended that if you set a value for any of these three parameters, you should
the same value for the other two. For example, if you set SQLPCTL parameter to On
you should also set SQLPSTA and SQLPAPT parameters to On (1).

Parameter Description
5-260 SQL Application Programming Interface Reference

sqlset - SET parameter

r

s.

ter.

ns of

ads.

.

r

-out
SQLPSTC Sort cache size in pages. This parameter specifies the number of cache pages to use fo
sorting. Sorting is done when you specify a DISTINCT, ORDER BY, GROUP BY, or
CREATE INDEX clause, or when SQLBase creates a temporary table for join purpose
The default is 64, as is the maximum.

If you call sqlset and specify the SQLPSTC parameter, it changes the setting of the
sortcache keyword in sql.ini.

SQLPSVN Name of server. This parameter shows the name of the server you are connected to.
Setting of this parameter will only change the setting in the sql.ini. To activate the new
setting, the server must be restarted. You must have DBA authority to set this parame

SQLPTCO Time colon only. This parameter configures SQLBase to recognize when a delimiter
other than a colon(:) is being used to separate the hours, minutes, and seconds portio
a time value.

The default is off (0).

If you call sqlset and specify the SQLPTCO parameter, it changes the setting of the
timecolononly keyword in sql.ini.

0 = No
1 = Yes

SQLPTHM Thread mode. This parameter specifies whether to use native threads or SQLBase
threads. A value of 1 indicates SQLBase threads and a value of 2 indicates native thre
Note for Windows 95, SQLBase now uses Windows 95 native threads only.

By default, threadmode is 1, except on Windows 95 where the default is 2.

On Netware platforms, if you are running in Ring 0, Centura recommends using
SQLBase threads which invoke stack switching. This should yield better performance
Novell disallows stack switching in Ring 3, so be sure to set threadmode to 2 when in
Ring 3.

If you call sqlset and specify the SQLPTHM parameter, it changes the setting of the
threadmode keyword in sql.ini.

SQLPTMO Client request time out. This parameter specifies the time period that the server waits fo
a client to make a request. If the client does not make a request within the specified
period, SQLBase rolls back the client session, processes, and transactions. The time
clock restarts each time the client makes a request.

The time-out value is 0 (infinite by default, and the maximum value is 200 minutes.

If you call sqlset and specify the SQLPTMO parameter, it changes the setting of the
timeout statement in sql.ini.

SQLPTMS Timestamp. If set to TRUE (1), SQLBase timestamps the messages on a multi-user
server’s Process Activity display; if FALSE (0), SQLBase does not.

You must have DBA authority to set this parameter.

Parameter Description
SQL Application Programming Interface Reference 5-261

Chapter 5 SQL/API Function Reference

t
he

.

ng

s at
SQLPTMZ Time zone. This parameter sets the value of SYSTIMEZONE, a SQLBase keyword tha
returns the time zone as an interval of Greenwich Mean Time. SYSTIMEZONE uses t
expression (SYSTIME - TIMEZONE) to return the current time in Greenwich Mean
Time.

By default, timezone is 0.

If you call sqlset and specify the SQLPTMZ parameter, it changes the setting of the
timezone keyword in sql.ini.

SQLPTPD Temp directory. This parameter specifies the directory where SQLBase places
temporary files. In the course of processing, SQLBase can create several kinds of
temporary files: sort files, read-only history files, and general-use files.

To specify d:\tmp as the temporary directory:

tempdir = d:\tmp

You must set tempdir for read-only databases.

If you call sqlset and specify the SQLPTPD parameter, it changes the setting of the
tempdir keyword in sql.ini.

SQLPTRC Trace stored procedures. Enables or disables statement tracing for procedures.

0 = Off
1 = On

SQPTRF Tracefile name. Directs statement output to a file on the server. If you do not set this
parameter to a file name, the statement output goes to the server’s Process Activity
screen.

SQLPTSL Transaction span limit. The number of log files that SQLBase allows an active
transaction to span. When SQLBase creates a new log file, it checks this limit for all
active transactions and rolls back any transaction that violates the limit. By default, the
transaction span limit is set to zero (0) which disables the limit checking.

Long running transactions can pin down disk log files that otherwise could be deleted
You can limit the amount of logs pinned down by active transactions by specifying the
transaction span limit. SQLBase rolls back long running transactions that exceed the
limit, thereby freeing pinned log files and deleting them (or backing them up and deleti
them if log backup is enabled).

SQLPTSS Thread stack size. This parameter specifies the stack size.

By default, threadstacksize is 10 kilobytes and the minimum value is 8192 bytes.

You should not decrease the default value. Running complex queries when
threadstacksize is set to 8192 can result in a stack overflow error.

If you receive stack overflow errors, increase the value of threadstacksize by 512 byte
a time.

If you call sqlset and specify the SQLPTSS parameter, it changes the setting of the
threadstacksize keyword in sql.ini.

Parameter Description
5-262 SQL Application Programming Interface Reference

sqlset - SET parameter

.

e
e

000
 *

.

SQLPUID Application identifier. This parameter allows the setting of an user identification string

If you call sqlset and specify the SQLPUID parameter, it changes the setting of the
app_id keyword win.ini.

SQLPUSR Number of users. This parameter specifies the maximum number of client applications
that can connect to the server simultaneously. This means, for example, that a server
configured with users=5 could support five clients running one application each, or on
client running five applications, or two clients with one running two applications and th
other running three applications, and so on.

The default value of users is 128, and the maximum is 800.

If you call sqlset and specify the SQLPUSR parameter, it changes the setting of the users
keyword in sql.ini.

SQLPWKA Work space allocation unit. This parameter specifies the basic allocation unit of a work
space. For example, if a SQL command requires 5000 bytes and the default value of 1
is in effect, SQLBase makes 5 memory allocation requests to the operating system (5
100 = 5000).

The default is 1000 bytes.

If you call sqlset and specify the SQLPWKA parameter, it changes the setting of the
workalloc keyword in sql.ini.

SQLPWKL Maximum work space limit. This parameter specifies a maximum memory limitation
for SQL commands. For example, if you specify:

worklimit = 4000

SQLBase cannot execute SQL commands requiring more than 4000 bytes of memory

The default is NULL, meaning that no memory limitation exists.

If you call sqlset and specify the SQLPWKL parameter, it changes the setting of the
worklimit statement in sql.ini.

SQLPWTO Lock wait timeout. Specify the number of seconds for SQLBase to wait for a database
lock to be acquired. After the specified time has elapsed, SQLBase rolls back the
command or transaction.

The default is 300 seconds. Valid timeout values are:

 1 - 1800 inclusive (1 second to 30 minutes)
 0 = never wait; return error immediately
-1 = wait forever

This parameter is only relevant for multi-user servers and it is transaction-specific.

You can also set the lock wait timeout value with the sqltio function.

Parameter Description
SQL Application Programming Interface Reference 5-263

Chapter 5 SQL/API Function Reference

in
,

nd
le.

the

ISO.
Parameters
cur

A cursor handle if the parameter is associated with a cursor. A value of ‘No’
the following table indicates that a cursor handle is not required. In this case
specify a zero (0).

parm

The name of the parameter to set. The parameter types are defined in sql.h and
are shown in the following table.

pbuf

A pointer to the variable that contains the parameter setting. The data type a
size of the variable depends on the parameter as defined in the following tab

length

The length of the value pointed to by pbuf. The following table shows whether a
length needs to be specified for a parameter.

For strings, even if a length is needed, you can specify zero to indicate that
value pointed to by pbuf is null-terminated and the system will compute the
length.

Specify a length of zero for null-terminated string parameters such as SQLP

Parameter Types
The following table lists:

• parm - the parameter type.

• cur - whether the parameter requires a cursor handle.

• pbuf - the size of the variable pointed to by pbuf.

• len - whether you need to specify a length for the
parameter.

 The parameter types and pbuf types and sizes are defined in sql.h.

parm cur pbuf len

SQLPALG Yes SQLMFNL Yes

SQLPAPT Yes SQLTDPV No

SQLPAUT Yes SQLTDPV No
5-264 SQL Application Programming Interface Reference

sqlset - SET parameter
SQLPBLK Yes SQLTDPV No

SQLPCAC Yes SQLTDPV No

SQLPCLG Yes SQLTDPV No

SQLPCLN Yes SQLMFNL Yes

SQLPCMP Yes SQLTDPV No

SQLPCSV No SQLTDPV No

SQLPCTI Yes SQLTDPV No

SQLPCTL Yes SQLTDPV No

SQLPCTS No SQLMNPL Yes

SQLPDBD Yes SQLMFNL Yes

SQLPDDB No Character field of size
SQLMDNM + 1

Yes

SQLPDIS Yes SQLTDPV No

SQLPDMO Yes SQLTDPV No

SQLPDPW No Character field of size
SQLMSID + 1

Yes

SQLPDTR No SQLTDPV No

SQLPDUS No Character field of size
SQLMSID + 1

Yes

SQLPEMT Yes SQLMXER Yes

SQLPEXP Yes SQLMFNL Yes

SQLPEXS No SQLMFNL No

SQLPFRS Yes SQLTDPV No

SQLPFT Yes SQLTDPV No

SQLPGBC Yes Pass a null pointer (such
as SQLNPTR)

No

SQLPHFS Yes SQLTDPV No

SQLPISO Yes SQLMFNL Yes

parm cur pbuf len
SQL Application Programming Interface Reference 5-265

Chapter 5 SQL/API Function Reference
SQLPLBM Yes SQLTDPV No

SQLPLDV Yes SQLMFNL Yes

SQLPLFF Yes SQLTDPV No

SQLPLFS Yes SQLTDPV No

SQLPLOC Yes SQLTDPV No

SQLPOFF Yes SQLTDPV No

SQLPLRD Yes SQLMFNL Yes

SQLPNDB Yes SQLTDPV No

SQLPNIE No SQLTDPV No

SQLPNLB Yes SQLTDPV No

SQLPNPB Yes SQLTDPV No

SQLPOPL Yes SQLTDPV No

SQLPPAR Yes SQLTDPV No

SQLPPCX Yes SQLTDPV No

SQLPPDB No SQLTDPV No

SQLPPLF Yes SQLTDPV No

SQLPPLV Yes SQLTDPV No

SQLPROD Yes SQLTDPV No

SQLPROM Yes SQLTDPV No

SQLPROT Yes SQLTDPV No

SQLPRTO Yes SQLTDPV No

SQLPSTA Yes SQLTDPV No

SQLPTMS Yes SQLTDPV No

SQLPTRC Yes SQLTDPV No

SQLPTRF Yes Character field of size
SQLMFNL + 1

Yes

parm cur pbuf len
5-266 SQL Application Programming Interface Reference

sqlset - SET parameter

ws

does
y are
Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Examples
#include <sql.h>
char dbn [SQLMDNM + 1];/* database name buffer */
SQLTRCDrcd; /* return code */

if (rcd = sqlset (0, SQLPDDB, dbn, 0))/* set dbname */
printf("Failure Setting Database Name (rcd = %d)\n", rcd);

The function below sets the log file size to 500 kilobytes. When the active log gro
to this size, it is closed and a new log is started.

SQLTDPVsize=500
sqlset (cur, SQLPLFS, (SQLTDAP)&size, 0);

The function below sets the log backup mode to OFF. This means that the user
not want to backup log files and wants to delete log files from disk as soon as the
not needed for crash recovery.

lbmset=0;
if (rcd = sqlset (cur1,SQLPLBM,(SQLTDAP)&lbmset,0))

apierr("SQLSET");
else

printf("Logbackupmode is set to %d \n", lbmset);

Related functions
sqlget

SQLPTSL Yes SQLTDPV No

SQLPWTO Yes SQLTDPV No

parm cur pbuf len
SQL Application Programming Interface Reference 5-267

Chapter 5 SQL/API Function Reference

lti-

other

y and

e

ated
essage

 On
sqlsil - Set Isolation Level

Syntax
#include <sql.h>

SQLTAPI sqlsil (cur, isolation)

SQLTCUR cur; /* Cursor handle */
SQLTILV isolation; /* Isolation level */

Description
This function sets the isolation level at which the application will operate in a mu
user environment.

The isolation level controls the effect that changes made by one user have on an
user accessing the same tables. SQLBase supports these isolation levels:

• Read Repeatability (RR)

• Cursor Stability (CS)

• Read Only (RO)

• Release Locks (RL)

Choose an isolation level based on the application's requirements for consistenc
concurrency.

The isolation level you set applies to all the cursors that an application connects to th
same database.

If you change isolation levels, it causes an implicit commit for all cursors that the
program has connected to the database. In turn, an implicit commit destroys all
compiled commands for the database. However, calling sqlsil and specifying an
isolation level that is the same as the current isolation level does not cause an implicit
commit.

Isolation Levels and the Input Message Buffer
Each isolation level uses the input message buffer differently. This buffer is alloc
on the client computer and the server computer. The database server builds a m
and sends it to the input message buffer on the client computer. This buffer is
considered "input" with respect to the client computer.

There is one input message buffer per connected cursor on the client computer.
the server, there is one input message buffer that is the size of the largest input
message buffer on the client computer.
5-268 SQL Application Programming Interface Reference

sqlsil - Set Isolation Level

tched

 the

users

ds

ll

is
r is on
ntil a
r

en the
The input message buffer receives data requested by the client that has been fe
with sqlfet and sent by the server.

Any row in the input message buffer may have a shared lock on it depending on
isolation level setting, preventing other users from changing that row.

The table below summarizes how page locking and the input message buffer are
affected by each isolation level.

Read Repeatability (RR)
This isolation level means that all pages which you access stay locked for other
until you COMMIT your transaction. If the same data is read again during the
transaction, those rows would not have changed. This guarantees that the data
accessed is consistent for the life of the transaction. Identical SELECT comman
will return identical rows since data cannot be changed by other users during the
transaction. In this situation, other users must wait for your COMMIT command.

Read Repeatability is the default isolation level.

The Read Repeatability isolation level fills the input message buffer with rows. A
shared locks remain regardless of the size of the input message buffer until the
application issues COMMIT or ROLLBACK.

Cursor Stability (CS)
This isolation level means that only the page you are processing at the moment
locked to other users. A shared lock is placed on a page for as long as the curso
that page (while the cursor is stable). Exclusive locks and shared locks are held u
COMMIT. Other pages you accessed during the transaction are available to othe
users and they do not have to wait for your COMMIT.

Data that has been read during a transaction may be changed by other users wh
cursor moves to a new page.

Isolation level Input message buffer Shared lock duration and scope

RR Fills the input message
buffer.

Maintained for duration of transaction
and more than one page may be locked.

CS One row sent to input
message buffer.

Maintained for duration of transaction,
but only the current page is locked.

RO Fills the input message
buffer.

None.

RL Fills the input message
buffer.

All shared locks are released by the time
control returns to the client.
SQL Application Programming Interface Reference 5-269

Chapter 5 SQL/API Function Reference

tion

ENT
 page
date

ading

an. If

.

ot

.

call
gle

ck

at

s share

ase

es that
Only one row is sent to the input message buffer under the Cursor Stability isola
level despite the size of the buffer. In other words, each sqlfet causes the client and
server to exchange messages across the network.

Use Cursor Stability when you want to update one row at a time using the CURR
OF cursor clause. When the row is fetched to the client input message buffer, its
will have a shared lock, which means that no other transaction will be able to up
it.

Read-Only (RO)
This isolation level places no locks on the database and can only be used for re
data. DDL and DML operations are not allowed while in read-only isolation. This
isolation level provides a view of the data as it existed when the transaction beg
you request a page that is locked by another concurrent transaction, SQLBase
provides an older copy of the page from the read-only history file. The read-only
history file maintains multiple copies of database pages that have been changed

This is an appropriate isolation level if the data wanted must be consistent but n
necessarily current. This isolation level also guarantees maximum concurrency.

Read-only transactions may affect performance, so they are disabled by default
Read-only transactions can be turned on by calling the sqlset function with the
SQLPROM or SQLPROT parameters, or by specifying the readonly keyword in
sql.ini. If you set the read-only isolation level with sqlset and the SQLPROM
parameter, or with the readonly keyword in sql.ini, all future server sessions and all
databases on the server are started with read-only transactions enabled. If you
sqlset with the SQLPROT parameter, read-only isolation level is set only for a sin
database and the current server session. Read the section on the sqlset function for
details.

This isolation level fills the input message buffer with rows.

The Read-Only isolation level is disabled when the SQLPROD parameter is on.

Release Locks (RL)
Under Cursor Stability, when a reader moves off a database page, the shared lo
acquired when the page was read is dropped. However, if a row from the page is still
in the message buffer, the page is still locked. In contrast, the Release Locks (RL)
isolation level increases concurrency by releasing all shared locks at the time th
control returns to the client.

When the next message or command is sent to the database, SQLBase acquire
locks on only those pages that belong the current cursor. The locks are obtained
regardless of the current command type. Just before returning to the user, SQLB
releases all shared locks. It also internally notes the page numbers of those pag
had locks on them.
5-270 SQL Application Programming Interface Reference

sqlsil - Set Isolation Level

user.
This isolation level fills the input message buffer with rows, which minimizes
network traffic.

Use this isolation level for browsing applications which display a set of rows to a

Parameters
cur

The cursor handle associated with this function.

isolation

A pointer to the variable that contains the isolation level:

SQLILRR "RR" /* Repeatable Read isolation */
SQLILCS "CS" /* Cursor Stability isolation */
SQLILRO "RO" /* Read-Only isolation */
SQLILRL "RL" /* Release Locks isolation */

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
This example sets the isolation level to Cursor Stability.

ret = sqlsil (cur, SQLILCS);

Related functions
sqlims
SQL Application Programming Interface Reference 5-271

Chapter 5 SQL/API Function Reference

ode
each

 result
 is
sqlspr - StoP Restriction mode

Syntax
#include <sql.h>

SQLTAPI sqlspr (cur)

SQLTCUR cur; /* Cursor handle */

Description
This function turns off restriction mode but leaves on result set mode. Result set m
lets the application set a position at any row in the result set while not restricting
subsequent query.

In result set mode, once a result set has been created, you can get any row in the
set with the sqlprs function without sequentially fetching forward. Once the cursor
positioned, later fetches start from that row.

Parameters
cur

The cursor handle associated with this function.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
if (rcd = sqlspr (cur))

apierr("SQLSPS");

Related functions
sqlcrs sqlrrs sqlstr
sqldrs sqlsrs sqlurs
sqlprs
5-272 SQL Application Programming Interface Reference

sqlsrs - Start Restriction Set and Result Set modes

esult
 is

h

t is

e a

f row
. A
r you
t later
sqlsrs - Start Restriction Set and Result Set modes

Syntax
#include <sql.h>

SQLTAPI sqlsrs(cur)

SQLTCUR cur; /* Cursor handle */

Description
This function starts restriction mode and result set mode.

In result set mode, once a result set has been created, you can get any row in the r
set with the sqlprs function without sequentially fetching forward. Once the cursor
positioned, later fetches start from that row.

In restriction mode, the result set of one query is the basis for the next query. Eac
query further restricts the result set. This continues for each subsequent query.

After you call sqlsrs, you can call the sqlspr function to turn off restriction mode but
leave result set mode on. You can call the sqlstr function to turn on restriction mode
again after being in only result set mode.

While in restriction mode, you can "undo" the current result set and return to the
result set as it was before the last SELECT with the sqlurs function.

If you are in restriction mode and you query a different table, the previous result se
lost.

You turn off both result set mode and restriction mode with the sqlcrs function. The
sqlcrs function lets you optionally give a name to the result set and save it. To us
saved result set later, call the sqlrrs function and specify the saved result set name.
The sqlrrs function turns on result set mode and restriction mode.

Be cautious about using saved result sets. Internally, a saved result set is a list o
identifiers (ROWIDs) that is stored in the SYSROWIDLISTS system catalog table
ROWID changes whenever the row is updated. If one of the rows is updated afte
have saved and closed a result set, you will get an error if you open the result se
and try to fetch the row.

You cannot use restriction mode with the following features:

• Aggregate functions

• DISTINCT
SQL Application Programming Interface Reference 5-273

Chapter 5 SQL/API Function Reference
• GROUP BY

• HAVING

• UNION

• ORDER BY

• Stored commands

Parameters
cur

The cursor handle associated with this function.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
ret = sqlsrs (cur);

Related functions
sqlcrs sqlrrs sqlstr
sqldrs sqlspr sqlurs
sqlprs sqlsrs

sqlssb - Set SELECT Buffer

Syntax
#include <sql.h>

SQLTAPI sqlssb(cur, slc, pdt, pbp, pdl, sca, cvl, pfc)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Column number */
SQLTPDT pdt; /* Program data type */
SQLTDAP pbp; /* Program buffer */
SQLTPDL pdl; /* Program buffer length */
SQLTSCA sca; /* Scale of packed decimal data */
SQLTCDL PTR cvl; /* Current value length */
SQLTFSC PTR pfc; /* Fetch status code */
5-274 SQL Application Programming Interface Reference

sqlssb - Set SELECT Buffer

area,

tem
Description
This function sets up buffers that receive data from a sqlfet. This function associates
an item in the SELECT list with a data buffer where the data is fetched.

This function tells the system where to put fetched data, the size of the receiving
and the application program data type.

Also, this function sets up variables that are set after each sqlfet:

• Length of fetched data (cvl argument).

• Fetch status code (pfc argument).

This function must be issued once for each item in the SELECT list for which data is
to be retrieved.

Parameters
cur

The cursor handle associated with this function.

slc

The column number indicates the sequence number (starting with 1) of the i
in the SELECT list for which the program is setting up a select buffer.

pdt

The data type of the SELECT item as declared by the program. SQLBase
automatically converts fetched data into this requested data type.

The program data types are listed below. These are defined in sql.h.

Program Data Type Description

SQLPBUF Character buffer

SQLPDAT Internal datetime

SQLPDOU Double

SQLPDTE Date only

SQLPEBC EBCDIC buffer

SQLPFLT Float

SQLPLON Long text string

SQLPLBI Long binary buffer
SQL Application Programming Interface Reference 5-275

Chapter 5 SQL/API Function Reference

mal
pbp

A pointer to the variable where a later sqlfet returns the data for a SELECT list
item.

Assign a value to this variable before each sqlfet. When you fetch a column with
a null value, the value of pbp is not changed.

pdl

The length of the value pointed to by pbp.

sca

The scale (number of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-deci
data type, specify zero.

SQLPLVR Char/long varchar >254

SQLPNBU Numeric buffer

SQLPNST Numeric string

SQLPNUM Internal numeric

SQLPSCH Character

SQLPSIN Integer

SQLPSLO Long

SQLPSPD Signed packed decimal

SQLPSSH Short

SQLPSTR String (null-terminated)

SQLPTIM Time only

SQLPUCH Unsigned character

SQLPUIN Unsigned integer

SQLPULO Unsigned long

SQLPUPD Unsigned packed decimal

SQLPUSH Unsigned short

Program Data Type Description
5-276 SQL Application Programming Interface Reference

sqlssb - Set SELECT Buffer

a

r
ro.
 are

meter
cvl

The length of the data received by pbp. If the size of pbp is smaller than the actual
data received, the data is truncated and an error will be indicated in the fetch
status code for this column.

If the actual data received into pbp is shorter than pdl, then cvl is set to the actual
length received after a sqlfet. For example, if the string "TEST" is received into
20 character variable, cvl is set to 4.

Specify a null pointer (SQLNPTR) if this information is not wanted by the
application.

If the data type is packed-decimal, see the section called Packed-Decimal Data
Types in chapter 3.

pfc

A pointer to the variable where the sqlfet function returns the fetch status code fo
the specified column. If the fetch was successful, the fetch return code is ze
The following is a list of the fetch errors which can be returned. These codes
defined in sql.h.

Note: To set the pfc parameter to the constant FETRNUL, you must set the SQLPNIE para
of the sqlfet function to 1 (on). Setting SQLPNIE affects all the cursors connected by the
application that set it; it does not affect other applications.

Specify a null pointer (SQLNPTR) if this information is not wanted by the
application.

Constant Value Description

FETRTRU 1 Data was truncated

FETRSIN 2 Signed number fetched into unsigned
variable

FETRDNN 3 Data is not numeric

FETRNOF 4 Numeric overflow

FETRDTN 5 Data type is not supported

FETRDND 6 Data is not a date

FETRNUL 7 Data is null
SQL Application Programming Interface Reference 5-277

Chapter 5 SQL/API Function Reference
Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
#define NAMESIZE 25
#define COLWID 30

static char select[] = "select name, phone from emp where
acode = :1";

char dataline[80];
unsigned char cvl;
char fcd;
short ret; /* return code */
char *lp = dataline;/* line pointer */
SQLTCUR cur; /* cursor*/
SQLTSLC col; /* column number */

/* Set buffer for receiving data as locations on a line */

memset (dataline, ' ', sizeof(dataline));/*initialize */
for (col=1, col <= 2, col++)

{
if (ret = sqlssb (cur,col,SQLPBUF, lp, COLWID, 0, &cvl,

&fcd))
{
... process error
}

/* set line location for next item of data*/
lp += (COLWID+2);

}

Related functions
sqldes sqlfet sqlgfi
5-278 SQL Application Programming Interface Reference

sqlsta - STAtistics

d

isk.
or may

 the
be

ds.

tes.
sqlsta - STAtistics

Syntax
#include <sql.h>

SQLTAPI sqlsta (cur, svr, svw, spr, spw)

SQLTCUR cur; /* Cursor handle */
SQLTSTC PTR svr; /* Virtual reads */
SQLTSTC PTR svw; /* Virtual writes */
SQLTSTC PTR spr; /* Physical reads */
SQLTSTC PTR spw; /* Physical writes */

Description
This function returns database statistics about physical and virtual disk reads an
writes since the specified cursor was connected.

The numbers returned for physical reads and writes refer to disk input/output
operations. Physical means that data was physically transferred to or from the d
Logical means that data was accessed by SQLBase access methods. This may
not result in physical input/output.

The number of virtual reads and writes can be greater than, but never less than,
physical reads and writes. More physical writes can occur because a page may
forced out of the cache by a commit or a read.

The amount of disk input/output can be affected by the size of the server cache.

Parameters
cur

The cursor handle associated with this function.

svr

A pointer to the variable where this function returns the number of virtual rea

svw

A pointer to the variable where this function returns the number of virtual wri

spr

A pointer to the variable where this function returns the number of physical
reads.
SQL Application Programming Interface Reference 5-279

Chapter 5 SQL/API Function Reference

ust as
spw

A pointer to the variable where this function returns the number of physical
writes.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTCUR cur;
unsigned long svr; /* virtual reads */
unsigned long svw; /* virtual writes */
unsigned long spr; /* physical reads */
unsigned long spw; /* physical writes */

if (sqlsta (cur,&svr,&svw,&spr,&spw))
{

process error
}

printf("Virtual reads:%ld Virtual writes:%ld\n",svr,svw);
printf("Physical reads:%ld Physical writes: %ld\n",

spr,spw);

Related functions
sqlgsi

sqlstm - Server TerMinate

Syntax
#include <sql.h>

SQLTAPI sqlstm (shandle)

SQLTSVH shandle; /* Server handle */

Description
This function causes the server program to exit. The server program terminates j
though a user had pressed Esc at the server computer.
5-280 SQL Application Programming Interface Reference

sqlsto - STOre a compiled command/procedure

 are
ed
You must call sqlcsv (Connect to SerVer) prior to calling this function.

If no users are connected, then it is a graceful shutdown.

If users are connected, then their sessions are terminated and the server exits.
Connected users will get a "session terminated" message. All open transactions
left uncommitted. When the server is brought back up, crash recovery is perform
and any uncommitted transactions will be rolled back.

Parameters
shandle

The server handle returned by sqlcsv.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
if (rcd = sqlcsv(&handle,srvname,password))

printf("Error : SQLCSV : rcd= %d\n",rcd);
if (rcd = sqlstm (handle))

printf("Error : SQLSTM : rcd= %d\n",rcd);

Related functions
sqlcdr sqlsab sqlsdn
sqlcsv

sqlsto - STOre a compiled command/procedure

Syntax
#include <sql.h>

SQLTAPI sqlsto (cur,cnp,cnl,ctp,ctl)

SQLTCUR cur; /* Cursor handle */
SQLTDAT cnp; /* Command/procedure name buffer */
SQLTDAL cnl; /* Command/procedure name length */
SQLTDAP ctp; /* Command/procedure text buffer */
SQLTDAL ctl; /* Command/procedure text length */
SQL Application Programming Interface Reference 5-281

Chapter 5 SQL/API Function Reference

 with

ure.

pile
Description
This function compiles and stores a SQL command or procedure in the database
the specified name in the SYSCOMMANDS system catalog table. A stored SQL
command or procedure must be retrieved (sqlret) before it can be executed.

Parameters
cur

The cursor handle associated with this function.

cnp

A pointer to the string that contains the name of the SQL command or proced
The maximum length of the name is 18 characters.

cnl

The length of the string pointed to by cnp. If the string pointed to by cnp is null-
terminated, specify zero and the system will compute the length.

ctp

A pointer to the string that contains the SQL command or procedure to com
and store.

ctl

The length of the string pointed to by ctp. If the string pointed to by ctp is null-
terminated, specify zero and the system will compute the length.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
short rcd; /* return code */
static char statement [] = "INSERT INTO CUST (:1, :2, :3,
:4)";

if (rcd = sqlsto (cur, "ADDCUST", 0, statement, 0))
{

printf("Error storing SQL statement (rcd = %d)\n",rcd);
exit(0);

}

5-282 SQL Application Programming Interface Reference

sqlstr - STart Restriction mode

ach

t is

e a

f row
. A
r you
t later
Related functions
sqldst sqlret

sqlstr - STart Restriction mode

Syntax
#include <sql.h>

SQLTAPI sqlstr (cur);

SQLTCUR cur; /* Cursor handle */

Description
This function turns on restriction mode after being in result mode only.

In restriction mode, the result set of one query is the basis for the next query. E
query further restricts the result set. This continues for each subsequent query.

After you call sqlstr, you can call the sqlspr function to turn off restriction mode but
leave result set mode on.

While in restriction mode, you can "undo" the current result set and return to the
result set as it was before the last SELECT with the sqlurs function.

If you are in restriction mode and you query a different table, the previous result se
lost.

You turn off both result set mode and restriction mode with the sqlcrs function. The
sqlcrs function lets you optionally give a name to the result set and save it. To us
saved result set later, call the sqlrrs function and specify the saved result set name.
The sqlrrs function turns on result set mode and restriction mode.

Be cautious about using saved result sets. Internally, a saved result set is a list o
identifiers (ROWIDs) that is stored in the SYSROWIDLISTS system catalog table
ROWID changes whenever the row is updated. If one of the rows is updated afte
have saved and closed a result set, you will get an error if you open the result se
and try to fetch the row.

Parameters
cur

The cursor handle associated with this function.
SQL Application Programming Interface Reference 5-283

Chapter 5 SQL/API Function Reference

de

e.
Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
if (rcd = sqlstr (cur))

apierr("SQLSTR");

Related functions
sqlcrs sqlrrs sqlsrs
sqldrs sqlspr sqlurs
sqlprs

sqltec - Translate Error Code

Syntax
#include <sql.h>

SQLTAPI sqltec (rcd, np)

SQLTRCD rcd; /* SQLBase return code to convert */
SQLTRCD PTR np; /* Converted return code */

Description
This function translates the specified SQLBase return code to another return co
based on an entry in the error translation file specified by the errorfile keyword in
sql.ini.

For information on the errorfile configuration keyword, see Chapter 4 and the
Configuration chapter in the Database Administrator’s Guide.

Parameters
rcd

The SQLBase return code to translate.

np

A pointer to the variable where this function returns the translated return cod
5-284 SQL Application Programming Interface Reference

sqltem - Tokenize Error Message

r
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful or the SQLBase return code was not found in the erro
translation file.

Example
#include <sql.h>

SQLTRCD srcd; /* SQLBase return code */
SQLTRCD trcd; /* translated return code */
SQLTRCD rcd; /* function call return code */

if (rcd = sqltec (srcd, &trcd))/* translate SQLBase rcd */
printf("Failure translating rcd (rcd = %d)\n", rcd);

Related functions
sqlerr sqlfer sqlrcd

sqltem - Tokenize Error Message

Syntax
#include <sql.h>

SQLTAPI sqltem (cur, rcd, msgtyp, bfp, bfl, txtlen)

SQLTCUR cur /* Cursor handle */
SQLTXER PTR rcd; /* Database return code */
SQLTPTY msgtyp;/* Error message text type to return*/
SQLTDAP bfp; /* Pointer to error text buffer */
SQLTDAL bfl; /* Length of error text buffer */
SQLTDAL PTR txtlen;/* Length of error text */

Description
This function returns one or more of the following from the error.sql file for the
specified cursor handle:

• Error message

• Error reason
SQL Application Programming Interface Reference 5-285

Chapter 5 SQL/API Function Reference

de
d

h
 more
he

ase

n-

r for

ng on,
pped

• Error remedy

Each API function call returns a code. You can retrieve the most recent return co
with the sqltem function, and use it to look up the error message, error reason, an
error remedy.

This function formats an error message with tokens in order to provide users wit
more informational error messages. A tokenized error message contains one or
variables that SQLBase substitutes with object names (tokens) when it returns t
error message to the user.

For example, formerly, SQLBase error 175:

SQL OLC Cannot open local client workstation file

is now:

SQL OLC Cannot open local client workstation file <filename>

where filename is a variable that gets replaced with the name of the file that SQLB
was unable to open.

Tokenized error messages produce informative integrity errors. For example, the
following message text for error 9601 reports the table or index name as well as
merely informing you that the table is corrupt or the index is bad:

CHECK Failure (IDX BPT): <index page corrupted>

When this error occurs, SQLBase replaces the index page corrupted variable (and the
brackets) with the actual name of the index that contains the corruption.

Non-SQLBase database servers
By default, the sqltem function returns the native error code and message from no
SQLBase database servers, but does not return the error reason or remedy.

For example, if you are connected to the Informix server and you receive an erro
a table that already exists, the error returned is the Informix error code 310:

An attempt was made to create a tablespace which already
exists

not SQLBase’s equivalent 338:

Table, view, or synonym <name> already exists

If you are accessing a non-SQLBase database server and have set error mappi
any non-SQLBase error that doesn’t have a corresponding SQLBase error is ma
to a generic error message. You can use the sqltem function to retrieve the native error
code and message that caused the problem.
5-286 SQL Application Programming Interface Reference

sqltem - Tokenize Error Message

ieve

n

ase
reason

ng
 the

, or
Note: The other error message handling functions (sqlerr, sqlfer, and sqletx) use a specified
return code to retrieve the corresponding error message from the error.sql file. An error message
returned by any of these functions contains the variable, not the object name; only the sqltem
function replaces the variable with an actual object name.

Parameters
cur

The cursor handle on which an error occurred. Use this cursor handle to retr
the error message, reason, and/or remedy of a SQLBase error.

Do not attempt to call the sqltem function when you fail to establish a connectio
to a database. In such a case, the cursor is invalid because it was unable to
connect to the database. Use the sqletx function, pass it the error code, and
specify a msgtyp parameter value of 6 in order to retrieve the error message
reason and remedy.

rcd

A pointer to the return code value.

The error code is database-specific, so when you are accessing a non-SQLB
database server, the return code value does not have a corresponding error
and/or remedy in error.sql.

msgtyp

You can specify the following message types individually or together by addi
their constant values. For example, a value of seven indicates that you want
error message text, reason, and remedy all returned in the buffer to which bfp
points.

A value of SQLXMSG (1) is assumed for non-SQLBase database servers.

bfp

A pointer to the buffer where this function copies the error message text, reason
remedy.

Constant name Value Explanation

SQLXMSG 1 Retrieve the error message text.

SQLXREA 2 Retrieve the error message reason.

SQLXREM 4 Retrieve the error message remedy.
SQL Application Programming Interface Reference 5-287

Chapter 5 SQL/API Function Reference

ecify

dy.

hat

t

r in

h of
bfl

The length of the buffer pointed to by bfp.

If you are retrieving the error message text, reason, and remedy, you can sp
the sql.h constant SQLMETX for this argument. SQLMETX is always set to a
value that is large enough to hold the error message text, reason, and reme

If you are only retrieving the error message text, you can specify the sql.h
constant SQLMERR for this argument. SQLMERR is always set to a value t
is large enough to hold the error message text.

txtlen

A pointer to the variable where this function returns the number of bytes tha
exist for either the error message text, reason, or remedy.

If the buffer pointed to by bfp holds 100 bytes but the text you are retrieving is
500 bytes, sqltem returns 100 bytes of text to your application and sets this
parameter to 500. At this point, your application can reallocate a larger buffe
order to retrieve all the text.

Specify a null pointer to indicate that you are not interested in the total lengt
the text.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTCUR cur; /* Cursor value */
SQLTXER rcd; /* Return code */
char buf[SQLMETX]; /* Buffer to receive the text */
SQLTDAL txtlen; /* Length of text returned*/

if (sqlcom (cur, “CREATE TABLE EMP (LASTNAME CHAR(20))”, 0))
{

sqltem (cur, &rcd, SQLXMSG + SQLXREA + SQLXREM, buf,
sizeof(buf), &txtlen)

printf (“Error Explanation:\n%s\n”, buf);
}

Related functions
sqlerr sqletx sqlfer
sqlxer
5-288 SQL Application Programming Interface Reference

sqltio - TIme Out

s
s in

ter
sqltio - TIme Out

Syntax
#include <sql.h>

SQLTAPI sqltio (cur, timeout)

SQLTCUR cur; /* Cursor handle */
SQLTTIV timeout; /* Wait period in seconds */

Description
This function specifies a wait time for getting a lock after which a timeout happen
and the transaction rolls back. The timeout is set on a per-cursor basis and stay
effect until the next sqltio function.

This function is not useful for a single-user server.

Parameters
cur

The cursor handle associated with this function.

timeout

The timeout period in seconds to wait for a database lock to be acquired. Af
the specified time has elapsed, the transaction is rolled back.

Valid timeout values are:

The default setting is 300 seconds.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

 1-1800 Seconds to wait for a lock (1 second to 30 minutes)

-1 Wait forever for a lock held in an incompatible mode by another
transaction (infinite timeout)

 0 Never wait for a lock and immediately return a timeout error
SQL Application Programming Interface Reference 5-289

Chapter 5 SQL/API Function Reference

Example
main()
{

SQLTCUR cur;
SQLTTIV timeout=500;

static char dbnam[]="demox"; /* database name */

/* CONNECT TO THE DATABASE */

cur = 0;
if (rcd = sqlcnc(&cur, dbnam, 0))/* perform connect

operation */
apierr("SQLCNC");

if (rcd = sqltio (cur,timeout))
apierr("SQLTIO");

/* DISCONNECT FROM THE DATABASE */

if (rcd = sqldis(cur)) /* failure on disconnect? */
apierr("SQLDIS");

}

Related functions
sqlsil

sqlunl - UNLOAD command

Syntax
#include <sql.h>

SQLTAPI sqlunl(cur, cmdp, cmdl)

SQLTCUR cur; /* cursor number */
SQLTDAP cmdp; /* UNLOAD command */
SQLTDAL cmdl; /* length of above command */

Description
This function processes the UNLOAD command and sends it to the backend for
compilation and execution. If the unload file destination is on the server, the
5-290 SQL Application Programming Interface Reference

sqlunl - UNLOAD command

r
g the

e

execution is handled completely at SERVER. If it is ON CLIENT, this function
handles the retrieval of the unload data from the SERVER and writes it to the
destination file.

To unload to multiple file segments, you can create a control file that defines you
segments and specify the control file name in this function. For details on creatin
control file, read the Database Administrator’s Guide.

Parameter
cur

The cursor handle associated with this function

cmdp

A pointer to the string that contains the UNLOAD command.

cmdl

The length of the string pointed to by cmdp. If the string pointed to by cmdp is
null-terminated, specify zero and the system will compute the length.

Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
The following sample program calls the UNLOAD command and inputs a file nam
that exists online:

static char unlcmd[] =
"UNLOAD COMPRESS DATA SQL db.unl ALL ON SERVER ;";
ret = sqlunl(cur, unlcmd, 0);

You can also create a customized program to manipulate the unload buffer in the
client, such as unloading to archive data. For an example, see the Loading and
unloading databases section in the chapter, Using the SQL/API.
SQL Application Programming Interface Reference 5-291

Chapter 5 SQL/API Function Reference

sult

 and
first
sqlurs - Undo Result Set

Syntax
#include <sql.h>

SQLTAPI sqlurs (cur)

SQLTCUR cur; /* Cursor handle */

Description
In restriction mode, this function undoes the current result set and returns the re
set to the state it was in before the last query.

Parameters
cur

The cursor handle associated with this function.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
Execute these commands in restriction mode:

SELECT * FROM LOC WHERE STATE_POP > 2000000;
SELECT * FROM LOC WHERE STATE_AREA > 150000;

The sqlurs function below drops the result table created by the second command
makes all later queries for the table operate on the result table produced by the
command.

ret = sqlurs (cur);

Related functions
sqlcrs sqlrrs sqlsrs
sqldrs sqlspr sqlstr
sqlprs
5-292 SQL Application Programming Interface Reference

sqlwlo - Write LOng

t

s

efore
sqlwlo - Write LOng

Syntax
#include <sql.h>

SQLTAPI sqlwlo (cur, bufp, bufl)

SQLTCUR cur; /* Cursor handle */
SQLTDAP bufp; /* Data to write */
SQLTDAL bufl; /* Length of long data */

Description
This function writes bufl bytes at a time to a LONG VARCHAR column.

This function is called after sqlcom has been performed and the LONG VARCHAR
column has been bound, but before sqlexe.

This function allows the incremental writing of large columns without having to se
up equivalent size data buffers to hold the data.

The function is called repeatedly until the total amount of data is written to the
database column. After each call to sqlwlo, the API increments a pointer that indicate
where the next sqlwlo should begin. The API resets the pointer after a sqlelo.

The sequence of binding, writing, and ending the operation must be completed b
the next bind for a LONG VARCHAR.

You cannot seek to a position within a LONG VARCHAR with the sqllsk function
and start writing with sqlwlo. You must always start writing the LONG VARCHAR
column at the first byte.

The maximum length that you can write in one call to sqlwlo is 32,767 bytes.

Parameters
cur

The cursor handle associated with this function.

bufp

A pointer to the string that contains the LONG VARCHAR data to write.
SQL Application Programming Interface Reference 5-293

Chapter 5 SQL/API Function Reference
bufl

The length of the string pointed to by bufp. If the string pointed to by bufp is null-
terminated, specify zero and the system will compute the length.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
static char updlong[] = "update people set biography = :1

where name = :2";

/* Prior to sqlwlo, the above SQL statement has been */
/* compiled */
/* (sqlcom), :1 is bound using sqlbln; :2 is bound */
/* using sqlbnn */

FILE *fp;
int count;

char buffer[500];
while (count = fread(buffer, 1, sizeof(buffer), fp))

{
if (!(ret = sqlwlo (cur, buffer, count)))

{
... process error
}

}
if (sqlelo(cur))

...

Related functions
sqlbld sqlelo sqlrlo
sqlbln
5-294 SQL Application Programming Interface Reference

sqlxad - eXtended ADd

 of

h of

ngth
sqlxad - eXtended ADd

Syntax
#include <sql.h>

SQLTAPI sqlxad(op, np1, nl1, np2, nl2);

SQLTNMP op; /* Output number */
SQLTNMP np1; /* First number */
SQLTNML nl1; /* Length of first number */
SQLTNMP np2; /* Second number */
SQLTNML nl2; /* Length of second number */

Description
This function adds two SQLBase internal numbers.

Incorrect data in any argument can cause unpredictable results.

Parameters
op

A pointer to a variable where this function returns the sum. Define the length
this variable as SQLSNUM.

np1

A pointer to a variable that contains the first number to add. Define the lengt
this variable as SQLSNUM.

nl1

The length of the number pointed to by np1.

np2

A pointer to a variable that contains the second number to add. Define the le
of this variable as SQLSNUM.

nl2

The length of the number pointed to by np2.
SQL Application Programming Interface Reference 5-295

Chapter 5 SQL/API Function Reference

l. If
Return value
This function returns the length of the resulting number if execution is successfu
execution is not successful, this function returns a negative value.

Example
/* ADD NUMBER 1 AND NUMBER 2, PUTTING THE RESULT */
/* INTO NUMBER 3 */

char num1[SQLSNUM]; /* number 1 */
int nl1; /* number 1 length */
char num2[SQLSNUM]; /* number 2 */
int nl2; /* number 2 length */
char num3[SQLSNUM]; /* number 3 */
int nl3; /* number 3 length */

nl3 = sqlxad (num3, num1, nl1, num2, nl2);

Related functions
sqlxdv sqlxml sqlxsb

sqlxcn - eXtended CoNvert

Syntax
#include <sql.h>

SQLTAPI sqlxcn(op, ip, il)

SQLTNMP op; /* Output number */
SQLTDAL ip; /* Input character string */
SQLTNML il; /* Length of input string */

Description
This function converts a character string to a SQLBase internal number.

Incorrect data in any argument can cause unpredictable results.
5-296 SQL Application Programming Interface Reference

sqlxcn - eXtended CoNvert

l. If
Parameters
op

A pointer to the variable where this function returns the SQLBase internal
number. Define the length of this variable as SQLSNUM.

ip

A pointer to the string that contains the character string to convert.

il

The length of the string pointed to by ip. If the string pointed to by ip is null-
terminated, specify zero and the system will compute the length.

Return value
This function returns the length of the resulting number if execution is successfu
execution is not successful, this function returns a negative value.

Examples
Example 1

char num[SQLSNUM]; /* internal SQLBase number */
int nl; /* length of internal number */

nl = sqlxcn (num, "5900.99", 7);

Example 2

#include “sql.h”
#include “stdio.h”
#include “string.h”

main ()
{
char output[12];
int rcd;
char num[SQLSNUM];
int nl;

nl = sqlxcn (num, “123456”,6);
printf(“nl = %d\n”, nl);
rcd = sqlxnp(output,sizeof(output),num,nl,”zzz,zzz.99”,10);
printf(“RCD = %d output = %s\n”,rcd,output);
exit(1);
SQL Application Programming Interface Reference 5-297

Chapter 5 SQL/API Function Reference

he

Related functions
sqlxnp

sqlxda - eXtended Date Add

Syntax
#include <sql.h>

SQLTAPI sqlxda(op, dp, dl, days)

SQLTNMP op; /* Output date */
SQLTNMP dp; /* Internal SQLBase date */
SQLTNML dl; /* Length of internal SQLBase date */
SQLTDAY days; /* Number of days to add */

Description
This function adds n days to a SQLBase internal date.

Incorrect data in any argument can cause unpredictable results.

Parameters
op

A pointer to the variable where this function returns the output date. Define t
length of this variable as SQLSDAT.

dp

A pointer to the variable that contains the SQLBase internal date. Define the
length of this variable as SQLSDAT.

dl

The length of the internal date pointed to by dp. Pass the length from the sqlxpd
or sqlssb.

days

The number of days to add to dp.
5-298 SQL Application Programming Interface Reference

sqlxdp - eXtended Date to Picture

ture
Return value
This function returns the length of the resulting date if execution is successful. If
execution is not successful, this function returns a negative value.

Example
/* ADD 30 DAYS TO A DATE */

char date1[SQLSDAT];/* starting date */
int dl1; /* starting date length */
char date2[SQLSDAT];/* resulting date */
int dl2; /* resulting date length */

dl2 = sqlxda (date2, date1, dl1, 30);

Related functions
sqlxdp sqlxpd

sqlxdp - eXtended Date to Picture

Syntax
#include <sql.h>

SQLTAPI sqlxdp (op, ol, ip, il, pp, pl)

SQLTDAP op; /* Null-terminated string */
SQLTDAL ol; /* Length of null-terminated string */
SQLTNML ip; /* Internal SQLBase date */
SQLTNLM il; /* Length of internal SQLBase date */
SQLTDAP pp; /* Picture specification */
SQLTDAL pl; /* Length of picture specification */

Description
This function converts a SQLBase internal date to a string using the specified pic
format.

Use the cvl argument in the sqlssb function to pass the length to sqlxdp (il argument).

Incorrect data in any argument can cause unpredictable results.
SQL Application Programming Interface Reference 5-299

Chapter 5 SQL/API Function Reference

tput
d

 size

er- or

87".
Parameters
op

A pointer to the variable where this function returns the output string. The ou
is formatted as a null-terminated string. If the length is less than the specifie
picture length, the output is truncated.

ol

The length of the variable pointed to by op.

ip

A pointer to the variable that contains the SQLBase internal date. Define the
of this variable as SQLSDAT.

il

The length of the internal date pointed to by ip. Do not use a fixed length because
SQLBase internal numbers are variable length.

pp

A pointer to the variable that contains the picture specification. This function
performs the following substitutions in the picture specification.

The characters, such as MM, are not case-sensitive. They can appear in upp
lower-case in the picture. For example, if the input picture string is
"Mon.dd.yyyy" and the input date is June 28, 1987, the output is "Jun.28.19

Characters Replaced by

MM A two digit number representing the month.

MON A three character abbreviation for the month.

DD A two digit number representing the day of the month.

YY The last two digits of the year.

YYYY The four digits of the year.

HH A two digit number representing hours in military time.

MI A two digit number representing minutes.

SS A two digit number representing seconds.

AM or PM Two characters: either AM or PM.

999999 A 6 or more digit number representing microseconds.
5-300 SQL Application Programming Interface Reference

sqlxdv - eXtended DiVide

g

A backslash forces the next character into the output from the picture. For
example: a picture of "Mo\mmy was born in YYYY" produces an output strin
of "Mommy was born in 1956" instead of "Mo04y was born in 1956".

pl

The length of the string pointed to by pp. Specify a zero if the string pointed to by
pp is null-terminated.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
char date[SQLSDAT];
char buf[14];
int cvl;

rcd = sqlxdp (buf, sizeof(buf), date, cvl, "mon. dd, yyyy",
0);

Related functions
sqlxpd

sqlxdv - eXtended DiVide

Syntax
#include <sql.h>

SQLTAPI sqlxdv(op, np1, nl1, np2, nl2)

SQLTNMP op; /* Output number */
SQLTNMP np1; /* First number */
SQLTNML nl1; /* Length of first number */
SQLTNMP np2; /* Second number */
SQLTNML nl2; /* Length of second number */

Description
This function divides a SQLBase internal number by another SQLBase internal
number.
SQL Application Programming Interface Reference 5-301

Chapter 5 SQL/API Function Reference

e

 by

ided

l. If
Incorrect data in any argument can cause unpredictable results.

Parameters
op

A pointer to the variable where this function returns the output number. Defin
the length of this variable as SQLSNUM.

np1

A pointer to the variable that contains the first number. This number is divided
the number in np2. Define the length of this variable as SQLSNUM.

nl1

The length of the number pointed to by np1.

np2

A pointer to the variable that contains the second number. This number is div
into the number in np1. Define the length of this variable as SQLSNUM.

nl2

The length of the number pointed to by np2.

Return value
This function returns the length of the resulting number if execution is successfu
execution is not successful, this function returns a negative value.

Example
/* DIVIDE NUMBER 1 BY NUMBER 2; PUTTING THE RESULT */
/* INTO NUMBER 3 */

char num1[SQLSNUM]; /* number 1 */
int nl1; /* number 1 length */
char num2[SQLSNUM]; /* number 2 */
int nl2; /* number 2 length */
char num3[SQLSNUM]; /* number 3 */
int nl3; /* number 3 length */

nl3 = sqlxdv (num3, num1, nl1, num2, nl2);
5-302 SQL Application Programming Interface Reference

sqlxer - eXtended ERror

ext for
rvers

or

.

ve
 is
lus

this
Related functions
sqlxad sqlxml sqlxsb

sqlxer - eXtended ERror

Syntax
#include <sql.h>

SQLTAPI sqlxer (cur, rcd, errbuf, buflen)

SQLTCUR cur; /* Cursor handle */
SQLTXER PTR rcd; /* Return code */
SQLTDAP errbuf; /* Ptr to receiving buffer */
SQLTDAL PTR buflen; /* Length of receiving buffer */

Description
This function returns the most recent error code and associated error message t
the specified cursor handle. This function is used with non-SQLBase database se
to retrieve the native error code and message from the server.

You call this function when users or developers prefer to use native database err
codes and messages instead of those in error.sql. Each SQLNetwork router or
gateway has an equivalence table that maps native database error numbers to
SQLBase error numbers (from error.sql). The router or gateway automatically
translates the native database error codes to the error.sql error codes. You use sqlxer to
retrieve the native error codes and messages.

For example, the Informix error code for a duplicate table is 310. The router or
gateway translates this to SQLBase error code 336:

• The sqlexe return code is 336 and sqlerr returns "table or view already exists"

• The sqlxer function returns 310 and “An attempt was made to create a
tablespace which already exists.”

You also use this function to get more information about generic errors. Any nati
database error number that does not have an equivalent SQLBase error number
mapped to a common generic error number. The generic error number is 2550 p
the value of SQLPBRN (database brand parameter). You use sqlxer to retrieve the
native error code and message that caused the generic error.

For example, if the error code is Informix’s 310, the router or gateway translates
to the SQLBase generic error code 2553 (2550 plus 3):
SQL Application Programming Interface Reference 5-303

Chapter 5 SQL/API Function Reference

 for

he
• The sqlexe return code is 2553 and sqlerr returns "Oracle processing error;
more info available".

• The sqlxer function returns 310 and “An attempt was made to create a
tablespace which already exists.”

Parameters
cur

The cursor handle associated with this function.

rcd

A pointer to the buffer where this function returns the most-recent error code
the cursor.

errbuf

A pointer to the buffer where this function copies the error message text.

You can use the sql.h constant SQLMXER to set the size of this buffer.

buflen

A pointer to the variable where this function returns the number of bytes in t
retrieved error message text.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
sqlxer (cur, rcd, errbuf, buflen)

Related functions
sqlerr sqlfer sqlrcd
sqletx
5-304 SQL Application Programming Interface Reference

sqlxml - eXtended MuLtiply

lied
sqlxml - eXtended MuLtiply

Syntax
#include <sql.h>

SQLTAPI sqlxml(op, np1, nl1, np2, nl2)

SQLTNMP op; /* Output number */
SQLTNMP np1; /* First number */
SQLTNML nl1; /* Length of first number */
SQLTNMP np2; /* Second number */
SQLTNML nl2; /* Length of second number */

Description
This function multiplies two SQLBase internal numbers.

Incorrect data in any argument can cause unpredictable results.

Parameters
op

A pointer to the variable where this function returns the output number.

np1

A pointer to the variable that contains the first number. This number is multip
by the number in np2. Define the length of this variable as SQLSNUM.

nl1

The length of the number pointed to by np1.

np2

A pointer to the variable that contains the second number. This number is
multiplied by the number in np1. Define the length of this variable as
SQLSNUM.

nl2

The length of the number pointed to by np2.
SQL Application Programming Interface Reference 5-305

Chapter 5 SQL/API Function Reference

l. If

mat.
Return value
This function returns the length of the resulting number if execution is successfu
execution is not successful, this function returns a negative value.

Example
/* MULTIPLY NUMBER 1 & NUMBER 2; PUTTING THE RESULT */
/* INTO NUMBER 3 */

char num1[SQLSNUM]; /* number 1 */
int nl1; /* number 1 length */
char num2[SQLSNUM]; /* number 2 */
int nl2; /* number 2 length */
char num3[SQLSNUM]; /* number 3 */
int nl3; /* number 3 length */

nl3 = sqlxml (num3, num1, nl1, num2, nl2);

Related functions
sqlxad sqlxdv sqlxsb

sqlxnp - eXtended Number to Picture

Syntax
#include <sql.h>

SQLTAPI sqlxnp (outp, outl, isnp, isnl, picp, picl)

SQLTDAP outp; /* Converted internal number */
SQLTDAL outl; /* Output buffer length */
SQLTNMP isnp; /* Internal SQLBase number */
SQLTNML isnl; /* Internal SQLBase number length */
SQLTDAP picp; /* Picture specification */
SQLTDAL picl; /* Picture specification length */

Description
This function converts a SQLBase internal number to a string using a picture for

Incorrect data in any argument can cause unpredictable results.
5-306 SQL Application Programming Interface Reference

sqlxnp - eXtended Number to Picture

less

ert.

as
oint

ber

ring.
Parameters
outp

A pointer to the variable where this function returns the converted SQLBase
internal number. The output is a null-terminated string. If the output length is
than the specified picture length, the output is truncated.

outl

The length of the variable pointed to by outp.

isnp

A pointer to the variable that contains the SQLBase internal number to conv
Define the length of this variable as SQLSNUM.

isnl

The length of the value pointed to by isnp.

picp

A pointer to the variable that contains the picture specification. The picture
specification must combine to represent a valid number. For example, comm
must be spaced three to the left of the decimal point and only one decimal p
allowed per number.

If the input number exceeds the number of digits in the picture string, the num
is not displayed. Instead, the string is filled with asterisks meaning numeric
overflow. If the number contains decimal digits and there are not enough
significant decimal places in the picture, the number is rounded.

The following table shows the components that can be used in the picture st

Character Description

9 For every "9" in the picture string, a position is reserved. A
value of 0 through 9 appears in every position indicated by
"9".

. Positions a decimal point in the output string. It can appear
only once in a picture string.

, Positions a comma in the output string. The commas in a
picture string must conform to standard numeric notation.

Z Replaces leading zeros with blanks (spaces) in the output
string. This symbol must appear to the left of any digit
specification of a numeric picture string.
SQL Application Programming Interface Reference 5-307

Chapter 5 SQL/API Function Reference
picl

The length of the string pointed to by picp.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Examples
Example 1

chari numb[SQLSNUM];
char inuml;
char output[SQLSDAT];

rcd= sqlxnp (output,sizeof(output),inumb,inuml,"ZZZ,ZZZ.99-
",0);

$ Places a dollar sign in the output string. It can be at the
beginning of a picture string or it can be used as a floating
character (the symbol then only appears next to the most
significant digit). The $ symbol cannot appear to the right of a
9, Z, or decimal point.

- Places a minus sign in the output string if the algebraic value
is negative.

E Puts the output string in scientific notation.

Input Number Picture String Output String

123456 999999 123456

123456 9999999 0123456

123456 -99 9,999,999 000,123,456

-123456 -999,999,999 -000,123,456

123456 999,999.99 123,456.00

1234.56 9 99,999.99 001,234.56

12.3456 999,999.99 000,012.35

Character Description
5-308 SQL Application Programming Interface Reference

sqlxnp - eXtended Number to Picture
Example 2

#include “sql.h”
#include “stdio.h”
#include “string.h”

main ()
{
char output[12];
int rcd;
char num[SQLSNUM];
int nl;

nl = sqlxcn(num, “123456”,6);
printf(“nl = %d\n”, nl);
rcd = sqlxnp (output,sizeof(output),num,nl,”zzz,zzz.99”,10);
printf(“RCD = %d output = %s\n”,rcd,output);
exit(1);

Related functions
sqlxcn

123456 -zzz,zzz,zzz 123,456

-123456 -zzz,z zz,zzz -123,456

123456 zzz,zzz.99 123,456.00

1234.56 zzz,zzz.99 1,234.56

12.3456 zzz,zzz.99 12.35

123456 -$$$,$$$,$$$ $123,456

-123456 -$$$,$$$,$$$ - $123,456

123456 $$$,$$$.99 123,456.00

1234.56 $$$,$$$.99 $1,234.56

12.3456 $$$,$$$.99 $12.35

Input Number Picture String Output String
SQL Application Programming Interface Reference 5-309

Chapter 5 SQL/API Function Reference

te.

 a
sqlxpd - eXtended Picture to Date

Syntax
#include <sql.h>

SQLTAPI sqlxpd (op, olp, ip, pp, pl)

SQLTNMP op; /* Output internal SQLBase date */
SQLTNML PTR olp; /* Output length */
SQLTDAP ip; /* Null-terminated input string */
SQLTDAP pp; /* Picture specification */
SQLTDAL pl; /* Length of picture */

Description
This function converts a null-terminated string to a SQLBase internal date.

Use the sqlxpd function (olp argument) before the sqlxdp function to pass the length
to sqlxdp (il argument).

Incorrect data in any argument can cause unpredictable results.

Parameters
op

A pointer to the variable where this function returns the SQLBase internal da
Define the length of this variable as SQLSDAT.

olp

The length of the value pointed to by op.

ip

A pointer to the variable that contains the null-terminated string to convert to
SQLBase internal date.

pp

A pointer to the string that contains the picture specification. This function
performs the following substitutions in the picture string.
5-310 SQL Application Programming Interface Reference

sqlxpd - eXtended Picture to Date

er- or
nd
-28-

le: a

M.
The characters, such as MM, are not case-sensitive. They can appear in upp
lower-case in the picture. For example, if the picture string is "Mon.dd.yyyy" a
the input string is Jun.28.1987, the output is a SQLBase internal date of Jun
1987 12:00:00 PM.

A backslash forces the next character in the input to be skipped. For examp
picture of "Mo\mmy was born in YYYY" with an input string of "Mommy was
born in 1956" produces a SQLBase internal date of Dec-31-1956 12:00:00 P

pl

The length of the string pointed to by pp.

Return value
The return value is zero (0) if the function succeeds and non-zero if it fails.

Characters Replaced by

MM A two digit number representing the month.

MON A three character abbreviation for the month.

DD A two digit number representing the day of the month.

YY The last two digits of the year.

YYYY The four digits of the year.

HH A two digit number representing hours in
military time.

MI A two digit number representing minutes.

SS A two digit number representing seconds.

AM or PM Two characters: either AM or PM.

999999 A 6 or more digit number representing
micro-seconds. Only the least significant 6 digits are
considered.
SQL Application Programming Interface Reference 5-311

Chapter 5 SQL/API Function Reference

 by
Example
char date[SQLSDAT];
int len;

rcd = sqlxpd (date, &len, "Jun. 28, 1987", "mon. dd, yyyy", 0);

Related functions
sqlxdp

sqlxsb - eXtended SuBtract

Syntax
#include <sql.h>

SQLTAPI sqlxsb (op, np1, nl1, np2, nl2);

SQLTNMP op; /* Output number */
SQLTNMP np1; /* First number */
SQLTNML nl1; /* First number */
SQLTNMP np2; /* Second number */
SQLTNML nl2; /* Second number */

Description
This function subtracts one SQLBase internal number from another and puts the
result in a third SQLBase internal number.

Incorrect data in any argument can cause unpredictable results.

Parameters
op

A pointer to the variable where this function returns the output number.

np1

A pointer to the variable that contains the first number. The value pointed to
np2 is subtracted from this number. Define the length of this variable as
SQLSNUM.
5-312 SQL Application Programming Interface Reference

sqlxsb - eXtended SuBtract

l. If
nl1

The length of the number pointed to by np1.

np2

A pointer to the variable that contains the second number. This number is
subtracted from the number pointed by np1. Define the length of this variable as
SQLSNUM.

nl2

The length of the number pointed to by np2.

Return value
This function returns the length of the resulting number if execution is successfu
execution is not successful, this function returns a negative value.

Example
/* SUBTRACT NUMBER 2 FROM NUMBER 1 AND PUTTING */
/* THE RESULT INTO NUMBER 3 */

char num1[SQLSNUM];/* number 1 */
int nl1; /* number 1 length */
char num2[SQLSNUM];/* number 2 */
int nl2; /* number 2 length */
char num3[SQLSNUM];/* number 3 */
int nl3; /* number 3 length */

nl3 = sqlxsb (num3, num1, nl1, num2, nl2);

Related functions
sqlxad sqlxdv sqlxml
SQL Application Programming Interface Reference 5-313

ess
on of
ta.

of

m.

 that

t

 the

ow.

o
cution

g

Glossary

ess
on of
ta.

of

m.

 that

t

 the

ow.

o
cution

g

SQL Application Programming Interface Reference
access path—The path used to get the data specified in a SQL command. An acc
path can involve an index or a sequential search (table scan), or a combinati
the two. Alternate paths are judged based on the efficiency of locating the da

aggregate function—A SQL operation that produces a summary value from a set
values.

alias—An alternative name used to identify a database object.

API (application programming interface)—A set of functions that a program uses to
access a database.

application—A program written by or for a user that applies to the user's work. A
program or set of programs that perform a task. For example, a payroll syste

argument—A value entered in a command that defines the data to operate on or
controls execution. Also called parameter or operand.

arithmetic expression—An expression that contains operations and arguments tha
can be reduced to a single numeric value.

arithmetic operator—A symbol used to represent an arithmetic operation, such as
plus sign (+) or the minus sign (-).

attribute—A characteristic or property. For example, the data type or length of a r
Sometimes, attribute is used as a synonym for column or field.

audit file—A log file that records output from an audit operation.

audit message—A message string that you can include in an audit file

audit operation—A SQLBase operation that logs database activities and
performance, writing output to an audit file. For example, you can monitor wh
logs on to a database and what tables they access, or record command exe
time.

authorization—The right granted to a user to access a database.

authorization-ID—A unique name that identifies a user. Associated to each
authorization-id is a password. Abbreviated auth-id. Also called username.

back-end—See database server.

backup—To copy information onto a diskette, fixed disk, or tape for record keepin
or recovery purposes.

access path—The path used to get the data specified in a SQL command. An acc
path can involve an index or a sequential search (table scan), or a combinati
the two. Alternate paths are judged based on the efficiency of locating the da

aggregate function—A SQL operation that produces a summary value from a set
values.

alias—An alternative name used to identify a database object.

API (application programming interface)—A set of functions that a program uses to
access a database.

application—A program written by or for a user that applies to the user's work. A
program or set of programs that perform a task. For example, a payroll syste

argument—A value entered in a command that defines the data to operate on or
controls execution. Also called parameter or operand.

arithmetic expression—An expression that contains operations and arguments tha
can be reduced to a single numeric value.

arithmetic operator—A symbol used to represent an arithmetic operation, such as
plus sign (+) or the minus sign (-).

attribute—A characteristic or property. For example, the data type or length of a r
Sometimes, attribute is used as a synonym for column or field.

audit file—A log file that records output from an audit operation.

audit message—A message string that you can include in an audit file

audit operation—A SQLBase operation that logs database activities and
performance, writing output to an audit file. For example, you can monitor wh
logs on to a database and what tables they access, or record command exe
time.

authorization—The right granted to a user to access a database.

authorization-ID—A unique name that identifies a user. Associated to each
authorization-id is a password. Abbreviated auth-id. Also called username.

back-end—See database server.

backup—To copy information onto a diskette, fixed disk, or tape for record keepin
or recovery purposes.
SQL Application Programming Interface Reference Glossary-1

Glossary

ed
. A
 Also

rces

les

e
e.

mine
r to

tion
r

g
ster to

of
er of
n. A

uct
ted.

se,

.

gth.

is
base table—The permanent table on which a view is based. A base table is creat
with the CREATE TABLE command and does not depend on any other table
base table has its description and its data physically stored in the database.
called underlying table.

bindery—A NetWare 3.x database that contains information about network resou
such as a SQLBase database server.

bind variable—A variable used to associate data to a SQL command. Bind variab
can be used in the VALUES clause of an INSERT command, in a WHERE
clause, or in the SET clause of an UPDATE command. Bind variables are th
mechanism to transmit data between an application work area and SQLBas
Also called into variable or substitution variable.

browse—A mode where a user queries some of a database without necessarily
making additions or changes. In a browsing application, a user needs to exa
data before deciding what to do with it. A browsing application allows the use
scroll forward and backward through data.

buffer—A memory area used to hold data during input/output operations.

C/API—A language interface that lets a programmer develop a database applica
in the C programming language. The C/API has functions that a programme
calls to access a database using SQL commands.

cache—A temporary storage area in computer memory for database pages bein
accessed and changed by database users. A cache is used because it is fa
read and write to computer memory than to a disk file.

Cartesian product—In a join, all the possible combinations of the rows from each
the tables. The number of rows in the Cartesian product is equal to the numb
rows in the first table times the number of rows in the second table, and so o
Cartesian product is the first step in joining tables. Once the Cartesian prod
has been formed, the rows that do not satisfy the join conditions are elimina

cascade—A delete rule which specifies that changing a value in the parent table
automatically affects any related rows in the dependent table.

case sensitive—A condition in which names must be entered in a specific lower-ca
upper-case, or mixed-case format to be valid.

cast—The conversion between different data types that represent the same data

CHAR—A column data type that stores character strings with a user-specified len
SQLBase stores CHAR columns as variable-length strings. Also called
VARCHAR.

character—A letter, digit, or special character (such as a punctuation mark) that
used to represent data.
Glossary-2 SQL Application Programming Interface Reference

re

 as

 unit
 a

d or

action

of the
ext
ist so

as
 and

le.

an
e and

s

 proper

e.
character string—A sequence of characters treated as a unit.

checkpoint—A point at which database changes older than the last checkpoint a
flushed to disk. Checkpoints are needed to ensure crash recovery.

clause—A distinct part of a SQL command, such as the WHERE clause; usually
followed by an argument.

client—A computer that accesses shared resources on other computers running
servers on the network. Also called front-end or requester.

column—A data value that describes one characteristic of an entity. The smallest
of data that can be referred to in a row. A column contains one unit of data in
row of a table. A column has a name and a data type. Sometimes called fiel
attribute.

command—A user request to perform a task or operation. In SQLTalk, each
command starts with a name, and has clauses and arguments that tailor the
that is performed. A command can include limits or specific terms for its
execution, such as a query for names and addresses in a single zip code.
Sometimes called statement.

commit—A process that causes data changed by an application to become part
physical database. Locks are freed after a commit (except when cursor-cont
preservation is on). Before changes are stored, both the old and new data ex
that changes can be stored or the data can be restored to its prior state.

commit server—A database server participating in a distributed transaction, that h
commit service enabled. It logs information about the distributed transaction
assists in recover after a network failure.

composite primary key—A primary key made up of more than one column in a tab

concatenated key—An index that is created on more than one column of a table. C
be used to guarantee that those columns are unique for every row in the tabl
to speed access to rows via those columns.

concatenation—Combining two or more character strings into a single string.

concurrency—The shared use of a database by multiple users or application
programs at the same time. Multiple users can execute database transaction
simultaneously without interfering with each other. The database software
ensures that all users see correct data and that all changes are made in the
order.

configure—To define the features and settings for a database server or its client
applications.

connect—To provide a valid authorization-id and password to log on to a databas
SQL Application Programming Interface Reference Glossary-3

Glossary

rsors.

oes

ver
t it is

the
nds

E,
d to
tion
o

ws

 and

nd
.

connection handle—Used to create multiple, independent connections. An
application must request a connection handle before it opens a cursor. Each
connection handle represents a single transaction and can have multiple cu
An application may request multiple connection handles if it is involved in a
sequence of transactions.

consistency—A state that guarantees that all data encountered by a transaction d
not change for the duration of a command. Consistency ensures that
uncommitted updates are not seen by other users.

constant—Specifies an unchanging value. Also called literal.

control file—An ASCII file containing information to manage segmented load/
unload files.

cooperative processing—Processing that is distributed between a client and a ser
in a such a way that each computer works on the parts of the application tha
best at handling.

coordinator—The application that initiates a distributed transaction.

correlated subquery—A subquery that is executed once for each row selected by
outer query. A subquery cannot be evaluated independently because it depe
on the outer query for its results. Also called a repeating query. Also see
subquery and outer query.

correlation name—A temporary name assigned to a table in an UPDATE, DELET
or SELECT command. The correlation name and column name are combine
refer to a column from a specific table later in the same command. A correla
name is used when a reference to a column name could be ambiguous. Als
called range variable.

crash recovery—The procedures that SQLBase uses automatically to bring a
database to a consistent state after a failure.

current row—The latest row of the active result set which has been fetched by a
cursor. Each subsequent fetch retrieves the next row of the active result set.

cursor—The term cursor refers to one of the following definitions:

• The position of a row within a result table. A cursor is used to retrieve ro
from the result table. A named cursor can be used in the CURRENT OF
clause or the ADJUSTING clause to make updates or deletions.

• A work space in memory that is used for gaining access to the database
processing a SQL command. This work space contains the return code,
number of rows, error position, number of select list items, number of bi
variables, rollback flag, and the command type of the current command
Glossary-4 SQL Application Programming Interface Reference

sing

ion

hen

e

ing

ed

,
 to

n

/API

ity to
is

 it
 as
n
es

late.
s of
• When the cursor belongs to an explicit connection handle that is created u
the SQL/API function call sqlcch or the SQLTalk BEGIN CONNECTION
command, it identifies a task or activity within a transaction. The task or
activity can be compiled/executed independently within a single connect
thread.

Cursors can be associated with specific connection handles, allowing
multiple transactions to the same database within a single application. W
this is implemented, only one user is allowed per transaction.

• When a cursor belongs to an implicit connection handle created using th
SQL/API function call sqlcnc or sqlcnr, or the SQLTalk CONNECT
command, the cursor applies to an application in which you are connect
the cursor to a specific database that belongs to a single transaction.

cursor-context preservation—A feature of SQLBase where result sets are maintain
after a COMMIT. A COMMIT does not destroy an active result set (cursor
context). This enables an application to maintain its position after a COMMIT
INSERT, or UPDATE. For fetch operations, locks are kept on pages required
maintain the fetch position.

cursor handle—Identifies a task or activity within a transaction. When a connectio
handle is included in a function call to open a new cursor, the function call
returns a cursor handle. The cursor handle can be used in subsequent SQL
calls to identify the connection thread. A cursor handle is always part of a
specific transaction and cannot be used in multiple transactions. However, a
cursor handle can be associated with a specific connection handle. The abil
have multiple transactions to the same database within a single application
possible by associating cursor handles with connection handles.

Cursor Stability (CS)—The isolation level where a page acquires a shared lock on
only while it is being read (while the cursor is on it). A shared lock is dropped
the cursor leaves the page, but an exclusive lock (the type of lock used for a
update) is retained until the transaction completes. This isolation level provid
higher concurrency than Read Repeatability, but consistency is lower.

data dictionary—See system catalog.

data type—Any of the standard forms of data that SQLBase can store and manipu
An attribute that specifies the representation for a column in a table. Example
data types in SQLBase are CHAR (or VARCHAR), LONG VARCHAR (or
LONG), NUMBER, DECIMAL (or DEC), INTEGER (or INT), SMALLINT,
DOUBLE PRECISION, FLOAT, REAL, DATETIME (or TIMESTAMP), DATE,
TIME.
SQL Application Programming Interface Reference Glossary-5

Glossary

d
d

n of

odify
tions.

d

ored

ncy,

n

value

se

age,
k is
cquire

.
database—A collection of interrelated or independent pieces of information store
together without unnecessary redundancy. A database can be accessed an
operated upon by client applications such as SQLTalk.

database administrator (DBA)—A person responsible for the design, planning,
installation, configuration, control, management, maintenance, and operatio
a DBMS and its supporting network. A DBA ensures successful use of the
DBMS by users.

A DBA is authorized to grant and revoke other users’ access to a database, m
database options that affect all users, and perform other administrative func

database area—A database area corresponds to a file. These areas can be sprea
across multiple disk volumes to take advantage of parallel disk input/output
operations.

database management system (DBMS)—A software system that manages the
creation, organization, and modification of a database and access to data st
within it. A DBMS provides centralized control, data independence, and
complex physical structures for efficient access, integrity, recovery, concurre
and security.

database object—A table, view, index, synonym or other object created and
manipulated through SQL.

database server—A DBMS that a user interacts with through a client application o
the same or a different computer. Also called back-end or engine.

DATE—A column data type in SQL that represents a date value as a three-part
(day, month, and year).

date/time value—A value of the data type DATE, TIME, or TIMESTAMP.

DCL (Data Control Language)—SQL commands that assign database access
privileges and security such as GRANT and REVOKE.

DDL (Data Definition Language)—SQL commands that create and define databa
objects such as CREATE TABLE, ALTER TABLE, and DROP TABLE.

deadlock—A situation when two transactions, each having a lock on a database p
attempt to acquire a lock on the other's database page. One type of deadloc
where each transaction holds a shared lock on a page and each wishes to a
an exclusive lock. Also called deadly embrace.

DECIMAL— A column data type that contains numeric data with a decimal point
Also called DEC.

default—An attribute, value, or setting that is assumed when none is explicitly
specified.
Glossary-6 SQL Application Programming Interface Reference

(“).

dure
n the

ction
edure.

ritten

 in a
 the

that

ead

ther

ted.

).
delimited identifier—An identifier enclosed between two double quote characters
because it contains reserved words, spaces, or special characters.

delimiter—A character that groups or separates items in a command.

dependent object—An object whose existence depends on another object.

For example, if a stored procedure calls an external function, the stored proce
is the dependent object of the external function, since its existence depends o
external function.

dependent table—the table containing the foreign key.

determinant object—An object that determines the existence of another object.

For example, if a stored procedure calls an external function, the external fun
is the determinant object, since it determines the existence of the stored proc

dirty page—A database page in cache that has been changed but has not been w
back to disk.

distributed database—A database whose objects reside on more than one system
network of systems and whose objects can be accessed from any system in
network.

distributed transaction—Coordinates SQL statements among multiple databases
are connected by a network.

DLL (Dynamic Link Library)—A program library written in C or assembler that
contains related modules of compiled code. The functions in a DLL are not r
until run-time (dynamic linking).

DML (Data Manipulation Language)—SQL commands that change data such as
INSERT, DELETE, UPDATE, COMMIT, and ROLLBACK.

DOUBLE PRECISION—A column data type that stores a floating point number.

DQL (Data Query Language)—The SQL SELECT command, which lets a user
request information from a database.

duplicates—An option used when creating an index for a table that specifies whe
duplicate values are allowed for a key.

embedded SQL—SQL commands that are embedded within a program, and are
prepared during precompilation and compilation before the program is execu
After a SQL command is prepared, the command itself does not change
(although values of host variables specified within the command can change
Also called static SQL.

engine—See database server.
SQL Application Programming Interface Reference Glossary-7

Glossary

e

.
r is

ned.

.

 a
k
 is to

her

hat
lue

 a
al

.

 or

ry

entity—A person, place, or thing represented by a table. In a table, each row
represents an entity.

equijoin—A join where columns are compared on the basis of equality, and all th
columns in the tables being joined are included in the results.

Ethernet—A LAN with a bus topology (a single cable not connected at the ends)
When a computer wants to transmit, it first checks to see if another compute
transmitting. After a computer transmits, it can detect if a collision has happe
Ethernet is a broadcast network and all computers on the network hear all
transmissions. A computer selects only those transmissions addressed to it

exclusive lock (X-lock)—An exclusive lock allows only one user to have a lock on
page at a time. An exclusive lock prevents another user from acquiring a loc
until the exclusive lock is released. Exclusive locks are placed when a page
be modified (such as for an UPDATE, INSERT, or DELETE).

An exclusive lock differs from a shared lock because it does not permit anot
user to place any type of lock on the same data.

expression—An item or a combination of items and operators that yield a single
value. Examples are column names which yield the value of the column in
successive rows, arithmetic expressions built with operators such as + or - t
yield the result of performing the operation, and functions which yield the va
of the function for its argument.

extent page—A database page used when a row is INSERTed that is longer than
page or when a row is UPDATEd and there is not enough space in the origin
page to hold the data.

external function—A user-defined function that resides in an "external" DLL
(Dynamic Link Library) invoked within a SQLBase stored procedure.

event—See timer event.

field—See column.

file server—A computer that allows network users to store and share information

FLOAT—A column data type that stores floating point numbers.

floating point—A number represented as a number followed by an exponent
designator (such as 1.234E2, -5.678E2, or 1.234E-2). Also called E-notation
scientific notation.

foreign key—Foreign keys logically connect different tables. A foreign key is a
column or combination of columns in one table whose values match a prima
key in another table. A foreign key can also be used to match a primary key
within the same table.
Glossary-8 SQL Application Programming Interface Reference

t

 of a
rtions,

 read-

ning
ed
ally
rows

so

en
ian

nd
front-end—See client.

function—A predefined operation that returns a single value per row in the outpu
result table.

grant—That act of a system administrator to permit a user to make specified use
database. A user may be granted access to an entire database or specific po
and have unlimited or strictly-limited power to display, change, add, or delete
data.

GUI (Graphical User Interface)—A graphics-based user interface with windows,
icons, pull-down menus, a pointer, and a mouse. Microsoft Windows and
Presentation Manager are examples of graphical user interfaces.

history file—Contains previous versions of changed database pages. Used when
only (RO) isolation level is enabled.

host language—A program written in a language that contains SQL commands.

identifier—The name of a database object.

index—A data structure associated with a table used to locate a row without scan
an entire table. An index has an entry for each value found in a table’s index
column or columns, and pointers to rows having that value. An index is logic
ordered by the values of a key. Indexes can also enforce uniqueness on the
in a table.

INTEGER—A column data type that stores a number without a decimal point. Al
call INT.

isolation level—The extent to which operations performed by one user can be
affected by (are isolated from) operations performed by another user. The
isolation levels are Read Repeatability (RR), Cursor Stability (CS), Release
Locks (RL), and Read Only (RO).

join—A query that retrieves data from two or more tables. Rows are selected wh
columns from one table match columns from another table. See also Cartes
product, self-join, equijoin, natural join, theta join, and outer join.

key—A column or a set of columns in an index used to identify a row. A key value
can be used to locate a row.

keyword—One of the predefined words in a command language.

local area network (LAN)—A collection of connected computers that share data a
resources, and access other networks or remote hosts. Usually, a LAN is
geographically confined and microcomputer-based.
SQL Application Programming Interface Reference Glossary-9

Glossary

y.
and
 to

a. See

on

r.

an

ash,

er
is
 the
s

the
s it to
e it is

red
ults

s of
lock—To temporarily restrict other usersÕ access to data to maintain consistenc
Locking prevents data from being modified by more than one user at a time
prevents data from being read while being updated. A lock serializes access
data and prevents simultaneous updates that might result in inconsistent dat
shared lock (S-lock) and exclusive lock (X-lock).

logical operator—A symbol for a logical operation that connects expressions in a
WHERE or HAVING clause. Examples are AND, OR, and NOT. An expressi
formed with logical operators evaluates to either TRUE or FALSE. Logical
operators define or limit the information sought. Also called Boolean operato

LONG VARCHAR—In SQL, a column data type where the value can be longer th
254 bytes. The user does not specify a length. SQLBase stores LONG
VARCHAR columns as variable-length strings. Also called LONG.

mathematical function—An operation such as finding the average, minimum, or
maximum value of a set of values.

media recovery—Restoring data from backup after events such as a disk head cr
operating system crash, or a user accidentally dropping a database object.

message buffer—The input message buffer is allocated on both the client comput
and the database server. The database server builds an input message in th
buffer on the database server and sends it across the network to a buffer on
client. It is called an input message buffer because it is input from the client’
point of view.

The out put message buffer is allocated on both the client computer and on
database server. The client builds an output message in this buffer and send
a buffer on the database server. It is called an output message buffer becaus
output from the client’s point of view.

modulo—An arithmetic operator that returns an integer remainder after a division
operation on two integers.

multi-user—The ability of a computer system to provide its services to more than
one user at a time.

natural join—An equijoin where the value of the columns being joined are compa
on the basis of equality. All the columns in the tables are included in the res
but only one of each pair of joined columns is included.

NDS (NetWare Directory Services)—A network-wide directory included with
NetWare 4.x, that provides global access to all network resources, regardles
their physical location. The directory is accessible from multiple points by
network users, services and applications.

nested query—See subquery.
Glossary-10 SQL Application Programming Interface Reference

f
e
nd

n

nt to
n, or

l

an

ase
e
se

g a

ch

led

Also
NetWare—The networking components sold by Novell. NetWare is a collection o
data link drivers, a transport protocol stack, client computer software, and th
NetWare server operating system. NetWare runs on Token Ring, Ethernet, a
ARCNET.

NetWare 386—A server operating system from Novell for computers that controls
system resources on a network.

NLM (NetWare Loadable Module)—An NLM is a NetWare program that you can
load into or unload from server memory while the server is running. When
loaded, an NLM is part of the NetWare operating system. When unloaded, a
NLM releases the memory and resources that were allocated for it.

null—A value that indicates the absence of data. Null is not considered equivale
zero or to blank. A value of null is not considered to be greater than, less tha
equivalent to any other value, including another value of null.

NUMBER—A column data type that contains a number, with or without a decima
point and a sign.

numeric constant—A fixed value that is a number.

ODBC—The Microsoft Open DataBase Connectivity (ODBC) standard, which is
application programming interface (API) specification written by Microsoft. It
calls for all client applications to write to the ODBC standard API and for all
database vendors to provide support for it. It then relies on third-party datab
drivers or access tools that conform to the ODBC specification to translate th
ODBC standard API calls generated by the client application into the databa
vendor’s proprietary API calls.

operator—A symbol or word that represents an operation to be performed on the
values on either side of it. Examples of operators are
 arithmetic (+, -, *, /), relational (=, !=, >, <, >=, <=), and logical (AND, OR,
NOT).

optimization—The determination of the most efficient access strategy for satisfyin
database access.

outer join—A join in which both matching and non-matching rows are returned. Ea
preserved row is joined to an imaginary row in the other table in which all the
fields are null.

outer query—When a query is nested within another query, the main query is cal
the outer query and the inner query is called the subquery. An outer query is
executed once for each row selected by the subquery. A subquery cannot be
evaluated independently but that depends on the outer query for its results.
see subquery.
SQL Application Programming Interface Reference Glossary-11

Glossary

ables

all

e.

ase.

n.

res

tion

ach

l

ater

s to
 the
evel.

t of

ad by
ge
page—The physical unit of disk storage that SQLBase uses to allocate space to t
and indexes.

parent table—The table containing the primary key.

parse—To examine a command to make sure that it is properly formed and that
necessary information is supplied.

partitioning—A method of setting up separate user areas to maximize disk spac
Databases can be stretched across several different network partitions.

password—A sequence of characters that must be entered to connect to a datab
Associated to each password is an authorization-id.

picture—A string of characters used to format data for display.

precedence—The default order in which operations are performed in an expressio

precision—The maximum number of digits in a column.

precompilation—Processing of a program containing SQL commands or procedu
that takes place before compilation. SQL commands are replaced with
statements that are recognized by the host language compiler. Output from
precompilation includes source code that can be submitted to the compiler.

predicate—An element in a search condition that expresses a comparison opera
that states a set of criteria for the data to be returned by a query.

primary key—The columns or set of columns that are used to uniquely identify e
row in a table. All values for a key are unique and non-null.

privilege—A capability given to a user to perform an action.

procedure—A named set of SAL or SQL statements that can contain flow contro
language. You compile a procedure for immediate and/or later execution.

query—A request for information from a database, optionally based on specific
conditions. For example, a request to list all customers whose balance is gre
than $1000. Queries are issued with the SELECT command.

Read Only (RO)—The isolation level where pages are not locked, and no user ha
wait. This gives the user a snapshot view of the database at the instant that
transaction began. Data cannot be updated while in the read-only isolation l

Read Repeatability (RR)—The isolation level where if data is read again during a
transaction, it is guaranteed that those rows would not have changed. Rows
referenced by the program cannot be changed by other programs until the
program reaches a commit point. Subsequent queries return a consistent se
results (as though changes to the data were suspended until all the queries
finished). Other users will not be able to update any pages that have been re
the transaction. All shared locks and all exclusive locks are retained on a pa
Glossary-12 SQL Application Programming Interface Reference

tion
ncy,

ccur

s as a

lso

s
page

 the

he
ch

quent

until the transaction completes. Read repeatability provides maximum protec
from other active application programs. This ensures a high level of consiste
but lowers concurrency. SQLBase default isolation level.

REAL—A column data type that stores a single-precision number.

record—See row.

recovery—Rebuilding a database after a system failure.

referential cycle—Tables which are dependents of one another.

referential integrity—Guarantees that all references from one database table to
another are valid and accurate. Referential integrity prevents problems that o
because of changes in one table which are not reflected in another.

relation—See table.

relational database—A database that is organized and accessed according to
relationships between data items. A relational database is perceived by user
collection of tables.

relational operator—A symbol (such as =, >, or <) used to compare two values. A
called comparison operator.

Release Locks (RL)—With the Cursor Stability isolation level, when a reader move
off a database page, the shared lock is dropped. However, if a row from the
is still in the message buffer, the page is still locked.

In contrast, the Release Lock (RL) isolation level increases concurrency. By
time control returns to the application, all shared locks have been released.

repeating query—See correlated subquery.

requester—See client.

restore—Copying a backup of a database or its log files to a database directory.

restriction mode—In restriction mode, the result set of one query is the basis for t
next query. Each query further restricts the result set. This continues for ea
subsequent query.

result set mode—Normally, result table rows are displayed and scrolled off the
screen. In result set mode, the rows of the result table are available for subse
scrolling and retrieval.

result table—The set of rows retrieved from one or more tables or views during a
query. A cursor allows the rows to be retrieved one by one.

revoke—The act of withdrawing a user's permission to access a database.
SQL Application Programming Interface Reference Glossary-13

Glossary

he

e

.
e this

 or

 an

s
rk.

the

n
he
rollback—To restore a database to the condition it was in at its last COMMIT. A
ROLLBACK cancels a transaction and undoes any changes that it made to t
database. All locks are freed unless cursor-context preservation is on.

rollforward—Reapplying changes to a database. The transaction log contains th
entries used for rollforward.

router—A client application talks to a SQLBase server through a router program
The router enables a logical connection between a client and the server. Onc
connection is established on the LAN, the client application uses the router
program to send SQL requests to the server and to receive the results.

row—A set of related columns that describe a specific entity. For example, a row
could contain a name, address, telephone number. Sometimes called record
tuple.

ROWID—A hidden column associated with each row in a SQLBase table that is
internal identifier for the row. The ROWID can be retrieved like any other
column.

ROWID validation—A programming technique that ensures that a given row that
was SELECTed has not been changed or deleted by another user during a
session. When a row is updated, the ROWID is changed.

SAP (Service Advertisement Protocol)—A NetWare protocol that resources (such a
database servers) use to publicize their services and addresses on a netwo

savepoint—An intermediate point within a transaction to which a user can later
ROLLBACK to cancel any subsequent commands, or COMMIT to complete
commands.

scale—The number of digits to the right of the decimal point in a number.

search condition—A criterion for selecting rows from a table. A search condition
appears in a WHERE clause and contains one or more predicates.

search—To scan one or more columns in a row to find rows that have a certain
property.

self-join—A join of a table with itself. The user assigns the two different correlatio
names to the table that are used to qualify the column names in the rest of t
query.

self-referencing table—A table that has foreign and primary keys with matching
values within the same table.

server—A computer on a network that provides services and facilities to client
applications.

shared cursor—A handle that is used by two or more Windows applications.
Glossary-14 SQL Application Programming Interface Reference

 user
een

d on

level.

 user

 a

ute

op of

pdate,

s
ram.

QL

ges.
le.

re
shared lock (S-lock)—A shared lock permits other users to read data, but not to
change it. A shared lock lets users read data concurrently, but does not let a
acquire an exclusive lock on the data until all the users’ shared locks have b
released. A shared lock is placed on a page when the page is read (during a
SELECT). At a given time, more than one user can have a shared lock place
a page. The timing of the release of a shared lock depends on the isolation

A shared lock differs from an exclusive lock because it permits more than one
to place a lock on the same data.

single-user—A computer system that can only provide its services to one user at
time.

SMALLINT— A column data type that stores numbers without decimal points.

socket—An identifier that Novell's IPX (Internetwork Packet Exchange) uses to ro
packets to a specific program.

SPX (Sequenced Packet Exchange)—A Novell communication protocol that
monitors network transmissions to ensure successful delivery. SPX runs on t
Novell’s IPX (Internetwork Packet Exchange).

SQL (Structured Query Language)—A standard set of commands used to manage
information stored in a database. These commands let users retrieve, add, u
or delete data. There are four types of SQL commands
 Data Definition Language (DDL), Data Manipulation Language (DML), Data
Query Language (DQL), and Data Control Language (DCL). SQL command
can be used interactively or they can be embedded within an application prog
Pronounced ess-que-ell or sequel.

SQLBase—A relational DBMS that lets users access, create, and update data.

SQLTalk—SQLTalk is an interactive user interface for SQLBase that is used to
manage a relational database. SQLTalk has a complete implementation of S
and many extensions. SQLTalk is a client application.

static SQL—See embedded SQL.

statistics—Attributes about tables such as the number of rows or the number of pa
Statistics are used during optimization to determine the access path to a tab

storage group—A list of database areas. Storage groups provide a means to allow
databases or tables to be stored on different volumes.

stored procedure—A precompiled procedure that is stored on the backend for futu
execution.

string delimiter—A symbol used to enclose a string constant. The symbol is the
single quote (').
SQL Application Programming Interface Reference Glossary-15

Glossary

f
s
uery.

sed

’s

g
sers.

-
e set

n a

in

te
d

 in a

r
string—A sequence of characters treated as a unit of data.

subquery—A SELECT command nested within the WHERE or HAVING clause o
another SQL command. A subquery can be used anywhere an expression i
allowed if the subquery returns a single value. Sometimes called a nested q
Also called subselect. See also correlated subquery.

synonym—A name assigned to a table, view, external function that may be then u
to refer to it. If you have access to another user’s table, you may create a
synonym for it and refer to it by the synonym alone without entering the user
name as a qualifier.

syntax—The rules governing the structure of a command.

system catalog—A set of tables SQLBase uses to store metadata. System catalo
tables contain information about database objects, privileges, events, and u
Also called data dictionary.

system keywords—Keywords that can be used to retrieve system information in
commands.

table—The basic data storage structure in a relational database. A table is a two
dimensional arrangement of columns and rows. Each row contains the sam
of data items (columns). Sometimes called a relation.

table scan—A method of data retrieval where a DBMS directly searches all rows i
table sequentially instead of using an index.

theta join—A join that uses relational operators to specify the join condition.

TIME— A column data type in the form of a value that designates a time of day
hours, minutes, and possibly seconds (a two- or three-part value).

timeout—A time interval allotted for an operation to occur.

TIMESTAMP—A column data type with a seven-part value that designates a da
and time. The seven parts are year, month, day, hour, minutes, seconds, an
microseconds (optional). The format is

yyyy-mm-dd-hh.mm.ss.nnnnnn

timer event—Executes a procedure at a predetermined time. You can optionally
repeat the timer event at specified intervals.

token—A character string in a specific format that has some defined significance
SQL command.

Token-Ring—A LAN with ring topology (cable connected at the ends). A special
data packet called a token is passed from one computer to another. When a
computer gets the token, it can attach data to it and transmit. Each compute
Glossary-16 SQL Application Programming Interface Reference

r. The
 token.

ct

a
a by

he

at
s a

rash

n a
TE

it

 An

. A

m a
be
 table.
passes on the data until it arrives at its destination. The receiver marks the
message as being received and sends the message on to the next compute
message continues around the ring until the sender receives it and frees the

tokenized error message—An error message formatted with tokens in order to
provide users with more informational error messages. A tokenized error
message contains one or more variables that SQLBase substitutes with obje
names (tokens) when it returns the error message to the user.

transaction—A logically-related sequence of SQL commands that accomplishes
particular result for an application. SQLBase ensures the consistency of dat
verifying that either all the data changes made during a transaction are
performed, or that none of them are performed. A transaction begins when t
application starts or when a COMMIT or ROLLBACK is executed. The
transaction ends when the next COMMIT or ROLLBACK is executed. Also
called logical unit of work.

transaction log—A collection of information describing the sequence of events th
occur while running SQLBase. The information is used for recovery if there i
system failure. A log includes records of changes made to a database. A
transaction log in SQLBase contains the data needed to perform rollbacks, c
recovery, and media recovery.

trigger—Activates a stored procedure that SQLBase automatically executes whe
user attempts to change the data in a table, such as on a DELETE or UPDA
command.

two-phase commit—The protocol that coordinates a distributed transaction comm
process on all participating databases.

tuple—See row.

unique key—One or more columns that must be unique for each row of the table.
index that ensures that no identical key values are stored in a table.

username—See authorization-id.

value—Data assigned to a column, a constant, a variable, or an argument.

VARCHAR—See CHAR.

variable—A data item that can assume any of a given set of values.

view—A logical representation of data from one or more base tables. A view can
include some or all of the columns in the table or tables on which it is defined
view represents a portion of data generated by a query. A view is derived fro
base table or base tables but has no storage of its own. Data for a view can
updated in the same manner as for a base table. Sometimes called a virtual
SQL Application Programming Interface Reference Glossary-17

Glossary

acter
rn-

r an

 two
r can

se.
crash.
wildcard—Characters used in the LIKE predicate that can stand for any one char
(the underscore _) or any number of characters (the percent sign%) in patte
matching.

Windows—A graphical user interface from Microsoft that runs under DOS.

With Windows, commands are organized in lists called menus. Icons (small
pictures) on the screen represent applications. A user selects a menu item o
icon by pointing to it with a mouse and clicking.

Applications run in windows that can be resized and relocated. A user can run
or more applications at the same time and can switch between them. A use
run multiple copies of the same application at the same time.

write-ahead log (WAL)—A transaction logging technique where transactions are
recorded in a disk-based log before they are recorded in the physical databa
This ensures that active transactions can be rolled back if there is a system
Glossary-18 SQL Application Programming Interface Reference

Index
A
abort

database process 5-233
database server 4-8
rollback 5-233

access
partitioned database 5-150, 5-258

access path 3-4
identify 5-51

access to database 4-7
activate process timing 5-135
add 2-3, 4-8

days to date 5-298
internal numbers 5-295

add date/time 2-6
add internal dates 4-8
ADJUSTING

sqlscn 5-235
aggregate functions

restriction mode 5-273
alphanumeric bind variable 3-5

LONG VARCHAR 3-33
ALTER DATABASE 5-42, 5-52, 5-114
ALTER DBAREA 5-42, 5-52, 5-114
ALTER STOGROUP 5-42, 5-52, 5-114
ALTER TABLE

referential integrity 3-53
ANTI JOIN 5-115
application

running 1-10, 1-17
AS/400 5-136
assign

cursor name 5-235
result set name 5-273, 5-283

autocommit
bulk execute 3-45, 5-18
parameter 5-135, 5-244

B
backend cursor 4-5
backend information

get 4-9
backend result sets 5-136
backup

committed transactions 5-4
database 3-55, 3-58, 4-2, 5-4, 5-34

name 5-230
overwrite indicator 5-212
source 5-211, 5-231

database file 3-56
directory 3-58

destination 5-5, 5-15
filename 5-4
files

delete 5-5, 5-15
functions 4-2
guidelines 3-56
incremental 3-58
log files 4-2

next 5-254
offline 3-57
online 3-56
overwrite indicator 5-220, 5-231
snapshot 4-2, 5-34
transaction log files 3-56, 5-15

bind
LONG VARCHAR 3-33, 3-38, 5-20

by name 4-3
by number 4-3

bind data 3-5, 4-3
by name 4-3, 5-25

with null indicator 4-3, 5-22
by number 4-3, 5-28

with null indicator 4-3, 5-31
bind functions

LONG VARCHAR 3-5
bind variables 3-13, 3-15, 3-28

alphanumeric 3-5, 5-22, 5-25
clear 4-3, 5-37
LONG VARCHAR 5-13
number 4-3
number of

get 5-195
numeric 3-5, 5-28, 5-31

LONG VARCHAR 5-20
purpose 3-5

binding data 3-12, 3-14, 3-17, 3-32, 3-41
binding LONG VARCHAR data 3-41
boolean

internal data type 2-2
brand

database parameter 5-136, 5-303
SQL Application Programming Interface Reference Index-1

Index
bring down
server 5-280

buffer
bulk execute 5-8
date/time data

length 2-5
input message

isolation levels 5-268
size 4-5

input message size 5-174
output message 3-45

size 4-5, 5-147, 5-203
set SELECT 4-6
set up 5-275
size 5-275

buffers
data

SELECT list 5-275
SELECT 3-5, 3-32, 3-37

bulk execute 5-18
autocommit 3-45, 5-18
chained commands 3-45
error code 5-2, 5-10
error codes

return 3-45
flush 4-3
mode 5-136

optimized 5-147
performance 5-18
return 4-3

bulk execute buffer 5-8
flush data 3-45

bulk execute mode 4-3, 5-244
chained command 5-217
optimized 5-255
setting 5-18
SQLPAUT 5-255
turn on/off 3-45, 5-18

bulk execute return 5-2, 5-10
bulk insert mode 4-3

C
C++

library for writing programs 1-2
C/API

how to use 3-1
logic flow 3-1

cache

database
size 5-136, 5-244

pages
set 4-5, 5-237

server
size 5-279

size
set 5-237

callback function 3-66
set up 5-178

chained commands 5-18, 5-137, 5-217
bulk execute 3-45, 5-18
bulk execute mode 5-217
CURRENT OF 5-217
SELECT 5-217
UPDATE 5-217

change
isolation level 5-252, 5-268
process activity log file 4-9
ROWIDs 5-283

character
data

convert to number 2-3
storage 2-2

internal data type 2-2
CHECK EXISTS

UPDATE 5-217
checkpoint

time interval 5-139, 5-247
clear

bind variables 4-3, 5-37
client file

copy
to server 5-122

client name
set 4-9, 5-237
SQLPCLN 5-138, 5-246

close
database directory 5-90
directory 4-7
file on server 5-184
remote server file 4-7
result set 4-7

column
data length 5-162
describe information

get 5-129
fetched
Index-2 SQL Application Programming Interface Reference

return code 5-162
get fetched information 5-162
heading

length 5-131
name 5-131

label 5-131
definition 5-180
get 5-129
information

get 5-180
length 5-131
where stored 5-180

length
external 5-133

name
fully qualified 4-6
fully-qualified 5-124
verify 5-51

number 5-131
commands

chained 5-217
bulk execute mode 5-217
CURRENT OF 5-217
SELECT 5-217
UPDATE 5-217

compiled
destroy 5-46, 5-208, 5-268
destroyed 5-252

stored
drop 5-103
restriction mode 5-216, 5-274
retrieve 5-216

stored SQL 4-8
time limit

SQLPCTL 5-139
type 3-28, 4-9

SQL 5-63
COMMIT

compiled commands 3-4
commit 3-3, 3-20, 3-29

implicit 5-46, 5-252, 5-268
transaction 4-9, 5-45

commit logging 5-138
commit server 3-22
communication library 1-4
compile 4-4

INSERT 3-14, 3-41
LONG VARCHAR 3-33

security check 3-4
SELECT 3-9, 3-32, 3-37
SQL command 3-4, 3-11, 5-41, 5-51, 5-282
steps 5-51
UPDATE 3-17, 3-24

compile and execute 3-4, 4-4
compiled commands

destroy 5-46
compiling and linking

NetWare applications 1-14
Windows applications 1-11
Windows NT applications 1-12

compression
message 5-138, 5-246

concurrency 5-268
connect

cursor 3-27, 4-4, 5-47
database 4-4, 5-47, 5-49
database server 3-4, 4-8, 5-61

connect with no recovery 4-4
connection

to database
prevent 5-238

connection handle
create 4-4, 5-38
destroy 4-4

connection handles 5-70
consistency 5-268
continue

rollforward 4-2, 5-58
control

pass to Windows 3-66, 5-178
conversion

data type 2-6
convert

character to number 2-3
date

from string 5-310
to string 5-299

number
to string 5-306

string
from date 5-299
from number 5-306
to date 5-310
to number 5-296

copy 4-9
data
SQL Application Programming Interface Reference Index-3

Index
from table to table 5-53
file

from client 5-122
count

SELECT items 4-6
count rows 4-9

result set 4-6
crash recovery 3-55, 5-281
CREATE 3-4
create

database 4-4, 5-56
directory 5-188
error

user-defined 3-52
file

for writing 5-188
on server 5-187

log file 5-214
CREATE DATABASE 5-42, 5-52, 5-114
CREATE DBAREA 5-42, 5-52, 5-114
CREATE STOGROUP 5-42, 5-52, 5-114
creating

connection handle 5-38
CURRENT OF

Cursor Stability 5-270
sqlscn 5-235

cursor
assign name to 5-235
backend 4-5
connect 4-4, 5-47
connect to database 3-27
context preservation 3-4, 5-45, 5-149, 5-207,

5-257
caveats 5-208

declare 3-3
disconnect 3-33, 5-84, 5-86
done 4-4
file handles

limit 5-187
get backend 5-126
global 5-143, 5-251
handle 3-27, 3-28
name

deassign 5-235
set 4-9

position 3-10
work space 3-4

Cursor Stability 5-144, 5-268, 5-269

CURRENT OF 5-270
cursors

opening 5-205
customize

error message 3-52

D
data

bind 3-5, 4-3, 5-13
by name with null indicator 5-22
by number 5-28
by number with null indicator 5-31

bind by name 4-3, 5-25
with null indicator 4-3

bind by number 4-3
with null indicator 4-3

binding 3-12, 3-14, 3-17, 3-32, 3-41
buffer

receive into 5-275
size 5-275

buffers
SELECT list 5-275

copy
from table to table 5-53

date/time
functions 2-6

external length
retrieve 5-98

fetched
length 5-275
location 5-275

flush 5-8
integrity

checking 3-54
internal format 2-2
long

frontend result sets 5-252
LONG VARCHAR

bind 5-20
by name 4-3
by number 4-3
length 5-165
read 5-222

not a date 5-277
not numeric 5-277
null 5-277
numeric

functions 2-3
Index-4 SQL Application Programming Interface Reference

storage 2-2
truncated 5-277

data type
binary 2-8
boolean 2-8
char 2-8
char/long varchar >254 2-6, 5-23, 5-26, 5-29,

5-32, 5-276
character 2-2, 2-7, 5-24, 5-26, 5-29, 5-32, 5-276
character buffer 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
conversion 2-6
database 5-75
date 2-6, 2-8, 5-23, 5-26, 5-29, 5-32, 5-275
date/time 2-2, 2-5
decimal 2-8
double 2-6, 2-8, 5-23, 5-26, 5-29, 5-32, 5-275
EBCDIC buffer 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
external 2-8, 5-132

retrieve 5-98
float 2-6, 2-8, 5-23, 5-26, 5-29, 5-32, 5-275
graphic 2-8
integer 2-7, 2-8, 5-24, 5-26, 5-29, 5-32, 5-276
internal datetime 2-6, 5-23, 5-26, 5-29, 5-32,

5-275
internal numeric 2-7, 5-23, 5-26, 5-29, 5-32, 5-276
long 2-7, 5-24, 5-26, 5-29, 5-32, 5-276
long binary 2-8
long binary buffer 2-6, 5-23, 5-26, 5-29, 5-32,

5-275
long text string 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
long var graphic 2-8
long varchar 2-8
money 2-8
not supported 5-277
number 2-2
numeric buffer 2-6, 5-23, 5-26, 5-29, 5-32, 5-276
numeric string 2-6, 5-23, 5-26, 5-29, 5-32, 5-276
program 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SELECT item 5-275
short 2-7, 5-24, 5-27, 5-29, 5-33, 5-276
signed packed decimal 2-7, 5-24, 5-26, 5-29, 5-32,

5-276
smallint 2-9
string(null-terminated) 2-7, 5-24, 5-27, 5-29, 5-33,

5-276
time 2-7, 2-9, 5-24, 5-27, 5-29, 5-33, 5-276
timestamp 2-9
unsigned character 2-7, 5-24, 5-27, 5-30, 5-33,

5-276
unsigned integer 2-7, 5-30, 5-33, 5-276
unsigned long 2-7, 5-30, 5-33, 5-276
unsigned packed decimal 2-7, 5-30, 5-33, 5-276
unsigned short 2-7, 5-30, 5-33, 5-276
var binary 2-9
var graphic 2-9
varchar 2-9

database
administration functions 4-4
backup 3-55, 3-58, 4-2, 5-4

filename 5-4
functions 4-2
overwrite indicator 5-212
source 5-211, 5-231

backup file
name 5-230

backup snapshot 4-2, 5-34
brand 5-136

parameter 5-303
cache

size 5-136, 5-244
cancel request 4-4, 5-40
connect 4-4, 5-49
connect to 5-47
connection

prevent 5-238
consistent state 3-55
crash recovery 3-55
create 4-4, 5-56
data types 5-75
deinstall 4-4, 5-71
delete 4-4, 5-73
directory 4-4, 5-140, 5-248

access 4-7
close 5-90
delete 5-73

directory name 5-140
disconnect 4-4, 5-84, 5-86
end recovery 3-59
install 4-4, 5-176
location 5-140
maintenance 3-55
media recovery 3-55
name 4-4, 5-140

default 5-140, 5-239, 5-242, 5-248
maximum length 5-56

names
SQL Application Programming Interface Reference Index-5

Index
retrieve 5-83
parameter

get 4-5, 5-134
set 4-5, 5-242

partitioned
access 5-150, 5-258
extent 5-250

process
abort 5-233

read-only 5-150, 5-151, 5-258
recover 3-55, 3-58, 5-224
restore 3-55, 3-57, 3-58, 4-3, 5-230

from directory 5-211
functions 4-2

restore snapshot 4-3
rollback 5-208
security 3-3
server

local 5-145
multi-user 5-145
name 5-142
remote 5-145
shut down 3-57

shut down 4-4, 5-238
extended 4-4

shutdown extended 5-241
statistics 5-279

database server
abort 4-8
access 4-7
connect 3-4, 4-8, 5-61
disconnect 4-8, 5-104
security

functions 4-8
shut down 4-8
terminate 4-8

databases
retrieve list of 5-68

date
adding days 5-298
convert

from string 5-310
to string 5-299

convert from picture 4-8
internal

add 4-8
convert to picture 4-8

internal data type 2-2

date/time data 2-5
add 2-6
convert from picture 2-6
convert to picture 2-6
format 2-5
function 2-6
internal data type 2-2
receive buffer

length 2-5
days

adding to date 5-298
DB2 5-136
DBC 5-136
DBDIR 5-140, 5-248
dbname 5-56, 5-71, 5-73, 5-176
dbwindow.exe 1-12, 1-13
deadlock

rollback 5-207
deadlocks

SQLPDLK 5-141
deassign

cursor name 5-235
declare cursor 3-3
declare function 3-50
declare variable 3-3
default

database name 5-140, 5-248
password 5-141, 5-239, 5-242, 5-249
username 5-141

defaultdatabase 5-47, 5-50, 5-239, 5-242
defaultpassword 5-47, 5-50, 5-239, 5-242
defaultuser 5-47, 5-50, 5-239, 5-242
DEINSTALL DATABASE 5-42, 5-52, 5-114
deinstall database 4-4, 5-71
DELETE 3-12

count rows 5-227
delete

backup file 5-5
backup files 5-15
database 4-4, 5-73
file on server 5-186
remote server directory 4-7
remote server file 4-7
transaction log files 5-15
transaction logs 5-73

deletion
transaction logs 3-57

describe
Index-6 SQL Application Programming Interface Reference

item of a SELECT 4-6
items in a SELECT 4-6

describe information 5-75, 5-98, 5-140, 5-248
get 4-6, 5-129

destination
backup directory 5-5, 5-15

destroy
compiled command 5-208, 5-252, 5-268
result set

prevent 5-257
destroying 5-70

connection handles 5-70
directory 5-145

backup 3-58
close 4-7
create 5-188
database 5-140, 5-248
open 4-7, 5-92
open extended 5-87
read 4-7, 5-94
result set

local 5-253
transaction log 5-252

directory of databases 4-4
disconnect

cursor 3-33, 5-84
cursors 5-86
database 4-4, 5-84
database server 3-4
from server 4-8, 5-104

disk input 5-279
disk output 5-279
disk reads

physical 5-279
virtual 5-279

disk writes
physical 5-279
virtual 5-279

display
date/time data

default 2-5
Process Activity

level 5-258
display level

Process Activity 5-150
DISTINCT

restriction mode 5-273
distributed transaction

commit server 3-22
definition 3-22
with server connects 3-22

divide 2-3, 4-8
number 5-301

done 4-4
DROP 3-4
drop

result set 4-7, 5-60, 5-96
saved result set 3-11
stored command 3-41, 4-8, 5-103

DROP DATABASE 5-42, 5-52, 5-114
DROP DBAREA 5-42, 5-52, 5-114
DROP STOGROUP 5-42, 5-52, 5-114

E
end

LONG VARCHAR operation 5-105
media recovery 5-219
rollforward 5-106

end long operation 3-33, 4-6
end recovery 3-59
end rollforward 4-2
engine 1-3
entries

message
mshnen 5-172

number of
mshten 5-172

environment control 4-5
error

bulk execute 5-2, 5-10
code 5-110, 5-117

return 5-110
current

get code 5-303
get message 5-303

external 4-5
full message text

return 5-117
generic 5-303
map 5-303

to SQLBase 5-303
message 4-5
message text 4-5, 5-110, 5-117

return 5-109, 5-111
returned 5-2

mnemonic 5-110, 5-117
SQL Application Programming Interface Reference Index-7

Index
non-SQLBase 5-303
null indicator 5-146, 5-254
offset 5-108
position 4-5
reason 5-110
reason return code 5-111
remedy 5-110

return 5-111
return code 4-5
rollback flag 4-5
row 5-2, 5-10
syntax 5-108
tokenize 4-5
translate

from SQLBase 5-303
to SQLBase 5-303

user-defined
create 3-52

error code 3-46
translate 4-5

error handling 3-46, 3-49, 4-5
error message 3-46, 3-49, 3-50, 4-5

customize 3-52
full 4-5
non-SQLBase 3-54, 5-286
reason 3-46, 3-48, 5-287
reason return 3-53, 5-285
remedy 3-46, 3-48, 5-287

return 3-53, 5-286
retrieve

message text 3-47
return 3-53, 5-285
text 3-46, 3-48, 5-287
tokenize 5-285
tokens

SQLPEMT 5-141, 5-249
translate 3-48

error position 3-28
retrieve 3-47
return 5-108

error.sql 3-46, 3-48, 3-50, 5-109, 5-111, 5-117,
5-209, 5-303

errorfile 3-49, 5-284
errsql.h 1-4, 1-5
Esc 5-280
example programs list 1-5
exclusive locks 5-269
executable code

generate 5-51
execute 4-4

INSERT 3-15, 3-41
LONG VARCHAR 3-33
SELECT 3-10, 3-32, 3-37
SQL command 3-4, 3-11, 5-41, 5-113
UPDATE 3-17, 3-24

execution plan 4-9, 5-115
anti join 5-115
cost

SQLPCXP 5-140
index merge 5-115
or list 5-115
outjoin 5-115
quick term 5-115
SQLPEXP 5-142, 5-250

exists
file 5-188

exit
Microsoft Windows 3-66
server 5-280

exponent 2-3
extended

add 5-295
convert 5-296
date add 5-298
date to picture 5-299
divide 5-301
error 5-303
multiply 5-305
number to picture 5-306
picture to date 5-310
subtract 5-312

extended information
flag

SQLXGSI 5-171
extension

size 5-142, 5-250
extent

partitioned database 5-250
external data type 5-132
external error 4-5

F
fail

function 3-3
far pointers 3-66
fetch 3-37
Index-8 SQL Application Programming Interface Reference

next row 4-6
row 5-119
SELECT 3-37
status code 5-275

fetch information
get 4-6

fetch LONG VARCHAR 3-33
fetch rows 3-10

result set 3-11
fetched data

length 5-275
location 5-275

fetchthrough mode 5-143, 5-251
FETRDND 5-163, 5-277
FETRDNN 5-163, 5-277
FETRDTN 5-163, 5-277
FETRNOF 5-163, 5-277
FETRNUL 5-277
FETRSIN 5-163, 5-277
FETRTRU 5-163, 5-277
file

close
on server 5-184

copy
from client 5-122

create
for writing 5-188

delete
from server 5-186

exists 5-188
get 4-7

from server 5-120
handles

limit 5-187
open

for reading 5-188
for reading/writing 5-188
for writing 5-188
in binary mode 5-188
in text mode 5-188

pointer
position at end 5-188

put 4-7
remote

read 5-190
seek 5-192
write 5-193

server

create 5-187
open 5-187

truncate 5-188
filter flags 5-172
finish

media recovery 5-219
flag

extended information
SQLXGSI 5-171

rollback 4-5
get 5-207

SQLGCFG 5-171
SQLGCUR 5-171
SQLGDBS 5-171
SQLGLCK 5-171
SQLGPRC 5-171
SQLGPWD 5-171
SQLGSTT 5-171
SQLRCLN 5-171
SQLRDBN 5-171
SQLRPNM 5-171
SQLRUSN 5-171

flags
filter 5-172

flush data 5-8
format

date/time data 2-5
date/time default display 2-5
internal data 2-2
numeric data 2-3
picture 5-306

from SQLBase 5-303
frontend

result sets 5-143, 5-251
long data 5-144, 5-252

full error message 4-5
fully qualified column name 4-6, 5-124
function

date/time data 2-6
declare 3-50
fails 3-3
numeric data 2-3

G
gdichb 5-131
gdichl 5-131
gdicol 5-131
gdiddl 5-132
SQL Application Programming Interface Reference Index-9

Index
gdiddt 5-131
gdiedl 5-133
gdiedt 5-132
gdilbb 5-131
gdilbl 5-131
generate

executable code 5-51
generic

error 5-303
get

bind variables
number of 5-195

column label 5-129
information 5-180

database parameter 4-5
database server information 4-5
describe information 4-6, 5-129
fetched column information 5-162
file 4-7

from server 5-120
null indicator 5-129
number of rows 5-227

in result set 5-199
object name 3-52
parameter

database 5-134
return code 5-209
rollback flag 5-207
row count 4-9
rows

number of 5-169
SELECT list

number of items 5-202
server information 5-170
stored command 5-216

get fetch information 4-6
get LONG size 4-6
get next log 4-2
global cursor 5-143, 5-251
GRANT 3-4
GROUP BY

restriction mode 5-274
Group commit

count 5-143

H
handle to cursor 3-28
HAVING

restriction mode 5-274
hdrdef

message header 5-172
hdrlen

message length 5-172
header

message
hdrdef 5-172

section
mshdef 5-172

heap
size 5-143

history file 5-270
size 5-143, 5-251

HP Allbase 5-136

I
IBM

DB2 5-136
IBM AS/400

SQL/400 5-136
identify

access path 5-51
implicit commit 5-46, 5-252, 5-268
INCLUDE environment variable 1-11
incremental backups 3-58
INDEX MERGE 5-115
information

type
mshflag 5-172

Informix 5-136
Informix On-Line 5-136
initialize

library 3-66
Microsoft Windows 4-9, 5-178

input message buffer
isolation levels 5-268
maximum 5-174
size 4-5, 5-174
sqlfet 5-174

INSERT 3-12, 3-13, 3-14, 3-39, 3-41
binding 3-14
compile 3-14, 3-41
execute 3-15, 3-41

INSTALL DATABASE 5-42, 5-52, 5-114
install database 4-4, 5-176
integrity

sqltem 3-54
Index-10 SQL Application Programming Interface Reference

internal data format 2-2
internal date

add 4-8
convert to picture 4-8

internal numbers 4-8
add 4-8, 5-295
convert to picture 4-8
divide 4-8
multiply 4-8
subtract 4-8

internal numeric storage
examples 2-4

isolation level 5-144, 5-252
browsing 5-271
change 5-252, 5-268
default 5-269
input message buffer 5-268
minimize network traffic 5-271
most concurrent 5-270
most consistent 5-269
Read Repeatability 5-269
reading data 5-270
Release Locks 5-270
set 4-9, 5-268
updating 5-270

L
label

column 5-131
definition 5-180
get 5-129
information 5-180
length 5-131
where stored 5-180

information 4-9
length

column heading 5-131
data

LONG VARCHAR 5-165
external

column 5-133
retrieve 5-98

fetched data 5-275
LONG VARCHAR 3-33
message

hdrlen 5-172
numeric data 2-2

level

display
Process Activity 5-258

isolation 5-144, 5-252
LIB environment variable 1-11
library

initialize 3-66
link

SQL/API 1-10
SQLBase++ 1-2

limit
file handles

per cursor 5-187
span

transaction 5-262
LINT_ARGS 3-66
load

version 5-144, 5-252
load operation 4-4
load operation (sqlldp) 4-6
LOAD/UNLOAD 5-139
local

database server 5-145
result set

directory 5-145, 5-253
local configuration example 1-3
local database 1-3
lock 5-269

exclusive 5-269
page 5-269
shared 5-269
timeout 5-289

rollback 5-151, 5-259
wait

timeout 5-156, 5-263
wait time

default 5-289
set 5-289
valid values 5-289

log
name

Process Activity 5-243
transaction

directory 5-252
log backup mode 5-4, 5-15

set on 3-58
log files

backup 4-2, 5-15
backup snapshot 5-34
SQL Application Programming Interface Reference Index-11

Index
cannot open 5-58
create 5-214
delete 5-15, 5-73
get next 4-2
next 5-166

to back up 5-254
offset 5-144
preallocate 5-258
process activity

change 4-9
release 4-3, 5-214
restore 4-3, 5-230
rollforward 4-3
rollover 5-214
size 5-144, 5-253
turn off 5-49

LOGBACKUP 3-56
long

internal data type 2-2
long data

frontend result sets 5-144
LONG VARCHAR 4-6

alphanumeric bind variable 3-33
bind 3-33, 3-38, 5-13, 5-20
bind by name 4-3
bind by number 4-3
bind functions 3-5
column

write to 5-293
compile 3-33
data

binding 3-41
length 5-165

end operation 3-33, 4-6
execute 3-33
fetch 3-33
get size 4-6
handling 3-33
length 3-33, 3-38
numeric bind variable 3-33
operation

end 5-105
operations 5-293
position

set 5-183
position in 3-33
process 5-13
processing 3-38

read 3-33, 3-34, 3-38, 4-6, 5-222
receive buffer 3-5
seek 4-6
SELECT 3-34
storage 2-2
write 3-33, 3-34, 3-38, 4-6

lose
result set 5-273, 5-283

M
maintenance 3-55
map error

from SQLBase 5-303
to SQLBase 5-303

media recovery 3-55
end 5-219

message
compression 5-138, 5-246
entries

mshnen 5-172
error 4-5

non-SQLBase 3-54, 5-286
reason 5-287
remedy 5-287
text 5-287

header
hdrdef 5-172

length
hdrlen 5-172

message buffer 3-45
message text

error 4-5, 5-110, 5-117
return 5-109, 5-111

return 5-117
message.sql 3-50
Microsoft Windows

exit 3-66
initialize 4-9

application 5-178
Microsoft Windows applications

callback function 3-66
compile and link 1-11
control 3-66
pointers 3-66
running 1-12, 1-13

missing transaction logs 3-59
mnemonic 5-110

error 5-117
Index-12 SQL Application Programming Interface Reference

mshdef
section header 5-172

mshflag
information type 5-172

mshnen
message entries 5-172

mshten
number of entries 5-172

multiple table update 3-23
multiply 2-3

internal numbers 4-8
numbers 5-305

N
name

backup file 5-4
column

fully qualified 4-6
fully-qualified 5-124
heading 5-131

cursor 5-235
deassign 5-235
set 4-9

database 4-4, 5-140
backup 5-230
default 5-140, 5-239, 5-242, 5-248

database server 5-142
log

Process Activity 5-243
next log file 5-166
result set 5-273, 5-283
set client 4-9

name result set 3-11
names

databases 5-83
negative numbers 2-4

sort 2-4
NetWare

loadable module 1-4
NetWare applications 1-14

compile and link 1-14
running 1-16

NetWare SQL 5-136
next

log file
to back up 5-254

transaction log
to backup 5-146

NLM 1-14
no recovery

connect 4-4
null indicator

error 5-146, 5-254
get 5-129

null pointer 3-10, 5-77
null-terminated string 3-3
numbers

convert
from string 5-296
to string 5-306

divide 5-301
internal 4-8

add 4-8, 5-295
character to number 4-8
convert to picture 4-8
divide 4-8
multiply 4-8
subtract 4-8

multiply 5-305
of column 5-131
signed

fetched 5-277
subtract 5-312

numeric
internal data type 2-2

numeric bind variable
LONG VARCHAR 3-33

numeric bind variables 3-5
numeric data

add 2-3
byte format 2-3
convert from character 2-3
convert to picture 2-3
divide 2-3
functions 2-3
internal storage

examples 2-4
length 2-2
multiply 2-3
storage 2-2
subtract 2-3

numeric overflow 5-277

O
object name

get 3-52
SQL Application Programming Interface Reference Index-13

Index
ODBC Glossary-11
offline backups 3-57

restore 3-57
offset

error 5-108
online backups 3-56
open

directory 4-7, 5-92
file

for reading 5-188
for reading/writing 5-188
for writing 5-188
in binary mode 5-188
in text mode 5-188
on server 5-187

remote server file 4-7
result set 5-228

Open DataBase Connectivity
see ODBC Glossary-11

optimization 3-4
optimization plan 5-115
optimize first fetch 5-147
optimize statement 5-51
optimized

bulk execute mode 5-147, 5-255
optimizer techniques 5-149, 5-257
OR LIST 5-115
Oracle 5-136

row ID 5-148
ORDER BY

restriction mode 5-274
OUTJOIN 5-115
output message buffer

set size 3-45
size 4-5, 5-147, 5-203

set 5-18
overflow

numeric 5-277
overwrite indicator

backup 5-212, 5-220, 5-231

P
packed decimal data

length 2-7
packed-decimal type

data length 2-7
sqlbnd 2-8
sqlbnn 2-8

sqlssb 2-8
page locking 5-269
pages

set cache 4-5, 5-237
parameter

database
get 4-5
set 4-5, 5-242

parse
SQL command 3-4
statement 5-51

partitioned database
access 5-150, 5-258
extent 5-250

pass
control 5-178

pass control to Windows 3-66
password 3-4, 5-62

default 5-141, 5-239, 5-242, 5-249
path

identify access 5-51
perform

administrative operations 5-61
physical disk reads 5-279
physical disk writes 5-279
picture

convert from date 4-8
convert from internal number 4-8
convert to date 4-8
format 5-306

sqlxdp 5-299
picture data

convert from date/time 2-6
convert from numeric 2-3
convert to date/time 2-6

plan
execution 4-9, 5-115

SQLPEXP 5-142, 5-250
execution cost

SQLPCXP 5-140
pointer

declare 3-66
position

error
return 5-108

file pointer
to end 5-188

in LONG VARCHAR
Index-14 SQL Application Programming Interface Reference

set 5-183
of seek 5-192
result set 4-7
row

in result set 5-206
position cursor 3-10
position of error 4-5
positive numbers 2-4
preallocate

transaction log files 5-150, 5-258
prebuild

result sets 5-146, 5-254
preservation

cursor context 5-149, 5-207, 5-257
caveats 5-208

prevent
connection to database 5-238
destroy

result set 5-257
procedure

sqlbnd 3-44
sqlbnn 3-44
sqlbnv 3-44
sqlcbv 3-44
sqlcex 3-44
sqlcom 3-44
sqlcty 3-44
sqldes 3-44
sqldii 3-44
sqldsc 3-44
sqldst 3-44
sqlepo 3-44
sqlexe 3-44
sqlfet 3-44
sqlget 3-45
sqlnbv 3-45
sqlnii 3-45
sqlsto 3-45

process
abort database 5-233
LONG VARCHAR 5-13

Process Activity
display level 5-150, 5-258
filename 5-134
log file name 5-243

process activity log file
change 4-9
open 5-43

Process timing
activate 5-135

program data types 2-6, 5-23, 5-26, 5-29, 5-32
put

file 4-7

Q
queries 3-6, 4-6
query plan 5-115
QUICK TERM 5-115

R
read

data
LONG VARCHAR 5-222

directory 4-7, 5-94
LONG VARCHAR 3-34, 3-38, 4-6
remote server file 4-7, 5-190

Read Repeatability 5-268, 5-269
read-only

database 5-150, 5-151, 5-258
history file 5-270

size 5-143, 5-251
isolation level 5-268
mode 5-151, 5-259
transaction mode 5-151

Read-Only isolation 5-34, 5-144, 5-270
reason

error 5-110
error return code 5-111

receive buffer
LONG VARCHAR 3-5

receive data
into buffer 5-275

recover
database 3-55, 3-58, 5-224
rollforward 5-106

recovery
connect with none 4-4
crash 5-281
end 3-59
next log file 5-166
parameter 5-150
turn on 5-49

referential integrity
ALTER TABLE 3-53

release
log file 5-214
SQL Application Programming Interface Reference Index-15

Index
version 5-155
Release Locks 5-144, 5-268, 5-270
release log 4-3
remedy

error 5-110, 5-111
remote

database server 5-145
file

read 5-190
seek 5-192
write 5-193

remote configuration example 1-4
remote server directory

delete 4-7
remote server file

close 4-7
delete 4-7
open 4-7
read 4-7
seek 4-7
write 4-7

Repeatable Read 5-144
restart

restriction mode 4-7
result set mode 4-7

restore
continue rollforward 4-2
database 3-55, 3-57, 3-58, 4-3, 5-230

from directory 5-211
functions 4-2

offline backup 3-57
rollforward 4-3
rollforward end 4-2
snapshot 4-3
transaction log files 4-3, 5-219, 5-230

restriction mode 3-10, 4-7
aggregate functions 5-273
definition 5-273, 5-283
DISTINCT 5-273
GROUP BY 5-274
HAVING 5-274
ORDER BY 5-274
parameter 5-150
restart 4-7
start 4-7, 5-273
stop 4-7
stored commands 5-274
turn off 3-11, 5-60, 5-272, 5-273, 5-283

turn on 3-11, 5-60, 5-228, 5-273, 5-283
UNION 5-274

result set 3-10
backend 5-136
close 4-7
count rows 4-6
destroy

prevent 5-257
directory

local 5-253
drop 3-11, 4-7, 5-96
fetch

next row 4-6
fetch rows 3-10, 3-11
frontend 5-143, 5-251

long data 5-252
local 5-145

directory 5-145
lose 5-273, 5-283
mode 3-10, 4-7, 5-151, 5-272

definition 5-273
restart 4-7
start 4-7, 5-273
turn off 3-11, 5-60, 5-273, 5-283
turn on 3-11, 5-60, 5-228, 5-273, 5-283
undo 4-7

name 3-11
named

drop 5-60
use 5-60

naming 5-273, 5-283
number of rows

get 5-199
open 5-228
position 4-7
position cursor 3-10
prebuild 5-146, 5-254
row position

set 5-206
ROWIDs 5-228, 5-273, 5-283
save 3-11, 5-60, 5-273, 5-283
undo 3-11, 5-273, 5-283, 5-292
use 3-11

retrieve
error position 3-47
external data length 5-98
external data type

retrieve 5-98
Index-16 SQL Application Programming Interface Reference

return code 3-47
stored command 4-8, 5-216

return
error code 5-110
error message text 5-109, 5-111
error position 5-108
error reason 5-111
error remedy 5-111
full message text 5-117

return code 3-28, 4-5
get 5-209
retrieve 3-47
SQLBase 3-48
translate 5-284

REVOKE 3-4
ROLLBACK 3-21
rollback 3-20, 3-29

abort process 5-233
flag 3-22, 3-28, 3-48, 4-5

get 5-207
lock timeout 5-259
on lock timeout 5-151
status indicator 5-3, 5-11
timeout 5-289
transaction 4-9, 5-208
transactions 5-86

rollforward 3-55, 3-58, 4-3, 5-224
continue 4-2, 5-58
end 4-2, 5-106
recover 5-106
stopped 5-58
to end

of backup 5-225
of logs 5-225

to time 5-225
transaction logs 3-57

rollover
log 5-214

row
caused error 5-2, 5-10
fetch 5-119
next

fetch 4-6
row count

get 4-9
row ID

Oracle 5-148
row position 3-27

ROWIDs 3-11, 5-60
change 5-283
changes 5-228
result set 5-228
result sets 5-273, 5-283

rows
affected

by DELETE 5-227
by UPDATE 5-227

get number of 5-169, 5-227
in result set 4-6

running
NetWare applications 1-16
Windows applications 1-12, 1-13

S
save

result set 3-11, 5-60, 5-273, 5-283
drop 3-11
use 3-11

SAVEPOINT 3-21
scale 2-8
scope of transaction 3-20
scroll mode 3-10, 5-151
section header

mshdef 5-172
security 3-3

functions 4-8
seek

in remote file 5-192
LONG VARCHAR 4-6
position 5-192
remote server file 4-7

SELECT 3-5, 3-6, 3-9, 3-11, 3-32, 3-37
buffers 3-37
chained command 5-217
compile 3-9, 3-32, 3-37
describe information 5-75, 5-98, 5-140
execute 3-10, 3-32, 3-37
fetch rows 3-10
item

describe 4-6
items

describe 4-6
LONG VARCHAR 3-34
result sets 3-10
set buffer 4-6

SELECT buffers 3-5
SQL Application Programming Interface Reference Index-17

Index
setting 3-32
SELECT item

data type 5-275
SELECT items 3-28

count 4-6
SELECT list 5-98, 5-129

data buffers 5-275
data types 5-75
lengths 5-75
number of items

get 5-202
server

bring down 5-280
cache

size 5-279
database

multi-user 5-145
definition 1-3
directory

delete remote 4-7
exit 5-280
file

close 5-184
create 5-187
delete 5-186
delete remote 4-7
get 5-120
open 5-187
remote

close 4-7
open 4-7
read 4-7
seek 4-7

seek 5-192
information

get 5-170
name 3-3, 5-62, 5-142
shut down 5-240
status 5-138
terminate 5-280

server file
write remote 4-7

set
cache pages 4-5, 5-237
cache size 5-237
client name 4-9, 5-237
cursor name 4-9
database parameter 4-5, 5-242

isolation level 4-9, 5-268
lock

wait time 5-289
position

LONG VARCHAR 5-183
row position

in result set 5-206
SELECT buffers 3-5

SET DEFAULT STOGROUP 5-42, 5-52, 5-114
set SELECT buffer 4-6
set SELECT buffers 3-37
set up

buffer 5-275
setting SELECT buffers 3-32
ShareBase 5-136
shared locks 5-269
shut down

database 4-4, 5-238
extended 4-4
server 3-57, 4-8

sign bit 2-3
signed packed decimal (SQLPSPD) 2-7
size

cache
server 5-279
set 5-237

data buffer 5-275
database cache 5-136, 5-244
extension 5-142, 5-250
heap 5-143
history file 5-143, 5-251
log file 5-144, 5-253
LONG VARCHAR 4-6
output message buffer 5-147, 5-203

snapshot
backup 4-2
restore 4-3

span limit
transaction 5-154, 5-262

spxdll.nlm 1-14
spxdll40.nlm 1-14
SQL

capabilities 1-2
SQL command

command type 5-63
compile 3-4, 3-11, 5-51, 5-282
compile and execute 5-41
execute 3-4, 3-11, 5-113
Index-18 SQL Application Programming Interface Reference

execution plan 5-115
parse 3-4
retrieve 5-216
store 3-41, 3-45, 5-282

SQL Handle
internal data type 2-2

SQL statement
get last

SQLPLSS 5-145
sql.h 1-5, 2-5, 2-6, 2-8, 3-3, 3-28, 3-66, 5-117,

5-275
sql.ini 3-3, 5-176

dbname 5-56, 5-71, 5-73
defaultdatabase 5-50
defaultddatabase 5-47
defaultpassword 5-47, 5-50
defaultuser 5-47, 5-50
errorfile 3-49
password 3-4, 5-62
server name 3-3, 5-62

SQL/400 5-136
SQL/API

library link 1-10
sqlapinw.nlm 1-4, 1-14
sqlapiw.lib 1-5, 1-11
SQLBALB 5-136
SQLBAPP 5-136
SQLBAS4 5-136
SQLBase return codes 3-48
SQLBase++

described 1-2
sqlbbr 4-3, 5-2
sqlbdb 3-56, 3-58, 4-2, 5-4

example 5-6
SQLBDB2 5-136
SQLBDBC 5-136
sqlbef 3-45, 4-3, 5-8, 5-18

example 5-8
sqlber 3-45, 4-3, 5-10

example 5-11
SQLBIGW 5-136
SQLBIOL 5-136
sqlbld 3-33, 4-3, 5-13

example 5-14
sqlblf 3-56, 3-58, 4-2, 5-14

example 5-16
sqlblk 3-45, 4-3, 5-18

example 5-19

sqlbln 3-33, 3-41, 4-3, 5-20
example 5-21

sqlbna 4-3, 5-22
sqlbnd 3-5, 3-32, 4-3, 5-25

example 5-27
procedure 3-44

sqlbnn 3-5, 3-14, 3-41, 4-3, 5-28
example 5-30
procedure 3-44

SQLBNTW 5-136
sqlbnu 4-3, 5-31
sqlbnv

procedure 3-44
SQLBORA 5-136
SQLBSHR 5-136
SQLBSQB 5-136
sqlbss 3-56, 3-58, 4-2, 5-34, 5-230

example 5-35
Read-Only isolation 5-34

sqlcbv 4-3, 5-37
example 5-37
procedure 3-44

sqlcch 4-4, 5-38
example 5-39

sqlcdr 4-4, 5-40
sqlcex 3-4, 3-12, 3-24, 3-32, 4-4, 5-41, 5-119

example 5-42
procedure 3-44

sqlclf 4-9, 5-43
example 5-44

sqlcmt 3-21, 3-23, 3-24, 4-9, 5-45
example 5-46

sqlcnc 3-3, 3-9, 3-32, 4-4, 5-46
example 5-48

sqlcnr 4-4, 5-48
example 5-50

sqlcom 3-4, 3-5, 3-9, 3-32, 3-33, 3-41, 4-4, 5-51
example 5-52
procedure 3-44

sqlcpy 4-9, 5-53
example 5-54

sqlcre 4-4, 5-56, 5-176
example 5-57

sqlcrf 3-57, 4-2, 5-58
example 5-59

sqlcrs 3-11, 4-7, 5-60, 5-96, 5-228, 5-273, 5-283
example 5-61

sqlcsv 3-4, 4-8, 5-61, 5-113, 5-187, 5-281
SQL Application Programming Interface Reference Index-19

Index
example 5-62
sqlcty 3-28, 4-9, 5-63

example 5-67
procedure 3-44

sqldbn 4-4, 5-68, 5-171
example 5-69

SQLDBOO 2-2
sqldch 4-4, 5-70
SQLDCHR 2-2, 5-131
SQLDDAT 2-2, 5-131
SQLDDLD 5-75, 5-76, 5-98, 5-99, 5-129, 5-130,

5-140, 5-248
SQLDDTE 2-2, 5-131
sqlded 3-58, 4-4, 5-238

example 5-72
sqldel 4-4, 5-75

example 5-74
SQLDELY 5-75, 5-76, 5-98, 5-129, 5-140, 5-248
sqldes 3-10, 4-6, 5-75, 5-98, 5-124, 5-129

example 5-79
procedure 3-44

SQLDHOL 2-2
sqldii 4-9, 5-79

procedure 3-44
sqldir 4-4, 5-83

example 5-80, 5-84, 5-197
sqldis 3-3, 4-4, 5-84, 5-86

example 5-70, 5-85
SQLDLON 2-2, 5-131
SQLDNUM 2-2, 5-131
SQLDNVR 5-75, 5-77, 5-98, 5-99, 5-129, 5-130,

5-141, 5-248
sqldon 4-4, 5-86

example 5-86
testwin.c 5-86

sqldox 4-7, 5-87
sqldrc 4-7, 5-90, 5-92

example 5-90
sqldro 4-7, 5-90, 5-92, 5-94

example 5-93
sqldrr 4-7, 5-90, 5-92, 5-94

example 5-95
sqldrs 3-11, 4-7, 5-60, 5-96

example 5-97
sqldsc 4-6, 5-75, 5-97, 5-124, 5-129

example 5-102
procedure 3-44

sqldst 3-41, 4-8, 5-103

example 5-103
procedure 3-44

sqldsv 3-4, 4-8, 5-104
example 5-104

SQLDTIM 2-2, 5-131
SQLEBIN 2-8, 5-132
SQLEBOO 2-8, 5-132
SQLECHR 2-8, 5-132
SQLEDAT 2-8, 5-132
SQLEDEC 2-8, 5-132
SQLEDOU 2-8, 5-132
SQLEFLO 2-8, 5-132
SQLEGPH 2-8, 5-132
SQLEINT 2-8, 5-132
SQLELBI 2-8, 5-132
SQLELCH 2-8
SQLELGP 2-8, 5-132
sqlelo 3-33, 3-37, 3-41, 4-6, 5-105, 5-222

example 5-105
SQLELON 2-8, 5-132
SQLELVR 2-8
SQLEMON 2-8, 5-132
sqlenr 3-59, 4-2, 5-106, 5-166, 5-219

example 5-107
sqlepo 3-28, 3-47, 3-50, 4-5, 5-108

example 5-109
procedure 3-44

sqlerr 3-47, 3-54, 4-5, 5-109, 5-110, 5-117, 5-209,
5-287

example 5-110
SQLESMA 2-9, 5-132
SQLETIM 2-9, 5-132
SQLETMS 2-9, 5-132
sqletx 3-48, 3-54, 4-5, 5-111, 5-287

examples 5-112
SQLEVAR 2-9, 5-132
SQLEVBI 2-9, 5-132
SQLEVGP 2-9, 5-132
sqlexe 3-4, 3-10, 3-15, 3-17, 3-33, 3-41, 4-4, 5-113,

5-119
example 5-114
procedure 3-44

sqlexp 4-9, 5-115
example 5-116

sqlfer 3-47, 3-54, 4-5, 5-110, 5-117, 5-209, 5-287
example 5-118

sqlfet 3-10, 3-11, 3-33, 3-37, 4-6, 5-119, 5-146,
5-165, 5-183, 5-206, 5-254, 5-275
Index-20 SQL Application Programming Interface Reference

example 5-120
input message buffer 5-174
procedure 3-44

sqlfgt 4-7, 5-120
example 5-121

sqlfpt 4-7, 5-122
example 5-123

sqlfqn 4-6, 5-124
example 5-125

sqlgbc 4-5, 5-126
sqlgbi 4-9, 5-127
SQLGCFG 5-171
SQLGCUR 5-171
SQLGDBS 5-171
sqlgdi 4-6, 5-128

example 5-133
sqlget 4-5, 5-134

example 5-162
procedure 3-45
SQLPCLN 5-138
SQLPCTL 5-139
SQLPCXP 5-140
SQLPDLK 5-141
SQLPEMT 3-52, 5-141
SQLPEXP 5-142
SQLPLSS 5-145

sqlgfi 4-6, 5-119, 5-162
example 5-164

SQLGLCK 5-171
sqlgls 3-33, 4-6, 5-166

example 5-166
sqlgnl 3-59, 4-2

example 5-167
sqlgnr 4-9, 5-169

example 5-170
SQLGOSS 5-171
SQLGPRC 5-171
SQLGPWD 5-171
sqlgsi 4-5, 5-170

example 5-173
SQLGSTT 5-171
SQLHost Application Services 5-136
SQLILCS 5-144, 5-252, 5-271
SQLILRL 5-144, 5-252, 5-271
SQLILRO 5-144, 5-252, 5-271
SQLILRR 5-144, 5-252, 5-271
sqlims 4-5, 5-174

example 5-175

sqlind 3-58, 4-4, 5-176, 5-238
example 5-177

sqlini 3-66, 4-9, 5-86, 5-178
example 5-179
MS Windows 5-178
OS/2 5-179
testwin.c 5-179

sqllab 4-9, 5-180
example 5-181

sqlldp 4-4, 4-6
sqllsk 3-33, 4-6, 5-183

example 5-184
sqlwlo 5-293

sqlmcl 4-7, 5-184
example 5-185

SQLMDBL 5-140
sqlmdl 4-7, 5-186

example 5-187
SQLMEOB 5-225
SQLMEOL 5-225
SQLMERR 5-112
SQLMETX 5-112
sqlmop 4-7, 5-185, 5-187

example 5-189
sqlmrd 4-7, 5-190

example 5-191
SQLMRTR 5-140
sqlmsk 4-7, 5-192

example 5-193
SQLMTIM 5-225
sqlmwr 4-7, 5-193

example 5-194
sqlnbv 3-14, 3-28, 4-3, 5-195

example 5-196
procedure 3-45

sqlnii 4-9, 5-196
procedure 3-45

SQLNPTR 3-10, 5-77, 5-99, 5-163, 5-277
sqlnrr 4-6, 5-199

example 5-200
sqlnsi 3-9, 3-28, 4-6, 5-99, 5-130, 5-180, 5-202

example 5-202
SQLOAPPEND 5-188
SQLOBINARY 5-188
SQLOCREAT 5-188
SQLODIRCREA 5-188
SQLOEXCL 5-188
sqloms 3-45, 4-5, 5-18, 5-203
SQL Application Programming Interface Reference Index-21

Index
example 5-204
sqlopc 5-205
SQLORDONLY 5-188
SQLORDWR 5-188
SQLOTEXT 5-188
SQLOTRUNC 5-188
SQLOWRONLY 5-188
SQLPAID 5-134, 5-157, 5-243
SQLPAIO 5-157
SQLPALG 5-134, 5-157, 5-243, 5-264
SQLPANL 5-134, 5-157, 5-243
SQLPAPT 5-135, 5-157, 5-243, 5-264
SQLPAUT 5-135, 5-157, 5-244, 5-264

bulk execute mode 5-255
SQLPAWS 5-135, 5-157, 5-244
SQLPBLK 5-136, 5-147, 5-157, 5-255, 5-265
SQLPBRN 5-136, 5-157, 5-303
SQLPBRS 5-136, 5-157
SQLPBUF 2-6, 3-10, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPCAC 5-136, 5-157, 5-244, 5-265
SQLPCCB 5-137, 5-245
SQLPCCK 5-137, 5-157, 5-245
SQLPCGR 5-137, 5-157, 5-245
SQLPCHS 5-137, 5-157, 5-217
SQLPCIS 5-138, 5-157, 5-245
SQLPCLG 5-138, 5-157, 5-246, 5-265
SQLPCLI 5-138, 5-157, 5-246
SQLPCLN 5-157

description 5-138, 5-246
SQLPCMP 5-138, 5-157, 5-246, 5-265
SQLPCSV 5-138, 5-158, 5-246, 5-265
SQLPCTF 5-139, 5-158
SQLPCTI 5-139, 5-158, 5-247, 5-265
SQLPCTL 5-158, 5-265

description 5-139, 5-247
SQLPCTS 5-140, 5-158, 5-248, 5-265
SQLPCTY 5-140, 5-158, 5-248
SQLPCXP 5-158

description 5-140
SQLPDAT 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPDBD 5-140, 5-248, 5-265
SQLPDBM 5-140, 5-158
SQLPDBN 5-140, 5-158
SQLPDDB 5-140, 5-158, 5-248, 5-265
SQLPDDR 5-140, 5-158, 5-248
SQLPDIS 5-75, 5-98, 5-129, 5-140, 5-158, 5-248,

5-265
SQLPDLK 5-158

description 5-141
SQLPDMO 5-141, 5-158, 5-249, 5-265
SQLPDOU 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPDPW 5-141, 5-249, 5-265
SQLPDTE 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPDTL 5-141, 5-158, 5-249
SQLPDTR 3-23, 5-141, 5-158, 5-249, 5-265
SQLPDUS 5-141, 5-158, 5-249, 5-265
SQLPEBC 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPEMT 5-158

description 5-141, 5-249
example 3-54
sqlget 3-52
sqlset 3-52

SQLPERF 5-142, 5-158, 5-250
SQLPEXE 5-142, 5-158
SQLPEXP 5-158, 5-250, 5-265

description 5-142
SQLPEXS 5-142, 5-158, 5-250, 5-265
SQLPFLT 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPFNM 5-142, 5-158
SQLPFRS 5-143, 5-158, 5-251, 5-265
SQLPFT 5-143, 5-158, 5-251, 5-265
SQLPGBC 5-143, 5-159, 5-251, 5-265
SQLPGCD 5-143, 5-159
SQLPGCM 5-143, 5-159
SQLPHEP 5-143, 5-159
SQLPHFS 5-143, 5-159, 5-251, 5-265
SQLPISO 5-144, 5-159, 5-252, 5-265
SQLPLBI 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPLBM 3-56, 3-58, 5-4, 5-144, 5-159, 5-252,

5-254, 5-266
SQLPLCK 5-144, 5-159, 5-252
SQLPLDR 5-144, 5-159, 5-252
SQLPLDV 5-144, 5-159, 5-252, 5-266
SQLPLFF 5-144, 5-159, 5-252, 5-266
SQLPLFS 5-144, 5-159, 5-253, 5-266
SQLPLGF 5-144, 5-159
SQLPLOC 5-145, 5-159, 5-253, 5-266
SQLPLON 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPLRD 5-145, 5-159, 5-253, 5-266
SQLPLSS 5-159

description 5-145
SQLPLVR 2-6, 5-23, 5-26, 5-29, 5-32, 5-276
SQLPMID 5-145, 5-159, 5-253
SQLPMUL 5-145, 5-159
SQLPNBU 2-6, 5-23, 5-26, 5-29, 5-32, 5-276
SQLPNCK 5-145, 5-159, 5-253
Index-22 SQL Application Programming Interface Reference

SQLPNCT 5-145, 5-159, 5-253
SQLPNDB 5-145, 5-159, 5-253, 5-266
SQLPNID 5-145, 5-159, 5-254
SQLPNIE 5-146, 5-159, 5-254, 5-266
SQLPNLB 3-57, 5-146, 5-159, 5-254, 5-266
SQLPNLG 5-146, 5-159, 5-254
SQLPNPB 5-146, 5-160, 5-254, 5-266
SQLPNPF 5-146, 5-160, 5-255
SQLPNST 2-6, 5-23, 5-26, 5-29, 5-32, 5-276
SQLPNUM 2-7, 5-23, 5-26, 5-29, 5-32, 5-276
SQLPOBL 5-147, 5-255
SQLPOFF 5-147, 5-160, 5-255
SQLPOMB 5-147
SQLPOOJ 5-148, 5-160, 5-256
SQLPOPL 5-149, 5-160, 5-257, 5-266
SQLPORID 5-148, 5-160
SQLPOSR 5-149, 5-160, 5-257
SQLPOVR 5-149, 5-160
SQLPPAR 5-149, 5-160, 5-257, 5-266
SQLPPCX 5-149, 5-160, 5-257, 5-266
SQLPPDB 5-150, 5-160, 5-258, 5-266
SQLPPLF 5-150, 5-160, 5-258, 5-266
SQLPPLV 5-150, 5-160, 5-258, 5-266
SQLPPTH 5-150, 5-160
SQLPREC 5-150, 5-160
SQLPRES 5-150, 5-160
SQLPRID 5-150, 5-160
SQLPROD 5-150, 5-160, 5-258, 5-266, 5-270
SQLPROM 5-151, 5-258, 5-266
SQLPROT 5-151, 5-160, 5-259, 5-266
sqlprs 3-10, 4-7, 5-206, 5-272, 5-273

example 5-205, 5-206
SQLPRTO 5-151, 5-160, 5-259, 5-266
SQLPSCH 2-7, 5-24, 5-26, 5-29, 5-32, 5-276
SQLPSCR 5-151, 5-160
SQLPSIL 5-152, 5-160, 5-259
SQLPSIN 2-7, 5-24, 5-26, 5-29, 5-32, 5-276
SQLPSLO 2-7, 5-24, 5-26, 5-29, 5-32, 5-276
SQLPSPD 2-7, 5-24, 5-26, 5-29, 5-32, 5-276
SQLPSSH 2-7, 5-24, 5-27, 5-29, 5-33, 5-276
SQLPSTA 5-152, 5-160, 5-260, 5-266
SQLPSTC 5-160, 5-261
SQLPSTR 2-7, 5-24, 5-27, 5-29, 5-33, 5-276
SQLPSVN 5-153, 5-161, 5-261
SQLPSWR 5-153, 5-161
SQLPTCO 5-153, 5-161, 5-261
SQLPTHM 5-153, 5-161, 5-261
SQLPTIM 2-7, 5-24, 5-27, 5-29, 5-33, 5-276

SQLPTMO 5-154, 5-161, 5-261
SQLPTMS 5-153, 5-161, 5-261, 5-266
SQLPTMZ 5-154, 5-161, 5-262
SQLPTPD 5-154, 5-161, 5-262
SQLPTRC 5-154, 5-161, 5-262, 5-266
SQLPTRF 5-154, 5-161, 5-266
SQLPTSL 5-154, 5-161, 5-262, 5-267
SQLPTSS 5-155, 5-161, 5-262
SQLPUCH 2-7, 5-24, 5-27, 5-30, 5-33, 5-276
SQLPUID 5-155, 5-161, 5-263
SQLPUIN 2-7, 5-30, 5-33, 5-276
SQLPULO 2-7, 5-30, 5-33, 5-276
SQLPUPD 2-7, 5-30, 5-33, 5-276
SQLPUSH 2-7, 5-30, 5-33, 5-276
SQLPUSR 5-155, 5-161, 5-263
SQLPVER 5-155, 5-161
SQLPWFC 5-155, 5-161
SQLPWKA 5-155, 5-263
SQLPWKL 5-156, 5-263
SQLPWTO 5-156, 5-161, 5-263, 5-267
sqlrbf 3-22, 3-28, 3-48, 4-5, 5-207

example 5-208
sqlrbk 3-21, 3-23, 3-24, 4-9, 5-208

example 5-209
sqlrcd 3-28, 3-47, 3-50, 4-5, 5-110, 5-111, 5-117,

5-209
example 5-210

SQLRCLN 5-171
sqlrdb 3-57, 3-58, 3-59, 4-3, 5-210, 5-224

example 5-212
SQLRDBN 5-171
sqlrel 4-3, 5-214

example 5-214
sqlret 3-45, 4-8, 5-216, 5-282

examples 5-218
sqlrlf 3-57, 3-59, 4-3, 5-34, 5-219

example 5-220
sqlrlo 3-5, 3-33, 3-34, 3-37, 4-6, 5-119, 5-165,

5-183, 5-222
example 5-223
length

maximum 5-222
sqlrof 3-57, 3-58, 3-59, 4-3, 5-224, 5-230

example 5-225
sqlrow 3-28, 4-9, 5-227

example 5-228
SQLRPNM 5-171
sqlrrs 3-11, 4-7, 5-60, 5-228, 5-273, 5-283
SQL Application Programming Interface Reference Index-23

Index
example 5-229
sqlrsi 4-5, 5-230
sqlrss 3-58, 4-3, 5-230

example 5-231
SQLRUSN 5-171
sqlsab 4-8, 5-233

example 5-234
SQLSCDA 2-5
sqlscl 4-9, 5-237

example 5-235
sqlscn 3-17, 4-9, 5-237

ADJUSTING 5-235
CURRENT OF 5-235
description 5-234
example 5-236

sqlscp 4-5, 5-237
example 5-237

sqlsdn 4-4, 5-238
example 5-239

sqlsds 4-8, 5-240
sqlsdx 4-4, 5-241
sqlset 3-57, 4-5, 5-242

example 3-54, 5-267
SQLPCLN 5-246
SQLPCTL 5-247
SQLPEMT 3-52, 5-249
SQLPLBM 5-4, 5-15

sqlsil 4-9, 5-175, 5-268
example 5-271

SQLSNUM 5-295
sqlspr 3-11, 4-7, 5-272, 5-273, 5-283

example 5-272
sqlsrs 3-11, 4-7, 5-199, 5-273

example 5-274
sqlsrv.h 1-5, 5-172
sqlssb 3-5, 3-10, 3-32, 3-33, 3-37, 4-6, 5-119,

5-146, 5-254, 5-274, 5-299
example 5-278

sqlsta 4-5, 5-279
example 5-280

sqlstm 4-8, 5-280
example 5-281

sqlsto 3-41, 4-8, 5-281
example 5-282
procedure 3-45

sqlstr 3-11, 4-7, 5-273, 5-283
example 5-284

SQLTCHN 5-217

sqltec 3-48, 3-49, 4-5, 5-284
example 5-285

sqltem 4-5, 5-285
example 5-288
SQLXMSG 5-287
SQLXREA 5-287
SQLXREM 5-287

sqltio 4-9, 5-289
example 5-290

sqlunl 4-5, 4-6
sqlurs 3-11, 4-7, 5-273, 5-283, 5-292

example 5-292
sqluwrtr.a 1-5
SQLVDFL 5-259
SQLVOFF 5-151, 5-259
SQLVON 5-151, 5-259
SQLWKA 5-161
SQLWKL 5-161
sqlwlo 3-33, 3-39, 3-41, 4-6, 5-183, 5-293

example 5-294
sqllsk 5-293

sqlwntm.lib 1-14
sqlxad 2-3, 4-8, 5-295

example 5-296
sqlxcn 2-3, 4-8, 5-296

example 5-297
sqlxda 2-6, 4-8, 5-298

example 5-299
sqlxdp 2-6, 4-8, 5-299, 5-310

example 5-301
picture format 5-299

sqlxdv 2-3, 4-8, 5-301
example 5-302

sqlxer 4-5, 5-303
example 5-304

SQLXGSI 5-171
sqlxml 2-3, 4-8, 5-305

example 5-306
SQLXMSG 5-111, 5-287
sqlxnp 2-3, 4-8, 5-306

examples 5-308
sqlxpd 2-6, 4-8, 5-310

example 5-312
SQLXREA 5-112, 5-287
SQLXREM 5-112, 5-287
sqlxsb 2-3, 4-8, 5-312

example 5-313
SQPTRF 5-262
Index-24 SQL Application Programming Interface Reference

start
restriction mode 4-7, 5-273
result set mode 4-7, 5-273
transaction 5-208

statistical information, reset 5-230
statistics 4-5

database 5-279
gather 5-51

status
rollback 5-3, 5-11

status code
fetch 5-275

stop
restriction mode 4-7, 5-273

storage
character data 2-2
LONG VARCHAR 2-2
numeric data 2-2

store
SQL command 3-41, 3-45, 5-282

stored command 3-41, 4-8
calling 3-41
drop 3-41, 4-8, 5-103
restriction mode 5-216, 5-274
retrieve 4-8

stored procedures
calling 3-41
executing from SQL/API 3-42
traced 5-154

string
convert

from date 5-299
from number 5-306
to date 5-310
to number 5-296

null-terminated 3-3
subtract 2-3

internal numbers 4-8
numbers 5-312

syntax error 5-108
SYSCOLUMNS 5-75, 5-78, 5-98
SYSCOMMANDS 3-41, 3-45, 5-282
SYSROWIDLISTS 3-11, 5-60, 5-228, 5-273, 5-283
system catalog

SYSROWIDLISTS 5-228
system failure

rollback 5-207
system table

SYSCOMMANDS 5-282
SYSROWIDLISTS 5-273, 5-283

T
table

access 3-4
name

verify 5-51
security 3-4

Teradata 5-136
ShareBase 5-136

terminate
server 4-8, 5-280

testwin.c
sqldon 5-86

time
internal data type 2-2

timeout 4-9
lock 5-289
lock wait 5-156, 5-263
rollback 5-289

timestamp 5-261
parameter 5-153

tlidll.nlm 1-14
tokenize

error message 4-5, 5-285
tokens

error message
SQLPEMT 5-141, 5-249

Tracefile
name 5-154, 5-262

transaction 3-20
commit 4-9, 5-45
log backup

mode 5-144
log files

preallocate 5-258
size 5-144, 5-253

rollback 4-9, 5-208
scope 3-20
span limit 5-154, 5-262
start 5-45
starting point 5-208

transaction control 3-19, 3-23, 4-9
transaction log file 3-55

backup 3-56, 4-2, 5-15
backup snapshot 5-34
cannot open 5-58, 5-106
SQL Application Programming Interface Reference Index-25

Index
delete 5-15, 5-73
deletion 3-57
directory 5-252
get next 4-2
missing 3-59
next 5-166
next to backup 5-146
preallocate 5-150
recover 5-106
release 4-3
restore 4-3, 5-230
rollforward 3-57, 4-3
turn off 5-49

transactions
during backup 5-4
rollback 5-86

translate
error code 4-5
errors 3-48

from SQLBase 5-303
to SQLBase 5-303

return code 5-284
truncate

file 5-188
turn off

restriction mode 5-272, 5-273, 5-283
result set mode 5-273, 5-283

turn on
restiction mode 5-273
restriction mode 5-228, 5-273, 5-283
result set mode 5-228, 5-273, 5-283

two-phase commit
commit server 3-22

type
data

program 5-275
SELECT item 5-275

information
mshflag 5-172

type of command 4-9

U
undo

result set 3-11, 5-273, 5-283, 5-292
mode 4-7

UNION
restriction mode 5-274

UNLOAD command 4-5

unload operation (sqlunl) 4-6
unsigned packed decimal (SQLPUPD) 2-7
UPDATE 3-12, 3-15, 3-17, 3-24, 3-32, 3-39

binding 3-17, 3-32
chained command 5-217
CHECK EXISTS 5-217
compile 3-17, 3-24
count rows 5-227
execute 3-17, 3-24

update
multiple tables 3-23

use saved result set 3-11
username

default 5-141, 5-249

V
VALUES clause 3-14
variable

declare 3-3
variables

bind
clear 4-3
number 4-3

verify
column names 5-51
table names 5-51

version
load 5-144, 5-252
release 5-155

virtual disk reads 5-279
virtual disk writes 5-279

W
wait time

lock
default 5-289
set 5-289
valid values 5-289

Windows (see also Microsoft Windows)
pass control 3-66

Windows NT applications
compile and link 1-12

work space 3-27
write

file
remote 5-193

LONG VARCHAR 3-33, 3-34, 3-38, 4-6
remote server file 4-7
Index-26 SQL Application Programming Interface Reference

	SQLBase SQL Application Programming Interface Reference
	Contents
	Preface
	Who should read this manual
	Summary of chapters
	Notation conventions
	Other helpful resources
	Send comments to...

	Chapter 1: Introduction to the SQL/API
	About the SQL/API
	Why use the SQL/API?
	Other Centura SQLBase interfaces
	How SQL/API applications access SQLBase
	Local configuration
	Remote configuration
	SQL/API components
	Example programs
	Support files
	Compiling, linking, and running applications
	Environment variables to include
	Windows 16-bit programs
	Windows 32-bit programs
	Windows NT character-based application
	C programs for Netware
	Header files for 16-bit and 32-bit programs
	Compiling, linking, and running example programs

	Chapter 2: Data Types
	Internal database data types
	Character data
	Numeric data
	Date and time data
	Program data types
	Packed-decimal data types
	External data types

	Chapter 3: Using the SQL/API
	Connect and close cursor
	Server security
	Compiling and executing SQL commands
	Setting SELECT buffers
	Bind variables
	Binding data
	Queries
	SELECT command without bind variables (ex20.c)
	Result sets
	Result set mode and restriction mode
	Saved result sets
	Fetching
	INSERTs, UPDATEs, and DELETEs
	INSERT with bind variables (ex11.c)
	UPDATE with bind variables (ex19.c)
	Connection handles
	Implicit connection handle
	Setting lock time out
	Why use connection handles
	Setting up a connection handle (ex26.c)
	Transactions
	Committing and rolling back
	Savepoints
	Distributed transactions
	Setting up a transaction (ex06.c)
	Setting up a distributed transaction
	Cursors
	Cursor work space information
	Cursors and connection handles
	Using multiple cursors and connection handles (ex1...
	LONG VARCHAR handling
	Reading LONG VARCHAR columns (ex14.c)
	Writing LONG VARCHAR columns (ex13.c)
	Calling stored commands and procedures
	Executing a stored procedure from SQL/API (ex23.c)...
	Functions used with procedures and commands
	Bulk execute mode
	Error handling
	Finding error.sql
	Checking the return code
	Translating errors
	Error handling (ex20.c)
	Errors
	Tokenized error messages
	Example
	Back up and restore
	Recovery
	Online backups
	Offline backups
	Backing up a database and its log files
	Restoring and recovering a database and its log fi...
	Example
	Load and unloading databases
	Loading
	Unloading
	Microsoft Windows applications

	Chapter 4: SQL/API Functions by Category
	Function categories
	Backup and restore
	Binding
	Bulk execute mode
	Compiling and executing
	Connecting and disconnecting
	Database administration
	Environment control
	Error handling
	Load and Unload operations
	LONG VARCHAR operations
	Queries
	Restriction mode and result set mode
	Server file and directory access
	Server security
	SQLBase internal numbers
	Stored commands and procedures
	Transaction control
	Miscellaneous

	Chapter 5: SQL/API Function Reference
	sqlbbr - Bulk execute Return
	sqlbdb - Backup DataBase
	sqlbef - Bulk Execute Flush
	sqlber - Bulk Execute Return
	sqlbld - Bind Long Data by name
	sqlblf - Backup Log Files
	sqlblk - BuLK execute
	sqlbln - Bind Long data by Number
	sqlbna - Bind data by NAme (with null indicator)
	sqlbnd - BiNd Data by name
	sqlbnn - BiNd data by Number
	sqlbnu - Bind data by NUmber
	sqlbss - Backup SnapShot
	sqlcbv - Clear Bind Variables
	sqlcch - Create Connection Handle
	sqlcdr - Cancel Database Request
	sqlcex - Compile and EXecute
	sqlclf - Change process activity Log File
	sqlcmt - CoMmiT
	sqlcnc - CoNnect Cursor
	sqlcnr - Connect with No Recovery
	sqlcom - COMpile a SQL command/procedure
	sqlcpy - CoPY data from one table to another
	sqlcre - CREate database
	sqlcrf - Continue RollForward
	sqlcrs - Close ReStriction and Result Set modes
	sqlcsv - Connect to SerVer
	sqlcty - Command TYpe
	sqldbn - DataBase Names
	sqldch - Destroy Connection Handle
	sqlded - DEinstall Database
	sqldel - DELete database
	sqldes - DEScribe items in a SELECT list
	sqldii - Describe Into variable
	sqldir - DIRectory of databases
	sqldis - DISconnect from cursor
	sqldon - DONe
	sqldox - Directory Open eXtended
	sqldrc - DiRectory Close
	sqldro - DiRectory Open
	sqldrr - DiRectory Read
	sqldrs - Drop Result Set
	sqldsc - DeSCribe item in a SELECT command
	sqldst - Drop STored command/procedure
	sqldsv - Disconnect from SerVer
	sqlelo - End Long Operation
	sqlenr - ENd Rollforward
	sqlepo - Error POsition
	sqlerr - ERRor message
	sqletx - Error message TeXt
	sqlexe - EXEcute a SQL command/procedure
	sqlexp - EXecution Plan
	sqlfer - Full ERror message
	sqlfet - FETch next row from result set
	sqlfgt - GeT File from server
	sqlfpt - PuT File to server
	sqlfqn - Fully-Qualified column Name
	sqlgbc - Get Backend Cursor
	sqlgbi - Get Backend Information
	sqlgdi - Get Describe Information
	sqlget - GET parameter
	sqlgfi - Get Fetch Information
	sqlgls - Get Long Size
	sqlgnl - Get Next Log
	sqlgnr - Get Number of Rows
	sqlgsi - Get Server Information
	sqlims - Input Message Size
	sqlind - INstall Database
	sqlini - INItialize
	sqllab - LABel information
	sqlldp - LoaD oPeration
	sqllsk - Long SeeK
	sqlmcl - reMote CLose server file
	sqlmdl - reMote DeLete server file
	sqlmop - reMote OPen server file
	sqlmrd - reMote ReaD server file
	sqlmsk - reMote SeeK server file
	sqlmwr - reMote WRite server file
	sqlnbv - Number of Bind Variables
	sqlnii - get the Number of Into variables
	sqlnrr - Number of Rows in Result set
	sqlnsi - Number of Select Items
	sqloms - Output Message Size
	sqlopc - OPen Cursor
	sqlprs - Position in Result Set
	sqlrbf - Roll Back Flag
	sqlrbk - RollBacK
	sqlrcd - Return CoDe
	sqlrdb - Restore DataBase
	sqlrel - RELease current log
	sqlret - RETrieve a stored command/procedure
	sqlrlf - Restore Log Files
	sqlrlo - Read LOng
	sqlrof - ROllForward
	sqlrow - number of ROWs
	sqlrrs - restart Restriction and Result Set modes
	sqlrsi - Reset Statistical Information
	sqlrss - Restore SnapShot
	sqlsab - Server ABort database process
	sqlscl - Set CLient name
	sqlscn - Set Cursor Name
	sqlscp - Set Cache Pages
	sqlsdn - ShutDowN database
	sqlsds - ShutDown Server
	sqlsdx - ShutDown database eXtended
	sqlset - SET parameter
	sqlsil - Set Isolation Level
	sqlspr - StoP Restriction mode
	sqlsrs - Start Restriction Set and Result Set mode...
	sqlssb - Set SELECT Buffer
	sqlsta - STAtistics
	sqlstm - Server TerMinate
	sqlsto - STOre a compiled command/procedure
	sqlstr - STart Restriction mode
	sqltec - Translate Error Code
	sqltem - Tokenize Error Message
	sqltio - TIme Out
	sqlunl - UNLOAD command
	sqlurs - Undo Result Set
	sqlwlo - Write LOng
	sqlxad - eXtended ADd
	sqlxcn - eXtended CoNvert
	sqlxda - eXtended Date Add
	sqlxdp - eXtended Date to Picture
	sqlxdv - eXtended DiVide
	sqlxer - eXtended ERror
	sqlxml - eXtended MuLtiply
	sqlxnp - eXtended Number to Picture
	sqlxpd - eXtended Picture to Date
	sqlxsb - eXtended SuBtract

	Glossary
	Index

