SQLBase
SQL Application Programming
Interface Reference

20-2111-1005

centura’

Trademarks

Centura, Centura Ranger, the Centura logo, Centura Web Developer, Gupta, the Gupta
logo, Gupta Powered, the Gupta Powered logo, Fast Facts, Object Nationalizer,
Quest, Quest/Web, QuickObjects, SQL/API, SQLBase, SQLConsole, SQLGateway,
SQLHost, SQLNetwork, SQLRouter, SQLTalk, and Team Object Manager are
trademarks of Centura Software Corporation and may be registered in the United
States of America and/or other countries. SQLWindows is a registered trademark and
TeamWindows, ReportWindows and EditWindows are trademarks exclusively used
and licensed by Centura Software Corporation.

Microsoft, Win32, Windows, Windows NT and Visual Basic are either registered
trademarks or trademarks of Microsoft Corporation in the United States of America
and/or other countries.

Java is a trademark of Sun Microsystems Inc.

All other product or service names mentioned herein are trademarks or registered
trademarks of their respective owners.

Copyright

Copyright 1997 by Centura Software Corporation. All rights reserved.
SQL Application Programming Interface

20-2107-1005

November 1997

Contents

Preface....................... ix
1 Introduction to the

SQL/APL. ... 1-1

Aboutthe SQL/API 1-2

How SQL/API applications access SQLBase 1-3

SQL/APIcomponentst 1-4

Compiling, linking, and running applications. 1-10

Compiling, linking, and running example programs . 1-17

2 DataTypes ..., 21
Internal database datatypes.................... 2-2
Program datatypes. 2-6
Externaldatatypes.............. 2-8

3 Using the SQL/API 3-1
Connectand closecursor. 3-2
Compiling and executing SQL commands 34
Setting SELECT buffers 3-5
Bindvariables L. 3-5
QUENES . .. 3-6
Resultsets 3-10
INSERTs, UPDATEs, and DELETEs 3-12
Connectionhandles 3-17
Transactionst e 3-20
CUISOIS . o e e 3-27
LONG VARCHAR handling. 3-33
Calling stored commands and procedures 341

SQL Application Programming Interface Reference iii

Bulkexecutemode 3-45

Errorhandling 3-46
Backupandrestore 3-55
Load and unloading databases................. 3-60
Microsoft Windows applications 3-66
4 SQL/API Functions by Category....... 4-1
Function categories., 4-2
5 SQL/API Function Reference.......... 5-1
sqlbbr - Bulk execute Return. 5-2
sqlbdb - Backup DataBase 5-4
sqlbef - Bulk Execute Flush. 5-8
sqlber - Bulk Execute Return 5-10
sqlbld - Bind Long Data by name 5-13
sqlblf - BackupLogFiles. 5-14
sqlblk - BuLK execute 5-18
sqlbln - Bind Long data by Number. 5-20
sglbna - Bind data by NAme (with null indicator) . . .5-22
sglbnd - BiNd Databyname................... 5-25
sglbnn - BiNd data by Number 5-28
sglbnu - Bind databy NUmber 5-31
sqlbss - Backup SnapShot 5-34
sglcbv - Clear Bind Variables 5-37
sglcch - Create ConnectionHandle 5-38
sglcdr - Cancel Database Request. 5-40
sglcex - Compile and EXecute 5-41
sqlclf - Change process activity Log File. 5-43
sglemt-CoMmiT. 5-45
sglenc - CoNnect Cursor.ovveiie i n 5-46
sglcnr - Connect with No Recovery. 5-48
sglcom - COMpile a SQL command/procedure5-51
sglcpy - CoPY data from one table to another 5-53
sqlcre - CREatedatabase. 5-56

iv SQL Application Programming Interface Reference

sglcrf - Continue RollForward 5-58
sqlcrs - Close ReStriction and Result Set modes . . . 5-60

sqlcsv - Connectto Server.................... 5-61
sqlcty - Command TYpe v, 5-63
sqldbn - DataBase Names 5-68
sgldch - Destroy ConnectionHandle. 5-70
sglded - DEinstall Database 5-71
sqldel - DELete database 5-73
sgldes - DEScribe items in a SELECT list. 5-75
sqldii - Describe Intovariable 5-79
sqldir - DIRectory of databases. 5-83
sgldis - DISconnect fromcursor 5-84
sgldon-DONe 5-86
sgldox - Directory OpeneXtended 5-87
sgldrc - DiRectory Close 5-90
sqldro - DiRectoryOpen 5-92
sqldrr - DiRectory Read. 5-94
sqldrs -Drop ResultSet 5-96
sgldsc - DeSCribe item in a SELECT command. . . . 5-97
sgldst - Drop STored command/procedure. 5-103
sgldsv - Disconnect from SerVer. 5-104
sglelo - End Long Operation. 5-105
sglenr - ENd Rollforward 5-106
sglepo - Error POsition 5-108
sglerr-ERRormessageo 5-109
sgletx - Error message TeXt.................. 5-111
sglexe - EXEcute a SQL command/procedure5-113
sglexp - EXecutionPlan 5-115
sqglfer - Full ERrormessage 5-117
sglfet - FETch next row fromresultset.......... 5-119
sqlfgt - GeT Filefromserver.................. 5-120
sqlfpt - PuT Filetoserver 5-122

SQL Application Programming Interface Reference

\Y

Vi

sglfgn - Fully-Qualified column Name 5-124

sglgbc - Get Backend Cursor 5-126
sglgbi - Get Backend Information 5-127
sglgdi - Get Describe Information 5-128
sqlget - GET parameter. 5-134
sqlgfi - Get Fetch Information 5-162
sqlgls- GetLongSize....................... 5-165
sqlgnl-Get NextLogccvvvuvn... 5-166
sglgnr - Get Numberof Rows 5-169
sqlgsi - Get Server Information................ 5-170
sglims - Input Message Size.................. 5-174
sglind - INstall Database 5-176
sqlini - INltialize. 5-178
sgllab - LABel information. 5-180
sqlldp - LoaD oPeration. 5-182
sqllsk-Long SeeK 5-183
sglmcl - reMote CLose serverfile 5-184
sglmdl - reMote Delete serverfile 5-186
sglmop - reMote OPen serverfile.............. 5-187
sglmrd - reMote ReaD serverfile 5-190
sqglmsk - reMote SeeK serverfile 5-192
sglmwr - reMote WRite serverfile.............. 5-193
sqlnbv - Number of Bind Variables 5-195
sqlnii - get the Number of Into variables 5-196
sqlnrr - Number of Rows in Resultset 5-199
sqlnsi - Number of Select Items 5-202
sgloms - Output Message Size................ 5-203
sglopc-OPenCursorcoviiiin .. 5-205
sqlprs - Positionin ResultSet. 5-206
sqlrbf - RollBack Flag.t 5-207
sqglrbk - RollIBacK. 5-208
sglrcd -ReturnCoDe oo 5-209

SQL Application Programming Interface Reference

sqlrdb - Restore DataBase 5-210

sqlrel - RELease currentlog 5-214
sqlret - RETrieve a stored command/procedure . . . 5-216
sqlrlf - Restore Log Files. 5-219
sglflo-ReadLONg 5-222
sqlrof - ROlIForward 5-224
sqlrow - number of ROWs. 5-227
sqlrrs - restart Restriction and Result Set modes . . 5-228
sqlrsi - Reset Statistical Information 5-229
sqlrss - Restore SnapShot 5-230
sqlsab - Server ABort database process. 5-233
sqlscl - SetCLientname. 5-234
sqlscn -SetCursorName. 5-235
sqlscp - SetCache Pages. 5-237
sglsdn - ShutDowN database 5-238
sqlsds - ShutDown Server. 5-240
sglsdx - ShutDown database eXtended 5-241
sqlset - SET parameter. 5-242
sqlsil - Set IsolationLevel 5-268
sqlspr - StoP Restriction mode 5-272
sqlsrs - Start Restriction Set and Result Set modes 5-273
sqlssb - Set SELECT Buffer 5-274
sqlsta - STAtIStiCSo o 5-279
sglstm - Server TerMinate. 5-280
sqglsto - STOre a compiled command/procedure. . . 5-281
sqlstr - STart Restricionmode 5-283
sqltec - Translate Error Code 5-284
sqltem - Tokenize Error Message 5-285
sgitio-TIme Outo 5-289
sqlunl - UNLOAD command 5-290
sqlurs-Undo ResultSet. 5-292
sgwlo - Write LONg. oo 5-293

SQL Application Programming Interface Reference Vil

viii

sqlxad - eXtended ADd 5-295

sqlxcn - eXtended CoNvert. 5-296
sqlxda - eXtended Date Add 5-298
sqlxdp - eXtended Date to Picture 5-299
sqlxdv - eXtended DiVide 5-301
sqlxer - eXtended ERror L 5-303
sqlxml - eXtended MulLtiply. 5-305
sqixnp - eXtended Number to Picture. 5-306
sqlxpd - eXtended PicturetoDate 5-310
sqlxsb - eXtended SuBtract. 5-312
Glossary.................oooi Glossary-1
Index Index- 1

SQL Application Programming Interface Reference

Preface

The SQL Application Programming Interfapeovides information about each SQL
Application Programming Interface (SQL/API) function.

This preface describes the following information:

Who should read this manual.

The organization of this manual.

The documentation format.

The notation conventions used in this manual.
Related publications.

SQL Application Programming Interface Reference iX

Preface

Who should read this manual
The SQL Application Programming Interface Referersceritten for application
developers using Centura’s SQL Application Programming Interface (SQL/API) to
write programs that access one or more databases.

This manual assumes you:

e Know how to program in the C language.
» Have some knowledge of relational databases and SQL.

Summary of chapters
This manual is organized in the chapters in the table below. There is also an index and

glossary.
1 Introduction to the SQL/AP| Provides a context for the SQL/API, lists the components of the prpduct,
and shows you how to compile, link, and run programs.
SQL/API Concepts Explains the basics of the SQL/API.
Using the SQL/API Uses flowcharts and code examples to show you how to use SQLYAPI
functions.
4 SQL/API Functions by Groups the SQL/API functions by functional category.
Category
5 SQL/API Function Provides the syntax, a description, and an example for each SQL/API
Reference function.

Notation conventions
The table below show the notation conventions that this manual uses.

Notation Explanation
You A developer who reads this manual
User The end-user of applications that you write
bold type Menu items, push buttons, and field names. Things that you select.

Keyboard keys that you press.

Courier 9 Builder or C language code example
SQL.INI Program names and file names
MAPDLL.EXE
Precaution Warning:
Vital Important:
information

X SQL Application Programming Interface Reference

Notation Explanation

Supplemental Note:
information
Alt+1 A plus sign between key names means to press and hold down the first

key while you press the second key

TRUE These are numeric boolean constants defined internally in Builder:
FALSE Constant Value Meaning

TRUE 1 Successful, on, set

FALSE 0 Unsuccessful, off, clear

Other helpful resources

T

Centura Books OnlineThe Centura document suite is available online. This
document collection lets you perform full-text indexed searches across the entire
document suite, navigate the table of contents using the expandable/collapsible
browser, or print any chapter. Open the collection by selecting the Centura Books
Online icon from théStart menu or by double-clicking on the launcher icon in the
program group.

Online Help. This is an extensive context-sensitive online help system. The online
help offers a quick way to find information on topics including menu items, functions,
messages, and objects.

World Wide WebCentura Software’s World Wide Web site contains information
about Centura Software Corporation’s partners, products, sales, support, training, and
users. The URL is http://www.centurasoft.com.

To access Centura technical services on the Web, go to http:/www.centurasoft.com/
support. This section of our Web site is a valuable resource for customers with
technical support issues, and addresses a variety of topics and services, including
technical support case status, commonly asked questions, access to Centura’s Online
Newsgroups, links to Shareware tools, product bulletins, white papers, and
downloadable product updates.

For information on training, including course descriptions, class schedules, and
Certified Training Partners, go to http://www.centurasoft.com/training.

SQL Application Programming Interface Reference Xi

Preface

Send comments to...

Anyone reading this manual can contribute to it. If you have any comments or
suggestions, please send them to:

Technical Publications Department
Centura Software Corporation

975 Island Drive

Redwood Shores, CA 94065

or send email, with comments or suggestions to:

techpubs@centurasoft.com

Xii SQL Application Programming Interface Reference

Chapter 1

Introduction to the
SQL/API

This chapter describes the SQL/API and provides the following information:

» Description of SQL/API components
e Compiling and linking SQL/API applications
* Running a SQL/API application

SQL Application Programming Interface Reference 1-1

Chapter

1

Introduction to the SQL/API

About the SQL/API

Centura’s SQL/API (Application Programming Interface) is a set of functions that
you can call to access a database using Structured Query Language (SQL). Using
these functions allows you to interface with a database through a procedural
language, such as C.

You embed SQL/API functions within your program. Some functions specify SQL
commands while other functions specify non-SQL database activities. After you
write your application program, you compile it and link it with a Centura C/API
library. You then can access database servers such as SQLBase.

The programs you write with the SQL/API aié@nt (front-end) applications that
connect to a backend databasever

Why use the SQL/API?

Using SQL commands is useful to define, manipulate, control, and query data in a
relational database. However, SQL is not a programming language. Using the SQL/
API functions to call SQL commands gives you the following features which plain
SQL commands do not:

* Procedural logic
* Extensive data typing
* Variables

Using the API functions to develop a client application that uses SQL enables you to
use SQL without giving up the power and flexibility of the programming language.

Other Centura SQLBase interfaces

The following SQLBase interfaces are available to assist you in creating your
application.

SQLBase++ This is a class library that lets you write object-oriented C++ programs
to access SQLBase. Read the following for more detailed information:

» README.WRI file in the CGSQL directory
* SQLBase++ Help System (CSQLHELP.HLP)

SQLTalk This is an interactive user interface for SQL. Using this interface you can
call SQL commands directly. For information on using SQLTalk, rea8®leTalk
Language Referencaanual.

1-2 SQL Application Programming Interface Reference

How SQL/API applications access SQLBase

How SQL/API applications access SQLBase

A SQL/API client application can access eithéveal SQLBase database engine/

server or aemoteSQLBase database server. Local means that the client application
and the database engine or server run on the same machine, and remote means that
they run on different machines.

Single-useenginegeside on client machines, just as applications do. Single-user
engines allow only one application to connect to them at a time.

Multi-userserverscan reside on the same machines as client applications or on
different machines. Servers allow multiple applications to connect to them
simultaneously and they can support multiple network protocols at the same time.

Refer to the&Communicationghapter of th®atabase Administrator's Guider
detailed information on single-user engines and multi-user servers.
Local configuration

The following diagram showscal configurationswhere both the client application
and the engine/server are on the same machine.

Local configurations

Client Client
Application Application
+ +
SQL/API SQL/API
Single-user engine Multi-user server

SQL Application Programming Interface Reference 1-3

Chapter

1

Introduction to the SQL/API

Remote configuration

The following diagram showsramote configurationwhere the client and server are
both on different machines connected by a Local Area Network (LAN).

Remote configuration

Client Server
Application
Database
Centura Server
SQL/API
Communication Communication
Library Library
Network software Network software

! f

Local Area Network (LAN)

In the remote configuration, there are communication libraries on both the client and
server machines. Communication libraries provide network protocol-specific support
so that client applications can communicate with database servers.

Refer to theCommunicationghapter of th®atabase Administrator’'s Guider
detailed information on communication options and libraries.

SQL/API components

The files listed below are components of the SQL/API.

sglapinw.nlm

The NetWare Loadable Module that interfaces between a NetWare
SQL/API application and a database server.

errsgl.h

An include file that contains defines for all return codes.

1-4 SQL Application Programming Interface Reference

SQL/API components

gsiext.h

This file contains structure definitions and defined constants used to interface with a
SQLBase server and returns extended OSl information.

sql.h

A file that contains definitions for data types (typedefs), codes for each type of SQL
command, and system defaults. Include this file in a C source program that uses SQL/
API functions. This file contains two macros to accommodate both 16- and 32-bit
programs:

* SQL_32BITTARG for 32-bit programs
* SQL_16BITTARG for 16-bit programs

sql32.h

A file that contains definitions for data types (typedefs), codes for each type of SQL
command, and system defaults. You can include this file in a 32-bit C source program
that uses SQL/API functions insteadsaf.h.

sglapiw.lib

The library that interfaces between a Microsoft Windows SQL/API application and a
database server.

sqlsrv.h

A file that contains structure and constant definitions used to interface with a database
Server.

sglwntm.lib

A library that interfaces between a Windows 95 or Windows NT SQL/API application
(built with Microsoft’s NT tools) and a database server.

Example programs

Centura supplies the following example programs with the SQL/API. These programs
are referenced throughout this manual to illustrate the use of the SQL/API. Read
Running the example SQL/API function for details on running the examples under
your platform.

ex01l.c

Performs a simple database connection using the standard defaults.

SQL Application Programming Interface Reference 1-5

Chapter 1 Introduction to the SQL/API

ex02.c

Performs a database connection using literals for the connect string. (Create a Payroll
database and run tigeant.sqlscript in SQLTalk first.)

ex03.c

Performs a database connection using variables for the connect string. (Run the
grant.sglscript in SQLTalk first.)

ex04.c

Compiles and executes a SQL command.

ex05.c
Compiles and executes a SQL command in one function call.

ex06.c

Demonstrates transaction control with the COMMIT and ROLLBACK commands.
(Run theaccount.sgbkcript in SQLTalk first.)

ex07.c
Demonstrates a common error routine. (Ruratt@unt.sqgbkcript in SQLTalk first.)

ex08.c
Performs a simple fetch. (Run tamp.sqgkcript in SQLTalk first.)

ex09.c
Performs a fetch from multiple columns. (Run é&mep.sgkcript in SQLTalk first.)

ex10.c
Demonstrates the describe operation. (Rurethp.sgbkcript in SQLTalk first.)

exll.c
Performs an insert with bind variables. (Reads frondttafile.)

exl2.c
Performs data binding by name. (Run émep.sqbkcript in SQLTalk first.)

ex13.c
Writes LONG VARCHAR data. (Reads from thayings. Tile.)

exl4.c
Reads LONG VARCHAR data. (You must compile and exeexie.dirst.)

1-6 SQL Application Programming Interface Reference

SQL/API components

ex15.c
Uses thesglcpyfunction. (Run themp.sqiscript in SQLTalk first.)

exl6.c
Demonstrates the use of multiple cursors. (Rutbtreis.sgkcript in SQLTalk first.)

exl7.c
Performs backup and restore operations.

ex18.c
Demonstrates the use of result set and restriction modes.

ex19.c
Demonstrates most of the features of the SQL/API. (Reads frosathgle.ixfile.)

ex20.c
Fetches data. (Reads from ttetafile.)

ex21.c
Demonstrates the use of the SQL/API with Microsoft Windows.

ex22.c
Uses thesglgsifunction.

ex23.c
Demonstrates how to execute stored commands and procedures from SQL/API.

ring.c
Displays numbers that you enter in database-internal numeric format.

sqlcbv.c
Uses thesglcbv(Clear Bind Variables) function.

sqlclf.c
Uses thesglclf (Change process activity Log File) function.

sqlcre.c
Uses thesglcre (CREate database) function.

SQL Application Programming Interface Reference 1-7

Chapter

1

Introduction to the SQL/API

sqldbn.c

Uses thesgldbn(DataBase Names) function.

sqlded.c
Uses thesglded(DEinstall Database) function.

sgldel.c
Uses thesgldel (DELete database) function.

sqldro.c
Uses thesgldro (DiRectory Open) function.

sqldsc.c
Uses thesgldsc(DeSCribe column in SELECT list) function.

sqldsv.c
Uses thesgldsv(Disconnect from SerVer) function.

sqlifer.c
Uses thesglfer (Full ERror message) function.
sqlfgt.c
Uses thesqlfgt(GeT File from server) function.

sglims.c
Uses thesglims(Input Message Size) function.

sqlind.c
Uses thesglind (INstall Database) function.

sqlnrr.c
Uses thesginrr (Number of Rows in Result set) function.

sgloms.c

Uses thesgloms(Output Message Size) function.
sqlscp.c

Uses thesglscp(Set Cache Pages) function.

1-8 SQL Application Programming Interface Reference

SQL/API components

sqltio.c
Uses thesgltio (TIme Out) function.

test.c

Connects to a database, creates and populates a table, and performs SELECTs and
UPDATES on the table.

testwin.c
Sample Microsoft Windows program.

xdfunc.c
Uses the sqglxdp (eXtended convert Picture to Date).
Support files

The following files accompany the example programs.

account.sq|l
Creates the savings and checking tablesXx06.candex07.c

bonus.sql
Creates the emp and bonus tablesfdi6.c

data
Company data foex11.candex20.c
emp.sql

Creates, indexes, and populates the emp tabkx@8.¢ ex09.c,ex10.cex12.cand
ex15.c

examples
A listing of the example programs.

grant.sql
Grants connect authority to a user éaf2.candex03.c

sample.txt
LONG VARCHAR data file forex19.c

testwin
The makefile fotestwin.cwhich buildstestwin.exe

SQL Application Programming Interface Reference 1-9

Chapter 1 Introduction to the SQL/API

testwin.def

The linker definitions file fotestwin.c It specifies the stack size, executable type,
program name, and exported functions.

testwin.exe

Executable file created frotestwin.c

testwin.rc
Resource file fotestwin.c

Compiling, linking, and running applications

This section describes how to compile, link, and run applications with embedded
SQL/API function calls on the various client platforms. For details on running the
example functions included in the SQLBase software, @madpiling, linking, and
running example prograntn pagel-17.

Running a SQL/API application

1. Compile the program with the compiler of your choice. Read the information in
the following sections that pertain to your platform.

2. Link the program with the appropriate Centura SQL/API library for your
platform. Read the next section Environment variables to include to choose the
correct library for your platform.

Note: Some compilers allow you to compile and link a program in one step.

3. Confirm that the database engine or server that you plan to access is running. If
you plan to access a remote database server, make sure that the network software
on both the client and server machines is loaded and running.

4. Start arouter program on the client machine, if necessary.
Make sure that the executable file can find and access the database.

6. Run the executable program.

1-10 sQL Application Programming Interface Reference

Compiling, linking, and running applications

Environment variables to include

Before compiling any SQL/API application, you need to set two environment

variables:
. INCLUDE
e LIB

INCLUDE identifies the directory or directories where header files sushldmor
sql32.hreside. For details on available header files, t¢eader files for 16-bit and
32-hit programson pagel-16.

LIB identifies the directory where the SQL/API library resides. The SQL/API
libraries are listed below by platform:

Platform SQL/API library
Windows sqlapiw.lib
Windows NT and sglwntm.lib (used for applications built
Windows 95 with Microsoft's NT tools)
NetWare sqlapinw.nlm

Windows 16-bit programs

This section describes how to compile, link, and run Microsoft Windows C programs
that contain SQL/API functions for the Windows 3.x platform. Centura recommends
compiling your application with the /w3 option so that the compiler disgltlys

warning messages.

After compiling your application, either statically link it wislglapiw.libor reference
IMPORTS through thedeffile.

Note: sqlapiw.libis model independent.

Microsoft restricts you from callingglapiw.dllfunctions from a DLL in the LibMain
entry point, either directly or indirectly. This is because MS Windows has not been
fully initialized and therefore, has not yet created a message queue for the task. The
communications interface requires that initialization be complete before functions in
sqlapiw.dllare called.

For more information about LibMain, refer to the Microsoft Developer's CD-ROM
documentation.

SQL Application Programming Interface Reference 1-11

Chapter

1

Introduction to the SQL/API

The following two examples illustrate the direct and indirect callinsppiw.dl|
functions:

/* Direct; this will not run. */

LibMain ()
{

sqlenc (&cur, “demo”, 0);

}

and:
/* Indirect; this will not run either. */

LibMain ()
{

connect ();

}

void FAR PASCAL connect ()
{

sqlenc (&cur, “demo”, 0);

}

Running Windows 3.x

If your application plans to access the local multiple-user Windows engine
(dbwservr.exe)ollow these steps:

1. Start MS Windows.

2. Startdbwservr.exe

3. Start your application.

If your application plans to access a remote database server, follow these steps:
4. Start MS Windows.

5. Start your application.

Windows 32-bit programs

This section describes how to compile, link, and run Microsoft Windows C programs
that contain SQL/API functions for the Windows 95 and Windows NT platforms.

When building 32-bit applications to run on Windows NT or Windows 95, use the
Microsoft toolset (compiler, linker, librarian, and so on) that accompanies the
Windows NT SDK or use a Windows NT-compatible or Windows 95-compatible
toolset.

After compiling your program, link it witsglwntm.lib

1-12 sQL Application Programming Interface Reference

Compiling, linking, and running applications

Use thesglwntm.liblibrary with applications built with Microsoft's NT or 95 tools.
This library resolves references to the SQL/API functions at link time into the
sqgiwntm.dlllibrary.

Running Windows 95 and Windows NT

If your application plans to access the local multiple-user Windows engine
(dbntsrv.exe)follow these steps:

1. Start Windows 95 or Windows NT.

2. Startdbntsrv.exe

3. Start your application.

If your application plans to access a remote database server, follow these steps:
4. Start Windows 95 or NT.

5. Start your application.

Windows NT character-based application

To build a character-based SQL/API application under Windows NT, make sure that
you have the Windows NT SDK installed on your machine. The install process sets
the environment variable INCLUDE to the following value:

INCLUDE=c:\mstools\h
This assumes that the SDK has been installed on drive C..
You may also need to do the following:
1. Include an additional setting for this variable:
INCLUDE=c:\mstools\h;c:\mstools\h\sys

2. Add search path(s) for your own C header files, inclusigqign All modifications
to the INCLUDE environment variable should be made from the Control Panel's
System icon.

3. Ensure that the environment variable LIB includes the directory where the library
sglwntm.lib is located.

Once the variables have been set properly, use the following command to compile
your program. This example compiles a sample program catidple.c

cl386 -c -Gs -0Od -Zpe -DSQL_32BITTARG=1 -DSTRICT -W1 -D_X86
example.c

This creates the object fiexample.obj

SQL Application Programming Interface Reference 1-13

Chapter 1 Introduction to the SQL/API

The program can be linked with the SQL/API libraghwntm.libusing the following
command:

link32 -debug:full -debugtype:cv -subsystem:console -
entry:mainCRT Startup -map:example.map example.obj
libc.lib kernel32.lib sglwntm.lib -out:example.exe

Both cl386 andlink32 are documented in th®ols User's Guidesf the Microsoft
Win32 Software Development Kit.

C programs for Netware

This section describes how to build a NetWare Loadable Module (NLM) from a C
program containing SQL/API functions and how to compile and link your SQL/API
applications to theglapinw.nlmlibrary.

Building the SQL/API NLM

An NLM is a program that you can load into or unload from the NetWare server
memory while the NetWare server is running. When loaded, an NLM is part of the
NetWare operating system. When unloaded, an NLM releases the memory and
resources that were allocated for it.

A SQLBase client NLM is version-independent; it does not matter whether you build
it under NetWare 3.x or 4.x. It also can communicate with either the SQLBase Server
for NetWare 3.x or 4.x.

You can build an NLM from a C program created on any platform. You can also build
an NLM from any of the SQL/API examples accompanying this product to run on
NetWare.

The SQL/API import NLM name isglapinw.nlmThe NetWare communication
library is spxdll.nlm(if you are using Novell's NETX environment)idll.nim (if you
are using TLI-TCP/IP support for both NetWare 3.x and 4.x) sprdll40.nIn(if
you are using Novell's DOS/VLM).

Compiling and linking SQL/API applications to the NLM

Use the Watcom C/C++ compiler to compile and link your SQL/API applications to
the sglapinw.nimlibrary. The following example compiles a program caltgdile.c
to creatamyfile.obj

wcc386p -3s myfile.c
To debug the program, add the -d2 switch to the compile command.
Edit thesql.h filewith the following modifications:
» Setthe #define SQL_32BITTARG to 1.

1-14 SQL Application Programming Interface Reference

Compiling, linking, and running applications

* Add the following line:
#define_stdcall

The following command line links the C program and builds the NLM. This example
links themyfile.objfile to createmyfile.nlm

wlinkp myfile.Ink

To link the program to the NetWare, you must supplglaor .deffile. See the Novell
and Watcom documentation listed at the end of this section for information on how to
build a.Ink or deffile.

The following example shows a sample link file caltegtest.Ink

#BEGIN MYTEST.LNK SAMPLE#
form NOV NLM 'Centura SQLAPI Test NLM'
name \testnim\mytest#name

#specify map file and version options
option map=\testnim\mytest.map
option version=1.00

debug NOVELL #Use this to debug in NetWare
#Internal debugger only

#debug ALL # Use this to debug under Watcom
#video also

option stack=60k

#option caseexact

file \testnim\mytest.obj

#import libraries
import @\sql\watc\h\clib.imp
#import @\sgl\watc\h\mathlib.imp

#lmport all SQL/API functions from sglapinw.nim that
#will be called in the mytest.nlm program

import sglcnc

import sqldis

import sglcom

import sglexe

#END MYTEST.LNK SAMPLE#
For more information, see the following documentation as appropriate:

* Netware NLM Library reference and related documentation.
» Watcom C/C++ compiler documentation.
* Netware 4.0 NLM Programminfgom Novell Press.

SQL Application Programming Interface Reference 1-15

Chapter

1

Introduction to the SQL/API

Running a SQL/API NLM

To run a SQL/API NLM, first load the following NLMs at the colon according to the
listed order:

:load dil.nlm

:load dfs.nlm (or) :load dfd.nlm
:load spxdll.nlm (or) :load tlidll.nlm
:load sqglapinw.nlm

You can also load the NLMs together as a batcm(dy file.
After loading these NLMs, load the SQLAPI application NLM as follows
:load myvolume:\mypath\myfile.NLM.

Header files for 16-bit and 32-bit programs

SQLBase provides two header files for client applications.sgji#2.h
accommodates 32-bit programs; generally, you should use this header file to compile
32-bit programs. Theqgl.h reader file accommodates both 16- and 32-bit programs
with 2 macros:

* SQL_32BITTARG for 32-bit programs

* SQL_16BITTARG for 16-bit programs
These macros are case sensitive, and must be called in upper-case.
Be aware that by default, SQL_16BITTARG is set to 1 (true), and SQL_32BITTARG
is set to O (false) isgl.h To compile 32-bit programs witgl.h you must set
SQL_32BITTARG to 1. You can do this in several ways:

e Use the -D switch on the compiler command line. For example:

-DSQL_32BITTARG=1

» Define the macro in the user code, and then inchgi@d For example:

#define SQL_32BITTARG 1
#include “sql.h”

* Include the new header figg|32.h.Include this new header file in your
program instead of the reguisgl.h

#include “sqgl32.h”

The Centuragl.hfile is compatible with all of Microsoft's C/C++ compilers

(versions 5.1 and up) and with the latest version of WATCOM'’s C/C+ compiler. If
you are using a compiler other than either of these two, make certain that it uses the
flat memory model and supports the __stdcalling convention.

1-16 SQL Application Programming Interface Reference

Compiling, linking, and running example programs

Compiling, linking, and running example programs

This section describes how to compile, link, and run the example SQL/API functions
included in the SQLBase software for the Windows platforms. The example functions
that are available with SQLBase are listed ur&igt/API component:n pagel-4.
Running example programs with Windows 3.x

1. Compile the program as a QuickWin application. For information on compiling
QuickWin applications, see the documentation for your specific compiler.

2. Link the program with theglapiw.liblibrary. ReadEnvironment variables to
includeon pagel-11for details on linking the library.

3. Run the executable program.

Running example programs with Windows 95 and Windows NT

1. Create a project of tyf@onsole Application Microsoft Visual C (MSVC) 2.0
or later.

2. Link the program with theglwntm.liblibrary. ReadEnvironment variables to
includeon pagel-11for details on linking the library.

3. Compile the example programs (which are DOS programs).

4. Run the executable program.

SQL Application Programming Interface Reference 1-17

Chapter 2
Data Types

This chapter describes the three different kinds of data types:

* Internal database data typesare generic data types. They specify how
SQLBase stores data internally. T§wdesandsqlgdifunctions are the only
SQL/API functions that reference these data types.

* Program data typesmap to C data types.

« External datatypesmap to non-Centura database data typessdlscand
sglgdifunctions are the only SQL/API functions that reference these data

types.

SQL Application Programming Interface Reference 2-1

Chapter 2 Data Types

Internal database data types

SQLBase stores data internally as one of the following data types. The internal data
types are defined isql.h

Internal Data Type Description
SQLDBOO Boolean
SQLDCHR Character
SQLDDAT Date/time
SQLDDTE Date (only)
SQLDHDL SQL Handle
SQLDLON Long
SQLDNUM Numeric
SQLDTIM Time (only)

Note: Internal data types SQLDBOO and SQLDHL are not stored in the database, but are
parameters to stored procedures.

Character data

SQLBase stores character data (including LONG VARCHAR data) as variable-length
strings.

For example, if you insert a 20-character string into a column defined as CHAR(30)
or VARCHAR (30), SQLBase stores only 20 characters. It does not pad the string to
make it 30 characters long.

Numeric data

2-2

SQLBase stores numeric data in base 100 floating point format, and maintains
precision and scale. Precision refers to the total number of digits while scale refers to
the number of digits to the right of the decimal point.

The length of a stored numeric value varies, and can be from 1 to 12 bytes.

Numeric data is cast on input and output to conform to the restrictions of the external
data type.

SQL Application Programming Interface Reference

Internal database data types

Internal numeric functions

You can use the functions listed below to manipulate numeric data stored in its
internal format:

Function Description

sqixad eXtended ADd - Adds two SQLBase internal numbers.

sqlxcn eXtended CoNvert - Converts a character string to a SQLBase
internal number.

sqixdv eXtended DiVide - Divides a SQLBase internal number by
another SQLBase internal number.

sqlxml eXtended MulLtiply - Multiplies two SQLBase internal
numbers.

sqlxnp eXtended Number to Picture - Converts a SQLBase internal
number to a string using a picture format.

sqlxsb eXtended SuBtract - Subtracts one SQLBase internal number
from another and puts the result in a third SQLBase internal
number. T

Byte format
The byte format is:

T
Exponent L Fractional Part
(1 byte) (1-11 bytes - variable)

N

Sign bit: —»
1 = positive
0 = negative |

I
Exponent bits

The first byte contains the sign bit and the exponent. The sign bit is the high order bit
(80 hexadecimal, 10000000 binary). If this bit is set, the final number is positive;
otherwise the number is negative.

SQL Application Programming Interface Reference 2-3

Chapter

2

Data Types

The remaining 7 bits of the first byte store the exponent in base 100. The exponent
indicates how many bytes in the fractional part to shift the decimal point to the right
(or to the left for negative exponents) to get the final number.

The exponent is biased by 64 (40 hexadecimal, 01000000 binary) and ranges from 0
to 127 as a biased number or -64 to 63 unbiased.

For example:
Biased Exponent Actual exponent (unbiased)
70 6
65 1
64 0
63 -1
58 -6

In the fractional part, there may be 0to 11 bytes. Each byte contains a binary value of
0 to 99. Each byte represents a base 100 number.

Trailing digits are truncated for positive numbers.

Negative numbers

For negative numbers, the following conversion is applied to the positive number
representation:

1. Take the 1's complement of the exponent byte.

2. Take the 100's complement of the fractional part.

3. Add a byte containing 101 to the end of the fractional part.
These steps ensure that negative numbers sort properly.

Here are some examples of internal numeric storage representation:

Number Internal Representation
123 194,01,23
0.0123 192,01,23
12.3 193,12,30
-123 61,99,77,101

2-4 SQL Application Programming Interface Reference

Internal database data types

Number Internal Representation
-0.0123 63,99,77,101
-12.3 62,88,70,101

Here are the steps followed for the fifth example above:

-0.0123 63,99,77,101
1. The binary value of the exponent (63) is 00111111.
2. The high-order bit is zero, which means that the final value is negative and to
invert the binary value:
11000000
3. Strip the high-order bit:
01000000
4. which is 64 in decimal. Subtract 64 from 64 and it equals zero, so the decimal
point does not need to be shifted.
5. Drop the 101 and take the 100's complement of 99 and 77:
0123
6. The final value is negative (determined in step 2). The decimal point does not

shift, so the final value is:
-0.0123

Date and time data

SQLBase stores date and time data in the same format as for numeric data. The
default display format of date and time data in the SQL/API is:

yyyy-mm-dd-hh.mi.ss.999999

where hours (hh) is based on a 24-hour clock.

Define the buffer that receives date and time data with a length of SQLSCDA (defined
in sql.h.

SQL Application Programming Interface Reference 2-5

Chapter 2 Data Types

Internal date/time functions
You can use the following functions listed below to manipulate date and time data

stored in its internal format.

Function Description
sqlxda eXtended Date Add - Addsdays to a SQLBase internal
date.
sqlxdp eXtended Date to Picture - Converts a SQLBase interna
date to a string using the specified picture format.
sqlxpd eXtended Picture to Date - Converts a null-terminated st
to a SQLBase internal date.

Program data types

Use program data types to define data within a SQL/API program.

ing

When inserting data into a database, the program data typaattese to match an
internal database data type. The SQL/API always tries to convert data in a program
variable to the database data type. If the SQL/API cannot convert the data, it returns

an error.

The program data types are definedghh:

Program Data Type Description
SQLPBUF Character buffer
SQLPDAT Internal datetime
SQLPDOU Double
SQLPDTE Date only
SQLPEBC EBCDIC buffer
SQLPFLT Float
SQLPLON Long text string
SQLPLBI Long binary buffer
SQLPLVR Char/long varchar >254
SQLPNBU Numeric buffer
SQLPNST Numeric string

2-6 SQL Application Programming Interface Reference

Program data types

Program Data Type Description
SQLPNUM Internal numeric
SQLPSCH Character
SQLPSIN Integer
SQLPSLO Long
SQLPSPD Signed packed decimal
SQLPSSH Short
SQLPSTR String (null-terminated)
SQLPTIM Time only
SQLPUCH Unsigned character
SQLPUIN Unsigned integer
SQLPULO Unsigned long
SQLPUPD Unsigned packed decimal
SQLPUSH Unsigned short

Packed-decimal data types

You can retrieve packed-decimal data into a program. There are data types for
unsigned packed decimal (SQLPUPD) and signed packed decimal (SQLPSPD).

If you use a packed decimal type, the data length is the maximum number of digits in
the number. Each nibble (4 bits) of each byte holds one digit, except for the rightmost
nibble which holds the sign (if requested).

For example, the number 9987654321 has a length of 6 bytes and appears in bytes as
shown below.

919|8|7|6]|5]|4|3|2]1]|S

6 5 4 3 2 14
Sign

The leftmost nibble is unused and the rightmost nibble contains a sign (if any).

SQL Application Programming Interface Reference 2-7

Chapter 2

Data Types

External

To determine the number of bytes required:

Number of bytes required = (1 + number of digits)/2

(1 + 10)/2 = 5 modulo

If it divides evenly, the quotient is the length. If there is a remainder (modulo), add 1
to the quotient. For example, the number 9987654321 contains 10 digits:

It does not divide evenly, so add 1. The length is 6.

You need only specify the scale argument (number of decimal places) suiidhke
sqlbnn andsglbndfunctions for a packed-decimal data type. If you are not using a
packed-decimal data type with one of these functions, specify a 0 for the scale

argument.

data types

The external data types are definedghh:

External Data Type Description

SQLEBIN BINARY
SQLEBOO BOOLEAN
SQLECHR CHAR
SQLEDAT DATE
SQLEDEC DECIMAL
SQLEDOU DOUBLE
SQLEFLO FLOAT
SQLEGPH GRAPHIC
SQLEINT INTEGER
SQLELBI LONG BINARY
SQLELCH CHAR >254
SQLELGP LONG VAR GRAPHIC
SQLELON LONG VARCHAR
SQLELVR VARCHAR >254
SQLEMON MONEY

2-8 SQL Application Programming Interface Reference

External data types

External Data Type Description
SQLESMA SMALLINT
SQLETIM TIME
SQLETMS TIMESTAMP
SQLEVAR VARCHAR
SQLEVBI VAR BINARY
SQLEVGP VAR GRAPHIC

SQL Application Programming Interface Reference 2-9

Chapter 3
Using the SQL/API

This chapter uses flowcharts and code examples to show you how to use the SQL/API
functions. This chapter does not attempt to provide details for each SQL/API
function, but it does show the logic flow within a program.

The SQL/API functions are flexible and can be used in different ways. In the code
examples, specific techniques are used to perform tasks (for examplefpusing
while loops). These techniques are only suggested solutions and you should not
interpret them as the only or best way to perform a task.

This chapter refers to example programs that are on the installation diskette. See the
Example programsection in Chapter 1 for a summary of these example programs. To
run the example programs yourself, r€ampiling, linking, and running example
programson pagel-17.

SQL Application Programming Interface Reference 3-1

Chapter

3

Using the SQL/API

Connect and close cursor

Note: This section applies to applications in which you are connecting cursors to a specific
database that belong to a single transaction.

To create multiple, independent connections, SQLBase allows you to explicitly create multiple
connection handles. For example, you can use connection handles for multiple transactions to
the same database within an application, or for creating multi-threaded Win32 applications. For
details on creating connection handles, r€adnection handlesn page3-17.

Before you can perform database operations in your application, you must connect
the cursor to a specific database with a cursor hasdleng. Thesglcncfunction
returns a cursor handle which identifies an implicit connection to the database.

All cursors that you connect to this database belong to a single transaction and to the
same implicit connection handle. Re@drsorson page3-27for more information.

You must disconnect the cursor connection to the databalsis(before you can
exit from the program.

The example programex01.¢ ex02.¢ andex03.cshow how to connect to, and close
a cursor from, a database. Herex83.c

#include "sql.h"
O #include <stdio.h>

main()
{
O SQLTCUR cur=0; /* SQLBase cursor number*/
O SQLTRCD rcd=0; /* return code */
O static char dbname[|="PAYROLL/BOSS/SECRET"
/*

CONNECT TO THE DATABASE
*/
O if (rcd = sqlcnc (&cur,dbname,0))

0 printf("FAILURE ON CONNECT %d\n",rcd);
printf("Does the PAYROLL database exist?\n");
printf(Has GRANT.SQL been run\n");
return (1);

}
else
printf("Connection Established \n");
/*
DISCONNECT CURSORS
*/

3-2 SQL Application Programming Interface Reference

Connect and close cursor

O if (rcd = sqldis(cur))
printf("FAILURE ON DISCONNECT %d\n", rcd);
else
printf("Disconnect Performed \n");

1. You mustinclude the support fisgl.hin a program that calls the SQL/API
functions.

2. Declare a cursor for the connection.

3. Declare a variable that will hold a return code for each execution of a SQL/API
function.

4. Declare the name of the database that you want to connect to.

5. Call thesglcncfunction to connect to the database. If the call completes
successfully, the cursor handle is returned in the first argurmant The cursor
handle is opaque and you are not aware of its actual value, but you use it in other
SQL/API functions to identify a specific connection to the database.

The second argument is the connect string which can specify the database name,
the username and the password. If you do not specify all three parameters
(database name, user name, and password), their default values (DEMO,
SYSADM, and SYSADM) are used.

The third argument (length) is zero which means that the second argument points
to a string that is null-terminated. The
SQL/API will compute the actual length of the string.

6. If the function fails and returns a non-zero value, a user-defined error message
(“FAILURE ON CONNECT") is printed.

7. Call thesgldisfunction to close the cursor connection from the database. Always
disconnect all cursors before exiting a program. Thestgdtsfunction in a
program causes an implicit commit by default. You can change the default setting
using thesglsetfunction with the SQLPCCB parameter.

Server security

To perform administrative operations on a server, you must establish a connection to
the database server itself and specify the server password (if one exists). This prevents
unauthorized users from performing destructive operations on the server.

Define the server name by configuring #eevernamédeeyword in the server’s
configuration file éql.ini). A server name can be up to eight alpha-numeric
characters, but it must start with a letter.

SQL Application Programming Interface Reference 3-3

Chapter

3

Using the SQL/API

Define the server password by configuring plassworckeyword on the line
immediately following theservernaméeyword entry. A password can be up to eight
alpha-numeric characters.

Use thesglcsvfunction to establish a server connection. This function requires a
server name as input and returns a handle.

Use thesgldsvfunction to break a server connection. This function requires a server
handle as input.

Compiling and executing SQL commands

Four things happen when SQLBase compiles a SQL command:

1. It parses the command. This step detects syntax errors and verifies the existence
of database objects.

2. It performs a security check.

3. It determines the best access path. The system finds the indexes (if any) that
provide the best access path to the data.

4. It translates the command into a series of executable modules.

Thesglcomfunction compiles a SQL command, and SQLBase stores the compiled
command in the cursor work space. After compiling a command, you can execute it
using thesglexefunction.

Thesglcexfunction compiles and executes a SQL command in one step. Use the
sqlcexfunction for SQL commands which do not contain bind variables and which
will only be executed once. For example, commands which you can compile and
execute wittsqlcexare data definition commands and data control commands such as
CREATE, DROP, GRANT, and REVOKE.

Unless cursor-context preservation is on, when you COMMIT a transaction,
SQLBase destroys compiled commands for all cursors that the program has
connected to the database. This is true for both explicit and implicit COMMITS,
including implicit COMMITs which occur when you have autocommit on.

If cursor-context preservation is off, a ROLLBACK (including a ROLLBACK caused
by a deadlock) destroys all compiled commands. If cursor-context preservation is on,
a ROLLBACK does not destroy compiled commands if both of the following are

true:

* The application is in Release Locks (RL) isolation level
* No data definition language (DDL) operations were performed

The example progranex04.candex05.cshow how to compile and execute SQL
commands.

3-4 sSQL Application Programming Interface Reference

Setting SELECT buffers

Setting SELECT buffers

After you compile a SELECT command wihlcom you must set up areas within
your application to receive the selected data. Do this withdtssbfunction.

You must call theglsskfunction once for each itemin the SELECT list. For example,
if you SELECT the columns EMP_NAME, EMP_NO, EMP_DOB, you need to call
the sqglssbfunction three times.

You do not need to call thegjlssbfunction for LONG VARCHAR columns. The
sqlrlo function identifies the receive buffer fora LONG VARCHAR.

The example programex08.candex09.cshow how to use theglssbfunction.

Bind variables

In a SQL statement, you can use a hind variable to represent the value of a column. A
bind variable indicates that data from a variable defined in your application will be
bound (associated) to it each time you execute the SQL statement.

A bind variable name begins with a colon () and is followed by a number or string.
For example:

SELECT * FROM BOOKS WHERE AUTHOR =:1
or:

SELECT * FROM BOOKS WHERE AUTHOR = :auth
Bind variables allow you to compile a SQL statement once and execute it repeatedly,
each time substituting a new set of values in the bind variables.

Binding data

Thesglbndfunction associates an alphanumeric bind variable in a SQL statement to a
variable in your application. Thegjlbnnfunction associates a numeric bind variable
in a SQL statement to a variable in your application.

Bind functions for LONG VARCHAR columns are explained in ItH@NG
VARCHAR Handlingection later in this chapter.

The example programex12.candex16.cshow how to bind data.

SQL Application Programming Interface Reference 3-5

Chapter 3 Using the SQL/API

Queries

The following two flowcharts show the sequence of operations when performing a
SELECT command. The first flowchart shows the sequence if yawatsing bind
variables, and the second flowchart shows the sequenceafgosing bind

variables.

In the first flowchart (a SELECT not using bind variables), note that you can call the
sqlssbfunction before or after theglexefunction. However, you must call tkglssb
function before theglfetfunction.

Access cycle for SELECT command
without bind variables

y Compile
sqicom SQL statement
I
Set
SqIssb | SELECT buffers

y Execute
sqiexe SQL statement
sqlfet Fetch row

' A

Process row

3-6 SQL Application Programming Interface Reference

Queries

Access cycle for SELECT command
with bind variables

Compile

sqlcom SQL statement
I
Set
sqlssb SELECT buffers
sqlbnn .
or Bind the data

sqlbnd |

Execute
sqlexe SQL statement

A

sqlfet Fetch row

' A

Process row

More
rows to
fetch?

Yes

SQL Application Programming Interface Reference 3-7

Chapter 3 Using the SQL/API

SELECT command without bind variables (ex20.c)

This example uses excerpts frex0.cto show how to perform a SQL SELECT
statement (without bind variables) using the SQL/API.

#include "sql.h"

SQLTCUR cur = 0; /* Cursor number */
SQLTRCD rcd = 0; /* Return code */

main()

{

SQLTDAP cp; /* Character pointer */
SQLTDAL length; /* Length */

SQLTPDL pdl; [* Program buffer length */
SQLTDDT ddt; /* Database data type */
SQLTPDT pdt; /* Program data type */
SQLTSLC slc; /* SELECT list column */
SQLTNSI nsi; /* Number of SELECT items */

char line[200]; [*1/0 line */

O static char selcoml[] ="SELECT A, D, C FROM X";
[*SELECT command*/

/*Connect to database, create the table */
pdt = SQLPBUF; /* Set program data type of buffer */
/* Compile the SELECT command */
O if(sglcom(cur, selcoml, 0))
failure("SELECT COMPILE");
/* Get descriptive information about SELECT */
cp = line; /* Set pointer to input line */
O if(sqlnsi(cur, &nsi)) /* Get # SELECT items */
failure("GET NUMBER OF SELECT ITEMS");

for (slc = 1; slc <= nsi; slc++) /* Get information */
/* on each column */

3-8 SQL Application Programming Interface Reference

Queries

O if (sqldes(cur, slc, &ddt, &pdl, /* Failure on */
/* describe? */
SQLNPTR, SQLNPTR, SQLNPTR, SQLNPTR))

failure("SELECT DESCRIBE");

O if (sqlssb (cur, slc, pdt, cp, pdl, /* Set SELECT */
0, SQLNPTR, SQLNPTR)) [* buffer */
failure("SET SELECT BUFFER");
cp += (pdl + 1); /* Locate next area */

/* Execute the SELECT command */

O if (sqlexe(cur))
failure("SELECT EXECUTE");

/* Fetch and display the data */

length = cp -(SQLTDAP)line; /* Compute the length */
cp = 0; / Append a zero to the string */

for ()
{
memset(line, ' ', length); /* Fill the line */
/* with spaces */
O if (rcd = sqlfet(cur)) /* Failure or end of */
break; * file? */
printf("%s\n", line); /* Print the line */
}
O if (red 1= 1) /* Failure on fetch */

failure("FETCH");

Declare a string that contains the SELECT statement.

You must compile a SQL statement before you can execute it. Compile the
SELECT statement with theglcomfunction. The first argument is the cursor
handle returned bgglcnc The second argument specifies the variable that
contains the SQL command string. The third argument is zero (0) which means
that the command string is null-terminated. The SQL/API will compute the actual
length of the argument.

Call thesglnsifunction to get the number of columns in the SELECT list. For
some applications, you may not know the number of columns from which data is

SQL Application Programming Interface Reference 3-9

Chapter 3 Using the SQL/API

being selected. ThegInsifunction returns a pointer to the number of SELECT
columns in the second argume&néi).

4. Thefor loop starts with the first SELECT column and continues until SQLBase
processes the number of SELECT columns returnestjimgi Thesqldes
function retrieves the attributes of each column. In this example, we are only
interested in the data type and length (the third and fourth arguments), so we have
specified the remaining arguments as SQLNPTR, which is defirsgl.ims a
null pointer.

5. Thesqlssbfunction sets up the data area in the application that receives the data
for each column fetched Izglfet(to be performed later). The second argument is
the column number in the SELECT list. The third argumedt) (s assigned the
value of SQLPBUF (defined isgl.has a character data type). The fourth
argument¢p) is a pointer to a buffer in the program. The fifth argumpd} (s
the program data length. The fifth argument is zero because it is only relevant for
a packed-decimal data type. The remaining arguments are not relevant, so they are
assigned SQLNPTR (null pointer). After thglssbfunction,cpis set to point to
the program area that will receive the next column.

6. Execute the SELECT statement usingshkexefunction. Thesglexefunction
executes the previously-compiled command.

7. Fetch a row at a time using tbglfetfunction. Repeat this until all rows in the
result set have been fetched. In the program, the length of the print line is set and
then afor loop gets each row in the result set usingstjigetfunction and prints it.

8. When thesglfetfunction fails, thefor loop terminates and program execution
continues at the next statement where the return codglfetis checked to
ensure that a 1 was returned. The normal end-of-fetch indicateglfetis 1,
meaning that the last row has been successfully fetched. If a 1 is not returned,
there must have been an error.

Result sets

A result set is a collection of rows produced by a query (a SELECT statement).

Result set mode and restriction mode

You can use result set mode (also called scroll inaak restriction mode with
queries. These features are useful for browsing applications.

Result set mode . Inresult set modeonce a result set has been created, you can get
to any row in the result set without sequentially fetching forward by callingpibes
function. Once the cursor is positioned, fetches start from that row.

3-10 sQL Application Programming Interface Reference

Result sets

Restriction mode . In restriction modgethe result set of a query is the basis for the
next subsequent query, with each query further restricting the result set. This
continues until you query a different table. Querying a new table drops the previous
result set and establishes a new basis from which to start further restrictions.

While in restriction mode, you can "undo" the current result set and return to the
result set as it was before the last SELECT witrstilersfunction.

Turn on both result set mode and restriction mode witkdtgsfunction. After you
call sglsrs you can turn off restriction mode (but leave result set mode on) with the
sqlsprfunction. Calling thesglstrfunction turns restriction mode back on.

You turn off both result set mode and restriction mode wittsgersfunction. The
sglcrsfunction lets you optionally assign a name to the result set and save it.

Saved result sets

To use a saved result set later, callghlers function and specify the saved result set
name. Thesqlrrs function turns on result set mode and restriction mode.

Thesqgldrsfunction drops a saved result set.

Be cautious about using saved result sets. Internally, a saved result set is a list of row
identifiers (ROWIDs) that is stored in the SYSROWIDLISTS system catalog table. A
ROWID changes whenever the row is updated. If one of the rows is updated after you
have saved and closed a result set, you get an error if you open the result set later and
try to fetch the row.

The example programx18.cillustrates result set mode and restriction mode
processing.

Fetching

Row-at-a-time processing

If a query returns multiple rows, fetch each row and process it; you do this by calling
the sqglfetfunction after compiling and executing a SELECT comchat this point,
SQLBase huilds the result set and returns the first row. Each subsequensaifditto
fetches the next row from the result set.

Fetching the last row of a result set

To fetch the last row of a result set, call §ugnrr function to get the number of rows
in the result set, position to the last row with a call tostiprsfunction, and then
fetch the last row with theglfetfunction.

SQL Application Programming Interface Reference 3-11

Chapter 3 Using the SQL/API

Keeping track of the cursor position

If you need to keep track of the current cursor position, create a counter and
increment it by 1 each time you fetch a row. If you position the cursor (wiigthes
function) to a particular row, set the counter to that row position.

Example programs
The example programex08.candex09.cshow how to fetch rows from a result set.

INSERTSs, UPDATESs, and DELETEs

The following flowchart shows the sequence of operations necessary to perform an
INSERT, UPDATE, or DELETE command using bind variables.

In the flowchart, SQLBase binds the data each time the command executes. This is
necessary because in the example program that follows the flowchart, an input line is
scanned to find a comma that separates individual values (the values can vary in
length). In other words, the input data "changes location," so the bind needs to be
done each time the command is executed. If the input datandgsange location

each time, the bind only needs to be done once

If you arenotusing bind variables, you need only to compile and execute a command
using thesglcexfunction.

Access cycle for INSERT, DELETE, or UPDATE command
with bind variables

Compile
SQL statement

S

sqlssb Bind the data

sqlcom

l A
sqlexe Execute
SQL statement

3-12 sQL Application Programming Interface Reference

INSERTSs, UPDATEs, and DELETEs

INSERT with bind variables (ex11.c)

This example shows how to perform an INSERT command using the SQL/API. This
program reads a flat file callethtathat contains a row with four column values on
each line. Each column value is separated with a comma.

#include "sql.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

SQLTCUR cur=0; /* SQLBase cursor number*/
SQLTRCD rcd=0; /*SQLBase return code */
int strscn(char*, char);
void failure(char*); [*error handler*/
main ()
{
FILE* fp; [* file pointer*/
char* cp; [* character pointer */
SQLTDAL length; [*length */
SQLTBNN bnn; /* bind number*/
SQLTNBV nbv; [* # of bind variables*/
char line[80]; [*input line */

static char ctbcom[] = /*CREATE TABLE comand */
"CREATE TABLE X (A NUMBER, B DATETIME,
C CHAR(30), D NUMBER)";

O staticchar inscom[] =*INSERT command */
"INSERT INTO X (A, B, C, D) VALUES (:1, :2,:3, :4)";

/* CONNECT TO THE DATABASE */
if (rcd = sqglcnc(&cur, "DEMO", 0))
failure("CONNECT");

/*
CREATE THE TABLE
*/

if (sqlcex(cur, ctbcom, 0))
failure("CREATE TABLE");

/*
COMPILE THE INSERT COMMAND
*/

O if(sglcom(cur, inscom, 0))

3-13

SQL Application Programming Interface Reference

Chapter 3 Using the SQL/API

failure("INSERT COMPILE");

/*
INSERT THE DATA
*/

if (I(fp = fopen("DATA", "r"))) /* open input file */
failure("FILE OPEN");

while (fgets(line, sizeof(line), fp))/*read the input */
{

line[strlen(line) -1] = O; /* remove new line char */

O sqlnbv(cur, &nbv); /* OPTIONAL: could hard code */
[* a value of 4*/

for (cp = line, bnn =1;/*scan the line */
bnn <= nbv; bnn++)

{

length=strscn(cp, ',)/*locate comma*/
O sqlbnn (cur, bnn, cp,length, 0, SQLPBUF) ;
cp += length;/*locate end*/
if (cp* ==","Y*comma ?*/
Ccp++;

}

O if (sqlexe (cur))insert row */
failure ("INSERT EXECUTE");

}
/*

DISCONNECT FROM THE DATABASE
*/

} I* end MAIN */

1. Declare the INSERT command.
2. Compile the INSERT command.

3. Thewhileloop reads one line of the file at a time. Blygnbvfunction returns the
number of bind variables in the SQL command. findoop finds each column
value in the line by scanning for commas.

4. Thesqglbnnfunction associates a buffer in the program that contains the data with
the appropriate bind variable in the VALUES clause of the INSERT command.
Data from the program will be associated with the bind variable in the SQL

3-14 sQL Application Programming Interface Reference

INSERTSs, UPDATEs, and DELETEs

command each time the command executes. The arguments $qitthe

function are the cursor, the sequence number of the bind variable, a pointer to data,
the length, the scale (only used for packed-decimal data types), and the program
data type.

5. After binding all values in the line, tisglexefunction is called to execute the
INSERT command.

UPDATE with bind variables (ex19.c)

This example shows how to execute an UPDATE command with a WHERE
CURRENT OF clause.

#include "stdio.h"
#include "sql.h"

O static char updprice[] = # UPDATE command */
"UPDATE ITEM SET PRICE = :1 WHERE CURRENT OF C1";
SQLTCUR curl;/* SQLBase first cursor number */
SQLTCUR cur2;/* SQLBase second cursor number */

main()

{

/* CONNECT CUR1 TO THE DATABASE */
if (rcd=sqglcnc(&curl, dbnam,0))
cncfail(rcd, "CONNECT");

} /* end MAIN */

void itemins()

{
FILE *fp;
struct item *datap; /* pointer to input data*/
int maxitem = 50; [* highest item number */

[* Compile insert statement */
if (sglcom(curl, insitem, 0))
failure(curl,"COMPILE ERROR");

} [* end itemins() */

/* The routine fetches each row, including long data,*/
[* updates */

SQL Application Programming Interface Reference 3-15

Chapter 3 Using the SQL/API

/* the price by 1 */
void priceupd ()
{

SQLTDAL len; [* Length of data read*/
SQLTRCD rcd; /* Fetch return code*/
char line [80]; [* output buffer*/

char newprice[10];/* length of data read*/
double value;

char* result;

char ret_code =\n";

O if (sqlscn (curl,"C1", 2)) /* Name cursor C1 */
failure(curl,"SET CURSOR NAME");
if (sglcom (curl, selitem, 0))/*Compile select*/
failure(curl,"SELECT COMPILE");
O if (sglcom (cur2, updprice, 0)) /* Compile update */
failure(cur2,"COMPILE ERROR");

/* Bind price buffer for update statement */

O if (sglbnn(cur2,1,(SQLTDAP) &value,sizeof (value),
0,SQLPDOU))
failure(cur2,"SQLBNN ERROR ");

/*

** Set buffers for the character columns. Not necessary
** for last column,which is a long.

*

/* Read the long column and display */

for(; ;)
/* Update the price according to user input */

for(;)
{
printf("Enter new price for %s; or return if no
price change",itembuf);
[* Get user input */
result=fgets(newprice, sizeof (newprice), stdin);
if (*newprice == ret_code)

{ printf ("No change in price \n"");
break;

}

else

{

3-16 SQL Application Programming Interface Reference

Connection handles

value=atof(newprice) ;
printf("price=%s\n",newprice) ;

O if (rcd=sqglexe(cur2))
failure(cur2,"update execute error");
break;

} [* end if */

if (rcd 1=1) /* If not end of fetch*/
failure(curl, "Error on Fetch");

if (sqlemt(cur2))/*Commit*/
failure(cur2, "ON UPDATE COMMIT");

1. Declare the UPDATE command. Note that the CURRENT OF clause specifies
"C1". The cursor will be assigned to this name in step 2.

2. Thesqlscnfunction assigns a name (second argument) to the cursor specified in
the first argument. The third argument is the length of the cursor name.

Compile the UPDATE command.

4. Associate the user input to the bind variables in the SET clause of the UPDATE
command.

5. Thefor loop accepts the user input for each row that has been fetched. If the user
enters a value for the price, the UPDATE command is executedqléke

Connection handles

An explicit connectiomandledefines the scope of a database transaction. Each
connection handle represents a separate, independent transaction in the server. An
application requests a connection handle by maksgjahfunction call, providing

the database name, username, and password stringgl€hkfunction starts a new
transaction, returns a connection handle, and authenticates the username and
password for the specified database.

For each connection handle, an application can open one or more cursors using the
same active connection. An application requests a cursor handle by makinga

function call, providing the connection handle as input. Sdlepcfunction call

opens a new cursor, associates the cursor with the specified connection, and returns a
cursor handle. Since the connection handle is already authenticated and identifies a
database, that information no longer is required by the application when opening a
new cursor each time. All cursors associated with a connection still belong to the
same independent transaction.

SQL Application Programming Interface Reference 3-17

Chapter 3 Using the SQL/API

Transaction processing operations (such as COMMITs, ROLLBACKS, isolation level
changes, and so forth) of one transaction do not affect operations being performed in
other transactions. When closing the final cursor in an connection handle, the
transaction remains pending. It is either committed or rolled back when the
connection handle is terminated using $h&lchfunction call. For details on

specifying the closure behavior, read siqgsetfunctiondescription in Chapter 5.

Application

2 O\

DB Connections— hConn_1 hConn_2

Cursors# | hCur_1 hCur2 ﬁh

Implicit connection handle

An implicit connection handles created when ttsg|lcnc(CoNnect Cursor) aqglenr
(Connect with No Recovery) functions are issued in the API. An implicit connection
encompasses all cursors connected from a given application that sgttioer
sqlcnrfunction calls for a specific database. Therefore, an implicit connection
represents a single independent transaction per database.

If you are closing the final cursor that is part of an implicit connection handle, a
COMMIT, by default, is performed before the cursor is closed. If the cursor was
issued using thsglcncfunction call, you can specify the ROLLBACK option using
the sqglsetfunction call with the SQLPCCB parameter. For more details on using
sqlcng sqlenr, andsqlset read the description for these functions in Chapter 5.

Note: Both implicit and explicit connection handles can exist within a single application.

3-18 sQL Application Programming Interface Reference

Connection handles

Setting lock time out

Although API calls on different connection handles can be executing on separate
threads, a call can be locked out if it is waiting for a thread to complete a task.
Similarly, locking can also occur if an application has an implicit connection handle.

A cursor may try to enter an API while another cursor is still in it, causing the second
cursor to be locked out until the first one exits. By default, the time interval in which
SQLBase waits for a lock time out before issuing an error message is 300 seconds for
all platforms, except for single-user Windows which is 2 seconds. You can change the
setting for thdocktimeoutkeyword in the SQL.INI file. For example, to set the time

out period to 2 minutes, specify:

locktimeout=120

Why use connection handles

By creating explicit connection handles within an application, you can establish
multiple, independent database connections. This can expand the processing power of
your application and increase its performance. Multiple connection handles add these
capabilities to an application:

» ability to execute multiple transactions concurrently from the same, single
database or different databases.

» ability for you to write applications which are multi-threaded to take
advantage of the multi-tasking resource available in win32 platforms. Read
Chapter 6 Creating Multi-threaded Applicatiorfer details.

« ability to create 16-bit MS Windows applications that will later accommodate
win32 platforms.

Setting up a connection handle (ex26.c)

This example shows you how to set up connection handles from a single application
to the same database. The example is self-explanatory.

#include "sqgl32.h"
#include <stdio.h>
#include <windows.h>
#include <stdlib.h>
#include <ctype.h>

I* */

I* */

/* Example of simple connect using all standard defaults */
I* */

/* *

SQL Application Programming Interface Reference 3-19

Chapter 3 Using the SQL/API

main(int argc, char* argv)
{
SQLTRCD rcd;/* return code */
SQLTCON con[50]; [Connection Handle */
int i=1;
int J

/* CONNECTION TO THE DATABASE */
j = atoi(argv[1]);
for (i=1;i<=j;i++)
{
if (rcd = sqglcch(&con(i], "ISLAND/SYSADM/SYSADM",
0,(SQLTMOD) 0))
{
printf("FAILURE ON CONNECTION %d\n",rcd);
return(1);

}

else
printf("Connection Established \n");

}
exit(0);

}
Transactions

A transaction is a logical unit of work, which is a sequence of SQL statements treated
as a single entity.

The scope of a transaction is a single implicit or exptieitnection handléhat an
application has connected to the database.

Each connection handle can have multiple cursors which are required to complete the
same independent transaction. If there are multiple connection handles set up in the

server, a single application can execute multiple transactions to the same or different
databases.

An application can request that each SQL statement be committed on completion;
otherwise, the database waits for an explicit commit or rollback request from the
application. Rea€onnection handlesn page3-17 for more details.

Committing and rolling back

An application gains control when a transaction is committed (made permanent) or
rolled back (erased).

A commit (implicit or explicit) destroys all compiled commands for a single
connection handle, unless cursor-context preservation is on.

3-20 sQL Application Programming Interface Reference

Transactions

However, when cursor-context preservation is on, SQLBaes nopreserve cursor
context after an isolation level change or a system-initiated ROLLBACK (such as a
deadlock, timeout, etc.). SQLBadeespreserve cursor context after a user-initiated
ROLLBACK if both of the following are true:

* The application is in Release Locks (RL) isolation level

* No data definition language (DDL) operations were performed
SQLBase either commits or rolls baakthe data changes made by a transaction. For
example, a transaction might add (credit) money to one account and subtract (debit)
money from another account. As long as both UPDATES are part of the same

transaction, the database is in no danger of being left in an inconsistent state.
SQLBase either commits both UPDATEsS, or rolls both back.

Thesglcmtfunction causes a commit and #tgrbk function causes a rollback.

Savepoints

A savepoint is a user-defined and -named point within a transaction. Savepoints let
you roll backportionsof a transaction, rather than forcing you to commit or roll back
anentiretransaction.

The SAVEPOINT command lets you specify a point within a transaction to which
you can later roll back if you want to undo part of that transaction. You can specify
multiple savepointsithin a transaction.

The ROLLBACK command has an optional savepoint identifier that lets you hame
the savepoint to which you want to roll back.

The following graphic illustrates the use of the SAVEPOINT and ROLLBACK
commands:

—» Start of transaction
—» SAVEPOINT savepointl
[SAVEPOINT savepoint2

ROLLBACK savepoint2

— ROLLBACK savepointl

— ROLLBACK

Rolling back to a savepoint doest release locks. Rolling back an entire transaction
doesrelease locks.

SQL Application Programming Interface Reference 3-21

Chapter 3 Using the SQL/API

You can check the rollback flagdlrbf) to see whether the previous operation caused
a server-initiated rollback.

Distributed transactions

Note: Distributed transactions are not supported with multiple, independent connections to the
same database or different databases. Therefore, if you are using connection handles, distributed
transactions cannot be enabled. Usestijfisetfunction in conjunction with the SQLPDTR
parameter to set distributed transaction mode off. The default for this parameter is off (0). For
details on setting this parameter, readstjksetfunction in Chapter 5.

A distributed transaction coordinates SQL statements among multiple databases that
are connected by a network. The databases that participate in a distributed transaction
can reside anywhere on the network.

In a distributed transaction, the coordinating application communicates among the
participant databases and verifies data integrity. It maintains this integrity even when
a crash occurs.

A distributed transaction conforms to the same data consistency rules as a single
database transaction — either all of the transaction’s statements commit, or none at
all.

Server connecisglcsv)and connects with recovery turned off cannot participate in a
distributed transaction. In addition, an application cannot connect to a database in
both distributed and non-distributed transaction mode.

In a distributed transaction, one of the participating database servers must also be the
commit serverThe commit server logs information about the distributed transaction
and assists in recovery after a network failure. To enable commit server capability for
a server, set theommitservekeyword to 1 (on) irsgl.ini.

Databases participating in a distributed transaction must conform to the following
communication requirements:

* They must reside on the same network.

» Each participating database server that has commit service enabled must be
able to connect to all other servers involved in the distributed transaction. If
all the servers have commit service capability, they all must be able to
connect with each other.

» If you are using Novell's NetWare, specify the [nwclient] section for each
server that is participating in a distributed transaction. This allows servers to
communicate mutually. Communication between servers only occurs when a
commit server:

3-22 sSQL Application Programming Interface Reference

Transactions

» Verifies it can talk to all other participating servers at the time of a
distributed commit. (This is performed at most once per patrticipant.)

* Attempts to contact other participating servers under a failure condition.

Use thesglseffunction in conjunction with the SQLPDTR parameter to set distributed
transaction mode on. Once you set this parameter on, all subsequent commands
automatically become part of a distributed transaction.

Setting up a transaction (ex06.c)

This example shows you how to set up a transaction that updates multiple tables. The
commit §glcm) and the rollbackgglrbK functions ensure that either both tables are
updated or that neither is updated.

#include "sqgl.h"
#include <stdio.h>

main()

{

SQLTCUR cur; /* SQLBASE cursor number */
SQLTRCD rcd; /* return code*/

O static char savupdt [] = # UPDATE savings command */
"UPDATE SAVINGS SET SAV_DOLLARS =
SAV_DOLLARS - 100 WHERE SAV_ACC_NO = 951",

O static char chkupdt [| = # UPDATE checking command */
"UPDATE CHECKING SET CHK_DOLLARS =
CHK_DOLLARS + 100 WHERE CHK_ACC_NO = 1495";

/*
CONNECT TO THE DATABASE
*/

/*
COMPILE AND EXECUTE UPDATE OF SAVINGS ACCOUNT
*/

O if (red = sqlcex(cur, savupdt, 0))

{
printf("FAILED UPDATING SAVINGS, rcd = %d\n",rcd);
sqldis(cur);
return(l);

}

else

SQL Application Programming Interface Reference 3-23

Chapter 3 Using the SQL/API

printf("ONE HUNDRED DOLLARS SUBTRACTED FROM
SAVINGS \n");
[*COMPILE AND EXECUTE UPDATE OF CHECKING ACCOUNT *

O if (rcd = sqlcex(cur, chkupdt, 0))

printf("FAILED UPDATING CHECKING (TRANSACTION
ROLLBACK),rcd = %d\n",rcd);

O sqlrbk(cur);
sqldis(cur);
return(l);

}
else

printf("ONE HUNDRED DOLLARS ADDED TO CHECKING \n");
[* COMMIT TRANSACTION */

O if (rcd = sqglcmt(cur))
printf("FAILURE ON COMMIT, rcd = %d\n",rcd);
else
printf("TRANSFER FROM SAVINGS TO CHECKING
COMPLETED\n");

[* DISCONNECT FROM DATABASE */

1. Declare the UPDATE command for the first table.
2. Declare the UPDATE command for the second table.

3. Thesqlcexfunction compiles and executes the UPDATE command for the first
table in one step. You can use slggcexfunction in place of theglcomandsglexe
functions if the SQL statement does not contain bind variables and if you plan to
execute it only once.

4. If the UPDATE command for the first table compiled and executed successfully,
the UPDATE command for the second table is compiled and executed.

5. If the second UPDATE command is not successful, caddhiek function to
undo all data modifications.

6. If the second UPDATE command is successful, calbtfemtfunction to make
permanent all data modifications and release any and all locks.

3-24 sQL Application Programming Interface Reference

Transactions

Setting up a distributed transaction

This example shows how to set up a distributed transaction usiagl#a¢function
in conjunction with the SQLPDTR parameter.

Note: Connection handles are not supported for use with distributed transactions. Therefore,
this example reflects the use of cursors to connect to multiple databases.

#include "sql.h"
#include <stdio.h>

void main(argc, argv)
int argc; /*argument count */
char*argv[];/* -> argument vector */

a SQLTDPV dtr=1; /*Distributed transaction turned on*/

SQLTCUR curl; /*cursor 1%

SQLTCUR cur2; /*cursor 2*/

SQLTRCD red; /*return code */

int account_number;

int transfer_amount;

char* Decrement_Account = "Update account set
balance=balance-:1 where account_num =:2";

char* Increment_Account = "Update account set
balance=balance+:1 where account_num =:2";

account_number = 14560;

transfer_amount = 500;

if (rcd=sqlset(0, SQLPDTR, (SQLTDAP)&dtr, 0))

failure(rcd,"SQLSET");

if (rcd=sqglcnc(&curl, "DALLAS/SYSADM/SYSADM", 0))

failure(rcd,"CONNECT TO DALLAS");

if (rcd=sglcnc(&cur2, "AUSTIN/SY SADM/SYSADM", 0))
failure(rcd,"CONNECT TO AUSTIN");

/*

First decrement the balance from DALLAS
*/
if (rcd = sglcom(curl, Decrement_Account, 0))

sqlrbk(curl);
failure(rcd,"COMPILE of Decrement_Account");

}
if (rcd = sqglbnu(curl,(SQLTBNN)2,

(SQLTDAP)(&account_number), sizeof(int),0,SQLPSIN, 0))
{

SQL Application Programming Interface Reference ~ 3-25

Chapter 3 Using the SQL/API

sqlrbk(curl);
failure(rcd,"BIND of account_number for
Decrement_Account");
}
if (rcd = sqlbnu(curl,(SQLTBNN)1,
(SQLTDAP)(&transfer_amount), sizeof(int),0, SQLPSIN,0))
{
sqlrbk(curl);
failure(rcd, "BIND of transfer_amount for
Decrement_Account");

}
if (rcd = sqglexe(curl))

sqlrbk(curl);
failure(rcd,"EXECUTE of Decrement_Account");
}

/*
Now increment the balance from AUSTIN
*/
if (rcd = sglcom(cur2,Increment_Account, 0))
{
O sqlrbk(curl);
failure(rcd,"COMPILE of Increment_Account");
}
if (rcd = sqglbnu(cur2,(SQLTBNN)2,
(SQLTDAP)(&account_number), sizeof(int), 0, SQLPSIN,
0))

sqlrbk(curl);
failure(rcd,"BIND of account_number for
Increment_Account");
}
if (rcd = sglbnu(cur2,(SQLTBNN)1,(SQLTDAP)
(&transfer_amount), sizeof(int),0, SQLPSIN, 0))
{
sqlrbk(curl);
failure(rcd,"BIND of transfer_amount for
Increment_Account");

}
if (rcd = sqlexe(cur2))

sqlrbk(curl);
failure(rcd,"EXECUTE of Increment_Account");
}

O if (rcd=sqglcmt(curl))

3-26 SQL Application Programming Interface Reference

Cursors

Cursors

{

failure(rcd,"COMMIT");
}
} /* end MAIN */

int failure(rcd,str)

SQLTRCD rcd;

char *str;

{

printf("ERROR IN %s: %d\n",str,rcd);
exit(0);

}

1. Turn on distributed transaction mode.

2. Each of the rollback statementsgqlrbk(cup) imply a rollback on cur2.

3. Thisdistributed transaction requires only a single COMMIT statement, since there
is only one transaction. You can use any of the cursors to perform the COMMIT.

The term cursor refers to one of four things in the SQL/API:

When the cursor belongs to an explicit connection handle, it identifies a task
or activity within a transaction. This task or activity can be compiled/
executed independently within a single connection thread.

When an application connects to a database usirggtbehfunction call,
SQLBase returns a connection handle. When the connection handle is
included in a function call to open a new cursor, the function call returns a
cursor handle. You use the cursor handle in subsequent SQL/API calls to
identify the connection thread.

When a cursor belongs to an implicit connection handle, it identifies a
database connection.

When an application connects to a database usirggitbecor sqlcnr
function calls, SQLBase returns a cursor handle. You use the cursor handle in
subsequent SQL/API calls to identify the connection.

A row position in a result set.
A work space in memory used for processing a SQL command.

SQL Application Programming Interface Reference ~ 3-27

Chapter 3 Using the SQL/API

Cursor work space information

You can retrieve information about a SQL command associated with a particular
cursor using the SQL/API functions listed below.

For most of the functions, pass both a cursor handle and a pointer to a variable where
the value is returned. The variables are definestjitwith typedefs.

Function Description Typedef

sqlcty Command TYpe- The SQL command typ&gl.h SQLTCTY
defines a code for each command type.

sglepo Error POsition - The offset (starting with 0) of the error SQLTEPO
within the SQL command which caused the syntax efjror.

sqlnbv Number of Bind Variables - The number of bind SQLTNBV
variables associated with a SQL command.

sqlnsi Number of SELECT Items - The number of items in theSQLTNSI
query’s SELECT list.

sqlrbf Rollback flag - The status of the system rollback flag: ISQLTRBF
after a server-initiated rollback and 0 otherwise.

sqlrcd Return code- The return code of the most recent SQL/SQLTRCD
API function: a 0 if the function was successful and a
non-zero value otherwise.

sqlrow Number of rows- The number of rows affected by thg SQLTROW
SQL command.

Cursors and connection handles

To perform tasks that access a single database, you can first create an explicit
connection handle using teglcchfunction call in your SQL/API application and

then open cursors within the connection handle usingdloge function call. Within
ansglopccall, you can assign each cursor its own SQL command. All cursors that
access the single database belong to the explicit connection handle and represent a
single transaction.

If you have used thsglcncor sqglcnrfunction calls, your cursors connect directly to a
specified database, under a user name and password. An implicit connection handle is
automatically created for you and all cursors that connect to the same database,
regardless of the user name and password belong to the implicit connection.

By explicitly creating multiple connection handles on Win32 applications, you can
have multiple transactions that may access the same database or different databases
within the same application. Each connection handle represents a separate thread and

3-28 sQL Application Programming Interface Reference

Cursors

can concurrently enter an APl and execute independently. This is known as a multi-
threaded application. For details on creating multi-threaded applications with
SQLBase, read ChapterGreating Multi-threaded Applications

Connecting to the same database

Cursors that are part of the same implicit or explicit connection handle allow a
transaction to connect to the same database. This is useful, for example, when
updating a column in one table based on the value in a column of another table.
Having already executed a SELECT command on the first cursor, you can
subsequently fetch each row of the result set with that same cursor and UPDATE the
fetched rows with a second cursor.

Because all of an application’s cursors that are associated with the same connection
handle are part of the same transaction, a commit or rollback (implicit or explicit) by
anyone of the transaction’s cursors commits or rolls back the work daailédfthe
transaction’s cursors.

Connecting to different databases

When implicit or explicit connection handles exist for different databases, the
databases can be located on the same or different servers and each database maintains
its own transaction and rollback information.

Consider an application with six connection handles, which are connected to six
different databases. The application has established six separate transactions.

Because only those cursors that are connected to the same connection handle are part
of the same transaction, a commit or rollback (implicit or explicit) request by the
application commits or rolls baally the work done by that connection handle.

Using multiple cursors and connection handles (ex16.c)

This example connects to two cursors (curl and cur2). One cursor (curl) sets the
select buffers, the other cursor (cur2) compiles the SQL UPDATE command.

This program scans an employee table and asks a supervisor which employee to
award a bonus. It compiles and executes the SQL SELECT command using the curl
cursor. Then it sets the select buffers using the curl cursor. Using the cur2 cursor, it
compiles the SQL UPDATE command. Next it fetches a row with the curl cursor and
ask the supervisor to enter the desired bonus amount, then updates the BONUS table
utilizing the cur2 cursor. It continues fetching until an end of fetch. Next it asks the
supervisor to specify the desired bonus amount.

0 SQLTCUR curl =0;/* scan cursor */
SQLTCUR cur2 = 0;/* update cursor */
SQLTRCD rcdl = 0;/* return code (curl) */
SQLTRCD rcd2 = 0;/* return code (cur2) */

SQL Application Programming Interface Reference 3-29

Chapter 3 Using the SQL/API

void failure(char*); /* error handler ~ */

main()

{
int dollars; [* amount of the bonus */
int employe; /* employe to grant bonus */
char empnam[21]; /* employe name fetched */
char buf[80]; [* input buffer area */
long Inum; [*long number */

O static char selcom[] =/* SQL select string */
"SELECT EMP_NO,EMP_NAME FROM EMP";
static char updcom[] =/* SQL update string */
"UPDATE BONUS SET BONUS_AMOUNT =
:dollars WHERE BONUS_EMP_NO = :employe";

/* CONNECT TO BOTH CURSORS (use the demo database and all
[* defaults) */

O if (red1 = sqglenc(&curl, "DEMO", 0))
failure("FIRST CONNECT");

if (rcd2 = sqglcnc(&cur2, "DEMQO", 0))
failure("SECOND CONNECT");

/* COMPILE AND EXECUTE SELECT COMMAND (selcom) */

O if (red1 = sqglcex(curl,selcom,0))
failure("COMPILE OF SELECT COMMAND");

/* SET FETCH BUFFERS (select EMP_NO into employee */
/* & EMP_NAME into empnam) */
/*
O if (red1 = sqlssb(curl,1,SQLPUIN,(char &employe,
sizeof(employe),0,SQLNPTR,SQLNPTR))
failure("SET FIRST SELECT BUFFER");

if (rcd1 = sqlssb(curl,2,SQLPSTR,empnam,
sizeof(empnam),0,SQLNPTR,SQLNPTRY))
failure("SET SECOND SELECT BUFFER");
/* COMPILE UPDATE COMMAND (updcom) */

O if (red2 = sglcom(cur2,updcom,0))
failure("COMPILE OF UPDATE");

3-30 sQL Application Programming Interface Reference

Cursors

/* BIND UPDATE VARIABLES (bind variables with variables */
[* of same name) */

O if (red2 = sqglbnd(cur2,"dollars",0,(char *)
&dollars,sizeof(dollars),0,SQLPUINY))
failure("DOLLARS BIND");

if (rcd2 = sqglbnd(cur2,"employe”,0,(char *)
&employe,sizeof(employe),0,SQLPUIN))
failure("EMPLOYE BIND");

[* FETCH ALL EMPLOYEES AND SPECIFY ANY BONUS AMOUNTS */

O while (I(rcd1 = sqlfet(curl)))
for (;)
{
printf("\nEnter Bonus Amount for %s ",empnam);
fflush(stdout);
fgets(buf,sizeof(buf),stdin);/* read bonus amount */
Inum = atol(buf); /* convert dollar amount */
if (strlen(buf) <=0 ||/ invalid number? or *
Inum<0|| [* negative bonus amt? or */
Inum > 32000) /*too big a bonus? */
continue; [* ask user for amt again */
if (Inum) ¥ noamount? ¥
break; /* no bonus for employe */
dollars = (int)lnum;/* set bonus dollar amt */
O if (rcd2 = sqlexe(cur2))/* perform update */
failure("UPDATE");
break;

}

if (red1 !1=1)
failure("FETCH");

/* DISCONNECT BOTH CURSORS */

Oif (redl = sqldis(curl))
failure("DISCONNECT OF SELECT CURSOR");

curl =0;

if (rcd2 = sqldis(cur2))
failure("DISCONNECT OF UPDATE CURSOR");

return(0);

}

SQL Application Programming Interface Reference

3-31

Chapter 3 Using the SQL/API

voidfailure(ep)
char* ep; [* -> failure msg string */

{

SQLTEPO epo; /*error position */
char errmsg[SQLMERR];/* error msg text buffer */

printf("Failure on %s \n", ep);

if (rcd1)/* error on cursor 1? */

{

}

sqlerr(rcdl, errmsg);
sglepo(curl, &epo);

if (rcd2)/* error on cursor 2? */

{

}

sqglerr(rcd2, errmsg);
sglepo(cur2, &epo);

if (curl)/* cursor 1 exists? */

sqldis(curl);

if (cur2)/* cursor 2 exists? */

sgldis(cur2);

printf("%s(error: %u, position: %u) \n",errmsg,rcd1,epo);
exit(1);

}

1
2.
3

Declare two cursors and two return codes.
Declare the SELECT and the UPDATE commands.

Perform twasglencfunctions. Both connections are to the same database, but
each connection is associated with a different cursor.

Compile and execute the SELECT command witlstileexfunction. The
SELECT command is associated with the first cursor.

Perform thesglssbfunction to set up the areas in the program that will receive the
fetched rows.

Compile the UPDATE command with teglcomfunction. The UPDATE
command is associated with the second cursor.

Bind the data for the UPDATE command with Hogbndfunction. The first
sqlbndfunction binds the bonus dollars entered by the user. The segimad
function binds the employee number from the fetched row.

3-32 sQL Application Programming Interface Reference

LONG VARCHAR handling

8. Thewhile loop displays each fetched row.

9. Theforloop prompts the user to enter a bonus amount for each fetched row. If the
user enters an amount, the UPDATE command is executed withléhe
function. If the user does not enter an amount and just presses the return key, the
next row is fetched.

10. After displaying and processing the fetched rows, disconnect both cursors.

LONG VARCHAR handling

The LONG VARCHAR data type can hold values longer than 254 bytes. Since the
length of the data can be unlimited, you must set up a program loop to read or write
LONG VARCHAR data in specified portions.

Reading LONG VARCHAR data. Usesqlrlo to read a LONG VARCHAR after
fetching a row wittsglfet Thesglrlo function identifies the receive buffer for a
LONG VARCHAR, so you do not need to catjlssb

Writing LONG VARCHAR data . Usesglwloto write a LONG VARCHAR after a
compile §glcom)and bind ¢qglbld or sglbln), butbeforean executesglexe)

Thesqlbldfunction associates a bind variable with an alphanumeric name in a SQL
command to a program variable. Beggbln function associates a bind variable with a
numeric name in a SQL command to a program variable.

Getting LONG VARCHAR length . Usesqlglsto return the number of bytes in a
LONG VARCHAR column after fetching a row wiiglfet

Positioning in LONG VARCHAR data . Usesqllskto set a position within a
LONG VARCHAR from which to start reading.

Ending a LONG VARCHAR operation . You must process LONG VARCHAR
columns one at a time and the entire long operation must be complete before you can
process another LONG VARCHAR. After reading or writing a LONG VARCHAR,

call sgleloto end the long operation.

The example programex14.candex13.cshow how to read and write LONG
VARCHAR columns.

SQL Application Programming Interface Reference 3-33

Chapter 3 Using the SQL/API

Reading LONG VARCHAR columns (ex14.c)

The following flowchart shows the sequence of operations to read LONG VARCHAR
columns.

Access cycle to read a LONG VARCHAR
with a SELECT statement

y Compile
sgicom | sQL statement
I
Execute
sqlexe SQL statement
|
sqlfet Fetch row
Read LONG
sqlrlo
a VARCHAR data A

All LONG
VARCHAR
data read?

End LONG

sqlelo operation

End

This example reads data from a LONG VARCHAR column. Calktiido function
to read a LONG VARCHAR after executing a SELECT statement and fetching the
row.

#include "sql.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

SQLTCUR cur; /* SQLBase cursor number */
SQLTRCD rcd; /* Error number */

3-34 sQL Application Programming Interface Reference

LONG VARCHAR handling

char errmsg[SQLMERRY]; /* Error msg text buffer */

void failure(); /* Error handler*/

main()

{
int count; [* Saying number */
SQLTDAL length; [* Length of data read */
char* cp; [* Character pointer */
char buf[50]; /* Buffer to read long */

staticchar select [] = /* SELECT statement */
"SELECT SAY_NO, SAY_TEXT FROM SAYINGS";

/* CONNECT TO THE DATABASE */
if(rcd=sglcnc(&cur,"ISLAND",0))
sqglerr(rcd,errmsg); /* get error message text */
printf("%s \n",errmsg);

return(l);

}

[* COMPILE SELECT STATEMENT */

if (sqlcom(cur,select,0))
failure("COMPILE OF SELECT");

[* SET SELECT BUFFER FOR SAYINGS NUMBER */

if (sqlssb(cur, 1, SQLPUIN,(charR*)&count,
sizeof(count), 0, SQLNPTR, SQLNPTR))

failure("SET SELECT BUFFER");

/* EXECUTE SELECT STATEMENT */

if (sqlexe(cur))
failure("EXECUTE OF SELECT");

[* FETCH DATA */

while (I(rcd = sqlfet(cur)))

{
printf("\nSAYING NUMBER %d \n",count);
for (;}) /* Read long data */
{

memset(buf," *,sizeof(buf)); /* Clear input */
[* buffer */

SQL Application Programming Interface Reference

3-35

Chapter

3

Using the SQL/API

if (sqlrlo(cur, 2, buf, sizeof(buf) - 1,
&length))
failure("READING LONG DATA");

if (llength) /¥ End of long data? */

if (sqlelo(cur) /* End long operation */
failure("ENDING LONG OPERATION");
break;
}
buffsizeof(buf) - 1] ="0'; /* Add string * /
[* terminator */
while (cp = strchr(buf,"\n"))/* Remove */
/* newline char */
*cp="Y
while (cp = strchr(buf,'\t")) /* Remove tab */
[* characters */
*Cp = ';
printf("%s\n",buf); /* Print long data */

}

if (rcd 1= 1)
failure("FETCH");

/* DISCONNECT FROM THE DATABASE */

if (sqldis(cur))
failure("DISCONNECT");
} /* end MAIN */
void failure (ep)
char* ep; [* ->failure msg char string*/
{

SQLTEPO epo; /*Error position*/
printf("Failure on %s \n", ep);

sqlrcd(cur, &rcd); /*Get the Error*/
sqlepo(cur,&epo); /*Get Error position*/
sglerr(rcd,errmsg); /*Get error message text*/

sqldis(cur);
printf("&s (error:%u, position: %u)

\n",errmsg,rcd,epo);
exit(1);

3-36 SQL Application Programming Interface Reference

LONG VARCHAR handling

Declare the SELECT statement.
Compile the SELECT statement.

Set the areas in the program that will receive the fetched (non-long) data with the
sqlsskfunction. Note that the LONG VARCHAR column does not need to be set
up with thesglssbfunction.

Execute the SELECT statement.
Call thesglfetfunction.

Perform thesqlrlo function to read the LONG VARCHAR column. The
arguments are cursor, column number, buffer, and bytes to reasiglfloe
function performs the equivalent functionsafissb

Continue to read until the length returnedstirlo is zero.

End the long operation with tglelofunction.

SQL Application Programming Interface Reference ~ 3-37

Chapter 3 Using the SQL/API

Writing LONG VARCHAR columns (ex13.c)

The following flowchart shows the sequence of operations to write LONG
VARCHAR columns.

Access cycle to write a LONG VARCHAR
with an INSERT or UPDATE statement

y Compile
sqicom SQL statement
[

Sqfr’” Bind LONG
sqlbld VARCHAR data

O—

Write LONG
VARCHAR data A

sqlwlo

All LONG
VARCHAR data
written?

salelo End LONG
q operation
I
Execute
sqlexe
q SQL statement

End

This example reads a flat file calledyingsl that contains text and writes the text to
a LONG VARCHAR column.

Since the length of the LONG VARCHAR is unlimited (and unknown), you must set
up a loop to write the value in fixed portions. You must process LONG VARCHAR
data columns one at time and the entire long operation must be complete before you
can process the next LONG VARCHAR.

LONG VARCHARSs have their own bind functions.

3-38 sQL Application Programming Interface Reference

LONG VARCHAR handling

Call sglwloto write a LONG VARCHAR after compiling an INSERT or UPDATE
statement buteforeexecuting the statement.

#include "sqgl.h"

#include "errsqgl.h"
#include <stdio.h>
#include <stdlib.h>

SQLTCUR cur; /* SQLBase cursor number */
SQLTRCD rcd; /* Error number */
char errmsg[SQLMERRY]; /* Error msg text buffer */
void failure(char*); /* Error handler */
main()
{
FILE* fp; [* File pointer */
SQLTROW rows; /* Number of rows */
int count; /* Saying number to use */
char buf[80]; /* Long varchar write buf */

O static char create [] = /*CREATE TABLE statement*/
"CREATE TABLE SAYINGS (SAY_NO NUMBER NOT NULL,
SAY_TEXT LONG VARCHAR)";
static char insert [] = *INSERT statement*/
"INSERT INTO SAYINGS VALUES (11, :2)";
[*CONNECT TO THE DATABASE*/
if (rcd = sqglcnc(&cur,"DEMO",0))

sqlerr(rcd, errmsg);/* Get Error message text */
printf("%s \n",errmsg);
return(l);

}

/* CREATE SAYINGS TABLE */
if (rcd = sqlcex(cur, create,0))

if (rcd '= EXEETVS)/* Not error if thl exists */
failure("CREATE SAYINGS TABLE");
}

else
printf("SAYINGS TABLE CREATED\n");

[* COMPUTE SAYINGS NUMBER *

if (sqlgnr(cur, "SAYINGS", 0, &rows))
failure("GET NUMBER OF ROWS");

SQL Application Programming Interface Reference ~ 3-39

Chapter 3 Using the SQL/API

count = (int)rows + 1; /* Compute sayings humber */
/* COMPILE INSERT STATEMENT */

O if (sqlcom(cur, insert, 0))
failure("COMPILE OF INSERT");

/* BIND BY NUMBER?*/

O if (sqlbnn(cur, 1, (SQLTDAP) &count, sizeof(count), 0,
SQLPUIN))
failure("BINDING COUNT");

O if (sqlbln(cur,2))
failure("BINDING LONG");

/* WRITE LONG DATA */
if (I(fp = fopen("SAYINGS.1", "r")))/* Open saying * /
[* text file */
failure("FILE OPEN");
while (fgets(buf,sizeof(buf),fp))/* Read the saying */
[*text */
O if (sglwlo(cur,buf,0))
failure("WRITE LONG");

if (fclose(fp))
failure("FILE CLOSE");

[* END LONG OPERATION */

O if (sqlelo(cur))
failure("ENDING LONG OPERATION");

/* EXECUTE INSERT STATEMENT */

O if (sqlexe(cur))
failure("EXECUTE");
else
printf("SAYING NUMBER %d SUCCESSFULLY
INSERTED\n",count);

/* DISCONNECT FROM THE DATABASE */
if (sqldis(cur))

failure("DISCONNECT"));
} /* end MAIN */

3-40 sQL Application Programming Interface Reference

Calling stored commands and procedures

void failure(ep)
char* ep; [*->failure msg string*/

{
SQLTEPO epo; /*Error position*/

printf("Failure on &s\n", ep);

sqlrcd(cur, &rcd); [*Get the error*/
sglepo(cur, &epo); [*Get error position*/
sqlerr(rcd, errmsg); /* Get error message text*/
sqldis(cur);

printf("%s (error, %u, position: &u)
\n",errmsg,rcd,epo);
exit(1);
} /* end MAIN */

Declare the SQL commands.
Compile the INSERT command with teglcomfunction.

Bind the non-long data wittglbnn

Use thesqglbinfunction to bind the LONG VARCHAR input area to the INSERT
command.

5. Readthe input data for the LONG VARCHAR data. Whéeloop reads 80 bytes
of input data at a time witfyetsand then performs tregjlwlo function. The loop
repeats untifgetsreads a null.

e A

6. Call thesglelofunction when all the data has been written for the column value.

7. Call thesglexefunction to execute the INSERT command.

Calling stored commands and procedures

You can execute stored commands and procedures from SQL/API. Ussuistioe
function, you can store a SQL query, data manipulation command, or procedure for
later execution. SQLBase stores the command or procedure in the SYSCOMMANDS
system catalog table of a database.

Note that thesgldstfunction allows you to drop a stored command or procedure.

For details on creating stored procedures, (&aapter 7, Procedures, Triggers, and
Events of theSQL Language Reference Manual

SQL Application Programming Interface Reference 3-41

Chapter 3 Using the SQL/API

Executing a stored procedure from SQL/API (ex23.c)

Assume you have stored the following procedure (which uses a table called
CHECKING with columns ACCOUNTNUM number and BALANCE number) to
update and return bank account balances:

PROCEDURE: WITHDRAW
Parameters

Number: nAccount

Number: nAmount

Receive Number: nNewBalance

Local Variables
String: sUpdate
String: sSelect

Actions

Set sUpdate = 'UPDATE CHECKING \
set BALANCE = BALANCE - :nAmount \
where ACCOUNTNUM = :nAccount’

Call Sgllmmediate(sUpdate)

Set sSelect = 'SELECT BALANCE from CHECKING \
where ACCOUNTNUM = :nAccount \
into :nNewBalance'

Call Sgllmmediate(sSelect)

\
1,100,,
/

The following SQL/API code shows how the procedure WITHDRAW is executed:

#include "sqgl.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void failure(); [* error handler */
SQLTCUR cur,;
/*

This program shows how a stored procedure (WITHDRAW,
which has already been stored before) will get executed

*/
main()
{
int nAccount=1; /* Account number */
int nAmount=100; /* Amount value */
int nNewBalance; /* Value of new balance */
int n; /* number value */

/*
CONNECT TO THE DATABASE
*/

3-42 sQL Application Programming Interface Reference

Calling stored commands and procedures

if (sqlenc(&cur, “island”, 0))
failure("Connect to island");
/*
Retrieve the stored procedure
*
O if (sqlret(cur,(SQLTDAP)"WITHDRAW",0))
failure("WITHDRAW");

O //bind variables
if (sglbnn(cur, 1, (SQLTDAP)&nAccount,sizeof(nAccount),
0,SQLPSIN)||sglbnn(cur, 2,
(SQLTDAP)&nAmount,sizeof(nAmount), 0,SQLPSIN)
||sglbnn(cur, 3,
(SQLTDAP)&nAmount,sizeof(nAmount), 0,SQLPSIN)
|Isglbnn(cur, 3,
(SQLTDAP)&nNewBalance,sizeof(nNewBalance), 0,SQLPSIN))
failure("SQLBNN");

O [/l set select buffer for receive parameter(s)
if (sqlssb(cur, (SQLTSLC)1, SQLPSIN,
(SQLTDAP)&nNewBalance,sizeof(int),0,0,0))
failure("SQLSSB");

O /lexecute
if (sqlexe(cur))
failure("SQLEXECUTE");

O // fetch result
n=sqlfet(cur);
printf("%d\n",n);
printf("The value of new balance is %d\n",nNewBalance);

if (sqldis(cur))

failure("'DISCONNECT");
return(0);

}

void failure(ep)
char* ep; /* -> failure msg string */

printf("Failure on %s \n", ep);
sqldis(cur);
exit(1);

SQL Application Programming Interface Reference 3-43

Chapter 3 Using the SQL/API

1. Retrieve the stored procedure with Sagretfunction.

2. Bind values for all input and output parameters in the stored procedure. Note the
procedure has two input variables and one (output) receive variable.

Set the SELECT buffer for theaeive parameter with tisglssbfunction.
4. Execute the stored procedure with glyéexefunction.

Fetch the result set with tlsglfetfunction.

Functions used with procedures and commands

The following functions can be used with procedures and stored commands:

SQL/API Description
Function

sqlbnd Bind input data by name.

sglbnn Bind input data by number.

sqlbnv Get the number of input parameters.

sqlcbv Clear bind variables.

sqlcex Compile and execute a non-stored command or non-stored
procedure.

sglcom Compile a non-stored command or non-stored procedure.

sqlcty Return the command type.

sqgldes Describe output parameters in terms of internal data types|and
lengths.

sqldii Describe an INTO variable.

sqgldsc Describe output parameters in terms of external data typeg and
lengths.

sqldst Drop a stored command or stored procedure.

sqglepo Retrieve error position.

sqlexe Execute a command or procedure that has either been
previously-compiled or stored.

sqlfet Fetch next row from result set.

3-44 sQL Application Programming Interface Reference

Bulk execute mode

SQL/API _
Function Description
sqlget Return the statement trace status (enabled/disabled) with the
SQLPTRC parameter, and the file name of the trace output file
with the SQLPTRF parameter.
sginbv Retrieve number of bind variables.
sqlnii Get the number of INTO variables.
sqlret Retrieve a command or procedure.
sqlsto Store a SQL command or procedure in the SYSCOMMANDS
system catalog table of a database

Note: If you simultaneously compile and execute a procedure withgleexfunction,

SQLBase does not attempt to optimize the SQL statements contained within the procedure. The
reason for this is that it offers no real performance advantage, and it incurs a certain amount of
overhead.

Bulk execute mode

The bulk execute feature reduces network traffic for multi-row inserts, deletes, and
updates. In bulk execute mode, SQLBase buffers data values smthabws can be
sent to the server in one message.

Three SQL/API functions support the bulk execute feature:

» sqlblk- turns bulk execute mode on or off.
» sqlbef- flushes data in the bulk execute buffer.
e sqlber- returns error codes for bulk execute operations.

The number of operations per message depends upon the size of the output message
buffer which you can set with ttsgjlomsfunction.

You can use the bulk execute feature with chained commands if the chained
commands do not contain SELECT statements.

You cannot turn on bulk execute while the autocommit feature is on.

SQL Application Programming Interface Reference ~ 3-45

Chapter 3 Using the SQL/API

Error handling

All SQLBase error messages are stored in a common error message file called
error.sgl. This file must be present @il client and server computers that run
SQLBase software.

As the diagram below shows, for each error message there is an:

* Error message text
e Error reason
e Error remedy

Mnemonic

Error code l Message text

¥ e

00353 EXE NSY Not a synonym

Reason: Attempting to execute a DROP SYNONYM and the named
synonym is not a synonym, but a table name.

Remedy: Modify the DROP SYNONYM statement to use a synonym
name, or if you really want to drop a table, then use a DROP
TABLE statement.

The first line of any error contains an error code, a mnemonic, and a message text.
When an application detects an error condition, it uses the error code to look up the
message text.

Finding error.sql
SQLBase uses this search order to énar.sqt

1.
2.
3.
4,

Current directory
CENTURA directory on the current drive
Root directory on the current drive

Directories specified by the PATH or DPATH environment variable

If the SQLBASE environment variable is set, SQLBase lawikgin the directory to
which it points. It does not follow the search order outlined above.

3-46 sSQL Application Programming Interface Reference

Error handling

Checking the return code

Each SQL/API function returns a code that indicates the success or failure of the
function. You shouldlwayscheck the return code and continue processing
accordingly. For example:

if (rcd = sqglenc(&cur,dbname,0))

{
printf("FAILURE ON CONNECT %d\n",rcd);

exit(1);
}

else
printf("Connection Established \n");

As another example, if the most-recently executed SQL statement was not successful,
you may want to rollback the transaction, disconnect, and exit:

if (rcd = sqlcex(cur, chkupdt, 0))

{
printf("FAILED UPDATING CHECKING (TRANSACTION ROLLBACK),

rcd = %d\n",rcd);
sqlrbk(cur);
sqldis(cur);
exit(1);
}

Retrieving the return code

If, unlike the examples above, you did not check the return code when calling a
particular function, you can use thelrcd function to retrieve the return code for the
most-recent SQL/API function.

Retrieving the message text

Theerror.sqlfile contains message text for every return code. Ussdtleer function

to retrieve the error message text (without the mnemonic) associated with a return
code. Otherwise, use thglferfunction to retrieve the error message sxdthe
mnemonic associated with a return code.

In the second example, the application receives the return code into the vadable
The application could have used #ugerr function to retrieve the error message text,
and displayed it or written it to a file before disconnecting.

Retrieving the syntax error position

Thesglepofunction returns the error position within the most-recently executed SQL
statement when SQLBase detects a syntax error.

SQL Application Programming Interface Reference ~ 3-47

Chapter

3

Using the SQL/API

Retrieving the rollback flag

Thesqglrbffunction returns the rollback flag which is set to 1 after a server-initiated
rollback caused by a deadlock or system failure.

Retrieving the reason and remedy

You can use thegletxfunction to retrieve one or more of the following for a given
error code:

* Error message text
e Error reason
e Error remedy

The example programx07.cshows how to handle errors returned from SQL/API
functions.

Translating errors

You can create a file that maps SQLBase return codes to other RDBMS vendors’
return codes or to return codes that you define yourself. The file should contain lines
in this format:

X,y

wherex is a SQLBase return code founckimor.sglandy is the corresponding return
code that you want SQLBase to return. (There should be no white space after the
comma.)

Suppose, for example, that you want SQLBase to return DB2 error codes instead of
SQLBase error codes. You need to map SQLBase return codes to their equivalent
DB2 return codes. Consider the following: SQLBase returns a value of 1 to indicate
an end of fetch condition, while DB2 returns a value of 100. If you want your
application to return the value 100 instead of 1 when an end of fetch condition occurs,
specify this entry in the translation file:

1,100

When the end of fetch condition causes an error, your application must cajltéee
function to translate the return code from 1 to 100.

As another example, if a CREATE TABLE command specifies the same column
name more than once, SQLBase returns 924, but DB2 returns -612. If you want your
application to convert 924 to -612, then create this entry in the translation file:

924,-612

Your application must call thegltecfunction when an error occurs in order for the
return code to be converted from 924 to -612.

3-48 sQL Application Programming Interface Reference

Error handling

If you call thesgltecfunction and the SQLBase return code does not exist, you get a
non-zero return code meaning that the translation did not occur. If you always want
sometranslation to occur, specify an asterisk ("*") asxhalue to indicate a global
translation. You could specify a generic catch-all return code like 999 to indicate that
a system error was reported for an error code not found in the translation table.

For example, SQLBase return code 101 means that an invalid function call was made.
If DB2 has no corresponding return code, you can cause a generic value of 999 to be
returned when error 101 occurs by specifying:

*,999

When the application calkgyltec it does not find SQLBase error 101, so it returns
999.

The errorfile configuration keyword

Specify the name of the translation file with #reorfile keyword in a client'sgl.ini
file. Configure the keyword as shown below:

errorfile=filename
wherefilenameis the name of the translation file.
Read theConfigurationchapter in thdatabase Administrator's Guider more
information about this keyword.
Error handling (ex20.c)

The void function fromex20.ds called if an error occurs when you execute a SQL/
API function.

void failure ();

main ()
{
}
O void failure(p)
O char* p; /* Pointer to a string */
{
O SQLTEPO epo; [* Error position */
O if (cur) [* Is cursor connected? */
O sqlred (cur, &rcd); /* Get the error */
O sqlepo (cur, &epo); /* Get error position */
O sqldis (cur);
}
O printf ("Failure on %s rcd=%d, epo=%d\n", p, rcd,
epo);

SQL Application Programming Interface Reference ~ 3-49

Chapter 3 Using the SQL/API

O exit (1);

=

Declare the function.

2. The function has one argument which is a pointer to a character string. You set
this argument to a specific value when you call the function.

The variableeporeceives the error position in a SQL command in step 6.
4. Check to see that the cursor is still connected.

Use thesglrcdfunction to retrieve the return code for the most-recent SQL/API
function.

6. Use thesglepofunction to retrieve the error position within a SQL command.
7. Disconnect from the database.

8. Print an error message that shows the string that was passed to the error-handling
function, the return code, and the error position.

9. Call theexitfunction to terminate the program.

Errors
This section describes the following information:

* The common message files callerdor.sqlandmessage.sdhat are shared
by SQLBase client and server programs.

e The SQLBase error window.

About error.sql

All SQLBase error messages are stored in a common error message file called
error.sgl. This file must be present @l client and server computers that run
SQLBase software.

As the diagram below shows, each error message has message text, a reason, and a
remedy.

3-50 sQL Application Programming Interface Reference

Error handling

00353 EXE NSY Object <name> specified in DROP SYNONYM
is not a synonym

Reason: Attempting to execute a DROP SYNONYM
and the named synonym is not a synonym but a
table or view name.

Remedy: Modify the DROP SYNONYM statement to
use a synonym name or if you really want to
drop a table then use a DROP TABLE
statement.

The error message text line contains an error code (in this case, 00353), a mnemonic
(EXE NSY), and a message text (Not a synonym). When a program detects an error
condition, it uses the error code to look up the error message.

About message.sq|

Themessage.sdile contains prompts, confirmations, and non-error messages. This
file must be present aal client and server computers that run SQLBase software.

SQLBase uses this search order to &mtdr.sqlandmessage.sghn a client or server:
1. Current directory.

2. \SQLBASE directory on the current drive.

3. The root directory.

4. Directories specified by the PATH environment variable.

Displaying errors

SQLBase provides a window that displays the message text, reason, and remedy for a
given error code. The program looks up this informatiogriar.sql.

The error window program is installed on the client machine when you install
SQLBase client software, and is assigned an icon in the client program group or
folder.

SQL Application Programming Interface Reference 3-51

Chapter 3 Using the SQL/API

To access the error window, click on fbkerror icon. You access the following
window:

= DBError - C:A614ABETA\AERROR.SQL
F‘.I Error Humber: |18I]!i | Lookup! I l"*

I 01805 LKM THO Time out

Reazon: The transaction is waiting for a resource currently locked by +
another trangzaction. The transzaction will wait by default 2795 zeconds
unless specified otherwize.

Remedy: Determine what transaction iz locking the rezouces and +
attempt to make changes o that the wait zituation doez not occur
frequently. A COMMIT as often as possible often helps to avoid these time
out condition. To reduce the time wait period you can use the set imeout
function call [gqltio] or in SQLTalk you can SET TIMEOUT n where n ig the

To display information about a specific error, enter the error code in the Error
Number field, and clickookup!

Tokenized error messages

SQLBase returns one or more error message tokens when an error occurs and
substitutes them into an error message’s variables if yosgieght). For example, if
you incorrectly specify the directory name from which to restore a database or log
files, SQLBase displays error 5132:

Missing FROM <directory> clause
as:
Missing FROM C\DEMOBKP clause

Use this parameter with tisglgetfunction to retrieve the object name (token)
returned in an error message.

Use this parameter with tisglsetfunction to set the error token string to customize
user errors.

Creating a user-defined error

Assume a tablempwith referential integrity constraints from which someone
attempts to delete a row that contains information about a manager who still has
employees assigned to him. SQLBase would return error 383:

3-52 sQL Application Programming Interface Reference

Error handling

Cannot delete row until all the dependent rows are deleted

You can create an error message specific to this particular violation of referential
integrity by using the ALTER TABLE command and editing ¢ner.sql file:

1. Edittheerror.sqlfile to contain the new error message. With SQLPEMT, you can
set the error token string and customize the error to:

20001 xxx xxx<manager_name> cannot be removed until all
subordinates are reassigned

2. Add the new error message:

ALTER TABLE emp ADD USERERROR 20001 FOR ‘DELETE_PARENT’
OF PRIMARY KEY;

The next time someone attempts to delete a row that contains information about a
manager who still has employees assigned to him, SQLBase would return error
20001:

<manager name> cannot be removed until all subordinates are
reassigned

Your application is responsible for supplying the error token with which SQLBase
replaces the variablen@nager_nanmje

The error message token string must be a series of null-terminated strings that ends
with a double-null terminator, for example:

“first token\Osecond token\Othird token\0\0”

Returning an error

Use thesqgltem(Tokenize Error Message) to return a tokenized error message. This
function formats an error message with tokens in order to provide users with more
informational error messages.

Thesqltemfunction returns one or more of the following from déneor.sqlfile for the
specified cursor handle:

e Error message
e Error reason
» Error remedy

Each API function call returns a code. You can retrieve the most recent return code
with thesgltemfunction, and use it to look up the error message, error reason, and
error remedy.

For example, formerly, SQLBase error 175:

SQL OLC Cannot open local client workstation file

SQL Application Programming Interface Reference 3-53

Chapter 3

Using the SQL/API

Example

iS now:
SQL OLC Cannot open local client workstation file <filename>

wherefilenameis a variable that gets replaced with the name of the file that SQLBase
was unable to open.

Tokenizing error messages makes integrity error checking much more informative as
well. Instead of reporting only that a data page is corrupt or an index is bad, SQLBase
reports the table or index name too.

Non-SQLBase database servers

By default, thesqltemfunction returns the native error code and message from non-
SQLBase database servers, but does not return the error reason or remedy.

For example, if you are connected to the Informix server and you receive an error for
a table that already exists, the error returned is Informix error code 310:

An attempt was made to create a tablespace which already
exists

not SQLBase’s equivalent 338:
Table, view, or synonym <name> already exists

If you are accessing a non-SQLBase database server and have set error mapping on,
any non-SQLBase error that doesn't have a corresponding SQLBase error is mapped
to a generic error message. You can ussglienmfunction to retrieve the native error

code and message that caused the problem.

Note: The other error message handling functiauge(r, sqlfer, andsglety use a specified
return code to retrieve the corresponding error message framohesqlfile. An error message
returned by any of these functions contains the variable, not the object name; slyeime
function replaces the variable with an actual object name.

#include <sqgl.h>

char emt [SQLMEMT + 1];/* Error message token */

[* buffer */
SQLTCUR cur; [* Cursor */
SQLTRCD rcd; /* Return code */

strepy(emt, "Bob Mitchell");
if (red = sglset (cur, SQLPEMT, emt, 0))/* Set error */
[* message tokens */

{

3-54 sQL Application Programming Interface Reference

Back up and restore

printf("Failure Setting Error Message Tokens (rcd =
%d)\n", rcd);
}

Back up and restore

Recovery

You can recover from media failures and operator errors which have damaged a
databas# you make backups of a database and its log files regularly.

There are three phases to the process:

* Backup

Copying a database and its logs to a backup directory. There are two type of
backups: online and offline.

* Restore
Copying a backup of a database and its log files to a database directory.

* Recovery

Applying one or more log files to a database to bring it up-to-date. This is also
called arollforward.

There are two kinds of recovery: crash recovery and media recovery. SQLBase
performs crash recovery, and the DBA is responsible for media recovery.

Crash recovery

A database can be damaged in a number of ways such as by a power failure or an
operator error in bringing down the server. When an event like this happens, SQLBase
tries to restore the database to a consistent state by performing crash recovery
automatically when a user connects to a crashed database that has just been brought
back online. Crash recovery consists of using the transaction logs to redo any
committed transactions which had not yet been written to the database and to undo
any uncommitted transactions which were still active when the server crashed.

There are situations where SQLBase will not be able to return a database to a
consistent state such as when the transaction logs have been damaged during a media
failure.

Media recovery

Maintenance is a necessary part of a DBA's job, and involves preparing for events
such as a disk head crash, operating system crash, or a user accidentally dropping a
database object. You can recover from media failures and user errors which damage a
databasé you back up a database and its log files regularly. Making backups of your

SQL Application Programming Interface Reference ~ 3-55

Chapter 3 Using the SQL/API

database and log files from which you can restore the database is the only way you
can prevent loss of data.

How often you backup the database and its log files is up to you and depends on how
much data you can afford to lose. In general, the following are good guidelines:

» Backup the database once a week.
« Backup the transaction log files once a day.

You can minimize loss of data due to a media failure by backing up transaction logs
frequently. You should backup all logs since the last database backup so that in the
case of a media failure they can be used to recover the database up to the point of that
last log backup.

In addition, you should save the database and log files from the last several sets of
backups taken. For example, if you make a backup of the database and its logs
(snapshot) every Sunday, and make log backups every night, a backup set would
consist of the Sunday snapshot, and Monday through Saturday's log file backups.
Never rely on just one backup!

Important: Never delete transaction log files. SQLBase automatically deletes log files either
when they are backed up or when they are no longer needed for transaction rollback or crash
recovery, depending on whether the SQLPLBM parameter is on or off. A database file is useless
without its associated log files.

Online backups

An online backup is a copy of a databasibg file and its log (0g) files that you

make using an API function while the server program is running (users are connected

to the database and transactions are in progress). The online backup options include:
* sqlbss

Backs up only the database file and those log files needed to restore the
database to a consistent state. This includes the current active log file since
the sqglbsscall forces a log rollover. This command is the only backup
command which does not require LOGBACKUP to be on. If LOGBACKUP
is on, the log files left in the database directory should be backed up with a
sqlblfcall. SQLBase will then delete them automatically.

e sqlbdb
Backs up the database file. You showddrerback up a database without also
backing up the log files with it.

* sqlblf

Backs up the log files and then deletes them.

3-56 SQL Application Programming Interface Reference

Back up and restore

The advantage of an online backup is that users can access the database while the
backup is being done. This is important to sites which require the database to be up 24
hours a day.

Offline backups

An offline backup is a copy of the database file and log files that you make with an
operating system utility or command (such as COPY) after successfully bringing the
server down.

The advantage of an offline backup is that you can back up directly to archival media.
Online backup commands will not back up files to a tape drive, for example.

Before you can make an offline backup, you must shut down the server gracefully. For
details on shutting down the server, r&wapter 6 Starting and Stopping SQLBase
in theDatabase Administrator's Guide

You make an offline backup using an operating system command or utility. Below is
an example of an offline backup done using the COPY command:

+ COPY C:\CENTURA\MYDBS\MYDBS.DBS
C:\BACKUPS\MYDBS.BAK

+ COPY C:\CENTURAW*.LOG C:\BACKUPS

Follow an offline backup with sglsetcall specifying the SQLPNLB parameter to tell
SQLBase that an offline backup of one or more log files has occurred. SQLBase now
knows that these backed up log files are candidates for deletion. If you had backed up
the log files with an API function, the files would have been automatically deleted. In
the above case, the value of SQLPNLB would be 3.

You restore an offline backup in one of two ways:

» Ifthe backup consists of only a database file, restore it by copying it over the
existing damaged database file, making sure the extension is .dbs (you may
have changed it, for example, to .bkp when you backed it up), and then
connecting to the database. All changes made since the offline backup was
done will be lost.

» If the backup consists of a database file and one or more log files, use the
sqlrdbfunction to restore the database and then cafighef function to
apply the logs to bring it up-to-date. Teglrdb copies the backup to the
database subdirectory, and gggrof applies the committed and logged
changes made to the database since the offline backup of the database was
taken. If SQLBase cannot find the log files to rollforward, you can restore
them by either aqlrif call (which automatically doessalcrf) or with a copy
utility, and then call theglcrf function explicitly to apply the log files.

SQL Application Programming Interface Reference 3-57

Chapter 3 Using the SQL/API

In order for thesglrdb call to work, the name of the database backup file must be
database_namiekp.

Backing up a database and its log files

The recommended way to backup a database and its log files is watiilike
function call because it is easy and provides you with a backup from which you can
recover the database in one step.

Thesglbdbandsglblffunction calls are provided for sites with large databases who
wish to do incremental backups. Between database backupsdtimkandsqlbdh,

you should back up log files using thglblf function. For example, you could back
up the database and logs every Sunday, while on Monday through Saturday, you
could back up only the logs.

A backup directory can be on a client or server computer. Once you have backed up a
database and its log files to a directory, you can copy the backup files to archival
media and delete the backup files from the client or server disk.

Before you can ussglbdbor sqlblf, you must set log backup mode on using the
SQLPLBM parameter and tisglsetffunction. It is best to set SQLPLBM on just after
you create a database and then not change the setting.

Restoring and recovering a database and its log files

Users cannot be connected to the database during a restore and recovery. You should
deinstall a multi-user database usingdfkledfunction, perform the restore and
rollforward, and then install the database withgqknd function.

If a database becomes damaged, you can restore it from backup veitifrske
function if you created the backup with gegbssfunction. After callingsglrss no
further action is necessary because the command will copy not only the backup
database file but also the backup log files to the database subdirectory.

If you did not make the backup witiglbssor did asqglbssand want to rollforward as
much as possible, you can restore the database wisigltdé function or a file copy
utility.

To rollforward changes made after the database backup and bring the database up-to-
date, call thesglrof function:

* Roll forward through all log files available (the default). This recovers as
much of the user's work as possible.

* Roll forward to the end of the backup restored. This recovers all committed
work up to the point when the database backup was completed. This is
essentially &qlrss

3-58 sQL Application Programming Interface Reference

Back up and restore

* Roll forward to a specified date and time. This allows you to recover a
database up to a specific point in time, and in effect rolls back large "chunks"
of committed and logged work that you no longer want applied to the
database. For example, if data is erroneously entered into the database, you
would want to restore the database to the state it was in before the bad data
was entered.

You must have backed @il the database's log files and must apply them in order or
the rollforward will fail. If you are missing any of the log files, you will not be able to
continue rolling forward from the point of the last consecutive log. For example, if

you havel.log, 2.log, 4. log and5.log, but3.logis missing, you will only be able to
recover the work logged up Zolog. 4.log and5.log cannot be applied to the database.

An unbroken sequence of log files is required to recover a database backup to its most
recent state.

The rollforward operation stops if SQLBase cannot find a log file that it needs. In this
situation, you can restore the appropriate log file wihldf function call. Thesqlrlf
function copies the log files needed to recover a restored database from the backup
directory to the current log directory and applies them to the restored database. The
sqlrif function continues restoring logs until it has exhausted all the logs in the backup
directory that can be applied.

If there are more logs to be processed than can fit on disk at one time, you can call the
sqlrlf function repeatedly to process all the necessary logs.

If a log file requested is not available, you can salenrto end recovery using the
data restored up to that point.

In summary, the general steps to performing media recovery are:
1. Callsqlrdbto restore the database.
2. Callsglrofto declare where rollforward recovery is to terminate.

3. Callsglgnlandsqlrifin a loop to restore and apply any logs needed to perform the
wanted rollforward recovery. Theglignlfunction returns the name of the next log
file needed for recovery arsd)irlf restores one or more logs from the specified
backup directory.

4. Callsglenrto finish the media recovery process and prepare the database for
active use.

SQL Application Programming Interface Reference ~ 3-59

Chapter 3 Using the SQL/API

Example

The example programx17.cshows how to perform backup and restore operations.

Load and unloading databases

This section describes how to use the SQL/API to load and unload databases.

Loading

There are two ways you can load database information using the
SQL/API:

e Using thesglldpfunction.
» Creating a customized SQL/API function.

It is recommended that you use the standgftdip function whenever possible. You
should only create a custom load function when you need to manipulate the load
buffer, such as when you are retrieving database information from a different media.

Using the sqlldp function

Generally, you use thaglldpfunction (Load Operation) to load database information.
The following example shows how this function calls the LOAD command and inputs
a file name that exists online:

static char loadcmd][] =
"LOAD SQL db.unl ON SERVER";
ret = sqglldp(cur, loadcmd, 0);

Creating a customized SQL/API load function

You can also create a customized program to manipulate the load input buffer in the
client yourself. For example, you may wish to create a load program that loads
information that does not exist online, but perhaps on a tape or an archived file.

The following example creates a SQLTAPI function caltetix This is a
customized load function, which processes the load command. You can invoke a
program such as this directly from your application program.

This sample operation is similar to writing a LONG VARCHAR type column to the
database.

The exampldoadx function processes the load operation and sends it to the backend
for compilation and execution. If the load source file resides on the server, the
execution is handled completely at the server. If it is on the client, this function
handles the retrieval of load data and sends it to the server, in chunks.

3-60 sQL Application Programming Interface Reference

Load and unloading databases

This function returns a code after the load operation. If the load operation was
successful, this field will contain a zero. In all other cases, this field will contain an
error code indicating the error encountered. &trer.sqlfile contains a list of error
codes and corresponding error messages.

#include "sqgl.h"

#include "errsqgl.h"

#include "stdio.h"

#define BUFFER_SIZE 1024/* read 1k buffers */

SQLTAPI loadx(cur, cmdp, cmdl)

SQLTCUR cur; /* cursor number */
SQLTDAP cmdp; [* -> command buffer */
SQLTDAL cmdl; /* command length */
{
SQLTRCD rcd; /*return code */
SQLTDPV on_client; /* source file ON CLIENT? */
int len; /*length */
FILE *fp; [* file type */
char fname[SQLMFNL+1];/* load file name *
SQLTDAL flen; /* load file length */

char buf BUFFER_SIZE];/* load data buffer */
int no_more_data; [* flag for indicating end of data */

if ((red = sglcom(cur, cmdp, cmdl))|| /* compile the */
[* load command */

O (rcd = sqlget(cur, /* get ON CLIENT value */
(SQLTPTY)SQLPCLI,
(SQLTDAP)&on_client,&len)))
return(rcd);
}
if (on_client)
{
[* get the load file name */
O if (rcd = sqlget(cur, SQLPFNM,fname,&flen))
return(rcd);

fname[flen] = O;

[* open the local source file for obtaining the
[* load data.*/
if ((fp = fopen(fname, "r")) == NULL)
return(SQLECOF);

/* Bind the long data by number. */
if (rcd = sqlbin(cur, 1))

SQL Application Programming Interface Reference 3-61

Chapter 3 Using the SQL/API

return(rcd);

O no_more_data = 0;
while('no_more_data)
{

/* read a chunk of the file */

len = fread(buf, 1, BUFFER_SIZE, fp);

if (len != BUFFER_SIZE) /*current file */

/* reaches EOF*/
no_more_data = 1;

O if (rcd = sqglwlo(cur, buf, len))* send the */
/* data to server */
{
sqlelo(cur); /* end the write operation ¥
return(rcd);
} I* end if */
} /*end while */

if ((rcd = sqlelo(cur)) != 0)/* end the long write */

return(rcd);
fclose(fp);
if ((rcd = sqlexe(cur)) != 0)/* execute the load */
return(rcd);
} /*end if */
else
{
O if (rcd = sqglexe(cur)) [* execute the load */
return(rcd);
} /*end else */
return(rcd = 0); /*success */
} /* end function */

1. Thesqglgetfunction returns the value of the ON CLIENT/ON SERVER clause to
the LOAD command. The default value is ON CLIENT.

2. Source file is on the client. The code reads the load data and sends it to the
backend (SERVER). The load data is sent to the server in a way similar to the
inserting of LONG VARCHAR value.

3. This code segment reads chunks of unloaded data from the load file, and sends it
to the server, using treglwlofunction call until there is no more data to send.

3-62 sQL Application Programming Interface Reference

Load and unloading databases

Unloading

4, Some data was read from load file. The code sends this data over to the server for
processing.

5. Thesqlexefor the load file on server case executes the load command.

There are two ways you can unload database information using the
SQL/API:

* Using thesglunlfunction.
e Creating a customized SQL/API function.

It is recommended that you use the standgtdnifunction whenever possible. You
should only create a custom load function when you need to manipulate the unload
buffer in the client, such as when you need to unload information to an archive.

Using the sqlunl function

Generally, you use theglunlfunction (Unload) to unload database information. The
following example calls the UNLOAD command and inputs a file name that exists
online:

static char unlemd[] =
"UNLOAD COMPRESS DATA SQL db.unl ALL ON SERVER ;";
ret = sglunl(cur, unlcmd, 0);

Creating a customized unload function

The following example creates a SQLTAPI function callatbadx This is a
customized unload function, which processes the UNLOAD command. You can
invoke a program such as this directly from your application program.

This function processes the unload command and sends it to the backend for
compilation and execution. If the unload file destination is on the server, the execution
is handled completely at the server. If it is on the client, this function retrieve the
unload data from the server and writes it to the destination file.

#include "sqgl.h"

#include "stdio.h"

#include "errsqgl.h"

#define BUFFER_SIZE 1024/* read 1k buffers */

SQLTAPI unloadx (cur, cmdp, cmdl)

SQLTCUR cur; /* cursor number */
SQLTDAP cmdp; [* -> command buffer */
SQLTDAL cmdl; /* command length */

{

SQL Application Programming Interface Reference 3-63

Chapter 3 Using the SQL/API

SQLTDPVon_client; /* ON CLIENT flag */
int len; /* length indicator */

char fname[SQLMFNL+1]; [* unload file name*/
SQLTDALflen; [* file name length*/
SQLTRCDrcd; [* return code */
FILE *fp; [* unload file pointer*/

char buf[BUFFER_SIZE]; /* unload data buffer*/

O if ((red = sglcom(cur, cmdp, cmdl))|| /* compile unload
*/
/* command */
/* get ON CLIENT value */
(rcd = sqlget(cur, (SQLTPTY)SQLPCLI,
(SQLTDAP)&on_client,&len)))
{
return(rcd); /*if error, reportit */

}
if (on_client)

{
/* get the unload file name */
O if (rcd = sqlget(cur, SQLPFNM,(SQLTDAP)fname,
(SQLTDAL*)(&flen)))
return(rcd); [* if error, report it */
fname[flen] = O; [* null terminate the */
/* the filename */

/* Create and open the unload file. */
if ((fp = fopen(fname, "w")) == NULL)
return(SQLECOF);/* error: cannot create file
*/

/* execute the unload command */
if (rcd = sqglexe(cur))
return(rcd);

/* Retrieve the unload data. */
while(!(rcd = sqlfet(cur)))/* while not end of */
[* fetch */
{
while(1)
{
O if (rcd = sqlrlo(cur, (SQLTSLC)1, buf,
(SQLTDAL)BUFFER_SIZE, &len))
return(rcd);/* if error report it */

O if len) /* any data retrieved ? */

3-64 sQL Application Programming Interface Reference

Load and unloading databases

{
fwrite(buf, 1, len, fp);/* write * /
/ *data into unload file */
}
else
break; /* reached the end of data */
} /* end while */
if (rcd = sqlelo(cur))/* end of */
/ * long for this fetch */
return(rcd);
} [* end while */
if (rcd > 1) [* if not end of fetch */
return(rcd); [* report error */
fclose(fp); [* close the unload file*/
} /* end if */
else /* unload is on the server*/
O if (rcd = sqlexe(cur))/* just execute the
/* unload command */
return(rcd);
}
return(rcd = 0); [* return success */
}

This segment compiles the unload command and gets the information about
whether the unload happens on the client or on the server.

Destination file is on the client. The code retrieves the unload data in a way similar
to the retrieving of a LONG VARCHAR value. The retrieved data is stored in the
destination file on client.

The unload data is fetched and written to the unload file until end of data is
reached.

The unload file is on the server, so the unload operation is handled completely on
the server.

SQL Application Programming Interface Reference ~ 3-65

Chapter 3 Using the SQL/API

Microsoft Windows applications

Thesqlini function initializes the library used for Microsoft Windows and sets up a
callback function so that control can pass to Windows while a SQL/API function is
executing. You can successfully yield to other tasks or even continue processing
within the current task as long as you avoid any interaction with the SQL/API while
the application is yielding.

Call thesglini function before the firgglcnc Call thesgldonfunction before exiting
a Microsoft Windows application.

Define LINT_ARGS in your program before other include files.

You must declarall pointers used as arguments for SQL/API functions as far
pointers. This happens automatically when you inchgldn

The example programx21.cshows how to use SQL/API functions in a Microsoft
Windows program.

3-66 SQL Application Programming Interface Reference

Chapter 4

SQL/API Functions by
Category

This chapter groups the SQL/API functions by functional category, and provides brief
descriptions of the functions.

SQL Application Programming Interface Reference 4-1

Chapter 4 SQL/API Functions by Category

Function categories

This chapter identifies the following SQL/API categories in the SQL/API, and lists
the functions in each one.

» Backup and restore functions

* Binding functions

» Bulk execute mode functions

e Compiling and executing functions

* Connecting and disconnecting functions
» Database administration functions

e Environment control functions

* Error handling functions

* Load and Unload functions

» LONG VARCHAR operation functions

* Query functions

» Restriction mode and result set mode functions
» Server file and directory access functions
* Server security functions

e SQLBase internal number functions

e Stored command/procedure functions

» Transaction control functions

» Miscellaneous functions

Backup and restore

Function Description
sqlbdb Backup DataBase
sqlblf Backup Log Files
sqlbss Backup SnapShot
sqlcrf Continue RollForward
sqlenr ENd Rollforward
sqlgnl Get Next Log

4-2 SQL Application Programming Interface Reference

Function categories

Binding

Bulk execute mode

Function Description
sqlrdb Restore DataBase
sqlrel RELease log
sqlrlf Restore Log Files
sqlrof ROIlIForward
sqlrss Restore SnapShot
Function Description
sqlbld Bind Long Data by name
sqlbln Bind Long data by Number
sqlbna Bind data by NAme (with null indicator)
sglbnd BiNd Data by name
sqlbnn BiNd data by Number
sqlbnu Bind data by NUmber (with null
indicator)
sqlchbv Clear Bind Variables
sqlnbv Number of Bind Variables
Function Description
sqlbbr Bulk execute Return
sqlbef Bulk Execute Flush
sqlber Bulk Execute Return
sqlblk BuLK insert mode

SQL Application Programming Interface Reference

4-3

Chapter 4 SQL/API Functions by Category

Compiling and executing

Function Description
sqlcex Compile and EXecute
sglcom COMpile
sqlexe EXEcute

Connecting and disconnecting

Function Description
sqglcch Create Connection Handle
sglene CoNnect Cursor
sqlenr Connect with No Recovery
sqldch Destroy Connection Handle
sqldis DISconnect
sqldon DONe

Database administration

Function Description
sqlcdr Cancel Database Request
sqlcre CREate database
sqgldbn Database Names
sqlded DEinstall Database
sqldel DELete database
sqldir DIRectory of databases
sqlind INstall Database
sqlldp LoaD oPeration
sqlsdn ShutDowN database
sqlsdx ShutDown database eXtended

4-4 SQL Application Programming Interface Reference

Function categories

Environment control

Error handling

Function Description
sqlunl UNLOAD Command

Function Description
sqglgbc Get Backend Cursor
sqlget GET database parameter
sqlgsi Get Server Information
sqglims Input Message Size
sqgloms Output Message Size
sqlrsi Reset Statistical Information
sqlscp Set Cache Pages
sqlset SET database parameter
sqlsta STAtistics

Function Description
sqlepo Error POsition
sqglerr ERRor message
sgletx Error message TeXt
sqlfer Full ERror message
sqlrbf Roll Back Flag
sqlrcd Return CoDe
sqltec Translate Error Code
sgltem Tokenize Error Message
sqlxer eXternal ERror

SQL Application Programming Interface Reference 4-5

Chapter 4 SQL/API Functions by Category

Load and Unload operations

Function Description
sqlldp Load operation
sqlunl Unload operation

LONG VARCHAR operations

Function Description
sqlelo End Long Operation
sqlgls Get Long Size
sqllsk Long SeeK
sqlrlo Read LOng
sglwlo Write LONng

Queries

Function Description
sqldes DEScribe items in a SELECT
sqldsc DeSCribe item of SELECT
sqlfet FETch next row from result set
sqlfgn Fully Qualified column Name
sqlgdi Get Describe Information
sqlgfi Get Fetch Information
sqinrr Number of Rows in Result set
sqlnsi Number of SELECT Items
sqlssb Set Select Buffer

4-6 SQL Application Programming Interface Reference

Function categories

Restriction mode and result set mode

Function

Description

sqlcrs

Close Result Set

sqldrs

Drop Result Set

sqlprs

Position in Result Set

sqlrrs

Restart ReStriction mode and Result S
mode

sqlspr

StoP Restriction mode

sqlsrs

Start ReStriction mode and Result Set
mode

sqlstr

STart Restriction mode

sqlurs

Undo Result Set

Server file and directory access

Function Description
sqgldox Directory Open eXtended
sqldrc DiRectory Close
sqldro DiRectory Open
sqldrr DiRectory Read
sqlfgt File GeT
sqlfpt File Put
sqlmcl reMote CLose server file
sqimdl reMote Delete server file or directory
sqlmop reMote OPen server file
sqlmrd reMote ReaD server file
sqlmsk reMote SeeK server file
sqlmwr reMote WRite server file

SQL Application Programming Interface Reference

4-7

Chapter 4 SQL/API Functions by Category

Server security

Function

Description

sqlcsv

Connect to SerVer

sqgldsv

Disconnect from SerVer

sqlsab

Server ABort process

sqlsds

ShutDown Server

sqlstm

Server TerMinate

SQLBase internal numbers

Function

Description

sqlxad

eXtended ADd

sqlxcn

eXtended Character to Number

sqlxda

eXtended Date Add

sqixdp

eXtended convert Date to Picture

sqlxdv

eXtended DiVide

sqlxml

eXtended MulLtiply

sqlxnp

eXtended convert Numeric to Picture

sqlxpd

eXtended convert Picture to Date

sqlxsb

eXtended SuBtract

Stored commands and procedures

Function

Description

sqldst

Drop STored SQL command/procedure

sqlret

RETrieve compiled SQL command/
procedure

sqlsto

STOre compiled SQL command/
procedure

4-8 SQL Application Programming Interface Reference

Function categories

Transaction control

Miscellaneous

Function Description
sqlecmt CoMmiT
sqlrbk RollBack

Function Description
sqlclf Change process activity Log File
sqlcpy CoPY
sqlcty Command TYpe
sqldii Describe Into Variable
sqlexp EXecution Plan
sqlgbi Get Backend Information
sqglgnr Get Number of Rows
sqlini INItialize (Microsoft Windows)
sqllab LABel information
sqlnii Get number of Into Variables
sqlrow number of ROWs
sqlscl Set CLient name
sqlscn Set Cursor Name
sqlsil Set Isolation Level
sqltio Time Out

SQL Application Programming Interface Reference 4-9

Chapter 5

SQL/API Function
Reference

This chapter is organized alphabetically by SQL/API function name, and contains the
syntax, a detailed description, and an example for each function.

SQL Application Programming Interface Reference 5-1

Chapter 5 SQL/API Function Reference

sqlbbr - Bulk execute Return

Syntax
#include <sql.h>
SQLTAPI sqlbbr(cur, rcd, errbuf, buflen, errrow, rbf, errseq)
SQLTCUR cur; /*Cursor handle */
SQLTXER PTR rcd; /* Return code */
SQLTDAP err buf; /*Ptrto receiving buffer */
SQLTDAL PTR buflen;/* Length of receiving buffer */
SQLTBIR PTR errrow;/* Error row number */
SQLTRBF PTR rbf; /*Roll back flag */
SQLTBIR errseq;/* Error sequence number */
Description

This function returns the error return code of the previous bulk execute operation that
took place against a non-SQLBase database server.

This function is likesglber, but it also returns the error message text from the non-
SQLBase database server.

You can also cakglbbrwhen processing against SQLBase databases. This means
that you can ussglbbrfor database-independent applications.

In bulk execute mode, several rows are processed in one sglete If sglexe
returns an error, ussg|lbbrto find the row that caused the error. Rows that are
processed are numbered consecutively. When yosglalbr, you specify the error
sequence numbeetfseq andsglbbrreturns the row number @rrrow.

For example, if you INSERT 6 rows, they are numbered 1, 2, 3, 4, 5, and 6. If the
rows numbered 2, 4, and 6 caused an error, you wouldgthbrand specify 1 in
errsegandsqlbbrwould return 2 irerrrow (meaning row 2 caused an error).
Continue to calsglbbr, incrementing the number érrsegeach time. Whenglbbr
returns O irrcd, there are no more errors. This is shown in the table below.

rcd errrow errseq
Firstsqlbbrcall - 2 1
Secondsqlbbrcall - 4 2
Third sqglbbrcall - 6 3

5-2 sSQL Application Programming Interface Reference

sqlbbr - Bulk execute Return

Fourthsglbbrcall 0 - 4
Parameters

cur
The cursor handle associated with this function.

rcd
A pointer to the variable where this function returns the status code for the row
that caused the error.
Some database servers may return zero value when the operation was not
successful, so you should also check to seatibw is greater than zero.

errbuf
A pointer to the buffer where this function copies the error message text.

buflen
A pointer to the variable where this function returns the number of bytes in the
retrieved error message text.

errrow
A pointer to the variable where this function returns the row number that was in
error.

rbf
A pointer to the variable where this function returns the rollback status indicator:

0 No Rollback
1 Rolled back
errseq

The sequence number of the error to retrieve. Set the errseq parameter to 1 to get
the first error, 2 to get the second error, and so on. If the errseq parameter exceeds
the number of error messages returned for the last bulk execute, rcd is set to zero
to show there are no more error messages.

SQL Application Programming Interface Reference 5-3

Chapter

SQL/API Function Reference

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Related functions

sqlbef sqlber sqlblk

sqlbdb - Backup DataBase

Syntax

Description

include <sql.h>

SQLTAPI sglbdb (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */

SQLTDAP dbname; /* Database name */

SQLTDAL dbnamel; /* Length of database name */

SQLTFNP bkpdir; [* Backup directory */

SQLTFNL bkpdirl; /* Backup directory length */

SQLTBOO local; /* True: backup directory on local (client)
node */

SQLTBOO over; [* True: overwrite existing file */

This function copies a database to the specified directory. The database is backed up
to a file with the name:

database-namBKP

If this function finds a control file in the backup directory, the function performs a
segmented backup based on the contents of the control file. For details, read the
Database Administrator’s Guide

Transactions that are committed when the backup starts are included in the backup.
Active transactions are not included.

Before you can ussglbdb,you must turn on log backup mode using the SQLPLBM
parameter and theglsetfunction. You only need to do this once for a database (such
as just after it has been created), and the setting stays on until you turn it off.

5-4 sQL Application Programming Interface Reference

sglbdb - Backup DataBase

Once a database file is backed up to a directory, you can transfer the backup to
archival media; then delete the backup files from the hard disk.

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel
The length of the string pointed to Bpnamelf the string pointed to bgbname
is null-terminated, specify zero and the system will compute the length.
bkpdir

A pointer to the string that contains the backup directory name.
bkpdirl

The length of the string pointed to bigpdir. If the string pointed to bigkpdiris
null-terminated, specify 0 and the system will compute the length.

local

Destination of backup:

0 Backup directory on server.

1 Backup directory on local (client) node.

over

Overwrite indicator:

0 Do not overwrite existing file.

1 Overwrite existing file.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQL Application Programming Interface Reference 55

Chapter 5

SQL/API Function Reference

Example

SQLTSVH shandle;

char* svrname;

char* password;

SQLTDPV Ibmset;

SQLTENP bkpdir;

SQLTFNL bkpdirl;

SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;
SQLTCUR curl,;

static char dbnamel[] = "omed";
strcpy(svrname,”"SERVERL1");
password = 0;

bkpdir = "\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO OMED ¥

if (red = sglenc(&curl,dbnamel,0))
apierr("SQLCNC");

else
printf("Connected to OMED \n");

/* SET LOGBACKUP MODE ON */
Ibmset=1;
if (red = sqlset(curl,SQLPLBM,(ubytelp)&lbmset,0))
apierr("SQLSET");
else
printf("Logbackupmode is set to %d \n", lomset);
/* MAKE BACKUP DIRECTORIES */

system("mkdir \\backup");
system("mkdir \\backup\\omed");

/* CONNECT TO SERVER?*/

5-6 SQL Application Programming Interface Reference

sglbdb - Backup DataBase

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");
/* BACKUP DATABASE */

if (red =

sglbdb (shandle,dbnamel,0,bkpdir,bkpdirl,local,over))
apierr("SQLBDB");

else
printf("Backed Up Database \n");

/* RELEASE LOG *

if (red = sqlrel(curl))
apierr("SQLREL");

else
printf("Released Logs \n");

/* BACKUP LOGS */

if (red =
sqlblf(shandle,dbname1l,0,bkpdir,bkpdirl,local,over))
apierr("SQLBLF");
else
printf("Backed Up Logs \n");

Related functions

sqlblf sqlenr sqlrif
sqlbss sqlgnl sqlrof
sqlcrf sqlrdb sqlrss
sqlcsv sqlrel

SQL Application Programming Interface Reference 5-7

Chapter 5 SQL/API Function Reference

sglbef - Bulk Execute Flush

Syntax
#include <sql.h>
SQLTAPI sqlbef (cur)
SQLTCUR cur; /* Cursor handle */
Description
This function flushes the data (if any) in the bulk execute buffer to the server for
processing.
Parameters
cur

The cursor handle associated with this function.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
/* Set bulk execute mode on */

if (sqlblk(cur, 1))
goto cleanup;

/* Compile the insert statement */

if (sglcom(cur, "insert into test values (:1)"))
goto cleanup;

/* Bind the data and insert the row */
for (i=0;i <N; i++)
if (sglbnn(cur, 1, &datali], 0, 0, SQLPBUF))

goto cleanup;
if (sglexe(cur))

5-8 sSQL Application Programming Interface Reference

sqlbef - Bulk Execute Flush

/* Error occurred on the execution of the bulk execute,
retrieve the error messages by calling sqlber() */

for (j=1;; j++)

[* Retrieve the next error message */

if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;

[* Break out of loop, if no more error messages */

if (Ircd)
break;

[* Report the error */

printf("error on row #%d, rcd = %d0, rownum, rcd);

}
}
}
/* Flush out the unprocessed bulk execute buffer to the server
*/
if (sqlbef (cur))
{
for (j=1;; j++)
if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;
if (rcd)
break;
printf("error on row #%d, rcd = %d0, rownum, rcd);
}
}

/* Reset bulk execute mode */

if (sqlblk(cur, 0))
goto cleanup;

SQL Application Programming Interface Reference 5-9

Chapter 5 SQL/API Function Reference

Related functions
sqlbbr sqlber sqlblk

sglber - Bulk Execute Return

Syntax
#include <sqgl.h>
SQLTAPI sqglber (cur, rcd, errrow, rbf, errseq)
SQLTCUR cur; /* Cursor handle */
SQLTRCD PTR rcd; /* Return code */
SQLTBIR PTR errrow; /* Error row number */
SQLTRBF PTR rbf; /* Roll back flag */
SQLTBIR errseq; /* Error sequence number */
Description

This function returns the error return code for the previous bulk execute operation.

In bulk execute mode, several rows are processed in one sqleie If sglexe
returns an error, ussglberto find the row that caused the error. Rows that are
processed are numbered consecutively. When yosglakr you specify the error
sequence numbeetfseq andsglberreturns the row number @rrrow.

For example, if you INSERT 6 rows, they are numbered 1, 2, 3, 4, 5, and 6. If the
rows numbered 2, 4, and 6 caused an error, you wouldgth#rand specify 1 in
errsegandsqlberwould return 2 irerrrow (meaning row 2 caused an error).
Continue to calsglber incrementing the number arrseqeach time. Whesglber
returns O irrcd, there are no more errors. This is shown in the table below.

rcd errrow errseq
Firstsqlbercall - 2 1
Secondsqlbercall - 4 2
Third sqglbercall - 6 3
Fourthsglbercall 0 - 4

5-10 sQL Application Programming Interface Reference

sqlber - Bulk Execute Return

Parameters
cur
The cursor handle associated with this function.
rcd

A pointer to the variable where this function returns the status code for the row
that caused the error.

errrow

A pointer to the variable where this function returns the row number that was in
error.

rbf

A pointer to the variable where this function returns the rollback status indicator:

0 No Rollback

1 Rolled back

errseq

The sequence number of the error to retrieve. Sefrthegparameter to 1 to get
the first error, 2 to get the second error, and so on. #rilsegparameter exceeds
the number of error messages returned for the last bulk exetli® set to zero
to show there are no more error messages.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

The following example shows how to use #iygberfunction when errors happen
during a bulk execute operation.

/* Set bulk execute mode on */

if (sqlblk(cur, 1))
goto cleanup;

/* Compile the insert statement */

SQL Application Programming Interface Reference 5-11

Chapter 5 SQL/API Function Reference

if (sglcom(cur, "insert into test values (:1)"))
goto cleanup;

/* Binding the data and insert the row */

for (i=0;i <N; i++)
{
if (sqlbnn(cur, 1, &datali], 0, 0, SQLPBUF))
goto cleanup;
if (sglexe(cur))

{

/* Error occurred on the execution of the bulk execute,
retrieve the error messages by calling sqlber() */

for (j=1;;j++)

[* Retrieve the next error message */

if (sqglber (cur, &rcd, &ownum, &rbf, j))
goto cleanup;
[* Break out of loop, if no more error messages */

if (Ircd)
break;
/* Report the error */

printf(“error on row #%d, rcd = %d0, rownum, rcd);
}
}
}

/* Flush out the unprocessed bulk execute buffer to the
server */

if (sglbef(cur))
{

for(j =1, ;j++)
{
if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;
if (Ircd)
break;
printf("error on row #%d, rcd = %d0, rownum, rcd);
}
}

5-12 sQL Application Programming Interface Reference

sqglbld - Bind Long Data by name

/* Reset bulk execute mode */

if (sqlblk(cur, 0))
goto cleanup;

Related functions
sqlbbr sqlbef sqlblk

sqlbld - Bind Long Data by name

Syntax
#include <sqgl.h>
SQLTAPI sqlbld (cur, bnp, bnl)
SQLTCUR cur; [* Cursor handle */
SQLTBNP bnp; /* Name of variable */
SQLTBNL bnl; /* Length of variable name */
Description
This function associates an alphanumeric bind variable (sucbrasentsjor a
LONG VARCHAR column with a variable defined in the program.
The function is called after theslcomfunction and before theglwlo function. Note
thatsqglwlo (notsqlbld) specifies the variable that stores the data.
Only one LONG VARCHAR column can be processed at a time. The complete
sequence of functions which bind, write, and end the operation must be completed
before the next bind for a LONG VARCHAR.
Parameters

cur
The cursor handle associated with this function.
bnp

A pointer to a string that contains the bind variable name.

SQL Application Programming Interface Reference 5-13

Chapter 5 SQL/API Function Reference

bnl

The length of the string pointed to bgp. If the string pointed to bignpis null-
terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

static char ins[] = /* sqgl statement */
"insert into mytable values (:id, :comm)";
short ret; [* return code */

ret= sqlbld (cur, "comm", 0);

Related functions

sqlbln sqlcbv sqlrlo
sqlbna sglelo sglwlo
sqlbnu sqlnbv

sqlblf - Backup Log Files

Syntax

#include <sgl.h>

SQLTAPI sqlblf (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */

SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Length of database name */
SQLTFENP bkpdir; /* Backup directory */
SQLTFNL bkpdirl; /* Backup directory length */

SQLTBOO local; [* True: backup directory on local
(client) node */
SQLTBOO over; [* True: overwrite existing file */

5-14 sQL Application Programming Interface Reference

sqlblf - Backup Log Files

Description

This function copies unpinned log files to the specified directory. When this
command completes successfully, SQLBase deletes the log files that were backed up
from the current log directory.

Before you can useqlblf,you must set log backup mode to ON using the SQLPLBM
parameter and theglsetfunction. You only need to do this once for a database (such
as just after it has been created), and the setting stays on until you turn it off.

Once the log files are backed up to a directory, the backup files can be transferred to
archival media and then deleted from the hard disk.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to Bgnamelf the string pointed to bgtbname
is null-terminated, specify zero and the system will compute the length.

bkpdir
A pointer to the string that contains the backup directory name.
bkpdirl

The length of the string pointed to bigpdir. If the string pointed to bigkpdiris
null-terminated, specify zero and the system will compute the length.

local

Destination of backup:

0 Backup directory on server.

1 Backup directory on local (client) node.

SQL Application Programming Interface Reference ~ 5-15

Chapter 5 SQL/API Function Reference

over

Overwrite indicator:

0 Do not overwrite existing file.

1 Overwrite existing file.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTSVH shandle;
char* svrname;
char* password;
SQLTDPV Ibmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;
SQLTCUR curl,

static char dbnamel[] = "omed";
strepy(svrname,”"SERVER1");
password = 0;

bkpdir = "\BACKUPW\OMED";
bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO OMED ¥

if (red = sglenc(&curl,dbnamel,0))
apierr("SQLCNC");

else
printf("Connected to OMED \n");

/* SET LOGBACKUP MODE ON */

5-16 SQL Application Programming Interface Reference

sqlblf - Backup Log Files

Ibmset=1;

if (rcd = sqlset(curl,SQLPLBM,(ubytelp)&lbmset,0))
apierr("SQLSET");

else
printf("Logbackupmode is set to %d \n", lomset);

/* MAKE BACKUP DIRECTORIES */

system("mkdir \\backup");
system("mkdir \\backup\\omed");

/* CONNECT TO SERVER */

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");
/* BACKUP DATABASE */

if (red =
sqglbdb(shandle,dbname1,0,bkpdir,bkpdirl,local,over))
apierr("SQLBDB");
else
printf("Backed Up Database \n");

/* RELEASE LOG */

if (red = sqlrel(curl))
apierr("SQLREL");

else
printf("Released Logs \n");

/* BACKUP LOGS */

if (red =

sqlblf (shandle,dbnamel,0,bkpdir,bkpdirl,local,over))
apierr("SQLBLF");

else
printf("Backed Up Logs \n");

Related functions

sqlbdb sglenr sqlrif

sqlbss sqlgnl sqlrof
sqlcrf sqlrdb sqlrss
sglcsv sqlrel

SQL Application Programming Interface Reference ~ 5-17

Chapter 5 SQL/API Function Reference

sqlblk - BULK execute

Syntax

#include <sql.h>
SQLTAPI sqlblk (cur, blkflg)

SQLTCUR cur; /* Cursor handle */
SQLTFLG bikflg; /* 0= off; 1=o0n*/

Description

This function turns on bulk execute mode.

In bulk execute mode, rows are buffered so that many rows can be sent to the server in
one message. This improves the performance of bulk operations on a table,
particularly across a network.

The number of rows per message depends upon the size of the output message buffer
which can be set with tregjlomsfunction.

After performing the operations, use gggbeffunction to physically complete the
INSERT, UPDATE, or DELETE.

You can use the bulk execute feature with chained commands if they do not contain
SELECT commands.

The bulk execute featummnnotbe turned on at the same time that the autocommit
feature is turned on.

Bulk execute mode is a cursor-specific setting.

Parameters
cur
The cursor handle associated with this function.
blkflg

Bulk execute mode setting:

0 Off

1 On

5-18 sQL Application Programming Interface Reference

sqglblk - BuLK execute

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

/* Set bulk execute mode on */

if (sqgblk (cur, 1))
goto cleanup;

/* Compile the insert statement */

if (sglcom(cur, "insert into test values (:1)"))
goto cleanup;

/* Binding the data and insert the row */
for (i=0;i <N; i++)
if (sqlbnn(cur, 1, &data]i], 0, 0, SQLPBUF))

goto cleanup;
if (sglexe(cur))

/* Error occurred on the execution of the bulk execute,
retrieve the error messages by calling sqglber() */

for (j=1;; j++)
{

/* Retrieve the next error message*/

if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;

[* Break out of loop, if no more error messages*/

if ('rcd)
break;

[* Report the error */

printf("error on row #%d, rcd = %d0, rownum, rcd);

}

SQL Application Programming Interface Reference 5-19

Chapter 5 SQL/API Function Reference

}

/* Flush out the unprocessed bulk execute buffer to the
server*/

if (sqlbef(cur))
for(j=1;;j++)

if (sqlber(cur, &rcd, &rownum, &rbf, j))
goto cleanup;
if (Ircd)
break;
printf("error on row #%d, rcd = %d0, rownum, rcd);

}
}

/* Reset bulk execute mode */
if (sqglblk (cur, 0))

goto cleanup;

Related functions

sqlbbr sqlber sgloms
sqlbef

sglbin - Bind Long data by Number

Syntax
#include <sqgl.h>
SQLTAPI sqlbln (cur, bnn);
SQLTCUR cur; /* Cursor handle */
SQLTBNN bnn; /*Bind variable number */
Description

This function associates a numeric bind variable (suc®)dsr a LONG VARCHAR
column with a variable defined in the program.

5-20 sQL Application Programming Interface Reference

sqglbln - Bind Long data by Number

The function is called after ttegjlcomfunction and before theglwlo function. Note
thatsqglwlo (notsqlbln) specifies the variable that stores the data.

Only one LONG VARCHAR column can be processed at a time. The sequence of
binding, writing, and ending the operation must be completed before the next bind for
a LONG VARCHAR.

Parameters
cur
The cursor handle associated with this function.
bnn

The number of the bind variable in the SQL command. Bind variable numbers
must be unique in SQL commands.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

static char ins[] = "insert into mytable values (:1, :2)";
short ret; /* return code */

ret= sqglbin (cur, 2);

Related functions

sqlbld sqlcbv sqlrlo
sqlbna sglelo sqlwlo
sqlbnu sqlnbv

SQL Application Programming Interface Reference 5-21

Chapter 5

SQL/API Function Reference

sglbna - Bind data by NAme (with null indicator)

Syntax

Description

Parameters

#include <sql.h>
SQLTAPI sqglbna (cur, bnp, bnl, dap, dal, sca, pdt, nli);

SQLTCUR cur; /* Cursor handle *

SQLTBNP bnp; /* Name of bind variable */
SQLTBNL bnl; /* Length of bind variable name */
SQLTDAP dap; /* Bind data buffer */

SQLTDAL dal; /*Bind data length */

SQLTSCA sca; [* Scale of packed decimal data */
SQLTPDT pdt; /* Bind program data type */
SQLTNUL nli /* Null indicator */

This function associates an alphanumeric bind variable (sucbrasnentsfor a
column with a variable defined in the program.

Thesglbnafunction is identical teqlbndwith one exceptiorsglbnahas an

additional argument for the null indicator. This function is used with SQLNetwork
routers and gateways to bind null values for non-SQLBase databases. You can use
this function with SQLBase databases, but SQLBase ignoredi tugument.

Call this function aftesglcomand beforesglexe

cur
The cursor handle associated with this function.
bnp

A pointer to the string that contains the bind variable name. Bind variable names
must be unique in SQL commands.

bnl

The length of the string pointed to byip If the string pointed to bignpis null-
terminated, specify zero and the system will compute the length.

5-22 sQL Application Programming Interface Reference

sglbna - Bind data by NAme (with null indicator)

dap

A pointer to the variable that will be associated to the bind variable.
dal

The length of the value pointed to 8gp.

If the value pointed to bgtapis a stringand null-terminated, specify zero and the
system will compute the length.

In all other cases, a calculated length of zero or a specified length of zero causes
the column to contain a null value.

Sca

The scale (humber of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-decimal
data type, specify zero.

pdt

The program data type of the program variable being bound. Data is converted to
the program data type if the SQL data is compatible.

The program data types are shown below. These are defiagbhin

Program Data Type Description
SQLPBUF Character buffer
SQLPDAT Internal datetime
SQLPDOU Double
SQLPDTE Date only
SQLPEBC EBCDIC buffer
SQLPFLT Float
SQLPLON Long text string
SQLPLBI Long binary buffer
SQLPLVR Char/long varchar >254
SQLPNBU Numeric buffer
SQLPNST Numeric string
SQLPNUM Internal numeric

SQL Application Programming Interface Reference 5-23

Chapter 5 SQL/API Function Reference

Program Data Type Description
SQLPSCH Character
SQLPSIN Integer
SQLPSLO Long
SQLPSPD Signed packed decimal
SQLPSSH Short
SQLPSTR String (null-terminated)
SQLPTIM Time only
SQLPUCH Unsigned character

nli

Null indicator. Before callingglbna set this argument to indicate whether or not
the value being bound is null:

-1 The data being bound is null. The SQLNetwork router or gateway
will generate the native null character for the database server.

0 The data being bound is not null.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Related functions

sqlbld sqlbnn sqlcbv
sqlbin sqlbnu sqlnbv
sqlbnd

5-24 sQL Application Programming Interface Reference

sglbnd - BiNd Data by name

sqglbnd - BiNd Data by name

Syntax
#include <sql.h>
SQLTAPI sqglbnd (cur, bnp, bnl, dap, dal, sca, pdt);
SQLTCUR cur; /* Cursor handle */
SQLTBNP bnp; /* Name of bind variable */
SQLTBNL bnl; /* Length of bind variable name */
SQLTDAP dap; /* Bind data buffer */
SQLTDAL dal; /* Bind data length */
SQLTSCA sca; [* Scale of packed decimal data */
SQLTPDT pdt; /* Bind program data type */
Description
This function associates an alphanumeric bind variable (sucbrasnentsfor a
column with a variable defined in the program.
Call this function aftesqlcomand beforesglexe
Parameters

cur
The cursor handle associated with this function.
bnp

A pointer to the string that contains the bind variable name. Bind variable names
must be unique in SQL commands.

bnl

The length of the string pointed to byp If the string pointed to bignpis null-
terminated, specify zero and the system will compute the length.

dap

A pointer to the variable that will be associated to the bind variable.
dal

The length of the value pointed to Bgp.

SQL Application Programming Interface Reference 5-25

Chapter 5 SQL/API Function Reference

If the value pointed to bgapis a stringandnull-terminated, specify zero and the
system will compute the length.

In all other cases, a calculated length of zero or a specified length of zero causes
the column to contain a null value.

Sca

The scale (humber of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-decimal
data type, specify zero.

pdt

The program data type of the program variable being bound. Data is converted to
the program data type if the SQL data is compatible.

The program data types are shown below. These are defiagbhin

Program Data Type Description
SQLPBUF Character buffer
SQLPDAT Internal datetime
SQLPDOU Double
SQLPDTE Date only
SQLPEBC EBCDIC buffer
SQLPFLT Float
SQLPLON Long text string
SQLPLBI Long binary buffer
SQLPLVR Char/long varchar >254
SQLPNBU Numeric buffer
SQLPNST Numeric string
SQLPNUM Internal numeric
SQLPSCH Character
SQLPSIN Integer
SQLPSLO Long
SQLPSPD Signed packed decimal

5-26 SQL Application Programming Interface Reference

sglbnd - BiNd Data by name

Return value

Program Data Type Description
SQLPSSH Short
SQLPSTR String (null-terminated)
SQLPTIM Time only
SQLPUCH Unsigned character

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

static char insitem = /* SQL insert statement */
"insert into item values (iitem, :name)";

int item; /* item number */
char name[25]; /*item name */
short ret; /* return code */

/* Bind integer data */
ret = sglbnd(cur,"item",0,&item,sizeof(item),0,SQLPUIN);
/* Use defaults for pdt and bnl */

ret= sqlbnd (cur,"name",0,name,25,0,SQLPBUF);

Related functions

sqlbld sqlbnn sqlcbv
sqlbin sqlbnu sqlnbv
sqlbna

SQL Application Programming Interface Reference

5-27

Chapter 5 SQL/API Function Reference

sqlbnn - BiNd data by Number

Syntax
#include <sql.h>
SQLTAPI sqglbnn (cur, bnn, dap, dal, sca, pdt);
SQLTCUR cur; /* Cursor handle */
SQLTBNN bnn; /* Bind variable number */
SQLTDAP dap; /* Bind data buffer */
SQLTDAL dal; /* Bind data length */
SQLTSCA sca,; /* Scale of packed decimal data */
SQLTPDT pdt; [* Bind program data type */
Description
This function associates a humeric bind variable (sucB)dsr a column with a
variable defined in the program.
You must call this function aftesglcomand beforesglexe
Parameters

cur
The cursor handle associated with this function.
bnn

The number of the bind variable in the SQL command. Bind variable numbers
must be unique in SQL commands.

dap

A pointer to the program variable that will be associated to the bind variable.
dal

The length of the value pointed to gp.

If the value pointed to bgapis a stringandnull-terminated, specify zero and the
system will compute the length.

In all other cases, a calculated length of zero or a specified length of zero causes
the column to contain a null value.

5-28 sQL Application Programming Interface Reference

sglbnn - BiNd data by Number

Sca

The scale (humber of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-decimal
data type, specify zero.

pdt

The program data type of the program variable being bound. Data is converted to
the program data type if the SQL data is compatible.

The program data types are shown below. These are defingbhin

Program Data Type Description
SQLPBUF Character buffer
SQLPDAT Internal datetime
SQLPDOU Double
SQLPDTE Date only
SQLPEBC EBCDIC buffer
SQLPFLT Float
SQLPLON Long text string
SQLPLBI Long binary buffer
SQLPLVR Char/long varchar >254
SQLPNBU Numeric buffer
SQLPNST Numeric string
SQLPNUM Internal numeric
SQLPSCH Character
SQLPSIN Integer
SQLPSLO Long
SQLPSPD Signed packed decimal
SQLPSSH Short
SQLPSTR String (null-terminated)
SQLPTIM Time only

SQL Application Programming Interface Reference 5-29

Chapter 5 SQL/API Function Reference

Program Data Type Description
SQLPUCH Unsigned character
SQLPUIN Unsigned integer
SQLPULO Unsigned long
SQLPUPD Unsigned packed decimal
SQLPUSH Unsigned short

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
char len =7; [* length of phone number */
short ret; I* API return code */
char pnum|8]; /* phone number */

static char updt[] = /* SQL statement */
"UPDATE CUST SET PHONE = :1 WHERE CURRENT OF CURSOR";

ret = sqlbnn (cur, 1, pnum, sizeof(pnum) ,0, SQLPBUF);

Related functions

sqlbld sqlbnd sqlcbv
sqlbin sqlbnu sqlnbv
sqlbna

5-30 sQL Application Programming Interface Reference

sglbnu - Bind data by NUmber

sqlbnu - Bind data by NUmber

Syntax
#include <sql.h>
SQLTAPI sqglbnu (cur, bnn, dap, dal, sca, pdt, nli);
SQLTCUR cur; /* Cursor handle *
SQLTBNN bnn; /* Bind variable number */
SQLTDAP dap; /* Bind data buffer */
SQLTDAL dal; /*Bind data length */
SQLTSCA sca; /* Scale of packed decimal data */
SQLTPDT pdt; /* Bind program data type */
SQLTNUL nli /* Null indicator */
Description
This function associates a humeric bind variable (sucB)dsr a column with a
variable defined in the program.
Thesqglbnufunction is identical teglbnnwith one exceptiorsglbnuhas an
additional argument for the null indicator. This function is used with SQLNetwork
routers and gateways to bind null values for non-SQLBase databases. You can use this
function with SQLBase databases, but SQLBase ignoreditaggument.
Call this function aftesglcomand beforesglexe
Parameters

cur
The cursor handle associated with this function.

bnn

The number of the bind variable in the SQL command. Bind variable numbers
must be unique in SQL commands.

dap
A pointer to the program variable that will be associated to the bind variable.

dal
The length of the value pointed to Bgp.

SQL Application Programming Interface Reference 5-31

Chapter 5 SQL/API Function Reference

If the value pointed to bgapis a stringandnull-terminated, specify zero and the
system will compute the length.

In all other cases, a calculated length of zero or a specified length of zero causes
the column to contain a null value.

Sca

The scale (humber of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-decimal
data type, specify zero.

pdt

The program data type of the program variable being bound. Data is converted to
the program data type if the SQL data is compatible.

The program data types are shown below. These are defiagbhin

Program Data Type Description

SQLPBUF Character buffer
SQLPDAT Internal datetime
SQLPDOU Double

SQLPDTE Date only

SQLPEBC EBCDIC buffer
SQLPFLT Float

SQLPLON Long text string
SQLPLBI Long binary buffer
SQLPLVR Char/long varchar >254
SQLPNBU Numeric buffer
SQLPNST Numeric string
SQLPNUM Internal numeric
SQLPSCH Character

SQLPSIN Integer

SQLPSLO Long

SQLPSPD Signed packed decimal

5-32 sQL Application Programming Interface Reference

sglbnu - Bind data by NUmber

Program Data Type Description

SQLPSSH Short

SQLPSTR String (null-terminated)
SQLPTIM Time only

SQLPUCH Unsigned character
SQLPUIN Unsigned integer
SQLPULO Unsigned long
SQLPUPD Unsigned packed decimal
SQLPUSH Unsigned short

nli

Null indicator. Before callingglbny set this argument to indicate whether or not
the value being bound is null:

-1 The data being bound is null. The SQLNetwork router or gateway
will generate the native null character for the database server.

0 The data being bound is not null.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Related functions

sqlbld sqlbnd sqlcbv
sqlbin sqlbnn sqlnbv
sqlbna

SQL Application Programming Interface Reference 5-33

Chapter 5 SQL/API Function Reference

sglbss - Backup SnapShot

Syntax

#include <sql.h>

SQLTAPI sqglbss (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */

SQLTDAP dbname; [* Database name */

SQLTDAL dbnamel; /* Database name length */

SQLTFNP bkpdir; /* Backup directory */

SQLTFNL bkpdirl; /* Backup directory length */

SQLTBOO local; /* True: backup directory on local
(client) node */

SQLTBOO over; [* True: overwrite existing file */

Description

This function copies a database and its associated transaction log files to the specified
directory.

Thesqglbssfunction is the recommended way to backup a database and its log files
because there is only one stepl(s9 needed to bring a database and its log files to a
consistent state.

Transactions that are committed when the backup is started are included in the
backup. Active transactions are not included.

This function call forces a log rollovesdlrlf) automatically.

Once a database and its transaction log files are backed up to a directory, you can
transfer the copies to archival media and then delete them from the hard disk.

You cannot calkglbsswhile in Read-Only (RO) isolation level.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle

The server handle returned sgicsv

5-34 sQL Application Programming Interface Reference

sqlbss - Backup SnapShot

dbname
A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to bignamelf the string pointed to bgibname
is null-terminated, specify zero and the system will compute the length.

bkpdir
A pointer to the string that contains the backup directory name.
bkpdirl

The length of the string pointed to bigpdir. If the string pointed to bigkpdir is
null-terminated, specify zero and the system will compute the length.

local

Destination of backup:

0 Backup directory on server.

1 Backup directory on local (client) node.

over

Overwrite indicator:

0 Do not overwrite existing file.

1 Overwrite existing file.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

SQLTSVH shandle;

char* password;

SQLTDPV Ibmset;

SQLTFNP bkpdir;

SQLTFNL bkpdirl;

SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;

SQL Application Programming Interface Reference 5-35

Chapter 5 SQL/API Function Reference

SQLTBOO local,over;
static char dbnamel[] ="island"; /* default database

/* name */
static char srvname[] ="SERVERZ1"; /* server name */
password = 0;
local=1;
over=1;

/* CONNECT TO SERVER */

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* MAKE BACKUP DIRECTORIES */
system("mkdir \\backup\\snapshot");

bkpdir = "\BACKUP\\SNAPSHOT";
bkpdirl = strlen(bkpdir);

/* BACKUP SNAPSHOT *

if (red =

sglbss (shandle,dbnamel,0,bkpdir,bkpdirl,local,over))
apierr("SQLBSS");

else
printf("Backup Snapshot Database \n");

Related functions

sqlbdb sqlenr sqlrlf
sqlblf sqlgnl sqlrof
sqlcrf sqlrdb sqlrss
sglcsv sqlrel

5-36 SQL Application Programming Interface Reference

sqlcbv - Clear Bind Variables

sqlcbv - Clear Bind Variables

Syntax
#include <sql.h>

SQLTAPI sqglcbv(cur)

SQLTCUR cur; /* Cursor handle */

Description

This function clears all information stored for bind variables for a cursor.

When a program variable is bound, information about the variable is saved. This
includes pointers to the data and the name of the bind variable (if bound by name).
This function clears this information and frees the memory that stores it.

Parameters
cur

The cursor handle associated with this function.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
if (red = sglcbv (cur))
apierr("SQLCBV");
else

printf("Cleared Bind Variables \n");

Related functions

sqlbld sqlbnd sqlbnu
sqlbln sqlbnn sqlnbv
sglbna

SQL Application Programming Interface Reference 5-37

Chapter 5 SQL/API Function Reference

sglcch - Create Connection Handle

Syntax
#include <sql.h>
SQLTAPI sglcch(hConp, dbnamp, dbnaml, flag)
SQLTCNH PTR hConp; /* Connection handle */
SQLTDAP dbnamp; /* Pointer to identification string */
SQLTDAL dbnaml; /* Identification string length */
SQLTMOD flag; [* future flag */
Description
This function establishes a new connection to the specified database. It issues a
connection handle to identify the database. There can be a maximum of 256
connection handles.
Parameters
hConp
A pointer to a connection handle where this function returns a new connection
handle.
dbnamp

A pointer to an identification string that contains the database name, username,
and password, separated by forward slashes:

databasenamiasernam#épassword

If the database name, username, or password is not specified, then the system
uses the current default. For example, you can specify the following connect
string in which case the default database name and username are used:

/lpassword
These rules are used:
* The characters before the first forward slash are the database name.

* Any characters after the first forward slash and before the second
forward slash are the username.

* Any characters after a second forward slash are the password.

5-38 sQL Application Programming Interface Reference

sqglcch - Create Connection Handle

The default database name, username, and password are determined by:

* The defaultdatabase, defaultuser, and defaultpassword keywordsin SQL.INI.
* The default of DEMO/SYSADM/SYSADM
dbnaml

The length of the string pointed to dignamp If the string pointed to by the
dbnampis null-terminated, you can specify zero for the dbnaml and the system
will compute the length.

flag

Future flag. Currently not defined. You can specify zero for this parameter.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

SQLTCNH hCon; /* Connection Handle*/

SQLTCUR cur; /* Cursor */

SQLTRCD red; /* return code */

if (rcd = sglcch(&hCon, “PAYROLL/BOSS/SECRET”,0,0))

{
printf(“Failure establihsing a connection (rcd =%d)\n”,rcd);
exit(0);

}

else printf(“New connection established\n”);

if(rced = sglopc(&cur, hCon, 0))
{

printf(“Failure on cursor open (rcd = %d)\n”, rcd);
exit(0);
}

else printf(“New cursor opened\n”);

if(rcd = sqldis(cur))
{
printf(“Failure closing cursor (rcd = %d)\n”, rcd);

exit(0);
}

SQL Application Programming Interface Reference 5-39

Chapter 5 SQL/API Function Reference

else printf(“Cursor closed\n”);

if (rcd = sgldch(hCon))

{
printf(“Failure terminating connection (rcd = %d)\n", rcd);
exit(0);

}

else printf(*Connection terminated\n”);

Related functions
sgldch sqldis sqlopc

sglcdr - Cancel Database Request

Syntax

#include <sql.h>
SQLTAPI sqglcdr (shandle, cur)

SQLTSVH shandle; /* Server Handle */
SQLTDAP cur; /* Cursor Handle */

Description
This function cancels a SQL command.

When a database request is in progress and taking tostndrcan be invoked
from another process to send a cancel message to the server. If the server is
processing a request, it stops processing it and rollbacks the transaction and the
process that started the request returns an error code.

If the server receives the cancel message before or after processing a request, the
message is ignored.

Parameters

shandle

The server handle returned sgicsv

cur

The cursor handle associated with the request that you want to cancel.

5-40 sQL Application Programming Interface Reference

sqlcex - Compile and EXecute

Return value

This function returns zero if the cancel message was received by the server while
processing a request. If this function returns a non-zero value, it was unsuccessful.

Related functions

sqlsab sqlsdn sqlstm

sglcex - Compile and EXecute

Syntax

Description

#include <sql.h>
SQLTAPI sqglcex (cur,dap,dal);

SQLTCUR cur; /* Cursor handle *
SQLTDAP dap; /* Command buffer */
SQLTDAL dal; /* Length of SQL command */

This function takes a SQL command or non-stored procedure as input, generates the
compiled version of the command/procedure, and executes it. No data is bound.

Use this function to compile and execute a SQL command or procedure that contains
no bind variables and only needs to be executed once; examples are data definition
and data control commands (CREATE, DROP, GRANT, REVOKE) and data
manipulation commands which meet these criteria.

This function also enables server-level commands to create, delete, or alter database
areas and storage groups.

All compiled commands for all cursors that the program has connected to the
database are destroyed by:

» Commits (explicit or implicit, including implicit by autocommit or by change
in isolation level).

* Rollbacks (including rollbacks caused by a deadlock).

Note: You cannot compile and execute a procedure as static before storing it vetthstioe
function.

SQL Application Programming Interface Reference 5-41

Chapter 5 SQL/API Function Reference

Parameters
cur
The cursor handle associated with this function.
For these SQL commands, use the server handle returrsggcbyinstead:

ALTER DATABASE
ALTER DBAREA
ALTER STOGROUP
CREATE DATABASE
CREATE DBAREA
CREATE STOGROUP
DEINSTALL DATABASE
DROP DATABASE
DROP DBAREA

DROP STOGROUP
INSTALL DATABASE
SET DEFAULT STOGROUP

dap

A pointer to the variable that contains the command or procedure to compile and
execute.

dal
The length of the variable pointed to dgp. If the value pointed to byapis

null-terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
char* name; /* name */
char *pswd; /* password */
short ret; /* return code */

char errmsg [SQLMERR];

static char grant[] =
"GRANT CONNECT TO %s IDENTIFIED BY %s";

char buf[100]

5-42 sQL Application Programming Interface Reference

sqlclf - Change process activity Log File

sprintf (buf, grant, name, pswd);
if (sglcex (cur, buf, 0)) /* Compile and execute */

{

sqlrcd(cur, &ret); [* Get return code */
sqlerr(ret, &errmsg); /* Get error text */
printf("%s\n", errmsg);

}

Related functions

sglcom sqlcsv sqlexe

sglclf - Change process activity Log File

Syntax
#include <sgl.h>
SQLTAPI sqlclf (shandle, logdfile, startflag)
SQLTSVH shandle; [* Server handle */
SQLTDAP lodfile; /* Log file name to open */
SQLTFMD startflag; /* Start activity log flag */
Description

This function opens a new process activity log file for the database server. Use this
function to write the messages that appear on the Process Activity server display to a
file. This function is useful for multi-user servers.

Instead of using thsglclffunction, you could use theglsetfunction and the
SQLPALG parameter.

To turn on logging, specify a file name and gtartflagto 1. To turn off logging,
specify a null filename or sstartflagto 0.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

SQL Application Programming Interface Reference 5-43

Chapter 5 SQL/API Function Reference

Parameters
shandle
The server handle returned sgicsv
logfile

A pointer to the null-terminated string that contains the name of the log file. If
null, logging is turned off.

startflag

Indicates whether to start or stop writing to the log file:

0 Stop logging

1 Start logging

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

main()

{
SQLTSVH shandle;
SQLTDAP srvname;

char *password;
char *|lodfile;
int startflag;

srvname = "SERVER1";
password = 0;

startflag = 1,

logfile = "ACTIVITY.LOG";

/* CONNECT TO THE SERVER */

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

else

printf("Connection Established to Server\n");

/* CHANGE ACTIVITY LOG FILE */

5-44 sQL Application Programming Interface Reference

sglcmt - CoMmiT

printf("change activity log file to %s\n", logfile);

if (red = sqlclf (shandle,logdfile,startflag))
apierr("SQLCLF");
else
printf("Successful change and start of server activity log
file\n™);

/* DISCONNECT FROM THE SERVER */

if (red = sgldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions

sglcsv sqlset

sglcmt - CoMmiT

Syntax

#include <sql.h>

SQLTAPI sglcmt(cur);

SQLTCUR cur; /* Cursor handle *
Description

This function commits a database transaction and starts a new transaction. All
changes to the database since the last commit are made permanent and cannot be
undone.

Before a commit, all changes made since the start of the transaction can be rolled
back.

A commit releases all locks held by a transaction except when cursor-context
preservation is on.

This function commits the work afl cursors that an application has connected to the
database or connection handle.

SQL Application Programming Interface Reference ~ 5-45

Chapter 5 SQL/API Function Reference

Connecting to a database or connection handle causes an implicit commit of a
transaction. After establishing this connection to the database, SQLBase issues a
COMMIT to establish the starting point of the first transaction in the logging system.
However, subsequent connections to other cursors are not specifically database
connections, and do not cause SQLBase to issue a COMMIT or activate any
transaction control devices. Also, they do not alter the flow of the current transaction
and destroy compiled commands.

This function destroys all compiled commands for all cursors and connection handles
connected to the database except when cursor-context preservation is on.

The database can also be committed by executing a SQL COMMIT command.

Parameters
cur

The cursor handle associated with this function.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

ret= sqglemt (cur);

Related functions
sqlrbk

sglcnc - CoNnect Cursor

Syntax
#include <sqgl.h>
SQLTAPI sglcnc (curp, dbnamp, dbnaml)
SQLTCUR PTR curp; /* Cursor handle */

SQLTDAP dbnamp; /* Connect string */
SQLTDAL dbnaml; /* Connect string length */

5-46 sQL Application Programming Interface Reference

sqlenc - CoNnect Cursor

Description

This function applies to applications in which you are connecting cursors to a specific
database that belong to a single transaction.

This function connects to a database and issues a cursor handle that identifies an
implicit connection to a specific database. All cursors that you connect to this
database belong to a single transaction and to the same implicit connection handle.

This function can connect to a new database or connect a new cursor to the current
database.

Note: To create multiple, independent connections, SQLBase allows you to explicitly create
multiple connection handles. You can use connection handles for multiple transactions to the
same database within an application, or for creating multi-threaded Win32 applications. For
details on creating connection handles, read the section on connection handles in Chapter 3.

Parameters
curp
A pointer to the variable where this function returns the cursor handle.
dbnamp

A pointer to the connect string that contains the database name, username, and
password separated by forward slashes:

database/username/password
These rules are used:
* The characters before the first forward slash are the database name.

» Any characters after the first forward slash and before the second
forward slash are the username.

» Any characters after the second forward slash are the password.

If the database name, username, or password is not specified, then the system
uses the current default. For example, you can specify the following connect
string in which the default database name and username are used:

/lpassword
The default database name, username, and password are determined by:

» Thedefaultdatabaselefaultuseranddefaultpasswordéeywords in
sql.ini.

SQL Application Programming Interface Reference ~ 5-47

Chapter 5 SQL/API Function Reference

* The default of DEMO/SYSADM/SYSADM.
dbnaml

The length of the string pointed to bignamp If the string pointed to bgbnamp
is null-terminated, specify zero and the system will compute the length.
Return value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.
Example

SQLTCUR cur; /* Cursor handle */
SQLTRCD rcd; /* Return code */

if (red = sglecnc (&cur, "PAYROLL/BOSS/SECRET", 0))
{
printf("Failure on connect (rcd = %d)\n",rcd);
exit(0);
}
else

printf("Connection established\n");

Related functions

sqlcnr sqldis

sglcnr - Connect with No Recovery

Syntax
#include <sgl.h>
SQLTAPIsglenr(curp, dbnamp, dbnaml)
SQLTCUR PTR curp; [* Cursor handle */

SQLTDAP dbnamp; /* Connect string */
SQLTDAL dbnaml; /* Connect string length */

5-48 sQL Application Programming Interface Reference

sglenr - Connect with No Recovery

Description

This function applies to applications in which you are connecting cursors to a specific
database that belong to a single transaction.

Note: To create multiple, independent connections, SQLBase allows you to explicitly create
multiple connection handles. You can use connection handles for multiple transactions to the
same database within an application, or for creating multi-threaded Win32 applications. For
details, read the section on connection handles in Chapter 3.

This function connects to a database with recovery (transaction logging) turned off
and issues a cursor handle that is associated with a single, implicit connection to a
database. All cursors that you connect to this database belong to a single transaction
and to the same implicit connection handle.

You must understand the implications of this function. When recovery is turned off,
transaction logging is not performed and transaction rollbacks are not possible.

This function can connect to a new database or connect a new cursor to the current
database.

Turning off recovery has an effect only when it is the first connect to the database. All
subsequent connects to this databasanipyuser must be done witlylcne If a user
tries a subsequent connect wétficng they will get an error.

Parameters
curp
A pointer to the variable where this function returns the cursor handle.
dbnamp

A pointer to the connect string that contains the database name, username, and
password separated by forward slashes:

database/username/password
These rules are used:
* The characters before the first forward slash are the database name.

» Any characters after the first forward slash and before the second
forward slash are the username.

» Any characters after a second forward slash are the password.

SQL Application Programming Interface Reference 5-49

Chapter 5

SQL/API Function Reference

If the database name, username, or password is not specified, then the system

uses the current default. For example, you can specify the following connect
string in which the default database name and username are used:

/lpassword
The default database name, username, and password are determined by:

» Thedefaultdatabaselefaultuseranddefaultpasswordéeywords in
sql.ini.

* The default of DEMO/SYSADM/SY SADM.
dbnaml

The length of the string pointed to Bignamp If the string pointed to bgbnamp
is null-terminated, specify zero and the system will compute the length.

Return value

Example

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQLTCUR cur;/* Cursor handle */
SQLTRCD rcd;/* Return code */

if (red = sglenr (&cur, "PAYROLL/BOSS/SECRET", 0))
{
printf("Failure on connect (rcd = %d)\n",rcd);
exit(0);
}
else

printf("Connection with recovery turned off\n");

Related functions

sqlcnc sqldis

5-50 sQL Application Programming Interface Reference

sglcom - COMpile a SQL command/procedure

sglcom - COMpile a SQL command/procedure

Syntax
#include <sql.h>
SQLTAPI sglcom (cur,cmdp,cmdl);
SQLTCUR cur; /* Cursor handle */
SQLTDAP cmdp; /* SQL command or procedure*/
SQLTDAL cmdl; /* Length of SQL command */
Description

This function compiles a SQL command or non-stored procedure and stores it in the
work space associated with the cursor. No data is bound. After a SQL command or
procedure has been compiled, it can be executed or stored.

There are 3 steps in compiling:
1. Parse:

* Check that the command or procedure is formulated correctly.
» Break the statement into components for the optimizer.
» Verify names of columns and tables in the system catalog.
2. Optimize:
* Replace view column names and table names with real names.
e Gather statistics on data storage from the system catalog.
» Identify possible access paths.
» Calculate the cost of each alternate path.
e Choose the best path.
3. Generate execution code:

* Produce an application plan for execution.

All compiled commands for all cursors that the program has connected to the
database are destroyed by:

» Commits (explicit or implicit, including implicit by autocommit or by change
in isolation level).

* Rollbacks (including rollbacks caused by a deadlock).

SQL Application Programming Interface Reference 5-51

Chapter 5 SQL/API Function Reference

Note: You cannot compile a procedure as static before storing it witbglsefunction.

Parameters
cur
The cursor handle associated with this function.

For these SQL commands, use the server handle returrsegchyinstead:

ALTER DATABASE
ALTER DBAREA
ALTER STOGROUP
CREATE DATABASE
CREATE DBAREA
CREATE STOGROUP
DEINSTALL DATABASE
DROP DATABASE
DROP DBAREA

DROP STOGROUP
INSTALL DATABASE
SET DEFAULT STOGROUP

cmdp
A pointer to the string that contains the SQL command.
cmdl

The length of the string pointed to bidp If the string pointed to bymdpis
null-terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

static char sglemd[] =
"SELECT A, BFROM TABWHERE C =:1";
ret= sqglcom (cur, sglcmd, 0);

5-52 sQL Application Programming Interface Reference

sqlcpy - CoPY data from one table to another

Related fun

ctions

sqglcex sqlexe sqlsto
sglcsv

sglcpy - CoPY data from one table to another

Syntax
#include <sqgl.h>
SQLTAPI sqlcpy (feur, selp, sell, tcur, isrtp, isrtl)
SQLTCUR fcur,; /* Cursor handle for SELECT */
SQLTDAP selp; /* SELECT command */
SQLTDAL sell; /* Length of SELECT command */
SQLTCUR tcur; /* Cursor handle for INSERT */
SQLTDAP isrtp; /*INSERT command */
SQLTDAL isrtl; /* Length of INSERT command */
Description
This function copies data from one table to another. The destination table must exist
and the data type of the destination columns must be compatible with the data in the
corresponding source columns. For example, you cannot copy alphabetic data to a
numeric column. The source table and the destination table can be in different
databases.
This function needs two cursors: one for the SELECT command that retrieves the data
from the source table, and one for an INSERT command that adds rows to the target
table.
The application must issue COMMIT s following a transaction that uses this function
to ensure that changes are made permanent.
Each item in the SELECT statement must correspond on a one-to-one basis with each
bind variable in the INSERT command. For example, bind varidlderresponds to
the first SELECT list item and bind variabRcorresponds to the second SELECT
list item.
Parameters

four

The cursor handle associated with the SELECT command.

SQL Application Programming Interface Reference 5-53

Chapter 5

SQL/API Function Reference

selp

A pointer to the string that contains the SELECT command that retrieves data
from the source table.

sell

The length of the string pointed to bglp If the string pointed to bgelpis null-
terminated, specify zero and the system will compute the length.

tcur
The cursor handle associated with the INSERT command.
isrtp

A pointer to the string that contains the INSERT command that adds the selected
data to the target table.

isrtl

The length of the string pointed to Isytp. If the string pointed to bigrtp is
null-terminated, specify zero and the system will compute the length.

Return value

Example

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

The error returned by this function does not indicate the cursor that caused the error.
Check the return code for each cursor to establish the source of the error.

SQLTCUR curl =0; /* select cursor */
SQLTCUR cur2 =0; /*insert cursor */
SQLTRCD rcd1 =0; /* return code (curl) */
SQLTRCD rcd2 =0; /* return code (cur2) */

main()

{

static char select[] = /* SQL select statement */
"SELECT EMP_NO,EMP_NAME FROM EMP";

static char insert[] = [* SQL insert statement */

"INSERT INTO TMP (TMP_NO, TMP_NAME) VALUES (1, :2)";
/* CONNECT TO BOTH CURSORS */

if (sglecnc(&curl, "DEMO", 0))

5-54 sQL Application Programming Interface Reference

sqlcpy - CoPY data from one table to another

failure("SELECT CURSOR CONNECT");

if (sglcnc(&cur2, "DEMQO", 0))
failure("INSERT CURSOR CONNECT");

/* PERFORM COPY OPERATION */

if (sqglcpy (curl,select,0,cur2,insert,0))
failure("COPY OPERATION");

/* COMMIT BOTH CURSORS */

if (sglcmt(curl) || sglcmt(cur2))
failure("COMMIT");

/* DISCONNECT BOTH CURSORS */

if (sqldis(curl))
failure("DISCONNECT OF SELECT CURSOR");
curl =0;
if (sqldis(cur2))
failure("DISCONNECT OF INSERT CURSOR");
}
failure(ep)
char* ep; /* -> failure msg string */
{
SQLTEPO epo; [* error position */

char errmsg[SQLMERRY]; /* error msg text buffer */

printf("Failure on %s \n", ep);

sqlrcd(curl,&rcdl); /* get return codes */
sqlrcd(cur2,&rcd2);
if (rcdl) [* error on cursor 1? */

sqlerr(rcdl, errmsg);
sqlepo(curl, &epo);
printf("%s(error: %u, position: %u) \n",errmsg,rcd1,epo);

if (red2) [* error on cursor 2? */

{

sqlerr(rcd2, errmsg);
sqlepo(cur2, &epo);

SQL Application Programming Interface Reference

5-55

Chapter 5 SQL/API Function Reference

printf("%s(error: %u, position: %u)
\n",errmsg,rcd1,epo);

}

if (curl) [* cursor 1 exists? */
sqldis(curl);

if (cur2) /* cursor 2 exists? */
sqldis(cur2);

exit(1);
}

sqlcre - CREate database

Syntax
#include <sql.h>
SQLTAPI sqlcre (shandle, doname, dbnamel)
SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
Description

This function physically creates a database on the specified server, returns an error if
the database already exists, and adddlinamekeyword tosqgl.ini.

In SQLBase, aatabasecontains a database file placed in a sub-directory. The
database file must have the extensibs.for exampledemo.dbsThe name of the
sub-directory must be the same as the database file name without the extension, for
example\demo

Do not specify an extension for a database natem¢.xy1s invalid). SQLBase
automatically assigns a database name extensidb®f

Usually the database sub-directory is placed in@eaturadirectory. This is the
default, but it can be set to any location usingdibair keyword insql.ini.

The maximum length of the database name is 8 characters.

5-56 SQL Application Programming Interface Reference

sglcre - CREate database

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to Bgnamelf the string pointed to bgbname
is null-terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

main()

{
srvname = "SERVER1";
password = 0;

/* CONNECT TO THE SERVER */

if (red = sglcsv(&handle,srvname,password))
apierr("SQLCSV");

else

printf("Connection Established to Server\n");

/* CREATE DATABASE */

if (red = sglcre (handle,"DEMOX",0))
apierr("SQLCRE");
else

printf("Database DEMOX Created \n");
/* DISCONNECT FROM THE SERVER */

if (rcd = sgldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

SQL Application Programming Interface Reference ~ 5-57

Chapter 5 SQL/API Function Reference

Related functions

sglcsv sqldel sqlind
sglded

sglcrf - Continue RollForward

Syntax

#include <sqgl.h>
SQLTAPI sglcrf (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; [* Database name */
SQLTDAL dbnamel; /* Length of database name */

Description

Call this function after a rollforward operation has stopped because it cannot open the
next transaction log file.

Ordinarily, thesqlrlf function is used to restore the logs anttrfis used to continue

the rollforward. However, you can also restore the logs directly to the log directory
using other means such as a tape backup or optical disk. If this is done, you must call
this function explicitly to continue the rollforward process.

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to dipname If the string pointed to bgbname
is null-terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

5-58 sQL Application Programming Interface Reference

sqlcrf - Continue RollForward

Example

static char dbname1[]="omed”;
/* RESTORE DATABASE */

if (red =
sqlrdb(shandle,dbname1l,0,bkpdir,bkpdirl,local,over))

apierr("SQLRDB");

else

printf("Restored Database \n");

/* ROLLFORWARD TO END */
sqlrof(shandle,dbnamel,0,mode,0,0);
/* RESTORE LOGS USING OPERATING SYSTEM COPY */

system("DEL \\centura\\omed*.1og");
system("COPY \\backup\\omed*.log \\centura\\omed");

/* CONTINUE ROLLFORWARD *
sqlcrf (shandle,dbname1l,0);
/* END ROLLFORWARD */

if (rcd = sglenr(shandle,dbnamel,0))

apierr("SQLENR™);

else

printf("End Rollforward \n");

Related functions

sqlbdb sqlenr sqlrif

sqlgnl sqlrof
sqlbss sqlrdb sqlrss
sqlcsv sqlrel

SQL Application Programming Interface Reference 5-59

Chapter 5 SQL/API Function Reference

sqglcrs - Close ReStriction and Result Set modes

Syntax
#include <sql.h>
SQLTAPI sqlcrs (cur,rsp,rsl);
SQLTCUR cur; /* Cursor handle *
SQLTDAP rsp; /* Result set name */
SQLTDAL rsl; /* Result set name length */
Description
This functions turns off both result set mode and restriction mode.
This function lets you optionally save the result set by specifying a narsg ifo
use a saved result set later, callgqkrs function and specify the saved result set
name. Thesqlrrs function turns on result set mode and restriction mode.
Thesqgldrsfunction drops a saved result set.
Be cautious about using saved result sets. Internally, a saved result set is a list of row
identifiers (ROWIDSs) that is stored in the SYSROWIDLISTS system catalog table. A
ROWID changes whenever the row is updated. If one of the rows is updated after you
have saved and closed a result set, you will get an error if you open the result set later
and try to fetch the row.
Parameters

cur
The cursor handle associated with this function.
rsp

A pointer to the string that contains the name of the result set. Specify a null
string (SQLNPTR) to close the result set without saving it.

rsl

The length of the string pointed to tgp. If the string pointed to byspis null-
terminated, specify zero and the system will compute the length. If the result set
is not being saved, specify zero.

5-60 sQL Application Programming Interface Reference

sglcsv - Connect to SerVer

Return value

If this function returns zero, it was successful. If this function returns a non-zero

value, it was unsuccessful.

Example

/* Save current result set as "saveres" */

ret= sqlcrs (cur, "saveres", 0);

Related functions

sqglcrs sqlrrs sqlsrs
sqldrs sqlscn sqlstr
sqlprs sqlspr sqlurs

sglcsv - Connect to SerVer

Syntax
#include <sql.h>
SQLTAPI sglcsv (handlep, serverid, password)
SQLTSVH PTR handlep;/* Returned server handle */
SQLTDAP serverid;/* Null-terminated server identifier */
SQLTDAP password;/* Null-terminated server password */
Description

This function connects a user to a server to perform administrative operations.

This function returns a server handle that is required for the following administrative

operations:

» Create or delete a database

» Install or deinstall a database
» Backup or restore a database
e Backup or restore log files

» Initiate rollforward recovery

» Abort a server process

SQL Application Programming Interface Reference 5-61

Chapter 5 SQL/API Function Reference

Parameters

 Terminate the server

handlep

A pointer to the variable where this function returns the server handle.

serverid

A pointer to the null-terminated string that contains the name of the server.

The server name is set by #ervernamé&eyword insqgl.ini. The maximum
length of a server name is 8 characters. The server name must begin with a letter.

password

Return value

A pointer to the null-terminated string that contains the server password.

The passwordkeyword insgl.ini sets a password for a server. This keyword
follows aserverkeyword insgl.ini.

If the server password is set, a case-insensitive comparison is performed between
the server password and tmcsvpassword.

The maximum length of a server password is 8 characters.

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

main()

{
srvname = "SERVER1";

password = 0;

/* CONNECT TO THE SERVER */

if (red = sglcsv (&handle,srvname,password))
apierr("SQLCSV");
else

printf("Connection Established to Server\n");

/* DISCONNECT FROM THE SERVER */

5-62 sQL Application Programming Interface Reference

sqlcty - Command TYpe

if (red = sgldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

Related functions

All of the functions below require the server handle returneshimsv

sqlbdb sqldrr sqlmop
sqlblf sqldsv sqlmrd
sqlbss sqlenr sqglmsk
sqlclf sqlfgt sqlmwr
sqlcre sqlfpt sqlrdb
sqlcrf sqlgnl sqlrlf
sqlded sqlgsi sqlrof
sqldel sqlind sqlrss
sqldrc sqlmcl sqlsab
sqgldro sqlmdl sqlstm

sglcty - Command TYpe

Syntax
#include <sqgl.h>
SQLTAPI sqlcty (cur, cty);
SQLTCUR cur; /* Cursor handle */
SQLTCTY PTR cty; [*Variable*/
Description
This function returns the command type of the SQL command currently being
processed. The command type is set ajigomor sqlexe
Parameters

cur

The cursor handle associated with this function.

SQL Application Programming Interface Reference 5-63

Chapter 5 SQL/API Function Reference

cty

A pointer to the variable where this function returns the command type. For
example, if the previously-compiled command was an UPDATE, this function

returns 4. The command types are defineshjirh

Note thatsglctyreturns the SQLTSEL command type for either a SELECT or
PROCEDURE command that is compiled and current. Either command can
return results tgqglfet To determine the actual command type, usesdhget
function in conjunction with the SQLPWFC parameter. See the documentation

for sqlgetfor more information.

Identifier in VIS .
sqlh re_turned Operation
in cty

SQLTSEL 1 SELECT or PROCEDURE

SQLTINS 2 INSERT

SQLTCTB 3 CREATE TABLE

SQLTUPD 4 UPDATE

SQLTDEL 5 DELETE

SQLTCIN 6 CREATE INDEX

SQLTDIN 7 DROP INDEX

SQLTDTB 8 DROP TABLE

SQLTCMT 9 COMMIT

SQLTRBK 10 ROLLBACK

SQLTACO 11 Add column

SQLTDCO 12 Drop column

SQLTRTB 13 Rename table

SQLTRCO 14 Rename column

SQLTMCO 15 Modify column

SQLTGRP 16 GRANT privilege on table

SQLTGRD 17 GRANT DBA

SQLTGRC 18 GRANT CONNECT

5-64 sQL Application Programming Interface Reference

sqlcty - Command TYpe

Identifier in VIS .
sql.h re_turned Operation
in cty

SQLTGRR 19 GRANT RESOURCE
SQLTREP 20 REVOKE privilege on table
SQLTRED 21 REVOKE DBA
SQLTREC 22 REVOKE CONNECT
SQLTRER 23 REVOKE RESOURCE
SQLTCOM 24 COMMENT ON
SQLTWAI 25 Wait
SQLTPOS 26 Post
SQLTCSY 27 CREATE SYNONYM
SQLTDSY 28 DROP SYNONYM
SQLTCVW 29 CREATE VIEW
SQLTDVW 30 DROP VIEW
SQLTRCT 31 Row count
SQLTAPW 32 ALTER PASSWORD
SQLTLAB 33 LABEL ON
SQLTCHN 34 Chained command
SQLTRPT 35 Repair table
SQLTSVP 36 SAVEPOINT
SQLTRBS 37 ROLLBACK to savepoint
SQLTUDS 38 UPDATE STATISTICS
SQLTCDB 39 CHECK DATABASE
SQLTFRN 40 Non-SQLBase DBMS commands
SQLTAPK 41 Add primary key
SQLTAFK 42 Add foreign key
SQLTDPK 43 Drop primary key

SQL Application Programming Interface Reference

5-65

Chapter 5 SQL/API Function Reference

Identifier in VIS .
sql.h re_turned Operation
in cty

SQLTDFK 44 Drop foreign key
SQLTCDA 45 CREATE DBAREA
SQLTADA 46 ALTER DBAREA
SQLTDDA 47 DROP DBAREA
SQLTCSG 48 CREATE STOGROUP
SQLTASG 49 ALTER STOGROUP
SQLTDSG 50 DELETE STOGROUP
SQLTCRD 51 CREATE DATABASE
SQLTADB 52 ALTER DATABASE
SQLTDDB 53 DROP DATABASE
SQLTSDS 54 SET DEFAULT STOGROUP
SQLTIND 55 INSTALL DATABASE
SQLTDED 56 DEINSTALL DATABASE
SQLTARU 57 Add referential integrity user error
SQLTDRU 58 Drop referential integrity user error
SQLTMRU 59 Modify referential integrity user error
SQLTSCL 60 Set client
SQLTCKT 61 CHECK TABLE
SQLTCKI 62 CHECK INDEX
SQLTOPL 63 PL/SQL Stored Procedure
SQLTUNL 85 UNLOAD
SQLTLDP 86 LOAD
SQLTPRO 87 Stored procedure
SQLTGEP 88 GRANT EXECUTE ON
SQLTREE 89 REVOKE EXECUTE ON

5-66 SQL Application Programming Interface Reference

sqlcty - Command TYpe

Identifier in VIS .
sqlh re_turned Operation
in cty
SQLTTGC 90 CREATE TRIGGER
SQLTTGD 91 DROP TRIGGER
SQLTVNC 92 CREATE EVENT
SQLTVND 93 DROP EVENT
SQLTSTR 94 START AUDIT
SQLTAUD 95 AUDIT MESSAGE
SQLTSTP 96 STOP AUDIT
SQLTACM 97 ALTER COMMAND
SQLTXDL 98 LOCK DATABASE
SQLTXDU 99 UNLOCK DATABASE
SQLTDBT 102 DBATTRIBUTE
SQLTATG 103 ALTER TRIGGER

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

int cmnd; /* command type */
short ret; /*return code */

ret= sqlcty (cur, &ecmnd);

Related functions

sglcom sglexe

SQL Application Programming Interface Reference 5-67

Chapter 5 SQL/API Function Reference

sqgldbn - DataBase Names

Syntax
#include <sql.h>
SQLTAPI sqldbn (serverid, buffer, length)
SQLTDAP serverid; /* Server identifier */
SQLTDAP buffer; /* Directory list */
SQLTDAL length; [* Buffer length */
Description
This function returns a list of the databases on the specified server.
Use this function instead afjldir.
Parameters

serverid

A pointer to a null-terminated string that contains the name of the server
specified insql.ini. Specify a null server name to get a directory of local
databases.

buffer
A pointer to the variable where this function returns the database names.

Each name is null-terminated. The end of the list is marked by an extra null-
terminator. For example, the database naheesq payablesandempare
returned in this format:

demo\Opayables\0emp\0\0
length

The length of the area pointed tohyffer.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

5-68 sQL Application Programming Interface Reference

sgldbn - DataBase Names

Example

main()

{
srvname="SERVER1",

/* DIRECTORY OF DATABASES */

if (red = sgldbn (srvname,buffer,len))
apierr("SQLDBN";
else
{
i=0;

printf("Directory of Databases : ");
while ((buffer[j] I="\n") && (i< 20))

if (buffer[j] == \0")

{
printf(",);
}
else
{
printf("%c", bufferfj]);
}
j++;
}
printf("\n");
}
}

Related functions

sqldir

SQL Application Programming Interface Reference 5-69

Chapter 5 SQL/API Function Reference

sgldch - Destroy Connection Handle

Syntax

#include <sql.h>
SQLTAPI sgldch (hCon);

SQLTCNH hCon; /* Connection handle */

Description

This function terminates a specific connection. Before terminating a connection, it is
good programming practice to commit the transaction and close all open cursors.
This function automatically closes any open cursors before destroying the connection
handle.

When terminating a connection, this function commits or rolls back the current
transaction before terminating the connection. By defagltdchwill COMMIT the
transaction for a SQLBase server before terminating the connection. For the default
behavior of servers other than SQLBase, read your applicable server documentation.

To modify the default connect closure behavior for both SQLBase and non-SQLBase
servers, use thaglsef) function call with the SQLPCCB parameter. For details, read
information on thesqglsetfunction in this chapter.

Parameters
hCon

The handle to the connection to be terminated.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
if (red = sqldch(hCon))

printf(“Failure terminating connection (rcd = %d)\n”, rcd);
exit(0);

5-70 sQL Application Programming Interface Reference

sglded - DEinstall Database

else printf(*Connection terminated\n”);

Related functions
sqglcch sglopc sqldis

sglded - DEinstall Database

Syntax
#include <sql.h>

SQLTAPI sqlded (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */

Description
This function:

» Deinstalls the specified database from the network.
* Removes thelbnamekeyword fromsql.ini.
This function doesiot physically delete the database.

You cannot deinstall a database that has a user connected.

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to Bgnamelf the string pointed to bggbname
is null-terminated, specify zero and the system will compute the length.

SQL Application Programming Interface Reference 5-71

Chapter 5 SQL/API Function Reference

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

main()

{
srvname = "SERVER1";
password = 0;

/* CONNECT TO THE SERVER */

if (red = sglcsv(&handle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server\n");

if (rcd = sqlcre(handle,"DEMOX",0))
apierr("SQLCRE");

else
printf("Database DEMOX Created \n");

/* DEINSTALL DATABASE */

if (red = sqlded (handle,"DEMOX",0))
apierr("SQLDED");

else
printf("Database DEMOX Deinstalled \n");

/* INSTALL DATABASE */

if (rcd = sqlind(handle,"DEMOX",0))
apierr("SQLIND");

else
printf("Database DEMOX Installed \n");

/* DISCONNECT FROM THE SERVER */

if (red = sgldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

5-72 sQL Application Programming Interface Reference

sgldel - DELete database

Related functions

sqlcre sqldel sqlind
sglcsv

sqldel - DELete database

Syntax
#include <sqgl.h>
SQLTAPI sqldel (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */

Description

This function physically deletes the entire database directory for a daitatlagéng
all associated transaction log files on the server. If the log is redirected, the log
directory for the database is also completely removed.

This function removes thdbnamekeyword fromsqgl.ini.

Parameters
shandle

The server handle returned sgicsv

dbname

A pointer to the string that contains the database name.

dbnamel

The length of the string pointed to Bpnamelf the string pointed to bgtbname
is null-terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQL Application Programming Interface Reference 5-73

Chapter 5 SQL/API Function Reference

Example

main()
{
srvname = "SERVER1";

password = 0;
/* CONNECT TO THE SERVER */

if (red = sglcsv(&handle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* DELETE DATABASE */

if (red = sqldel (handle,"DEMOX",0))
apierr("SQLDEL");

else
printf("Database DEMOX Deleted \n");

/* DISCONNECT FROM THE SERVER */

if (red = sgldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions

sqlcre sqlded sqlind
sglcsv

5-74 sQL Application Programming Interface Reference

sgldes - DEScribe items in a SELECT list

sqldes - DEScribe items in a SELECT list

Syntax

Description

#include <sql.h>
SQLTAPI sqgldes (cur, slc, ddt, ddl, chp, chlp, prep, scap)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select column number */
SQLTDDT PTRddt; /* Database data type */
SQLTDDL PTRddl; /* Database data length */
SQLTCHP chp; /* Column heading buffer */
SQLTCHL PTRchlp; /* Column heading length */
SQLTPRE PTRprep; /* Numeric precision */
SQLTSCA PTRscap; /* Numeric scale */

This function returns thdatabasedata type and length for a column in a SELECT
list.

This function differs fronsgldscwhich returns thexternaldata type and lengtfithe
external data type is defined in the SYSCOLUMNS system catalog table. External
data types match program data typesghh.

The following diagram shows how the value of the SQLPDIS parameter (SQLDELY,
SQLDDLD, or SQLDNVR) controls when (and if) describe information for a
SELECT statement is available for sending to a client. You can specify the SQLPDIS
parameter’s value using tlsglsetfunction.

SQL Application Programming Interface Reference 5-75

Chapter

5

SQLDELY (early)

call sgldes, sgldsc,
or sglgdiafter sglcom
and before sglexe

SQLDDLD (delayed)
call sgldes, sgldsc,
or sglgdiafter sglexe
and before sqlfet

sglcom

sglexe

\

sqlfet

sglcex
SQLDELY (early) or
SQLDDLD (delayed)
call sgldes, sqldser sqlgdi
after sqlcexand before sqlfet
sqlfet

When describe information is available, given the different SQLPDIS parameter

settings.

This table summarizes the information illustrated above:

SQLPDIS constant

Value

When describe information is available

ter

SQLDELY The server sends describe information after
early sqlcom subsequent calls &gldessqlds¢ or
(default) sqglgdiare legal until after a call &xglexe.
The server also sends describe information af
sqlcex subsequent calls ggjldes sqldsg or
sqglgdiare legal until after a call gxlfet.
SQLDDLD The server sends describe information after
delayed sqglexe Calling sgldes sqldsc orsqlgdi after

calling sglexebut before the firsgglfetis legal;
callingsgldessqldsc orsqglgdiat any other time
is illegal

The server also sends describe information af
sqlcex subsequent calls grjldessqldsc or
sglgdiare legal until after a call wqlfet

Use this setting to reduce message traffic for
database servers that do not support compile
(sqlcom operations (like Microsoft’s SQL
Server).

ter

5-76 SQL Application Programming Interface Reference

sgldes - DEScribe items in a SELECT list

SQLPDIS constant Value When describe information is available
SQLDNVR 2 The serveneversends describe information;
never any call tosgldes sqldsg or sqlgdiis illegal.

When SQLPDIS is set to SQLDNVRgInsi
always returns 0. You must hard code the
number of SELECT items so that the applicatipn
knows how many times to caltlssb

>

Use this setting to reduce message traffic whe
the application always knows the number and
type of columns in a SELECT statement and
never makes calls &yldessqldsc orsqlgdi

You can pass null pointers (SQLNPTR) for arguments that you do not want.

You can retrieve the number of columns in the SELECT list witlsdjiresifunction
call.

Parameters

cur

The cursor handle associated with this function.

slc
The column number (starting with 1) in the SELECT Iist@t which to return
information.
ddt
A pointer to the variable where this function returns the database data type of the
column.
Number Typedefin sqgl.h Data Type
1 SQLDCHR Character
2 SQLDNUM Number
3 SQLDDAT Date/time
4 SQLDLON Long
5 SQLDDTE Date (only)
6 SQLDTIM Time (only)

SQL Application Programming Interface Reference ~ 5-77

Chapter 5

ddl
A pointer to the variable where this function returns the length of the column.
Data Type Returns
Character Size specified when column was defined
Numeric 27 (22 digits of precision plus room for scientific
notation)
Date/time 26
Long 0
Date (only) 10
Time (only) 15
Note that the length returned for numeric and date/time columns are for display
and printing. Use thegldscfunction to get the length as stored in SQLBase’s
internal format.
chp
A pointer to the variable where this function returns the column heading defined
in the SYSCOLUMNS system catalog table.
chlp
A pointer to the variable where this function returns the length of the string
pointed to bychp.
prep
A pointer to the variable where this function returns the precision of a numeric
column.
scap

A pointer to the variable where this function returns the scale, if any, of a
numeric column.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

5-78 sQL Application Programming Interface Reference

sqldii - Describe Into variable

Example

static char select]] ="SELECT * FROM TEST";

char ddt; [* Datatype */

char colnam[50]; /* Column heading buffer */
unsigned char i;

unsigned char dd; [* Data length */

int prec, scale; /* Precision, scale */

int hdl; [* Heading length */

uchar nsi; /* Number of SELECT items */

sginsi(cur, &nsi);
for (i=1;i <= nsi; i++)

Related functions

{
memset(colnum, \0', 50);
if sqldes (cur,i,&ddt,&ddl,colnam,&hdl,&prec,&scale))
{
.. process error
}
printf("%d %d %s %d %d %d\n”, ddt, ddl, colnam, hdl,
prec, scale);
}
sglcom sgldsc sqlexe

sqlgdi sqlnsi

sgldii - Describe Into variable

Syntax

#include <sqgl.h>

SQLTAPI sqldii (cur, ivn, inp, inl);

SQLTCUR cur; /* Cursor handle*/
SQLTSLC ivn; /* INTO variable position number */
SQLTDAP inp; /* INTO variable name */

SQLTCHL PTRinl; /*INTO variable name length*/

SQL Application Programming Interface Reference

5-79

Chapter 5

Description

This function describes an INTO variable.

Parameters

cur
The cursor handle associated with this function.

ivn
The relative position of the INTO variable, starting at 1.

inp
A pointer to the string that contains the name of the INTO variable.

inl
A pointer to the variable where this function returns the length of the INTO
variable’s name.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

#include "sql32.h"
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>

I* */

I* */
/* Example of a simple fetch */

I* */
/* Run EMP.SQ L via SQLTALK to initialize tables and data */

I* */
I* */

SQLTCUR cur; /* SQLBASE cursor number*/

SQLTRCD rcd; [* error number */

char errmsg[SQLMERRY]; [* error msg text buffer*/

void failure(char®); [* error routine*/

5-80 sQL Application Programming Interface Reference

sqldii - Describe Into variable

main()

{

char name[20];/* employee name buffer */
SQLTCHL PTR nii;
SQLTCHL PTR inl;
SQLTSLC ivn;
SQLTDAP inp;
static char selemd [] = # SQL SELECT statement */
"SELECT EMP_NAME into :name FROM EMP ",
/*
CONNECT TO THE DATABASE
*

if (rcd = sqglcnc(&cur, "ISLAND", 0))

{

sglerr(rcd, errmsg);/* get error message text */
printf("%s \n",errmsg);

return(l);

}

/*
COMPILE SELECT STATEMENT
*

if (sqlcom(cur, selcmd, 0))
failure("SELECT COMPILE");

/*

PERFORM sqldii
*
/

if (sqldii(cur,1,name,inl))
failure ("SQLDII");

else
printf("The length of the into variable is
%d\n" *inl);

/*
SET UP SELECT BUFFER
*/
if (sqlssb(cur, 1, SQLPBUF, name, 20, 0, SQLNPTR,
SQLNPTR))
failure("SET SELECT BUFFER");
/*
EXECUTE SELECT STATEMENT

SQL Application Programming Interface Reference

5-81

Chapter 5

*/

if (sglexe(cur))
failure("EXECUTING SELECT");

/*
FETCH DATA
*
for (1)
{

memset(name,' ',20); [* clear employe name buf */

if (rcd = sqlfet(cur)) /* fetch the data */

break;
printf("%s\n", name); /* print employe name */
}
if (red 1= 1) /* failure on fetch */

failure("FETCH");

/*
DISCONNECT FROM THE DATABASE
*

if (rcd = sqldis(cur))
failure("DISCONNECT");
}

void failure(ep)
char* ep; [* failure msg string */

{
SQLTEPO epo; [* error position */
printf("Failure on %s \n", ep);
sqlrcd(cur, &rcd); [* get the error */
sqlepo(cur, &epo); [* get error position */
sqlerr(rcd, errmsg); /* get error message text */
sqldis(cur); /* disconnect cursor
printf("%s (error: %u, position: %u)

\n",errmsg,rcd,epo);
exit(1);

5-82 sQL Application Programming Interface Reference

sqldir - DIRectory of databases

Related functions

sqlnii

sqldir - DIRectory of databases

Syntax

Description

Parameters

#include <sqgl.h>
SQLTAPI sqldir (svrno, buffer, length)

SQLTSVN svrno; /* Server number */
SQLTDAP buffer; /* Database names */
SQLTDAL length; /* Length of buffer */

This function returns a list of database names on the specified server.

This function is provided for backwards compatibility with earlier versions of
SQLBase. When creating new applications, do not use this function; usgdhe
function instead.

svrno

A numeric literal that specifies the server. The system appends this literal to
"server" to form the server name sesdu.ini.

Specify a zero to return a list of local databases.
buffer

A pointer to the variable where this function returns the database names. Each
name is null-terminated. The end of the list is marked by an extra null-terminator.
For example, the database namesig payablesandempare returned in this
format:

demo\Opayables\0emp\0\0
length

The length of the value pointed to byffer The list of database names is
truncated ibufferis not large enough.

SQL Application Programming Interface Reference 5-83

Chapter 5

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
char buf[100]; /* database directory buffer */
short ret; /* return code */
short srvr; /* server number */
srvr =1;

ret = sqldir (srvr, buf, sizeof(buf));
if (ret)
... process error

Related functions
sqldbn

sgldis - DISconnect from cursor

Syntax

#include <sql.h>

SQLTAPI sqldis (cur);

SQLTCUR cur; /* Cursor handle */
Description

This function disconnects a cursor. If you are closing the final cursor, note the
difference in behavior between cursors connected through implicit, or explicit
connections. For details, read the secGamnection Handlesn Chapter 3Using
the SQL/API

If you are disconnecting a final cursor that is connected implicitly witlsqhmncor

the sglenrfunction, a COMMIT is performed before the cursor is disconnected. If
you are using theglcnc()function call, you can use ttsglset()API function call

with the SQLPCCB parameter and specify the ROLLBACK option. When this is set,
a roll back is performed before the cursor is disconnected.

5-84 sQL Application Programming Interface Reference

sqldis - DISconnect from cursor

If you are disconnecting a final cursor that is connected explicitly withdlopc

function, the cursor remains pending and is not automatically committed. Note that
cursors connected with tlsglopcfunction belong to a specific connection handle.

Each connection handle represents a single transaction and its connection to a single
database. The transaction is either committed or rolled back only when the connection
handle is terminated using tegldchfunction call.

You can specify whether a transaction is rolled back or committed by:

» using thesqlsef) API function call with the SQLPCCB parameter. By
default, the setting is server dependent and in the case of SQLBase the
DEFAULT is COMMIT.

« explicitly executing a COMMIT, ROLLBACKsqglcm(), or sqlrbK) when
the connection handle is terminated.

» setting the connect closure behavior to ROLLBACK when opening a cursor
with thesglopd) function call.

Parameters
cur

A cursor handle of cursor to be closed.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

if(rcd = sqldis(cur))
{

printf(“Failure closing cursor (rcd = %d)\n”, rcd);
exit(0);
}

else printf(“Cursor closed\n”);

Related functions
sqlcch sglopc sgldch

SQL Application Programming Interface Reference 5-85

Chapter 5

sgldon - DONe

Syntax

#include <sql.h>

SQLTAPI sgldon ()

Description

This function does a rollback and disconnett®pen cursors.

This function is often used in conjunction withlini. If sqlini was calledsqldon
must be called before the program exits to free allocated resources.

Seetestwin.cfor an example of how to use this function. This online file is provided
with your SQLBase shipment.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

int PASCAL WinMain (hinstance, hPrevinstance, IpszCmdLine,
cmdShow)

HANDLE hinstance;
HANDLE hPrevinstance;
LPSTR IpszCmdLine;
int cmdShow;

short ret; /*return code */

extern int far pascal yieldpgm();
sglini(MakeProcInstance(yieldpgm,hinstance));

if (ret = sqldis(cur)) /* disconnect */
... process error

sgldon (); /* Disconnect all cursors */
return;

5-86 SQL Application Programming Interface Reference

sqldox - Directory Open eXtended

Related functions

sqlini

sgldox - Directory Open eXtended

Syntax
#include <sqgl.h>
SQLTAPI sgldox (shandle, dirname, attribute)
SQLTSVH shandle; /* Server Handle */
SQLTDAP dirname; /* Directory name to open */
SQLTFLG attribute; /* file attribute to use on read */
Description
This function opens the file directory specified by dirname on the database server
associated with shandle.
After you open a directory, you usgldrrto read the file names in the directory. Only
those file names that match the file attribute (definestjir) will be returned.
Use thesqgldrcfunction to close the directory.
Thesqgldrofunction does not return a handle for the directory because a program can
only have one directory opened at a time. If you pergtdrowhen a directory is
already open, the current open directory is automatically closed.
Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
Parameters
shandle

The server handle returned sgicsv
dirname

A pointer to a null-terminated string that contains the name of the directory to
open.

SQL Application Programming Interface Reference ~ 5-87

Chapter 5

attribute

File attribute flags which can be logically ORed to return combinations of files
that match the attribute flag.

Flag Description
SQLARDO Read Only
SQLAHDN Hidden Files
SQLASYS system Files
SQLAVOL Wolume Label
SQLADIR Subdirectories

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

SQLTSVH shandle;
SQLTDAP srvname;
SQLTFLG fattribute;

char *password;
char *dirname;
int modulo;
char buffer[3000];

srvname = "SERVER1";
password = 0;

dirname = "\CENTURA";
fattribute = SQLADIR;

/* CONNECT TO SERVER */

if (red = sqglcsv(&shandle, srvname, password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

[* directory open, read and close */
printf("Directory open, read and close \n");

printf("\nOpen a directory of %s\n", dirname);

5-88 sQL Application Programming Interface Reference

sqldox - Directory Open eXtended

if ((rcd = sqldox(shandle, dimame, fattribute)) != 0)
apierr("SQLDRO");

else
{
printf("Directory opened successfully, rcd=%d\n", rcd);
module = 0;
while ((rcd = sqldrr(shandle, buffer)) == 0)
{
if ((modulo++ % 3) == 0)
printf("\n");
printf("%-13s", buffer);
}
printf("\n");
printf("sqldrr() = %u\n", rcd);
if (rcd = sqgldrc(shandle))
apierr("SQLDRC");
else
printf("Directory closed successfully, rcd=
%d\n", rcd);
}

printf("End of directory open, read, and close\n");
/* DISCONNECT FROM SERVER */
if (rcd = sgldsv(shandle))

apierr("SQLDSV");

else
printf("Disconnected from Server \n");

Related functions

sglcsv sqldrc sqldrr

SQL Application Programming Interface Reference 5-89

Chapter 5

sqldrc - DiRectory Close

Syntax
#include <sql.h>
SQLTAPI sgldrc(shandle)
SQLTSVH shandle; /* Server handle */
Description
This function closes the directory on the database server associatstianittethat
the program opened with tisgldrofunction.
Call this function aftesgldrr has read the last file name in the directory.
A program can only have one directory opened at a time. If you perfeghda
function when a directory is already open, the current open directory is automatically
closed.
Parameters
shandle

The server handle returned sgicsv

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

SQLTSVH shandle;
SQLTDAP srvname;

char *password,;
char *dirname;

int modulo;

char buffer[3000];

srvname = "SERVER1";
password = 0;
dirname = "\CENTURAY",

5-90 sQL Application Programming Interface Reference

sqldrc - DiRectory Close

/* CONNECT TO THE SERVER */

if (red = sglcsv(&shandle,srvname password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* directory open, read and close */
printf("Directory open, read, close \n");

printf("\nOpen a directory of %s\n", dirname);
if ((rcd = sqldro(shandle, dirname)) = 0)
apierr("SQLDRQO");
else
{
printf("Directory opened successfully,
rcd=%d\n",rcd); modulo = 0;
while ((rcd = sqldrr(shandle, buffer)) == 0)

if ((modulo++ % 3) == 0)
printf("\n");
printf("%-13s", buffer);

printf("\n");
printf("sqldrr() = %u\n", rcd);

if (red = sgldrc (shandle))
apierr("SQLDRC");
else
printf("Directory closed successfully, rcd=
%d\n",rcd);

}

printf("End of directory open, read, and close\n");
/* DISCONNECT FROM THE SERVER */
if (red = sgldsv(shandle))

apierr("SQLDSV");

else
printf("Disconnected from Server \n");

SQL Application Programming Interface Reference

591

Chapter 5

Related functions

sglcsv sqldro sqldrr

sgldro - DiRectory Open

Syntax
#include <sqgl.h>
SQLTAPI sgldro (shandle, dirname)
SQLTSVH shandle; /* Server handle */
SQLTDAP dirname; /* Directory name to open */
Description
This function opens the file directory specifieddignameon the database server
associated witshandle
After you open a directory, you usqldrr to read the file names in the directory.
Use thesgldrcfunction to close the directory.
Thesgldrofunction does not return a handle for the directory because a program can
only have one directory opened at a time. If you perfgtdrowhen a directory is
already open, the current open directory is automatically closed.
Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
Parameters
shandle

The server handle returned sgicsv
dirname

A pointer to a null-terminated string that contains the name of the directory to
open.

5-92 sQL Application Programming Interface Reference

sqgldro - DiRectory Open

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

SQLTSVH shandle;
SQLTDAP srvname;

char *password,;
char *dirname;

int modulo;

char buffer[3000];

srvname = "SERVER1";
password = 0;
dirname = "\\CENTURA";

/* CONNECT TO THE SERVER */

if (rcd = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* directory open, read and close */
printf("Directory open, read, close \n");

printf("\nOpen a directory of %s\n", dirname);

if ((red = sqldro (shandle, dirname)) !=0)
apierr("SQLDRQO");
else
{
printf("Directory opened successfully, rcd=%d\n",rcd);
modulo = 0;
while ((rcd = sqgldrr(shandle, buffer)) == 0)
{

if ((modulo++ % 3) == 0)
printf("\n");
printf("%-13s", buffer);

}

printf("\n");

printf("sqldrr() = %u\n", rcd);

if (rcd = sgldrc(shandle))
apierr("SQLDRC");

else

SQL Application Programming Interface Reference 5-93

Chapter 5

printf("Directory closed successfully, rcd=
%d\n" rcd);

}

printf("End of directory open, read, and close\n");
/* DISCONNECT FROM THE SERVER */
if (rcd = sgldsv(shandle))

apierr("SQLDSV");

else
printf("Disconnected from Server \n");

Related functions

sqlcsv sqldrc sqldrr

sgldrr - DiRectory Read

Syntax

#include <sgl.h>
SQLTAPI sqldrr (shandle, filename)

SQLTSVH shandle; /* Server handle */
SQLTDAP flename; /* File name buffer */

Description

This function reads a file name in the directory on the database server into the
variable specified bfilename

This function is called aftersxgldrofunction.

Thesqldrr function returns one file name per call. The file name returned is only the
base name for the file; the name does not include the directory name prefix.

Parameters
shandle

The server handle returned sgicsv

5-94 sQL Application Programming Interface Reference

sqldrr - DiRectory Read

filename

A pointer to the variable where this function returns the file name. The file name
is null-terminated.

Return value

Example

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

This function returns an error code after the last file name has been read to indicate
that the end of the directory has been reached.

SQLTSVH shandle;
SQLTDAP srvname;

char *password;
char *dirname;

int modulo;

char buffer[3000];

srvname = "SERVERL1";
password = 0;
dirname = "\CENTURA";

/* CONNECT TO THE SERVER */

if (rcd = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

/* directory open, read and close */
printf("Directory open, read, close \n");

printf("\nOpen a directory of %s\n", dirname);
if ((rcd = sqldro(shandle, dirname)) = 0)
apierr("SQLDRO");
else
{
printf("Directory opened successfully,
rcd=%d\n",rcd);
modulo = 0;
while ((red = sqldrr (shandle, buffer)) == 0)

{

SQL Application Programming Interface Reference 5-95

Chapter 5

if ((modulo++ % 3) == 0)
printf("\n");
printf("%-13s", buffer);
}
printf("\n");
printf("sqldrr() = %u\n", rcd);

if (rcd = sqgldrc(shandle))
apierr("SQLDRC");
else
printf("Directory closed successfully,
rcd= %d\n",rcd);

}

printf("End of directory open, read, and close\n");
/* DISCONNECT FROM THE SERVER */
if (red = sgldsv(shandle))

apierr("SQLDSV");

else
printf("Disconnected from Server \n");

Related functions

sglcsv sqldrc sqldro

sgldrs - Drop Result Set

Syntax
#include <sqgl.h>
SQLTAPI sqldrs (cur,rsp,rsl)
SQLTCUR cur; /* Cursor handle */
SQLTDAP rsp; /* Result set name buffer */
SQLTDAL rsl; /* Result set name length */
Description

This function drops a saved result set. The result set must have been created by
calling sqlcrsand specifying a name.

5-96 SQL Application Programming Interface Reference

sqldsc - DeSCribe item in a SELECT command

Parameters
cur
The cursor handle associated with this function.
rsp
A pointer to the string that contains the name of the result set.
rsl

The length of the string pointed to ksp. If the string pointed to byspis null-
terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

/* Drop result set "saveres" */

ret= sqldrs (cur, "saveres", 0);

Related functions

sqglcrs sqlrrs sqlstr
sqldrs sqlspr sqlurs
sqlprs sqlsrs

sgldsc - DeSCribe item in a SELECT command

Syntax

#include <sgl.h>

SQLTAPI sqldsc (cur, slc, edt, edl, chp, chip, prep, scap)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select column number */
SQLTDDT PTR edt; /*External datatype */
SQLTDDL PTR ed] [* External data length */
SQLTCHP chp; [* Column heading buffer */
SQLTPTR PTR chip; /*Column heading length */

SQL Application Programming Interface Reference 5-97

Chapter 5

SQLTPRE PTR prep;
SQLTSCA PTR

Description

/* Numeric precision */

scap; /* Numeric scale */

This function returnexternaldata type and length for a column in a SELECT list.

The external data type is defined in the SYSCOLUMNS system catalog table.
External data types match program data typesylifn. This function differs from
sqldeswhich returns thelatabasedata type and length.

The following diagram shows how the value of the SQLPDIS parameter (SQLDELY,
SQLDDLD, or SQLDNVR) controls when (and if) describe information for a
SELECT statement is available for sending to a client. You can specify the SQLPDIS
parameter’s value using tlsglsetfunction.

SQLDELY (early)

call sqldes, sqldsc,
or sqglgdiafter sqlcom
and before sglexe

SQLDDLD (delayed)
call sqldes, sqldsc,
or sglgdiatter sqlexe
and before sqlfet

sglcom

glexe

y

glfet

sql
SQLDELY (early) or
SQLDDLD (delayed)
call sqldes, sqgldser sqlgdi
after sqlcexand before sqlfet
sqlfet

When describe information is available, given the different SQLPDIS parameter

settings

This table summarizes the information illustrated above:

SQLPDIS constant

Value

When describe information is available

SQLDELY 0
early

(default)

The server sends describe information after
sqlcom subsequent calls smjldes sqldsc or
sqlgdiare legal until after a call &glexe.

The server also sends describe information af
sqlcex subsequent calls &xldessqldsc or
sqlgdiare legal until after a call sxglfet.

ter

5-98 sQL Application Programming Interface Reference

sqldsc - DeSCribe item in a SELECT command

SQLPDIS constant Value When describe information is available
SQLDDLD 1 The server sends describe information after
delayed sqlexe Callingsgldes sqldsc or sqlgdiafter

calling sqlexebut before the firssqlfetis legal;
calling sgldes sqldsc orsglgdiat any other time
is illegal

The server also sends describe information after
sqlcex subsequent calls &xldessqldsc or
sqlgdiare legal until after a call &glfet

Use this setting to reduce message traffic for
database servers that do not support compile
(sglcom)operations (like Microsoft's SQL

Server).
SQLDNVR 2 The serveneversends describe information;
never any call tosqldes sqldsg or sqlgdiis illegal.

When SQLPDIS is set to SQLDNVRgInsi
always returns 0. You must hard code the
number of SELECT items so that the applicatipn
knows how many times to calflssb

Use this setting to reduce message traffic when
the application always knows the number and
type of columns in a SELECT statement and
never makes calls &xgldessqldsc or sqlgdi

Specify null pointers (SQLNPTR) for arguments that you do not want.

You can retrieve the number of columns in the SELECT lists witBdhesifunction.

Parameters
cur
The cursor handle associated with this function.
slc

The column number (starting with 1) in the SELECT list to get information
about. You can use the column number to set up a loop arstjlchtfor each
column in the SELECT list.

SQL Application Programming Interface Reference 5-99

Chapter 5

edt
A pointer to the variable where this function returns the external data type of the
column.
Number Typdefin sqgl.h Data type
1 SQLEINT INTEGER
2 SQLESMA SMALLINT
3 SQLEFLO FLOAT
4 SQLECHR CHAR
5 SQLEVAR VARCHAR
6 SQLELON LONGVAR
7 SQLEDEC DECIMAL
8 SQLEDAT DATE
9 SQLETIM TIME
10 SQLETMS TIMESTAMP
11 SQLEMON MONEY
12 SQLEDOU DOUBLE
13 SQLEGPH GRAPHIC
14 SQLEVGP VARGRAPHIC
15 SQLELGP LONG VARGRAPHIC
16 SQLEBIN BINARY
17 SQLEVBI VAR BINARY
18 SQLELBI LONG BINARY
19 SQLEBOO BOOLEAN
20 SQLELCH CHAR >254
21 SQLELVR VARCHAR >254

5-100 sQL Application Programming Interface Reference

sqldsc - DeSCribe item in a SELECT command

edl
A pointer to the variable where this function returns the external data length of
the column:
Data type Returns
INTEGER 4
SMALLINT 2
FLOAT 4o0r8
CHAR Size specified when column was defined.
VARCHAR Size specified when column was defined.
LONGVAR 0
DECIMAL 8
DATE 4
TIME 3
TIMESTAMP 10

Note that the length returned for numeric and datetime columns are as stored in
SQLBase's internal format. Use tsegdesfunction to get the length for printing and
display.

chp

A pointer to the variable where this function returns the column heading.
chlp

A pointer to the variable where this function returns the column heading length.
prep

A pointer to the variable where this function returns the precision of a numeric
column.

scap

A pointer to the variable where this function returns the scale, if any, of a of a
numeric column.

SQL Application Programming Interface Reference 5-101

Chapter 5

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

main()

{
SQLTNSI nsi; /* number of select items
SQLTSLC i; /*column number to describe
SQLTDDT edt; /* external data type
SQLTDDL edl; /* external data length
char buf[19];/* buffer for column name
SQLTPTR chl; /* column header length
SQLTPRE prec;/* precision
SQLTSCA scale;/* scale

static char dbnam[] = "demox";
static char selcom[] ="SELECT * FROM TEST";

/* COMPILE THE SELECT COMMAND */

if (red = sglcom(cur, selcom, 0))
apierr("SQLCOM");

if (rcd = sqlnsi(cur,&nsi))
apierr("SQLNSI");
/* DESCRIBE */

for (i=1;i <= nsi; i++)

{
memset(buf, \0', sizeof(buf)); /* fill the buffer with
nulls */
if (red = sgldsc (cur,i,&edt,&edl,buf,&chl,&prec,&scale))

apierr("SQLDSC"),
printf("i=%d, edt=%d, edl=%d, colname=%s, chl=%d, prec=%d,
scale=%d\n", i,edt,edl,buf,chl,prec,scale);

}

if (red = sqldis(cur))
apierr("SQLDIS");

5-102 sQL Application Programming Interface Reference

sqldst - Drop STored command/procedure

Related functions
sqldes sqlgdi sqglnsi

sqldst - Drop STored command/procedure

Syntax

#include <sqgl.h>

short sqgldst (cur, cnp, cnl);

SQLTCUR cur; /* Cursor handle */

SQLTDAP cnp; /* Command/procedure name buffer */

SQLTDAL cnl; [* Command/procedure name length */
Description

This function drops a stored command or stored procedure.

Parameters

cur
The cursor handle associated with this function.
cnp

A pointer to a string that contains the name of the SQL command or procedure to
drop.

cnl

The length of the string pointed to byp If the string pointed to bgnpis null-
terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

ret= sqldst (cur, "myquery”, 0);

SQL Application Programming Interface Reference 5-103

Chapter 5

Related functions

sqlsto

sgldsv - Disconnect from SerVer

Syntax
#include <sqgl.h>
SQLTAPI sgldsv (handle)
SQLTSVH handle; /* Server handle */
Description
This function disconnects from a server.
After the server connection is broken, you will not be able to perform administrative
functions.
Parameters
shandle

The server handle returned sgicsv

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

main()

{
srvname = "SERVERL1",

password = 0;
/* CONNECT TO THE SERVER */
if (red = sglcsv(&handle,srvname,password))

apierr("SQLCSV");
else

5-104 sqQL Application Programming Interface Reference

sglelo - End Long Operation

printf("Connection Established to Server \n");
/* DISCONNECT FROM THE SERVER */
if (red = sgldsv (handle))
apierr("SQLDSV");
else

printf("Disconnected from Server \n");

}

Related functions

sglcsv

sglelo - End Long Operation

Syntax
#include <sql.h>
SQLTAPI sqlelo (cur)

SQLTCUR cur; /* Cursor handle */

Description

This function ends a LONG VARCHAR operation. This function removes the
overhead necessary for handling LONG VARCHAR columns.

Parameters

cur

The cursor handle associated with this function.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

ret= sqglelo (cur);

SQL Application Programming Interface Reference 5-105

Chapter 5

Related functions

sqlbld sqlgls sqlrlo
sqlbin sqllsk sglwlo

sglenr - ENd Rollforward

Syntax

#include <sqgl.h>
SQLTAPI sglenr (shandle, dbname, dbnamel)

SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; [* Database name */
SQLTDAL dbnamel; /* Length of database name */

Description

Call this function after a rollforward operation has stopped because it cannot open the
next transaction log file. If the next log file is not available, call this function to finish
the rollforward recovery based on the logs processed up to that point.

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to dipname If the string pointed to bgbname
is null-terminated, specify zero and the system will compute the length.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

5-106 sQL Application Programming Interface Reference

sqglenr - ENd Rollforward

Example
SQLTSVH shandle;
char* password;
SQLTDPV Ibmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL,;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbnamel[] ="omed";

password = 0;

bkpdir = "\BACKUP\\OMED";

bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER */

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */
if (red =
sqlrdb(shandle,dbname1l,0,bkpdir,bkpdirl,local,over))
apierr("SQLRDB");
else
printf("Restored Database \n");
/* ROLLFORWARD TO END */
sqlrof(shandle,dbnamel,0,mode,0,0);
lognum=0;
/* The loop below assumes that all log file backups */
/* are on disk.*/
/* If a log file backup is not on disk, lognum is set */
[*to a*/

/* non-zero value which causes the loop to terminate. */

while (lognum == 0)

SQL Application Programming Interface Reference 5-107

Chapter 5

{
/* GET NEXT LOG */
sqglgni(shandle,dbnamel,0,&lognum);
/* RESTORE LOG FILES */
sqlrlf(shandle,dbnamel,0,bkpdir,bkpdirl,local,over);
}
/* END ROLLFORWARD */
if (red = sglenr (shandle,dbnamel,0))
apierr("SQLENR");
else

printf("End Rollforward \n");

Related functions

sqlbdb sqlcsv sqlrlf
sqlblf sqlgnl sqlrof
sqlbss sqlrdb sqlrss
sqlcrf sqlrel

sglepo - Error POsition

Syntax
#include <sgl.h>
SQLTAPI sqglepo (cur, epo)
SQLTCUR cur; /* Cursor handle */
SQLTEPO PTR epo; [* Error position */
Description

This function returns the error position in the SQL command now being processed by
the specified cursor. The error position is set aftgromor sqlcex

When a SQL/API function returns an error, the offset of the error in the SQL
command is set. The error position is meaningful after a compile or an execute
because it points to the position in a SQL command where a syntax error was
detected.

5-108 sQL Application Programming Interface Reference

sglerr - ERRor message

Parameters
cur
The cursor handle associated with this function.
epo

A pointer to a variable where this function returns the error position offset. The
first character in the SQL command is position zero.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

SQLTEPO errpos; /* error position */
short ret; /* return code */

if (Isglcom(cur, sqlcmd, 0))
ret= sqlepo (cur, &errpos);

Related functions

sglcom sqlcex

sglerr - ERRor message

Syntax
#include <sql.h>
SQLTAPI sqlerr (error, msg)
SQLTRCD error; /* Error code */
SQLTDAP msg; /* Message text */
Description

This function returns the text of the error message associated with the error code. The
text comes from the filerror.sql.

SQL Application Programming Interface Reference 5-109

Chapter 5

Each SQL/API function returns a code. You can retrieve the most recent code with
the functionsqlrcd function.

The file error.sglcontains message text for every return code. Each ergryoirsq|
contains the error code, mnemonic, message text, and the message reason and remedy
for that code.

When a program detects an error condition, it uses the error code to look up the error
message. Use tisglerr function to retrieve the error message text (without the
mnemonic) associated with a return code. Useadtfer function to retrieve the error
message text and the mnemonic associated with a return code.

Parameters
error
The error code to retrieve the message text for.
msg

A pointer to the variable where this function returns the error message text. The
error message text is a null-terminated string. SQLMERR is a constyithin

that indicates the size of the error message text buffer. This fuattiags

returns error message text.

Return value

This function returns zero if the value specifie@iror exists inerror.sql If this
function returns a non-zero value, it means that the valeeon does not exist in
error.sql. The text returned imsgwill also indicate this.

Example

char errmsg [SQLMERR]; /* buffer for error msg */
short ret; /* return code */

if (ret = sqlexe(cur))

{

sqlerr (ret, errmsg); [* get error message */
printf("%s \n", errmsg);/* print error message */

Related functions

sqgletx sqlred sqlxer sqlfer

5-110 sQL Application Programming Interface Reference

sqletx - Error message TeXt

sgletx - Error message TeXt

Syntax
#include <sql.h>
SQLTAPI sgletx (rcd, msgtyp, bfp, bfl, txtlen)
SQLTRCD rcd; /* Error code to get text for */
SQLTPTY msgtyp; /* Message text type */
SQLTDAP bfp; [* Ptr to receiving buffer */
SQLTDAL bfl; [* Length of receiving buffer */
SQLTDAL PTR txtlen; /* Length of retrieved text */
Description
This function retrieves one or more of the following fromeher.sql file for the
specified error code:
* Error message
e Error reason
» Error remedy
Each API function call returns a code. You can retrieve the most recent error code
with thesglrcdfunction. When an application program detects an error condition, it
can use the error code to look up the error message, error reason, and error remedy.
Parameters

rcd

The error code to retrieve information for.

msgtyp

You can specify the following message types individually or together by adding
the constants together. For example, a value of seven indicates that you want the
error message text, reason, and remedy all returned in the buffeipthaints

to.
Constant name Value Explanation
SQLXMSG 1 Retrieve error message text. Sgkerr
function does the same thing.

SQL Application Programming Interface Reference 5-111

Chapter 5

Constant name Value Explanation

SQLXREA 2 Retrieve error message reason.

SQLXREM 4 Retrieve error message remedy.

bfp

A pointer to the buffer where this function copies the error message text, reason,
or remedy.

bfl
Length of the buffer pointed at tfp.

If you are retrieving the error message text, reason, and remedy, you can specify
thesgl.hconstant SQLMETX for this argument. SQLMETX is always set to a
value that is large enough to hold the error message text, reason, and remedy.

If you are only retrieving the error message text, you can specifgtie
constant SQLMERR for this argument. SQLMERR is always set to a value that
is large enough to hold the error message text.

txtlen

A pointer to the variable where this function returns the number of bytes
retrieved.

For example, if the buffer is 100 bytes and requested text is 500 bytes, this
function returns 100 bytes bfp and a value of 500 itxtlen The application
program could then allocate a larger buffer to retrieve the entire text string.

Specify a null pointer if you do not want the total length of the text.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
This example retrieves the error message text, reason, and remedy after calling
sqlcom
SQLTCUR cur; /* cursor value*/
SQLTRCD red; [* error code to get text for */
char buf[1000]; /* buffer to receive the text */
SQLTDAL txtlen; [* length of returned text */

5-112 sQL Application Programming Interface Reference

sqlexe - EXEcute a SQL command/procedure

Related fun

if (red = sglcom(cur, "CREATE TABLE EMP (LASTNAME
CHAR(20))", 0))

{
sgletx (rcd, SQLXMSG + SQLXREA + SQLXREM, buf,
sizeof(buf), &txtlen)
printf("Error Explanation:\n%s\n", buf);
}

If you only wanted the remedy text, you would call sl¢etxfunction as follows:
sgletx (rcd, SQLXREM, buf, sizeof(buf), &txtlen)

ctions

sqlerr sqlred sqlxer
sqlfer

sglexe - EXEcute a SQL command/procedure

Syntax

Description

Parameters

#include <sgl.h>
SQLTAPI sglexe (cur)

SQLTCUR cur; /* Cursor handle */

This function executes a previously-compiled command or procedure.

The command or procedure executed can be one compiled earlier in the current
application or one that was stored and retrieved.

If the command or procedure contains bind variables, data must be bound before
execution.

cur
The cursor handle associated with this function.

To execute the following SQL commands, use the server handle returned by
sqglcsvinstead:

SQL Application Programming Interface Reference 5-113

Chapter 5

ALTER DATABASE
ALTER DBAREA
ALTER STOGROUP
CREATE DATABASE
CREATE DBAREA
CREATE STOGROUP
DEINSTALL DATABASE
DROP DATABASE
DROP DBAREA

DROP STOGROUP
INSTALL DATABASE
SET DEFAULT STOGROUP

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

if (ret = sglexe (cur))

{
}

... process error

Related functions

sqlcex sglcom sqlcsv

5-114 sQL Application Programming Interface Reference

sglexp - EXecution Plan

sglexp - EXecution Plan

Syntax

Description

#include <sgl.h>

SQLTAPI sqglexp (cur, buffer, length)

SQLTCUR cur; /* Cursor handle */
SQLTDAP buffer; /* Execution plan buffer */
SQLTDAL length; /* Length of buffer */

This function returns the execution plan for a compiled SQL command. The execution
plan shows the tables, views, indexes, and optimizations for the SQL command. Each
line in the plan represents one table or view needed to process the SQL command.

Table and views for the SQL command are listed in the order in which they will be
processed.

The SELECT column contains a number that identifies all the tables or views for a
given SELECT.

The TABLE column contains the name of the table or view. System generated
temporary tables are identified in the TABLE column as TEMP TABLE. For views
and temporary tables, the table identifier is followed by the number of the SELECT
which will be processed to produce the rows for the table or view.

The INDEX column contains the name of the index to use for the table. TEMP
INDEX indicates a system-generated temporary index.

OPTIONS shows the processing options which have been selected.

ANTI JOIN An optimization of the NOT IN operator.

INDEX Optimize joining of tables where appropriate indexes are available|in
MERGE each table.

OR LIST OR LIST optimization which occurs with an OR operator or an IN

operator with a list of values.

OUTJOIN Outer join has been specified.

QUICK TERM IN optimization. When doing a join for purposes of satisfying an IN
with a subselect, "quickly terminate" on the first satisfaction of the [N
condition.

SQL Application Programming Interface Reference 5-115

Chapter 5

Parameters
cur
The cursor handle associated with this function.
buffer

A pointer to the variable where this function returns the execution plan for the
command. Each line of the execution plan is terminated with a linefeed character.
The end of the execution plan is terminated with a null.

length
The length of the value pointed to byffer.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
First, set up an area to receive the execution plan:
char buf [2000]
Then, compile a SQL command such as the one shown below:

SELECT DISTINCT S#, P#, QTY FROM SPJ
WHERE QTY =
(SELECT MAX(QTY) FROM SPJ SPJY, S
WHERE SPJY.P# = SPJ.P#
AND SPJY.S# =S.S#
AND S.CITY ='ATHENS')

Call thesglexpfunction:
ret= sqlexp (cur, buf, sizeof (buf));

The aredufwill contain an execution plan as shown below.
EXECUTION PLAN:

SELECT TABLE INDEX OPTIONS

1 SPJ

1 TEMP TABLE-SEL TEMP INDEX

2 S

2 SPJ SPJX INDEXMERGE

5-116 sQL Application Programming Interface Reference

sqlfer - Full ERror message

sqlfer - Full ERror message

Syntax
#include <sql.h>
SQLTAPI sqlfer (error, msg)
SQLTRCD error; /* Error code */
SQLTDAP msg; [* Message buffer */
Description
This function returns the full text of the error message associated with the error code
specified byerror. The text that this function returns comes fremor.sql.
Each SQL/API function returns a code. You can retrieve the most recent code with the
functionsglrcdfunction.
The file error.sglcontains message text for every return code. Each ergryoirsq|
contains the error code, the mnemonic, and the message text for that code.
When a program detects an error condition, it uses the error code to look up the error
message. Use tisglerr function to retrieve the error message text (without the
mnemonic) associated to a return code. Ussdtferfunction to retrieve the error
message text and the mnemonic associated to a return code
Parameters

error
The error code to retrieve the message text for.
msg

A pointer to the variable where this function returns the full error message text.
The error message text is a null-terminated string. SQLMERR is a constant in
sql.hthat indicates the size of the error message text. This fursdti@ys

returns error message text.

Return value

This function returns zero if the valueerror exists inerror.sgl. If this function
returns a non-zero value, it means that the valegran does not exist ierror.sql
The text returned imsgwill also indicate this.

SQL Application Programming Interface Reference 5-117

Chapter 5

Example

#include "sql.h"
#include "stdio.h"

#define ERR_NUMS 12

main()

{
SQLTRCDerror; [* error code */
introw_num;

charmsg_buf[200];

staticintmsg_line[ERR_NUMS] =

{

1,4, 2104, 9001, 9100, 9286, 9287, 9288, 9289, 9301,
171, 3001
I3
for (row_num=0;row_num<ERR_NUMS;row_num-++)

{
sglfer (msg_line[row_num],msg_buf);
printf("Output from SQLFER(): %s\n",msg_buf);

}

Related functions

sqlerr sqlred sqlxer
sqletx

5-118 sQL Application Programming Interface Reference

sglfet - FETch next row from result set

sglfet - FETch next row from result set

Syntax

#include <sql.h>
SQLTAPI sqlfet (cur)

SQLTCUR cur; /* Cursor handle */

Description

This function fetches the next row resulting from a query. A succesgéxeor
sglcexmust come before this function. This function returns an end of fetch value (1)
when there are no more rows to fetch.

This function is associated with fetchable commands. In SQLBase, a fetchable
command is one that can return a result thraaggtet The SELECT and

PROCEDURE commands are fetchable commands. This means that you can fetch
results from a SELECT or PROCEDURE command until you reach the end of output.

Retrieve LONG VARCHAR columns with thelrlo function.

If there is an error, the return code will not indicate the column that caused the
problem. Check thpfc variable (set up withqglssh or usesqlgfito determine the
column in error.

Parameters
cur

The cursor handle associated with this function.

Return value

This function returns the values shown in the table below during normal operation.
Any other value returned means that an error occurred.

Returned Value Meaning

0 Row was fetched.

1 End of fetch (last row has been fetched).
2 Update performed since last fetch.

SQL Application Programming Interface Reference 5-119

Chapter 5

Retumned Value Meaning

3 Delete performed since last fetch.

Example

ret= sqlfet (cur);

Related functions

sqlcex sqldfi sqlssb
sglexe

sqlfgt - GeT File from server

Syntax
#include <sql.h>
SQLTAPI sqlfgt(shandle, srvfile, Iclfile)
SQLTSVH shandle; /* Server handle */
SQLTDAP snvfile; [* Server filename */
SQLTDAP Iclfile; /* Local file name */
Description
This function copies the file specified byfile on the database server associated to
shandleto the filelclfile on the client computer.
Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
Parameters
shandle

The server handle returned sgicsv

5-120 sQL Application Programming Interface Reference

sqlfgt - GeT File from server

srvfile

A pointer to the null-terminated string that contains the name of the file on the
database server to copy.

clfile

A pointer to the null-terminated string that contains the name of the file on the
client computer where the server file is copied.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

main()

{
SQLTSVH shandle;
SQLTDAP srvname;
char *password;
char *srvfile;
char *[clfile;

srvname = "SERVER1";
password = 0;

srvfile = "sqgl.h";

Iclfile = "localsql.h";

/* CONNECT TO THE SERVER */

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

if (red = sglfgt (shandle, srvfile, Iclfile))
apierr("SQLFGT");

else
printf("Successful Get File from Server \n");

snvfile = "srvsqlfl.h";
if (red = sqlfpt(shandle, srvfile, Iclfile))

apierr("SQLFPT");
else

SQL Application Programming Interface Reference 5-121

Chapter 5

printf("Successful Put File to Server \n");
/* DISCONNECT FROM THE SERVER */
if (red = sgldsv(shandle))

apierr("SQLDSV");
else

printf("Disconnected from Server \n");

}

Related functions
sglcsv sqlfpt

sqlfpt - PuT File to server

Syntax
#include <sql.h>
SQLTAPI sqlfpt (shandle, srvfile, Iclfile)
SQLTSVH shandle; /* Server handle */
SQLTDAP snvfile; [* Server file name */
SQLTDAP Iclfile; /* Local file name */
Description
This function copies the file specified lnjfile on the client computer to the file
snv/file on the database server associateshémdle
Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
Parameters
shandle

The server handle returned sgicsv
srvfile

A pointer to the null-terminated string that contains the name of the file on the
database server where the client file is copied.

5-122 sqQL Application Programming Interface Reference

sqlfpt - PuT File to server

clfile

A pointer to the null-terminated string that contains the name of the file on the
client computer to copy.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

main()

{
SQLTSVH shandle;
SQLTDAP srvname,

char *password;
char *srvfile;
char *[clfile;

srvname = "SERVER1";
password = 0;

srvfile = "sqgl.h";

Iclfile = "localsql.h";

/* CONNECT TO THE SERVER */

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

if (red = sqlfgt(shandle, srvfile, Iclfile))
apierr("SQLFGT");

else
printf("Successful Get File from Server \n");

snvfile = "srvsqlfl.h";

if (red = sglfpt (shandle, srvfile, Iclfile))
apierr("SQLFPT");

else
printf("Successful Put File to Server \n");

/* DISCONNECT FROM THE SERVER */

SQL Application Programming Interface Reference 5-123

Chapter 5

if (red = sgldsv(shandle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions
sglcsv sqlfgt

sqlfgn - Fully-Qualified column Name

Syntax
#include <sqgl.h>
SQLTAPI sqlfgn (cur, col, nameptr, namelen)
SQLTCUR cur; /* Cursor handle */
SQLTFLD field; /* Field number */
SQLTDAP nameptr; /* Column name */
SQLTDAL PTR namelen; /* Length of column name */
Description
This function returns the fully-qualified name of a column in a SELECT list. The
function can be called only after a SELECT command has been compiled or retrieved
because this is the only time the information is available.
An attempt to get a SELECT list element that is not a database column name causes
an error. This can happen when a SELECT list item is an expnessview column
name derived from an expression, or a constant.
This function is faster than a query on the SYSCOLUMNS system catalog table.
This function differs fronsqldesandsqldscbecause it returns the fully-qualified
name of the underlying table of a column inELECT list. Thesgldesandsgldsc
functions only return the column heading.
Parameters

cur

The cursor handle associated with this function.

5-124 sqQL Application Programming Interface Reference

sqlfgn - Fully-Qualified column Name

field

The column number that indicates the sequence number (starting with 1) of the
item in the SELECT list for which the fully-qualified name is wanted.

nameptr

A pointer to the variable where this function returns the name. The fully-qualified
name of a column has this form:

username.columnname.tablename
namelen

A pointer to the variable where this function returns the length of the name.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

#define NOTCOL 5131 /* select list element not a
column name error */

static char select[] = "select name, phone, from empview; ";
char colname[50];

uint cvl;

uint col;

short ret;/* return code */

/* get fully qualified name */

memset(colname, ' ', sizeof(colname));/*initialize */
for (col=1, col <= 2, col++)

{
if (ret = sqlfgn (cur, col, colname, &cvl))
{
if (ret == NOTCOL)
continue;/* not a real column */
else
... process error
}
ProcessName (colname, cvl);
}

SQL Application Programming Interface Reference 5-125

Chapter 5

Related functions
sgldsc sgldes

sglgbc - Get Backend Cursor

Syntax

#include <sqgl.h>

SQLTAPI sqglgbc (cursor, curp)

SQLTCUR cursor; /* Cursor Handle *

SQLTCUR PTR curp; [* Cursor Handle */
Description

This function retrieves the backend cursor handle for the supplied cursor handle.

Parameters

cursor
A cursor handle returned tsglcnc
curp

A pointer to the variable where this function returns the backend cursor handle.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
SQLTCUR cur; /* Cursor handle */
SQLTCUR curp; [* Cursor handle */
SQLTRCD rcd; /* Return code */

if (red = sqglenc(&cur, "PAYROLL/BOSS/SECRET", 0))

printf("Failure on connect (rcd = %d \n", rcd);
exit(0);

5-126 sQL Application Programming Interface Reference

sqlgbi - Get Backend Information

}
else
{
if ((rcd = sqlgbc(cur, &curp)) !=0)
{
apierr("SQLGBC";
}
else
{
printf("Backend Cursor: %d \n", curp);
}
}

sglgbi - Get Backend Information

Syntax
#include <sql.h>
SQLTAPI sqlgbi (cursor, curp, pnmp)
SQLTCUR cursor; /* Cursor Handle */
SQLTCUR PTR curp; /*Backend cursor handle ptr */
SQLTPNM PTR pnmp; /* Backend process number ptr */
Description
This function retrieves the backend cursor handle and process number for the supplied
cursor handle.
Parameters

cursor
A cursor handle returned by sglcnc.
curp
A pointer to the variable where this function returns the backend cursor handle.
pnmp
A pointer to the variable where this function returns the backend process number.

SQL Application Programming Interface Reference 5-127

Chapter 5

Return value

Example

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQLTCUR cur; /* Cursor handle */

SQLTCUR curp; /* Backend cursor handle */
SQLTPNM pnmp; [* Backend process number */
SQLTRCD rcd; /* Return code */

if (red = sqglenc(&cur, "PAYROLL/BOSS/SECRET", 0))
{

printf("Failure on connect (rcd = %d \n", rcd);
exit(0);
}

else
if ((rcd = sqlgbi(cur, &curp, &pnmp)) = 0)
{

apierr("SQLGBC");
}

else

{

printf("Backend Cursor: %d Backend Process: %d \n",
curp, pnmp);

}

sglgdi - Get Describe Information

Syntax

#include <sgl.h>
SQLTAPI sqlgdi (cur, gdidef);

SQLTCUR cur; /* Cursor handle */
SQLTPGD gdidef; /* Describe structure */

5-128 sQL Application Programming Interface Reference

sqglgdi - Get Describe Information

Description

This function returns descriptive information about a column in a SELECT list.

This function returns all the descriptive information thgitlesandsqgldscreturn as
well as the column label and the null indicator.

The diagram below shows how the SQLPDIS settings (SQLDELY, SQLDDLD, and
SQLDNVR) control when describe information is available. You can specify the
SQLPDIS parameter’s value by calling gmdsetfunction.

sglcom
SQLDELY (early)
call sgldes, sqldsc, sq
or sqglgdiafter sqlcom SQLDELY (early) or
and before Sglexe SQLDDLD (delayed)
sglexe call sqldes, sgldser sqlgdi
after sqlcexand before sqlfet
SQLDDLD (delayed)
call sqldes, sqldsc,
or sqlgdiafter sqlexe sqlfet
and before sqlfet v
sqlfet

The following table explains how the setting of the SQLPDIS parameter controls
when you can caliglgdi The SQLPDIS parameter controls when (and if) describe
information for a SELECT statement is sent to a client.

SQLPDIS setting

(constant) Value When you can call sqglgdi
SQLDELY 0 The server sends describe information aftgcom
early subsequent calls s8gldes sqldsc or sqlgdiare legal
(default) until after a call tasglexe.

The server also sends describe information after
sqglcex subsequent calls &xjldes sqglds¢ orsqlgdi
are legal until after a call &xlfet.

SQL Application Programming Interface Reference 5-129

Chapter 5

SQLDDLD 1
delayed

The server sends describe information aftgexe
Calling sgldes sqldsg or sqglgdiafter callingsglexe
but before the firstqlfetis legal; callingsqldes
sqldsc orsqlgdiat any other time is illegal

The server also sends describe information after
sqlcex subsequent calls &rjldessqldsc or
sqlgdiare legal until after a call to sqgffet.

Use this setting to reduce message traffic for
database servers that do not support compile

(sglcom)operations (like Microsoft's SQL Server),

SQLDNVR 2
never

The serveneversends describe information; any
call tosqldessqldsc orsqlgdiis illegal.

When SQLPDIS is set to SQLDNVRgInsialways
returns 0. You must hard code the number of

SELECT items so that the application knows how
many times to calqlssb

Use this setting to reduce message traffic when t
application always knows the number and type of
columns in a SELECT statement and never make
calls tosqldes sqgldsc orsqlgdi

ne

7]

You can retrieve the number of columns in the SELECT list witlsdjiresifunction
and then use the number of columns in a loop thatsgltsli for each column.

Parameters

cur

The cursor handle associated with this function.

gdidef

This is a structure that you define in the program where this function returns
information about a column. The structure and typedefs below are defined in

sql.h

struct gdidefx
{
ubytel gdichb[31];
SQLTCHL gdichl;
ubytel gdilbb[31];

SQLTLBL gdilbl;
SQLTSLC gdicol;
SQLTDDT gdiddt;
SQLTDDL gdiddl;
byte2 gdiedt;

5-130 sQL Application Programming Interface Reference

[* Column heading */
/* Column heading length */
/* Label */
[* Label length */
[* SELECT column number */
[* Database data type */
[* Database data length */
[* External data type */

sqglgdi - Get Describe Information

SQLTDDT
SQLTPRE
SQLTSCA
byte2
bytel

h

typedef
typedef
typedef
#define

gdiedl; [* External data length */

gdipre; /* Decimal precision */

gdisca; /* Decimal scale */
gdinul; /* Null indicator */

gdifil[50]; /* Reserved */

struct gdidefx gdidef;
struct gdidefx SQLTGDI,
struct gdidefx* SQLTPGD;
GDISIZ sizeof(gdidef)

The table below explains the elements in the structure. You only need tafilicivl
before callingsglgdi

Element Explanation

gdichb The column heading (name) defined in the
SYSCOLUMNS system catalog table.

gdichl The length of the column heading.

gdilbb The label defined in the SYSCOLUMNS system catalog
table.

gdilbl The length of the column label.

gdicol I‘_I'ktle column number (starting with 1) in the SELECT
ist.

gdiddt A pointer to the variable where this function returns the

database data type of the column:
Typedefinsgl.h Number Data type

SQLDCHR 1 Character
SQLDNUM 2 Numeric
SQLDDAT 3 Date-time
SQLDLON 4 Long
SQLDDTE 5 Date (only)
SQLDTIM 6 Time (only)

SQL Application Programming Interface Reference 5-131

Chapter 5

Element Explanation

gdiddl The database length of the column:
Data type Length
Character Size specified when column was

defined.
Numeric 27 (22 digits of precision plus room
for scientific notation).

Date-time 26
Long 0
Date (only) 10
Time (only) 15

gdiedt The external data type of the column:
Typdefin sql.h Number Data type
SQLEINT 1 INTEGER
SQLESMA 2 SMALLINT
SQLEFLO 3 FLOAT
SQLECHR 4 CHAR
SQLEVAR 5 VARCHAR
SQLELON 6 LONGVAR
SQLEDEC 7 DECIMAL
SQLEDAT 8 DATE
SQLETIM 9 TIME
SQLETMS 10 TIMESTAMP
SQLEMON 11 MONEY
SQLEDOU 12 DOUBLE
SQLEGPH 13 GRAPHIC
SQLEVGP 14 VARGRAPHIC
SQLELGP 15 LONG

VARGRAPHIC

SQLEBIN 16 BINARY
SQLEVBI 17 VAR BINARY
SQLELBI 18 LONG BINARY
SQLEBOO 19 BOOLEAN

5-132 sqQL Application Programming Interface Reference

sqglgdi - Get Describe Information

Element Explanation
gdiedl The external length of the column:
Data type Length
INTEGER 4
SMALLINT 2
FLOAT 4o0r8
CHAR Size specified when column was
defined.
VARCHAR Size specified when column was
defined.
LONGVAR 0
DECIMAL 8
DATE 4
TIME 3
TIMESTAMP 10
gdipre Precision for a numeric column.
gdisca Scale, if any, for a numeric column.
gdinul Null indicator:
-1 Column can contain null value.
0 Column cannot contain null value
gdifil Reserved.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example
sqglgdi (cur, gdidef);

Related functions

sqldes sqllab sqlnsi
sqldsc

SQL Application Programming Interface Reference 5-133

Chapter 5

sglget - GET parameter

Syntax

Description

#include <sql.h>
SQLTAPI sqlget (cur/shandle, parm, pbuf, len)

SQLTCUR cur/shandle;/* Database cursor or server
handle */

SQLTPTY parm; /* Parameter type */

SQLTDAP pbuf; [* Information buffer */

SQLTDAL PTR len; [* Information length */

This function retrieves individual database parameters. Pass a parameter type and
retrieve a corresponding value and length.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameter

Description

SQLPAID

Adapter Identifier. This parameter allows the setting of an network adapter
identification string.

If you call sqlsetand specify the SQLPAID parameter, it changes the setting of the
adapter_idkeyword inwin.ini.

SQLPALG

Process Activity file nameThe file to which SQLBase writes the messages displayed on
a multi-user servers Process Activity screen.

SQLPANL

Apply net log. This parameter disables internal condition checking while a netlog is
being applied.

This keyword is useful to Centura technical support and development personnel only.

If you call sglsetand specify the SQLPANL parameter, it changes the setting of the
applynetlogkeyword insgl.ini.

0 = Off

1=0n

5-134 sqQL Application Programming Interface Reference

sqlget - GET parameter

Parameter

Description

SQLPAPT

Activate process timingWhen this parameter is on (1), activation times are accumulpted
for prepares, executes and fetches. Activation times are accumulated at three different
levels; system, process, and cursor. By default, this parameter is turned off.
0 = Off
1=0n
Note that if you are using ttsgjlsetfunction to set the SQLPCTL (command time limif)

parameter, parameter settings for the SQLPAPT (activate process timing) and SQLPSTA
(statistics for server) parameters can be affected in the following ways:

* When you enable a command time limit (by specifying a non-zero value in either the
cmdtimeoukeyword of the server'sgl.inifile or with the SQLPCTL parameter),
SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatically
turned on.

« If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPAPT
(process timing) are automatically turned off, unless you explicitly turned on either
parameter after you enabled a command time limit.

« If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (prodess
timing), your command time limit (if you enabled on) is turned off agHiniis
updated to refleatmdtimeout0.

It is recommended that if you set a value for any of these three parameters, you should set

the same value for the other two. For example, if you set SQLPAPT parameter On (1),
you should also set SQLPCTL and SQLPSTA parameters On (1).

SQLPAUT

Autocommit. Commits the database automatically after each SQL command. By default
this parameter is Off (0) and SQLBase commits the database only when you issue|a
COMMIT command.

Autocommit is cursor-specific. When you set autocommit On (1) for a cursor and then
perform an operation with that cursor, SQLBase comatiitsf the transaction’s cursors,.
Performing operations with cursors that do not have autocommit set on does not affect the
rest of the transaction’s cursors.

You cannot have autocommit and bulk execute on simultaneously.

SQLPAWS

OS averaging window sizeThis parameter specifies the number of samples of the CPU
% Ultilization value to keep for determining the average value. You can specify a window
size of 1 to 255. The default setting is one (1). If yousgltetand specify the
SQLPAWS parameter, it changes the setting ob#agwindovkeyword insgl.ini.

0 = Off
1 = 255 units

SQL Application Programming Interface Reference 5-135

Chapter 5

Parameter Description

SQLPBLK Bulk execute mode Reduces the network traffic for multi-row inserts, deletes, and
updates. In bulk execute mode, data values are buffered so that many rows can bg sent to
the server in one message.
Increasing the size of the output message buffer (witkdlmmsfunction) increases the
number of operations that can be buffered in one message to the server, thereby
improving performance.
This setting is cursor specific.
If this is On (1), as many operations are buffered in the output message buffer as ppssible.
By default, bulk execute mode is Off (0). Bulk execute mode cannot be on at the same
time as the autocommit (SQLPAUT) option.

SQLPBRN Database brand
SQLBALB - HP Allbase
SQLBAPP - SQLHost Application Services
SQLBAS4 - IBM AS/400 SQL/400
SQLBDB?2 - IBM DB2
SQLBDBC - Teradata DBC Machines
SQLBIGW - Informix
SQLBIOL - Informix On-Line
SQLBNTW - NetWare SQL
SQLBORA - Oracle
SQLBSQB - Centura SQLBase
SQLBSHR - Teradata ShareBase

SQLPBRS Backend result setslf the database server supports backend result sets, this parameter’s
value is 1 (Yes); otherwise, its value is O (NO).

SQLPCAC Size of database cache (in KBytesThis parameter sets the cache which buffers

database pages in memory. The larger the cache, the less the disk input and output. In

other words, as you increase the value of the cache setting, disk access is reduced!.

The default cache size for Windows is 500K; for all other platforms, the default is 2
The minimum is 15K and the maximum is 32767K.

If you call sqlsetand specify the SQLPCAC parameter, it changes the setting of the
cachekeyword insgl.ini, but the new setting does not take effect until SQLBase is
restarted.

M.

5-136 sQL Application Programming Interface Reference

sqlget - GET parameter

Parameter

Description

SQLPCCB

Connect Closure BehaviorThis parameter specifies the connect closure behavior th
occurs when you terminate a connection usingstildchfunction. Valid options are
COMMIT, ROLLBACK, or DEFAULT. The default is 0 which means that connect
closure behavior is dependent on the database server to which the user is connect
the case of SQLBase, the DEFAULT setting (0) issues a COMMIT before a conneg
handle is terminated. To determine the DEFAULT behavior for other servers, read t
applicable server documentation.

Setting this parameter on (1) instructs the server to issue a COMMIT before a conn
handle is terminated, while a setting of (2) issues a ROLLBACK.

This option also specifies whether a COMMIT or ROLLBACK is issued before
disconnecting to a cursor with an implicit connection usingstjflencfunction.

at

ed. In
tion
he

ection

SQLPCCK

Client check. This parameter tells SQLBase to send the client a RECEIVE upon re
of a request.

By default, clientcheck is off (0). When SQLBase has finished executing a commar
issues a SEND request to the client with the results of the command. If successful
server then issues a RECEIVE request and waits to receive another command.

Setting this parameter on (1) instructs SQLBase to issue a RECEIVE request befo
beginning execution of the command, not after it finishes executing the command.
so allows SQLBase to detect a situation where the client session is dropped or a ¢
request is made during command processing.

If you call sglsetand specify the SQLPCCK parameter, it changes the setting of the
clientcheckkeyword insql.ini.

0 = Off

1=0n

ceipt

d, it
the

e
Doing
ancel

SQLPCGR

Contiguous cache pages in cache grouphis parameter specifies the number of
contiguous cache pages to allocate. For example if you set cache at 3000, and cac
at 30, SQLBase allocates 100 cache groups, consisting of 30 pages each.

To set the number of cache pages per group to 50:
cachegroup =50
The default is 30.

If you call sglsetand specify the SQLPCGR parameter, it changes the setting of the
cachegroupkeyword insgl.ini.

hegroup

SQLPCHS

Retrieved chained command contains a SELECT command

0 = Chained command domstcontain a SELECT command.
1 = Chained commandbescontain a SELECT command.

This setting is cursor-specific.

SQL Application Programming Interface Reference 5-137

Chapter 5

Parameter

Description

SQLPCIS

Client identifier. This parameter returns a client identification string.
The client identification string will consist of:
MAIL_ID\NETWORK_ID\ADAPTER_ID\APP_ID\CLIENT_NAME

Each of these identification strings can be returned separately by calling sqlget wit
appropriate parameter.

h the

SQLPCLG

Commit logging. When this parameter is On (1), SQLBase causes every database
transaction in which data was modifed to log a row of data. The data that is logged
contains the transaction’s identifier (Transaction ID) and a unique sequence numbg

When the COMMIT operation is executed for a transaction that is modified, the dat
logged in the system utility table SYSCOMMITORDER. The SYSCOMMITORDER
table lists transactions that operated on the database in the order in which they we
committed. For details on the SYSCOMMITORDER table, see “Appendix C,” in the
Database Administrator's Guid&urning the SQLPCLG parameter Off (0), which
the default, stops commit logging.

Turning the SQLPCLG parameter Off (0), which is the default, stops commit loggin
You must have DBA privileges to set the SQLPCLG parameter and to use DDL
commands with the SQLPCLG parameter.

Note that commit logging is also supported for replication with Centura Ranger.

a is

is

SQLPCLI

LOAD/UNLOAD Client Value. The load/unload’s ON CLIENT clause value.

0 = Off (file is on the server)
1 =On (file is on the server)

This parameter indicates where the load/unload file will reside. Before using this
parameter, compile the load/unload statement first.

SQLPCLN

Client name. The name of a client computer.

SQLPCMP

Message compressianVhen message compression is On (1), messages sent betw
client and the database server or gateway are compressed. This means that mess
shorter, and more rows can be packed into a single message during bulk insert an
operations.

The compression algorithm collapses repeating characters (run-length encoding).
SQLBase performs the compression incrementally as each component of a messg
posted.

By default, message compression is Off (0) because it incurs a CPU cost on both
client and server machines.

This parameter is cursor-specific.

een a
ages are
i fetch

ge is

he

SQLPCSV

Commit server status.Indicates whether commit service is enabled for the server.

0 = Off
1=0n

5-138 sQL Application Programming Interface Reference

sqlget - GET parameter

Parameter

Description

SQLPCTF

LOAD/UNLOAD control file indicator. Indicates whether a file is a load/unload cont
file.

0 = Not a control file
1 =Is control file

You can use this parameter in conjunction with the SQLPCTF parameter (control
filename) to obtain information about a file after you compile the load/unload state

ol

nent.

SQLPCTI

Checkpoint time interval. How often SQLBase should perform a recovery checkpoi
operation. SQLBase’s automatic crash recovery mechanism requires that recovery
checkpoints be done.

The default checkpoint time interval is one minute. This should yield a crash recovs
time of less than a minute. If your site can tolerate a longer crash recovery time, yg
increase this interval to up to 30 minutes.

Depending on the applications running against the database server, a checkpoint
operation can affect performance. If this happens, you can increase the checkpoin
interval until you attain the desired performance.

2ry
u can

SQLPCTL

Command time limit. The amount of time (in seconds) to wait for a SELECT, INSE
UPDATE, or DELETE statement to complete execution. After the specified time ha
elapsed, SQLBase rolls back the command.

Valid values range from 1 to 43,200 seconds (12 hours maximum), and include O (
which indicates an infinite time limit.

Note that if you are using ttsgjlsetfunction to set the SQLPCTL (command time limi
parameter, settings for the SQLPAPT (activate process timing) and SQLPSTA (stat
for server) parameters can be affected in the following ways:

* When you enable a command time limit (by specifying a non-zero value in eithe
cmdtimeoukeyword of the server'sgl.inifile or with the SQLPCTL parameter),
SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatica
turned on.

« If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPA4
(process timing) are automatically turned off, unless you explicitly turned on eit
parameter after you enabled a command time limit.

« If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (prog
timing), your command time limit (if you enabled on) is turned off agHiniis
updated to refleatmdtimeoutO.

It is recommended that if you set a value for any of these three parameters, you sh
the same value for the other two. For example, if you set SQLPCTL parameter On

RT,

7ero)

)

istics
er the

ally

\PT
her

eSS

uld set

).

you should also set SQLPAPT and SQLPSTA parameters On (1).

SQL Application Programming Interface Reference 5-139

Chapter 5

Parameter

Description

SQLPCTS

Character set file nameThis parameter identifies a file that specifies different values
the ASCII character set.

This is useful for non-English speaking countries where characters in the ASCII cha
set have different hex values than those same characters in the U.S. ASCII charac

If you call sqlsetand specify the SQLPCTS parameter, it changes the setting of the
charactersekeyword insql.ini.

for

racter
ter set.

SQLPCTY

Country file section (for example, France)This parameter tells SQLBase to use the
settings in the specified section of tteuntry.sqlfile. SQLBase supports English as th
standard language, but it also supports many national languages including those sp
Europe and Asia. You specify information that enables SQLBase to support anothe
language in theountry.sgffile. If you callsglsetand specify the SQLPCTY parameter,
changes the setting of theuntrykeyword insqgl.ini.

a)

okenin

=

it

SQLPCXP

Execution plan cost.SQLBase uses a cost-based optimizer to determine the most
efficient way to access data based on the available indexes, system catalog statist
the composition of a SQL command. The access plan SQLBase chooses is the on
the lowest estimated cost.

cs, and
e with

SQLPDBD

DBDIR keyword information . The drive, path, and database directory name informa
specified for thesql.ini's DBDIR keyword.

tion

SQLPDBM

Database modelndicates whether the database is local or remote.

SQLMDBL = local
SQLMRTR = remote

SQLPDBN

Database nameThe name of the database that you are accessing.

SQLPDDB

Default database nameThis overrides the SQLBase default database name of DEN

SQLPDDR

Database directory The drive, path, and directory name where the
database you are connected to resides.

SQLPDIS

Describe information control. When (and if) SQLBase sends describe information fg
SELECT command to a client.

This parameter is cursor-specific.

SQLDELY (0) means early and is the default value. The server sends describe
information after a call teglcom Call sqldes sqlds¢ or sqlgdiaftersglcomand before
sglexe The server also sends describe information after a csicex Call sqldes
sqldsg or sglgdiaftersglcexand beforesqlfet

SQLDDLD (1) means delayed. The server sends describe information after a call
sqlexe Call sgldessqldsc orsqlgdiaftersglexe but before the firstglfet Callingsgldes
sqldsc or sqlgdiat any other time is illegal. The server also sends describe informat
aftersqlcex Call sqldes sqgldsc or sglgdiaftersglcexand beforesqlfet

Use this setting to reduce message traffic for database servers that do not support

[=]

on

compile

(sqlcom operations.

5-140 sQL Application Programming Interface Reference

sqlget - GET parameter

Parameter Description

SQLDNVR (2) means never. The server never sends describe
information. Any call tesqldes sqldsg or sglgdiis illegal. When you set SQLPDIS to
SQLDNVR, sqglnsialways returns zero (0). You must hard-code the number of columns
in the SELECT command so that the
application knows how many times to cadlssh
Use this setting to reduce message traffic when the application always knows the number
and type of columns in a SELECT command and never makes csdjlé&s sqldsc or
sqlgdi

SQLPDLK Deadlocks.The number of deadlocks that have occurred since the server was started.

SQLPDMO Demo version of database.
0=No
1=Yes

SQLPDPW Default password

SQLPDTL Database command time limitThis parameter sets the amount of time (in seconds) to
wait for a SELECT, INSERT, UPDATE or DELETE command to complete execution.
This only includes the time to prepare and execute, not the time to fetch. After the
specified time has elapsed, SQLBase rolls back the command. The time limit is valigd only
for the database requested. A global server command time limit is available by using
SQLPCTL.
0 = no time limit
1 =43,000 secs

SQLPDTR Set distributed transaction mode.If this parameter is on (1), all subsequent
CONNECTs and SQL statements will be part of a distributed transaction. Currently, you
can have one distributed transaction per session.
The default for this parameter is off (0).
0 = Off
1=0n

SQLPDUS Default username.

SQLPEMT Error message tokensOne or more object names (tokens) returned in an error megsage.

SQL Application Programming Interface Reference 5-141

Chapter 5

Parameter

Description

SQLPERF

Error filename. Specifies a file that contains entries to translate standard
SQLBase return codes into user-defined return codes:
errorfile=filename

The file contains entries for error code translation in the form:
sbred,udrcd

wheresbrcdis a SQLBase return code foundeimor.sql, andudrcdis a user-defined
return code. Thebrcdvalue must be a positive integer; tidrcd can be a positive or

negative integer. There can be no white space between the values or after the comma. The

client application converts thgbrcdvalue to theudrcd value using thegltecAPI

function. For example, SQLBase returns a value of '1' to indicate an end-of-fetch
condition, while DB2 returns a value of '100'. If you want an application to convert a
SQLBase return codes of '1' to '100', the entry in the errorfile would look like this:

1,100

When your application calls tregjltecfunction, if the SQLBase return code doesn't ex|st,
SQLBase returns a non-zero return code that means that the translation did not ogcur. To
force translation to occur, you can create a global translation entry using the asterisk (*)

character and a generic return code (like '999').
For example, assume an errorfile of SQLBase return codes and corresponding DB

return

codes. For those SQLBase return codes that have no corresponding DB2 return cade, you
can force the application to return the generic return code '999' with the following entry:

*,999

If you call sqlsetand specify the SQLPERF parameter, it changes the setting of the
errorfile keyword insqgl.ini.

SQLPEXE

Database server program name

SQLPEXP

Execution plan. Retrieves the execution plan of the last SQL statement that SQLBdse

compiled.

SQLPEXS

Extension sizg(in MBytes for partitioned databases, and in KBytes for
non-partitioned databases).

SQLBase databases grow dynamically as data is added, and expand in units calle

extensionsWhen a database becomes full, SQLBase must add another extension (or

extenj to the database.

SQLPFNM

LOAD/UNLOAD filename . The name of the load/unload file. This can also be the name
of the load/unload control filename. The client application uses this parameter to obtain

the filename after the load/unload statement is compiled at the back end. You can 4l
this in conjunction with the SQLPCTF (control file value parameter).

5-142 sqQL Application Programming Interface Reference

SO use

sqlget - GET parameter

Parameter

Description

SQLPFRS

Frontend result sets SQLBase supports backend result sets, but for those databas
servers that do not, Centura offers frontend result sets

(maintained on the client computer). For SQLBase, SQLPFRS is Off (0). For datab
servers that don’t support backend end result sets, like DB2, SQLPFRS is On (1).

This parameter is cursor-specific.

v

ase

SQLPFT

Fetchthrough mode

If fetchthrough is On (1), rows are fetched from the database server even if they ar
available from the client’s input message buffer. Since data could have been update
you last fetched it (into the input message buffer), using the fetchthrough feature e
that you see the most up-to-date data. If fetchthrough is Off (0), rows are fetched frg
client’s input message buffer when possible.

In fetchthrough mode, rows are fetched from the backend one at a time; there is na
row buffering. Because of this, and the network traffic involved, fetchthrough increa
response time.

Note for procedures, if you want the On Procedure Fetch section to execute exactl
for every fetch call from the client, returning one row at a time, set fetchthrough mog
at the client (the default is Off).

If the result set you are fetching was created by a SELECT command that included
aggregate function, defined a complex view, or included a DISTINCT, GROUP BY,
HAVING, UNION, or ORDER BY clause, then SQLBase creates a virtual table. Thg¢
rows of this virtual tableannotbe mapped to the rows in the database. For this reas
arow in the result set is UPDATEd, when you fetch it, it ndlt reflect the UPDATE
even if fetchthrough is On.

This parameter is cursor-specific.

e
d since
nsures
m the

multi-
ses

y once
e On

an

D

DN, if

SQLPGBC

Global cursor. The COBOL SQLPrecompiler uses this parameter.

Note that COBOL SQLPrecompiler is not released with the standard SQLBase 6.0
parameter is listed here for the sake of completeness.

. This

SQLPGCD

Group commit delay ticks.

SQLPGCM

Group commit count.

SQLPHEP

Heap size of DOS TSR executableBor a single-user database server, the heap is t
space available for sorting, cursor workspace, and cachdbFarter.exethe heap is the|
memory used by message buffers for communicating with the server.

Note that the DOS platform is not released with the standard SQLBase 6.0. This
parameter is listed here for the sake of completeness.

ne

SQLPHFS

Read-only history file size(in KBytes). If read-only mode is enabled, this parameter
limits the size of the read-only history file. The default size is 1 MByte (1000 KByte

SQL Application Programming Interface Reference 5-143

Chapter 5

Parameter

Description

SQLPISO

Isolation levelof all the cursors that the program connects to the
database. See tisglsil function for an explanation of the isolation levels.

SQLILRR = Repeatable Read
SQLILCS = Cursor Stability
SQLILRO = Read-Only
SQLILRL = Release Locks

SQLPLBM

Transaction log backup mode By default, this parameter is not enabled (0) and
SQLBase deletes log files as soon as they are not needed to perform transaction 1
or crash recovery. This is done so that log files do not accumulate and fill up the di

If SQLPLBM is Off (0), you are not able to recover the database if it is damaged by
error or a media failure.

This parameter must be On (1) when you back up datalsagiedtj and log files ¢qlblf),
but does not need to be On when you back up snapshtisg.

ollback
5K.

user

SQLPLCK

Lock limit allocations. This parameter specifies the maximum number of lock entrig
allocate. SQLBase allocates lock entries dynamically (in groups of 100) on an as-r
basis.

The default setting is 0, which means that there is no limit on the number of locks
allocated; as many lock entries can be allocated as memory permits.

If you callsglsetand specify the SQLPLCK parameter, it changes the setting lofcttse
keyword insql.ini.

s to
eeded

SQLPLDR

Transaction log directory. The disk drive and directory that contains the log files.
SQLBase creates log files in the home database directory by default, but you can
them to a different drive and directory with thgl.infs lodgir keyword.

edirect

SQLPLDV

Load version Retrieves the load version you set when you caliggbtwith this
parameter.

This parameter is cursor-specific.

SQLPLFF

Support long data with front-end result sets Lets (1) you or prevents (0) you from
reading and writing long data when using front end result sets with SQLNetwork rg
and gateways.

This parameter is cursor-specific.

uters

SQLPLFS

Transaction log file size(in KBytes). The default log file size is 1 MByte (1000 KByte
and the smallest size is 100,000 bytes.

SQLPLGF

Get log file offset. You can use this parameter to see how much of a log file has be
written.

en

5-144 sqQL Application Programming Interface Reference

sqlget - GET parameter

Parameter Description

SQLPLOC Local/remote database serveiSpecifies whether the database being accessed is logal or

remote.
0 = Remote
1 = Local engine

SQLPLSS Last SQL statement.Retrieves the last SQL statement that SQLBase compiled.

SQLPLRD Local result set directory. If the database server does not support backend result sets,
this parameter retrieves the name of the directory on the client computer that contajins the
frontend result set file. By default, this is the current working directory.

SQLPMID E-Mail Identifier. This parameter allows the setting of an E-Mail identification string.

If you call sglsetand specify the SQLPMID parameter, it changes the setting of the
mail_id keyword inwin.ini.

SQLPMUL Multi-user version of SQLBase Specifies whether the database server you are
accessing is multi-user (1) or single-user (0).

SQLPNCK Check network transmission errors.This parameter enables and disables a checkspm
feature that detects transmission errors between the client and the server. To use this
feature, both the client and the server must enable netcheck.

The default is off (0).

If you call sgisetand specify the SQLPNCK parameter, it changes the setting of the
netcheckeywordsql.ini.

0 = Off

1=0n

SQLPNCT Netcheck algorithm.This parameter specifies the algorithm SQLBase uses when

netcheck is enabled. Configure this keyword only when you enable netcheck.
By default, checksum(0) is enabled. To switch to CRC/16:
netchecktype = 1
If you call sglsetand specify the SQLPNCT parameter, it changes the setting of the
netchecktypetatement irsgl.ini.
0 = Checksum
1=CRC/16
SQLPNDB Mark as brand new databaseUsed in conjunction with COUNTRY.DBS.
0 = False
1=True
SQLPNID Network identifier. This parameter allows the setting of an Network identification string.

If you call sglsetand specify the SQLPNID parameter, it changes the setting of the
network_idkeyword inwin.ini.

SQL Application Programming Interface Reference 5-145

Chapter 5

Parameter

Description

SQLPNIE

Null indicator error . Controls whasqlfetreturns insqlssts pfc parameter when the
value is null:

0 =sqlfetreturns zero (default).
1 =sqlfetreturns FETRNUL (7).

SQLPNLB

Next transaction log file to back up.An integer that specifies the number of the next
file to back up.

SQLPNLG

Net log file. This parameter invokes a diagnostic server utility that records database
messages to a specified log file. This utility logs all messages that pass between a
and clients on a network.

Do not use the netlog utility unless instructed to do by Centura’s Technical Support
By default, the netlog utility is off.

If you call sqlsetand specify the SQLPNLG parameter, it changes the setting of the
netlogkeyword insql.ini.

server

staff.

SQLPNPB

Do not prebuild result sets

If SQLPNPB is Off (0), SQLBase prebuilds result sets. The database server releas
shared locks before returning control to the client. The

client application must wait until the entire result set is built before it can fetch the f
row.

If SQLPNPB is On (1), SQLBase doesn't prebuild result sets if the client is in resul
mode and Release Locks (RL) isolation level. The advantage of having SQLPNPB
that the client does not have to wait very long before fetching the first row. SQLBag
builds the result set as the client fetches data.

By default, SQLPNPB is On (1) for single-user engines and Off (0) for multi-user se|
This parameter is cursor-specific.

rst

set
onis

rvers.

SQLPNPF

Net prefix character. This parameter allows SQLBase to distinguish a database on
server from an identically-named database on another server and to circumvent th
network's requirement of name uniqueness. You can specify a value with which SQ
prefaces each database name on the server.

If you have a netprefix entry in the servestg.ini file, all clients connecting to databasg
on that server must specify the same netprefix value in their configuration files.

If you call sqlsetand specify the SQLPNPF parameter, it changes the setting of the
netprefixkeyword insqgl.ini.

pne

=Y

| Base

£S

5-146 sQL Application Programming Interface Reference

sqlget - GET parameter

Parameter

Description

SQLPOBL

Optimized bulk execute modeThis is similar to, but even faster than, bulk execute

mode (SQLPBLK) which reduces the network traffic for multi-row inserts, deletes, and

updates. The difference is that if an error occurs, SQLBase rolls back the entire
transaction.

In bulk execute mode, data values are buffered so that many rows can be sent to th
in one message.

Increasing the size of the output message buffer (witeglmensfunction) increases the
number of operations that can be buffered in one message to the server, thereby
improving performance.

This setting is cursor specific.
If this is On (1), as many operations are buffered in the output message buffer as p

By default, bulk execute mode is Off (0). Bulk execute mode cannot be on at the s3
time as the autocommit (SQLPAUT) option.

e server

pssible.

ime

SQLPOFF

Optimize first fetch. This parameter lets you set the optimization mode for a particy
cursor. All queries that are compiled or stored in this cursor inherit the optimization
in effect.

0 = optimizes the time it takes to return the entire result set.
1 = optimize the time it takes to fetch the first row of the result set.

If you call sqlgetand specify the SQLPOFF parameter, it overrides the setting for
optimizefirstfetchin sql.inifor the particular cursor. If you do not specify this parame
the optimization mode for the cursor is determined by the setting of the
optimizefirstfetctvalue of the server. Kgl.ini does not have aptimizefirstfetch
keyword, the default setting is O (optimize the time it takes to return the entire resu

Note that a parameter that was earlier stored, retrieved, and executed will continue
the execution plan with which it was compiled.

lar
mode

er,

t set).
to use

SQLPOMB

Output buffer message sizeThis parameter sets the size (in bytes) of the output
message buffer.

The output message buffer is allocated on both the client computer and on the dat
server. The client builds an output message in this buffer and sends it to a buffer of
same size on the database server. It is calledigmutmessage buffer because it is outp
from the client's point of view.

The most important messages sent from the client to the database server are SQL
commands to compile or a row of data to insert.

A larger output message buffer doed reduce network traffic unless bulk execute is g

SQLBase automatically maintains an output message buffer large enough to hold
SQL command or a row to insert of any length (given available memory). Despite t
specified output message buffer size, SQLBase dynamically allocates more space
output message buffer if needed.

A large output message buffer can help performance when writing LONG VARCHA
columns.

hbase
the
ut

n.

any
he
for the

R

SQL Application Programming Interface Reference 5-147

Chapter 5

Parameter Description
SQLPOOJ Oracle outer join. This parameter enables and disables Oracle-style join processing.
Oracle's outer join implementation differs from the ANSI and industry standard
implementation. To paraphrase the ANSI standard, the correct semantics of an outer join
are to display all the rows of one table that meet the specified constraints on that table,
regardless of the constraints on the other table. For example, assume two tables (A and B)
with the following rows:
Table A (a int) Table B (b int)
1 1
2 2
3 3
4
5
If you issue the following SQL command:
SELECT a, b
FROM A, B
WHERE A.a=B.b (+)
AND B.b IS NULL;
the ANSI result is:
Table A (a int) Table B (b int)
1
2
3
4
5
Assuming the same two tables and the same SQL command, the correct result for|Oracle
is:
Table A (a int) Table B (b int)
4
5
If you setoracleouterjoirr1; you receive the Oracle result shown directly above. If you
call sglsetand specify the SQLPOOJ parameter, it changes the setting of the
oracleouterjoinkeyword insgl.ini.
0 = Off
1=0n
SQLPORID Oracle row ID. Retrieves the Oracle row ID affected by the most recent operation. Use

this parameter in applications that access an Oracle

database through SQLRouter/Oracle or SQLGateway/Oracle.

5-148 sqQL Application Programming Interface Reference

sqlget - GET parameter

Parameter Description

SQLPOPL Optimizer techniques Tells you which optimizing techniques that SQLBase is using|for
all clients that connect to a server.

You can fall back on old optimizing techniques after upgrading to newer versions o
SQLBase by using theglsetfunction to set this value to 1. If you discover better
performance of a query when this parameter is set to 1, you should report it to Centura’s
Technical Support team. Be sure not to include compilation time in the comparison of
settings 1 and 2.

1 = SQLBase is using old optimizing techniques.

2 = SQLBase is using current optimizing techniques (default).

SQLPOSR OS statistics sample rateThis parameter specifies the frequency at which operating
system statistics (CPU % Utilization) are gathered. You can specify a setting of 0 t9 255
seconds. The default setting is zero (0), which disables the gathering of CPU statistics. If
you callsglsetand specify the SQLPOSR parameter, it changes the setting of the
ossampleraté&eyword insgl.ini.

0 = Off
1= 255secs

SQLPOVR LOAD/UNLOAD overwrite value. Indicates whether the unload command contained an

OVERWRITE clause.
0 = No OVERWRITE clause
1 = OVERWRITE clause specified

SQLPPAR Partitioned database.Indicates the database is partitioned.
0=No
1=Yes

SQLPPCX Cursor context preservation
If cursor context preservation is On (1), SQLBase prevents a COMMIT from destroying
an active result set, thereby enabling an application to maintain its position after a
COMMIT, INSERT, or UPDATE.

Locks are kept on pages required to maintain the fetch position. Be aware that this| can
block other applications trying to access the same data. Also, locks can prevent other
applications from doing DDL operations.

By default, cursor context preservation is Off (0). A COMMIT destroys a cursor’s result
set or compiled command.

SQLBase doesot preserve cursor context after an isolation level change or a system-

initiated ROLLBACK, such as a deadlock, timeout, etc. SQLBlasspreserve cursor
context after a user-initiated ROLLBACK if both of the following are true:

1) The application is in Release Locks (RL) isolation level.
2) A data definition language (DDL) statement was not performed.

SQL Application Programming Interface Reference 5-149

Chapter 5

Parameter

Description

If the result set you are fetching was created by a SELECT command that included
aggregate function, defined a complex view, or included a DISTINCT, GROUP BY,

HAVING, UNION, or ORDER BY clause, then SQLBase creates a virtual table. The

rows of this virtual tableannotbe mapped to the rows in the database. For this reas
a row in the result set is UPDATEd, when you fetch it, it mdtreflect the UPDATE
even if fetchthrough is On.

This parameter is cursor-specific.

an

n, if

SQLPPDB

Access to partitioned databased/Nhile this parameter is TRUE, users can access
partitioned databases; when FALSE (0), user access to
partitioned databases is disabled, allowing you to restore MAIN.DBS.

SQLPPLF

Preallocate transaction log filesBy default, this parameter is Off (0) and a log files
grows in increments of 10% of its current size. This uses space conservatively, but
lead to a fragmented log file which can affect

performance. If this parameter is On (1), log files are created full size (preallocated

can

~

SQLPPLV

Level of Process Activity displayThe level (0 - 4) of detail of the
messages on a multi-user server's Process Activity display.

SQLPPTH

Path separator on server machineThis is useful for remote file operations.

SQLPREC

Recovery If this parameter is On (1), SQLBase performs transaction

logging. Transaction logging enables SQLBase to roll back changes made to a dat
before a COMMIT, and to recover from a system failure. If this parameter is Off (0)
SQLBase does not perform transaction logging.

abase

SQLPRES

Restriction mode If this parameter is On (1), SQLBase uses the result of one query
the basis for the next query. Each subsequent query further restricts the result set.

parameter is Off (0), each successive query overwrites the result set created by the

previous query.

as
If this

D

SQLPRID

Retrieve current row ID. This parameter retrieves a row’s current ROWID. This is
useful to see if a row's ROWID has changed as a result of an UPDATE command.

SQLPROD

Read-only databaseMakes a database accessible on a read-only basis. SQLBase
disallows you from executing data definition language (DDL) or data manipulation
language (DML) commands.

If this parameter is On (1), SQLBase disables both the Read-Only
isolation level and transaction logging.

5-150 sQL Application Programming Interface Reference

sqlget - GET parameter

Parameter Description

SQLPROM Read-only transaction mode Allows users connecting to any of the databases on the
server to use the RO (read-only) isolation level. The RO isolation level allows users to
have a consistent view of data during their session.

If this parameter is On (1), SQLBase allows users to use the RO isolation level. All future
server sessions for all databases on the server are started with RO transactions enabled;
SQLBase maintains a read-only history file that contains multiple copies of modified
database pages; when users try to access pages changed by other users, SQLBasg retries a
copy of the original page from the history file.

Read-only transactions can affect performance, so, by default, this parameter is Off (0),
prohibiting users from setting the RO isolation level.

If you call sqlsetand specify the SQLPROM parameter, it changes the setting of the
readonlykeyword insgl.ini, but the new setting does not take effect until you restart
SQLBase.

0 = Off

1=0n

NOTE: To turn on RO transaction mode for a single database and the current session, use
the SQLPRQOT parameter.

SQLPROT Read-only transaction modelf this parameter is On (SQLVON), SQLBase allows
applications to set the read-only (RO) isolation level on for a single database and the
current server session. SQLBase maintains a read-only history file that contains one or
more copies of pages that have been modified.

Read-only transactions can affect performance, so, by default, this

parameter is Off (SQLVOFF), prohibiting use of the RO isolation level.

If this parameter is set to the default (SQLVDFL), SQLBase uses the
readonlykeyword setting in theql.inifile to determine whether to allow read-only
transactions. If you do not provide a value for this

keyword, SQLBase uses the internal default (SQLVOFF).

NOTE: To turn on RO transaction mode for a single database and the current server
session, use the SQLPROM parameter.

SQLPRTO Rollback on lock timeout This parameter is On (1) by default and
SQLBase rolls back an entire transaction when there is a lock timeout. If this parameter is
Off (0), SQLBase rolls back only the current command.

This parameter is cursor-specific.
SQLPSCR Scroll mode Otherwise known as result set mode, scroll mode lets you scroll back jand

forth through a result set and retrieve any row in the result set without sequentially
fetching forward. Once you have
positioned the cursor on a row, later fetches start from that row.

Scroll mode is On if this parameter is 1, and Off if it is 0.

This parameter is cursor-specific.

SQL Application Programming Interface Reference 5-151

Chapter 5

Parameter

Description

SQLPSIL

Silent mode.This parameter turns the display for multi-user server on (0) and off (1)).

To set the display of the server screens off:
silent=1
By default, multi-user server displays are on (0).

If you call sqlsetand specify the SQLPSIL parameter, it changes the setting sifehe
statement irsgl.ini.

0=0n

1 =Off

SQLPSTA

Statistics for server.This parameter collects the following timer and counter
information:

Timers:
Compile.
Execute.
Fetch.

Counters:
Physical disk writes.
Physical disk reads.
Virtual disk writes
Virtual disk reads.
Total number of disconnects.
Total number of connects.
Hash joins - number of joins that have occurred.
Sorts - number of sorts that have been performed
Deadlocks - number of deadlocks that have occurred.
Process switches - number of process switches.
Full table scan - number of times a full table scan occurred.
Index use - number of times an index has been used.
Transactions - number of completed transactions.
Command type executed - one counter for each command type.

The default for this parameter is off (0).

0 = off
1=on
Note that if you are using ttggjlsetfunction to set the SQLPCTL (command time lim

parameter, settings for the SQLPAPT (activate process timing) and SQLPSTA (stat
for server) parameters can be affected in the following ways:

* When you enable a command time limit (by specifying a non-zero value in eithg
cmdtimeoukeyword of the server’'sgl.inifile or with the SQLPCTL parameter),

0

istics

er the

SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatically

turned on.

5-152 sQL Application Programming Interface Reference

sqlget - GET parameter

Parameter Description

« If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPAPT
(process timing) are automatically turned off, unless you explicitly turned on either
parameter after you enabled a command time limit.

« If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (prog
timing), your command time limit (if you enabled on) is turned off agHiniis
updated to refleacmdtimeouto.

It is recommended that if you set a value for any of these three parameters, you should set

the same value for the other two. For example, if you set SQLPSTA parameter On|(1),
you should also set SQLPCTL and SQLPSTA parameters On (1).

D

SS

SQLPSVN Name of serverThis parameter shows the name of the server you are connected tq.
Setting this parameter will only change the settinggini. To activate the new setting,
the server must be restarted. You must have DBA authority to set this parameter.

SQLPSWR Write defaults. Changes to defaultdatabase, defaultuser, or defaultpassword are wyitten
to sql.ini.
0=No
1=Yes

SQLPTCO Time colon only. This parameter configures SQLBase to recognize when a delimite
other than a colon(:) is being used to separate the hours, minutes, and seconds poftions of
atime value.

The default is off (0).

If you call sglsetand specify the SQLPTCO parameter, it changes the setting of the
timecolononlykeyword insqgl.ini.

0=No
1=Yes
SQLPTHM Thread mode.This parameter specifies whether to use native threads or SQLBase

threads. A value of 1 indicates SQLBase threads and a value of 2 indicates native threads.
Note for Windows 95, SQLBase now uses Windows 95 native threads only.

By default,threadmodés 1, except on Windows 95 where the default is 2.

On NetWare platforms, if you are running in Ring 0, Centura recommends using
SQLBase threads which invoke stack switching. This should yield better performance.
Novell disallows stack switching in Ring 3, so be sure to set threadmode to 2 wheryin
Ring 3.

If you call sglsetand specify the SQLPTHM parameter, it changes the setting of the
threadmodeeyword insql.ini.

SQLPTMS Timestamp. If this parameter is TRUE (1), SQLBase timestamps the
messages on a multi-user server's Process Activity display; if FALSE (0), SQLBase does
not.

SQL Application Programming Interface Reference 5-153

Chapter 5

s for
ol
me-out

that

Parameter Description

SQLPTMO Client request time out.This parameter specifies the time period that the server wait
a client to make a request. If the client does not make a request within the specifie
period, SQLBase rolls back the client session, processes, and transactions. The ti
clock restarts each time the client makes a request.

The time-out value is O (infinite by default, and the maximum value is 200 minutes.
If you call sqlsetand specify the SQLPTMO parameter, it changes the setting of the
timeoutstatement irsql.ini.

SQLPTMZ Time zone.This parameter sets the value of SYSTIMEZONE, a SQLBase keyword
returns the time zone as an interval of Greenwich Mean Time. SYSTIMEZONE usgs the
expression (SYSTIME - TIMEZONE) to return the current time in Greenwich Mean
Time.

By default, timezone is 0.
If you call sqlsetand specify the SQLPTMZ parameter, it changes the setting of the
timezonekeyword insql.ini.

SQLPTPD Temp directory. This parameter specifies the directory where SQLBase places
temporary files. In the course of processing, SQLBase can create several kinds of
temporary files: sort files, read-only history files, and general-use files.

To specifyd:\tmpas the temporary directory:

tempdir = d:\tmp

You must set tempdir for read-only databases.

If you call sqlsetand specify the SQLPTPD parameter, it changes the setting of the
tempdirkeyword insql.ini.

SQLPTRC Trace stored proceduresEnables or disables statement tracing for procedures.

0 = Off
1=0n

SQLPTRF Tracefile name Directs statement output to a file on the server. If you do not set thi
parameter to a file name, the statement output goes to the server’s Process Activit
screen.

SQLPTSL Transaction span limit. The number of log files that SQLBase allows an active

transaction to span. When SQLBase creates a new log file, it checks this limit for g
active transactions and rolls back any transaction that violates the limit. By default,
transaction span limit is zero (0) which disables the limit checking.

Il
the

5-154 sQL Application Programming Interface Reference

sqlget - GET parameter

Parameter Description

SQLPTSS Thread stack size This parameter specifies the stack size.
By default, threadstacksize is 10 kilobytes and the minimum value is 8192 bytes.
You should not decrease the default value. Running complex queries when
threadstacksize is set to 8192 can result in a stack overflow error.
If you receive stack overflow errors, increase the value of threadstacksize by 512 bytes at
atime.
If you call sglsetand specify the SQLPTSS parameter, it changes the setting of the
threadstacksiz&eyword insql.ini.

SQLPUID Application identifier. This parameter allows the setting of an user identification string.
If you call sglsetand specify the SQLPUID parameter, it changes the setting of the
app_idkeywordwin.ini.

SQLPUSR Number of users.This parameter specifies the maximum number of client applications
that can connect to the server simultaneously. This means, for example, that a seryer
configured with users=5 could support five clients running one application each, or|one
client running five applications, or two clients with one running two applications and the
other running three applications, and so on.

The default value of users is 128, and the maximum is 800.
If you call sglsetand specify the SQLPUSR parameter, it changes the settingusfetse
keyword insgl.ini.

SQLPVER Release versionThe version number of the SQLBase server program.

SQLPWFC Which Fetchable Command The type of fetchable command:

e SQLTSEL (1)is a SELECT command.
* SQLTPRO (87)is a PROCEDURE command.
 Ois returned for all other commands (such as INSERT or UPDATE).

SQLPWKA Work space allocation unit. This parameter specifies the basic allocation unit of a wprk
space. For example, if a SQL command requires 5000 bytes and the default value of 1000
is in effect, SQLBase makes 5 memory allocation requests to the operating system (5 *

100 = 5000).
The default is 1000 bytes.

If you call sglsetand specify the SQLPWKA parameter, it changes the setting of the
workallockeyword insgl.ini.

SQL Application Programming Interface Reference 5-155

Chapter 5

Parameter Description

SQLPWKL Maximum work space limit. This parameter specifies a maximum memory limitatiof
for SQL commands. For example, if you specify:

worklimit = 4000
SQLBase cannot execute SQL commands requiring more than 4000 bytes of memory.
The default is NULL, meaning that no memory limitation exists.

If you call sqlsetand specify the SQLPWKL parameter, it changes the setting of the
worklimit statement irsgl.ini.

SQLPWTO Lock wait timeout. The number of seconds for SQLBase to wait for a database lock to
be acquired. After the specified time has elapsed,
SQLBase rolls back the command or transaction.

The default is 300 seconds. Valid timeout values are:

1 - 1800 inclusive (1 second to 30 minutes)
0 = never wait; return error immediately
1 = wait forever

This parameter is only relevant for multi-user servers and it is transaction-specific.

Parameters

cur

A cursor handle if the parameter is associated with a cursor or database. A server
handle if the parameter is associated with a server. A value of ‘No’ in the table on
the next page indicates that a cursor handle and a server handle is not needed to
retrieve the information for the parameter.

parm

The name of the parameter to retrieve. The parameter types are defiged in
and are shown in the table that begins on the next page.

pbuf

A pointer to the variable where this function returns the parameter. The data type
and size of the variable depends on the parameter. For strings like the database
directory (SQLPDDR), the variable must be at least SQLMFNL bytes long.
SQLMFNL is defined irsgl.hunder "maximum sizes".

len

Specify an address or a pointer to the length. After making thidezai the
number of bytes in the value pointed topiyut The following table shows
whether you need to specify a length for a parameter. If it is not necessary to
designate a parameter length, specify zero (0).

5-156 sQL Application Programming Interface Reference

sqlget - GET parameter

Parameter Types
The following table lists:

e parm- the parameter type.
e cur- whether the parameter requires a cursor handle.
* pbuf- the size of the variable pointed to fiyuf.

e len- whether you need to specify a length for the
parameter.

The parameter types aptuftypes and sizes are definedsgl.h

parm cur pbuf len
SQLPAID Yes SQLMFNL Yes
SQLPAIO No SQLTDPV No
SQLPALG Yes SQLMFNL Yes
SQLPANL No SQLTDPV No
SQLPAPT Yes SQLTDPV No
SQLPAUT Yes SQLTDPV No
SQLPAWS Yes SQLTDPV No
SQLPBLK Yes SQLTDPV No
SQLPBRN Yes SQLTDPV No
SQLPBRS Yes SQLTDPV No
SQLPCAC Yes SQLTDPV No
SQLPCCK No SQLTDPV No
SQLPCGR No SQLTDPV No
SQLPCHS Yes SQLTDPV No
SQLPCIS Yes SQLMFNL Yes
SQLPCLG Yes SQLTDPV Yes
SQLPCLI Yes SQLTDPV No
SQLPCLN Yes SQLMFNL Yes
SQLPCMP Yes SQLTDPV No

SQL Application Programming Interface Reference 5-157

Chapter 5

parm cur pbuf len
SQLPCSV Yes SQLTDPV No
SQLPCTF Yes SQLTDPV No
SQLPCTI Yes SQLTDPV No
SQLPCTL Yes SQLTDPV No
SQLPCTS No SQLMNPL Yes
SQLPCTY No SQLMFNL Yes
SQLPCXP Yes SQLMFNL Yes
SQLPDBM No SQLTDPV No
SQLPDBN Yes SQLMFNL Yes
SQLPDDB No Character field of size Yes
SQLMDNM + 1
SQLPDDR Yes SQLMFNL Yes
SQLPDIS Yes SQLTDPV No
SQLPDLK Yes SQLTDPV Yes
SQLPDMO Yes SQLTDPV No
SQLPDTL Yes SQLTDPV No
SQLPDTR No SQLTDPV No
SQLPDUS No Character field of size Yes
SQLMSID +1
SQLPEMT Yes SQLMXER Yes
SQLPERF No SQLMFNL Yes
SQLPEXE Yes SQLMFNL Yes
SQLPEXP Yes SQLMFNL Yes
SQLPEXS No SQLMFNL No
SQLPFNM Yes SQLMFNL No
SQLPFRS Yes SQLTDPV No
SQLPFT Yes SQLTDPV No

5-158 sQL Application Programming Interface Reference

sqlget - GET parameter

parm cur pbuf len
SQLPGBC No Pass the address of a No
cursor

SQLPGCD Yes SQLTDPV No
SQLPGCM Yes SQLTDPV No
SQLPHEP Yes SQLTDPV No
SQLPHFS Yes SQLTDPV No
SQLPISO Yes SQLMFNL Yes
SQLPLBM Yes SQLTDPV No
SQLPLCK No SQLTDPV No
SQLPLDR Yes SQLMFNL Yes
SQLPLDV Yes SQLMFNL Yes
SQLPLFF Yes SQLTDPV No
SQLPLFS Yes SQLTDPV No
SQLPLGF Yes SQLTDPV No
SQLPLOC Yes SQLTDPV No
SQLPLRD Yes SQLMFNL Yes
SQLPLSS Yes SQLMFNL Yes
SQLPMID Yes SQLMFNL Yes
SQLPMUL Yes SQLTDPV No
SQLPNCK No SQLTDPV No
SQLPNCT No SQLTDPV No
SQLPNDB Yes SQLTDPV No
SQLPNID Yes SQLMFNL Yes
SQLPNIE No SQLTDPV No
SQLPNLB Yes SQLTDPV No
SQLPNLG No SQLMFNL Yes

SQL Application Programming Interface Reference 5-159

Chapter 5

parm cur pbuf len
SQLPNPB Yes SQLTDPV No
SQLPNPF No SQLMFNL Yes
SQLPOFF Yes SQLTDPV No
SQLPOMB Yes SQLTDPV No
SQLPOOJ No SQLTDPV No
SQLPORID Yes SQLMFNL No
SQLPOPL Yes SQLTDPV No
SQLPOSR Yes SQLTDPV No
SQLPOVR Yes SQLTDPV No
SQLPPAR Yes SQLTDPV No
SQLPPCX Yes SQLTDPV No
SQLPPDB No SQLTDPV No
SQLPPLF Yes SQLTDPV No
SQLPPLV Yes SQLTDPV No
SQLPPTH Yes SQLTDPV No
SQLPREC Yes SQLTDPV No
SQLPRES Yes SQLTDPV No
SQLPRID Yes Character field of size Yes
RIDSIZ*2 +1

SQLPROD Yes SQLTDPV No
SQLPROT Yes SQLTDPV No
SQLPRTO Yes SQLTDPV No
SQLPSCR Yes SQLTDPV No
SQLPSIL No SQLTDPV No

SQLPSTA Yes SQLTDPV No
SQLPSTC No PQLTDPV No

5-160 sQL Application Programming Interface Reference

sqlget - GET parameter

parm cur pbuf len
SQLPSVN Yes SQLMFNL Yes
SQLPSWR No SQLTDPV No
SQLPTCO No SQLTDPV No
SQLPTHM No SQLTDPV No
SQLPTMS Yes SQLTDPV No
SQLPTMO No SQLTDPV No
SQLPTMZ No SQLDPV No
SQLPTPD No SQLMFNL Yes
SQLPTRC Yes SQLTDPV No
SQLPTRF Yes Character field size of Yes
SQLMFNL +1
SQLPTSL Yes SQLTDPV No
SQLPTSS No SQTDPV No
SQLPUID Yes SQKMFNL Yes
SQLPUSR No SQLTDPV No
SQLPVER Yes SQLMFNL Yes
SQLPWFC Yes SQLTDPV Yes
SQLWKA No SQLTDPV No
SQLWKL No SQLTDPV No
SQLPWTO Yes SQLTDPV No

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQL Application Programming Interface Reference 5-161

Chapter 5

Example

chardbn[SQLMDNM + 1]; /* database name buffer */
SQLTDAL dbl; [* database name length */
SQLTRCD rcd; /* return code*/

if (red = sglget (0, SQLPDDB, dbn, &dbl))/* get doname */
printf("Failure Getting Database Name (rcd = %d)\n",rcd);

dbn[dbl] =0; /* concatenate null terminator */
printf("Default Database Name: %s\n", dbn);

Related functions

sqlset

sqlgfi - Get Fetch Information

Syntax
#include <sqgl.h>
SQLTAPI sqldfi (cur,slc, cvl, fsc)
SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; [* Select column */
SQLTCDL PTR cvl; /* Value length */
SQLTFSC PTR fsc; /* Fetch status code */
Description
This function returns information about a column fetched by the most-regiésit
The length of the column data in the SELECT buffer and the fetch return code for a
specific column value are returned.
Parameters

cur
The cursor handle associated with this function.
slc

The sequence number of the column in the SELECT list (starting with 1) to get
information about.

5-162 sQL Application Programming Interface Reference

sqlgfi - Get Fetch Information

cvl

Return value

A pointer to the variable where this function returns the length of the data
received into the select buffer from the previegtet If the column contains
null values, this function returns zero.

If the size of the buffer where the data is fetched is smaller than the data received,
the data is truncated and an error is returndsiin

If the data received is less than the size of the buffer where the data is,fetched
thencvlis set to the actual length received. For example, if the string "TEST" is
received into a 20 character varialidg,is set to 4.

You can pass a null pointer (SQLNPTR) if this information is not wanted by the
application.

fsc

A pointer to the variable where this function returns the fetch status code for the
column retrieved by the previogsg|fet

You can pass a null pointer (SQLNPTR) if this information is not wanted by the
application.

The following is a list of the fetch status codes which can be returned. These
codes are defined syl.h

Status Code Value Explanation
FETRTRU 1 Data was truncated.
FETRSIN 2 Signed number fetched into unsigned field.
FETRDNN 3 Data is not numeric.
FETRNOF 4 Numeric overflow.
FETRDTN 5 Data type not supported.
FETRDND 6 Data is not a date.

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQL Application Programming Interface Reference 5-163

Chapter 5

Example

static char sqlsel[] = "select name, phone, apt from
tenants";

char fsc; [* fetch status code */

unsigned char cvl; [* column value length */

char col = 1; /* first column*/

short ret; /* return code*/

uchar nsi; /* number of select items */

sqlinsi(cur, &nsi);/* get # of select items */
while (!(ret = sqglfet(cur)))/* fetch each row */
{ /* get fetch info for each column */
while (col++ <= nsi)
{
if (sqlgfi (cur, col, &cvl, &fsc))
break; /* error */
if (fsc)
do something/* Process fetch status */

if (ret) break;

Related functions
sqlfet

5-164 sQL Application Programming Interface Reference

sqlgls - Get Long Size

sglgls - Get Long Size

Syntax
#includes <sql.h>
SQLTAPI sqlgls (cur, slc, size)
SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select number */
SQLTLSI PTR size; /* Size of long column */
Description
This function returns the length of the data in a LONG VARCHAR column. This
function is called aftesqlfetto determine the size to read. The returned size can be
passed taqlrlo.
Parameters

cur

The cursor handle associated with this function.
slc

The column sequence number (starting with 1) of the column in the SELECT list.
size

A pointer to the variable where this function returns the number of bytes in the
LONG VARCHAR column.

Note: Be sure to return this value into an unsigned long variable to accommodate numbers
greater than 32K.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQL Application Programming Interface Reference 5-165

Chapter 5 SQL/API Function Reference

Example

static char select[] = ‘select name, biography from people
where birthplace = :1";

/* Get length of biography column */

long size;
ret= sqlgls (cur, 2, &size);

Related functions

sglelo sqllsk sqlrlo

sglgnl - Get Next Log

Syntax
#include <sql.h>
SQLTAPI sqglgnl (shandle, doboname, dbnamel, lognum)
SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; [* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTLNG PTR lognum; /* Returned log number */
Description
This function returns the name of the next transaction log file needed for recovery.
If the specified transaction log file is not available, you should cafiglemrfunction
to finish the recovery of the database.
Parameters

shandle
The server handle returned sgicsv

dbname

A pointer to the string that contains the database name.

5-166 sQL Application Programming Interface Reference

sqlgnl - Get Next Log

dbnamel

The length of the string pointed to Bignamelf the string pointed to bgibname
is null-terminated, specify zero and the system will compute the length.

lognum

A variable where this function returns the number of the next log file. This
function returns zero in this variable if the next log file needed is already on disk.

Return value

Example

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

SQLTSVH shandle;

char* password;

SQLTDPV Ibmset;

SQLTFNP bkpdir;

SQLTFNL bkpdirl;

SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static chardbnamel[] = "omed";

password = 0;

bkpdir = "\BACKUP\\OMED";

bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER */

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */
if (red =
sqlrdb(shandle,dbname1l,0,bkpdir,bkpdirl,local,over))

apierr("SQLRDB");
else

SQL Application Programming Interface Reference 5-167

Chapter 5 SQL/API Function Reference

printf("Restored Database \n");
/* ROLLFORWARD TO END */

sqlrof(shandle,dbnamel,0,mode,0,0);

loghum=0;

/*
The loop below assumes that all log file backups are on
disk.
If a log file backup is not on disk, lognum is set to a

non-

zero value which causes the loop to terminate.
*/
while (lognum == 0)

{
/* GET NEXT LOG */

sqlgnl (shandle,dbnamel,0,&ognum);
/* RESTORE LOG FILES */

sqlrif(shandle,dbname1,0,bkpdir,bkpdirl,local,over);
}

/* END ROLLFORWARD */

if (rcd = sglenr(shandle,dbnamel,0))
apierr("SQLENR");

else
printf("End Rollforward \n");

Related functions

sqlbdb sqlcsv sqlrel
sqlblf sglenr sqlrif
sqlbss sqlrdb sqlrof
sqlcrf

5-168 sQL Application Programming Interface Reference

sglgnr - Get Number of Rows

sglgnr - Get Number of Rows

Syntax
#include <sql.h>
SQLTAPI sqlgnr (cur, tbname, tbnaml, rows)
SQLTCUR cur; /* Cursor handle */
SQLTDAP tbname; /* Table name */
SQLTDAL tbnaml; /* Table name length */
SQLTROW PTR rows; /* Total number of rows */
Description
This function returns the number of rows in the specified table from the system
catalog. It is faster than executing BLECT COUNT (*) command witout a
WHERE clause. You can only use this function for SQLBase databases.
Parameters

cur

The cursor handle associated with this function.

tbname

A pointer to the string that contains the table name.

tbnaml

The length of the string pointed to tiyname If the string pointed to bjoname
is null-terminated, specify zero and the system will compute the length.

rows

A pointer to the variable where this function returns the number of rows in the
table.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

SQL Application Programming Interface Reference 5-169

Chapter 5 SQL/API Function Reference

Example

/* Get the number of rows in the CUSTOMER table */

long custent;
short ret; /* return code */

ret= sqlgnr (cur, "CUSTOMER", 0, &custcnt);

Related functions

sqlepo sqlnrr sqlrow

sglgsi - Get Server Information

Syntax
#include <sql.h>
#include <sqlsrv.h>
#include <gsiext.h>
SQLTAPI sqlgsi(shandle, infoflags, buffer, buflen, rbuflen)
SQLTSVH shandle; /* Server handle */
SQLTFLG infoflags; /* Information flags */
SQLTDAP buffer; /* Buffer to read into */
SQLTDAL buflen; /* Size of data buffer */
SQLTDAL PTR rbuflen; /* Length of read */
Description
This function returns server information.
The format of the information returned by this function is definestjisrv.hand
gsiext.h
Parameters
shandle

The server handle returned sgicsv

5-170 sQL Application Programming Interface Reference

sqlgsi - Get Server Information

infoflags

Server information flags which can be logically OR’d to return combinations of
information.

The actual length of data returned for any information type is determined by the
extended information flag (SQLXGSI). If you OR the extended information flag
with other server information flags, additional information follows the default
information structure.

Feg | g | amewre | svuere L
SQLGCFG No cfgdef Configuration information
SQLGCFG Yes cfgdef cfgdefi Extended configuration

information
SQLGCUR No curdef Cursor information
SQLGCUR Yes curdef curdefi Extended cursor information
SQLGDBS No dbsdef Database information
SQLGLCK Yes Ickdef Lock information
SQLGOSS No ostdef Operating system statistics
SQLGPRC No prcdef Process information
SQLGPRC Yes prcdef prcdefi Extended process information
SQLGPWD No Send password
SQLGSTT No sttdef Statistics
SQLRCLN Yes fgidef Filter by client name
SQLRDBN Yes fgidef Filter by database name
SQLRPNM Yes fgidef Filter by process number
SQLRUSN Yes fgidef Filter by user name
SQLXGSI No - - Return extended information.

Note: SQLGDBS only returns information on databases that the server is listening on because
that is the only time the information is available. Usestfidbnfunction to find the databases
that the server is listening on.

SQL Application Programming Interface Reference 5-171

Chapter 5 SQL/API Function Reference

buffer
A pointer to the variable where this function returns the server information.

Using the filter flags to filter the amount of returned information requires the
fgidef structure to be placed at the beginning of the buffer and filled with the
filter information. The fgidef structure will be sent to the server. The returned
information will be restricted to the process number, client name, user name, or
database name, depending on the filter flags set.

As defined insqlsrv.h the information returned has a message headel€)
that contains the lengthdrlen) of the entire message including the message
header.

The message header is followed by a separate section for each type of
information requested. These sections start with a section heastetdf that
contains the information typenghflag contained in the section, the total

number of entriesnfshtef, the number of entries in the messagstneh and

the number of bytes in that section (including the section header). Finally, each
section contains the requested information.

Message header (hdrdef)

hdrlen
gdrrsv

Section header (mshdef)

mshflg: cfgdef, curdef, dbsdef, prcdef, or sttdef
mshten
mshnen
mshlen

Information entries

5-172 sQL Application Programming Interface Reference

sqlgsi - Get Server Information

Section header (mshdef)

mshflg: cfgdef, curdef, dbsdef, prcdef, or sttdef
mshten
mshnen
mshlen

Information entries

The sqlgsi function will not overflow the message buffer. The mshten and
mshnen fields are equal if the message buffer contains all the entries; otherwise
mshnen indicates how many entries were actually placed in the message buffer.

If not all the information is present, you can pass a larger buffer size or use the
filter flags to break the request into multiple requests.

buflen

The length of the value pointed to byffer
rbuflen

A pointer to the variable where this function returns the length of the server
information.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
See the example prograw22.cfor a comprehensive example
SQLTSVH handle;
char buf[4000];
SQLTDAL blen;
SQLTRCD rcd;

if ((rcd = sqlcsv(&handle, srvname, password)) != 0)

SQL Application Programming Interface Reference 5-173

Chapter 5 SQL/API Function Reference

sqlgsi (handle, SQLGDBS | SQLGSTT, buf, sizeof(buf),
&blen);
sgldsv(handle);

Related functions

sglcsv sqlsta

sglims - Input Message Size

Syntax
#include <sqgl.h>
SQLTAPI sglims(cur, insize)
SQLTCUR cur; /* Cursor number */
SQLTDAL insize; /* Input message buffer size */
Description

This function changes the maximum size (in bytes) of the input message buffer. The
input message buffer is allocated on both the client computer and on the database
server. The database server builds an input message in this buffer on the database
server computer and sends it across the network to a buffer of the same size on the
client. It is called amput message buffer because it is input from the client's point of
view.

There is one input message buffer per connected cursor on the client computer. The
server maintains an input message buffer that is the size of the largest input message
buffer on the client computer.

The input message buffer can receive a return code indicating that the specified
operation was successful, the data that is being fetched, and other information. While
fetching data from the database, SQLBase compacts as many rows as possible into
one input message buffer.

Eachsqlfetcall reads the next row from the input message buffer until they are
exhausted. At this instant, SQLBase transparently fetches the next input buffer of
rows depending on the isolation level.

A large input message buffer can help performance while fetching data from the
database because it reduces the number of network messages. Note that a large input
message buffer can affect system throughput because of concurrency. Any row

5-174 sQL Application Programming Interface Reference

sglims - Input Message Size

currently in the input message buffer can have a shared lock on it (depending on the
isolation level) preventing other users from changing that row. Therefore, a large input
message buffer can cause more shared locks to remain than are necessary.

See the explanation eflsilfor more information about how each isolation level uses
the input message buffer.

SQLBase automatically maintains an input message buffer large enough to hold at
least one row of data. Despite the specified input message size, SQLBase dynamically
allocates more space if necessary.

A large input message buffer helps performance when reading LONG VARCHAR
columns.

This function can also improve overall system performance by decreasing the size of
the input message buffer when an application does not need to fetch data.

Parameters
cur

The cursor handle associated with this function. Each cursor has one input
message buffer associated with it on the client.

insize
The size of the input message buffer in bytes. Specify a zero to indicate that you
want to use the default input message buffer sizglih (2000).

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

main()

{

SQLTDAL insize=500;
SQLTDAL outsize=500;

staticchardbnam|[] = "demox";/* database name */
/* CONNECT TO THE DATABASE */

cur =0;

SQL Application Programming Interface Reference 5-175

Chapter 5 SQL/API Function Reference

if (red = sqglenc(&cur, dbnam, 0))/* perform connect
operation */
apierr("SQLCNC");

if (red = sglims (cur,insize))
apierr("SQLIMS");
else
printf("Input Message Size setto = %d \n", insize);

if (red = sgloms(cur,outsize))
apierr("SQLOMS");
else
printf("Output Message Size set to = %d \n", outsize);
/* DISCONNECT FROM THE DATABASE */
if (red = sqldis(cur))/* failure on disconnect? */

apierr("SQLDIS");
}

Related functions

sgloms sqlsil

sglind - INstall Database

Syntax
#include <sgl.h>
SQLTAPI sqlind (shandle, dbname, dbnamel)
SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
Description

This function installs a database on the network and addsamekeyword to
sql.ini.

This function does not physically create a databases@lalleto create a database.

5-176 sQL Application Programming Interface Reference

sqlind - INstall Database

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to Bgnamelf the string pointed to bgbname
is null-terminated, specify zero and the system will compute the length.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

main()

{
srvname = "SERVER1";

password = 0;
/* CONNECT TO THE SERVER */

if (red = sglcsv(&handle,srvname,password))
apierr("SQLCSV");

else
printf("Connection Established to Server \n");

if (rcd = sqlcre(handle,"DEMOX",0))
apierr("SQLCRE");

else
printf("Database DEMOX Created \n");

/* DEINSTALL DATABASE */

if (rcd = sglded(handle,"DEMOX",0))
apierr("SQLDED");

else
printf("Database DEMOX Deinstalled \n");

/* INSTALL DATABASE */

if (red = sglind (handle,"DEMOX",0))

SQL Application Programming Interface Reference 5-177

Chapter 5 SQL/API Function Reference

apierr("SQLIND");
else
printf("Database DEMOX Installed \n");

/* DISCONNECT FROM THE SERVER */

if (red = sgldsv(handle))
apierr("SQLDSV");

else
printf("Disconnected from Server \n");

}

Related functions

sqlcre sqlded sqldel
sglcsv

sglini - INltialize

Syntax

#include <sql.h>

SQLTAPI sqlini (callback)

SQLTPFP callback; /* Callback yield function */
Description

This function initializes the dynamic library used for a Windows 3.x, Windows 95, or
Windows NT application.

This function also sets up a callback function so control can pass to the operating
system while a function is executing on the server. Although this callback function is
not necessary in single-user mode, you should use it to maintain portability to a
multi-user environment. Callback is only needed by Windows 3.x, not Windows NT
nor Windows 95.

For a Windows 3.x application, this function initializes the dynamic library and sets
up a callback function so the application will yield control while it is waiting for a
response form the database server. This callback function is necessary to allow
smooth multi-tasking of other Windows applications. Although this callback function
is not necessary in single-user mode, you should use it to maintain portability to a
multi-user environment.

5-178 sQL Application Programming Interface Reference

sqlini - INItialize

For Windows, you might call theglini function as follows:
sglini(MakeProcInstance(YieldProc, hinstance));

Windows NT and Windows 95 do not use a callback function. However, the
application must still call the sqlini function so that other initialization can take place.
On these platforms, call tisglini function in your program as follows:

sqlini((SQLTPFP) (0));
Call this function before the first database connect.

You must ensure that SQLBase is not called in the yield function. If SQLBase is
called while in the yield function, the results are unpredictable.

Seetestwin.cfor an example of how to use this function.

Parameters

callback

A far pointer to a callback function that is called to yield to other applications
when the server is processing a request. If this argument is null, control remains
with the application. If you specify a non-null callback function, it is ignored.

Return value

Example

The return value is zero (0) if the function succeeds and non-zero if it fails.

int PASCAL WinMain(hinstance, hPrevinstance, lpszCmdLine,
cmdShow)

HANDLE hinstance;
HANDLE hPrevinstance;

LPSTR IpszCmdLine;

int cmdShow;

{

shortrcd;

if (red = sglini (MakeProclnstance(YieldProc, hinstance)))
{

prints("Cannot initialize API interface - %u\n",rcd);
return FALSE;

SQL Application Programming Interface Reference 5-179

Chapter 5 SQL/API Function Reference

int FAR PASCAL YieldProc()
{

MSG msg;

while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return TRUE;/* return successfully*/

}

Related functions
sqldon

sgllab - LABel information

Syntax
#include<sgl.h>
SQLTAPI sqllab(cur, slc, Ipb, Iblp)
SQLTCUR cur; /* Cursor number */
SQLTSLC slc; /* Select column number */
SQLTCHP Ibp; /* Buffer to retrieve label */
SQLTCHL Iblp; /* Label name length */
Description
This function returns label information for the specified column in a SELECT
command.

Labels are text strings that document table columns. Labels are stored in the system
catalog table SYSTABLES in the LABEL column. LABELs can be up to 30
characters in length.

A successful compile of a SELECT command must come immediately before this
function.

An application can loop through all the columns to get the label information column
by column. Thesglnsifunction returnghe number of columns in a SELECT list.

5-180 sQL Application Programming Interface Reference

sqgllab - LABel information

Parameters
cur
The cursor handle associated with this function.
slc

The column number (starting with 1) in the SELECT list to get information
about. The column number can be used to set up a loop to describe all columns in
the SELECT list.

Ibp
A pointer to the variable where this function returns the label.
Iblp

A pointer to the variable where this function returns the length of the label.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTCUR curl=0; /*SQLBASE cursor */
main()
SQLTSLC silg; /* Select list column */
SQLTCHL chl; /* Column header length */

uchar chbuf[300]; [* Column header buffer */

if (sqllab (curlab, slc, chbuf, &chl))
... process error

chbuf[chl] = "\0';

printf("Label header = %s\n" chbuf);
printf("Label header length = %d\n", chl);

Related functions
sqlgdi sqlnsi

SQL Application Programming Interface Reference 5-181

Chapter 5 SQL/API Function Reference

sqlldp - LoaD oPeration

Syntax
#include <sql.h>
SQLTAPI sqlldp (cur, cmdp, cmdl)
SQLTCUR cur; [* cursor number ¥/
SQLTDAP cmdp; /* -> command buffer */
SQLTDAL cmdl; /* command length */
Description
This function processes the LOAD command and sends it to the backend for
compilation and execution. If the load source file resides on the server, the execution
is handled completely at the server. If it is on the client, this function handles the
retrieval of load data and sends it to the server, in chunks.
Parameters

cur

The cursor handle associated with this function.

cmdp

A pointer to the string that contains the LOAD command.

cmdl
The length of the string pointed to byndp If the string pointed to bgmdpis
null-terminated, specify zero and the system will compute the length.
Return Value
If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful, and returns an error code.
Example

The following sample program calls the LOAD command apdts a file name that
exists online:

static char loademd[] =
"LOAD SQL db.unl ON SERVER";

5-182 sqQL Application Programming Interface Reference

sqlisk - Long SeeK

ret = sqglldp(cur, loadcmd, 0);

You can also create a customized program to manipulate the load input buffer in the
client. For an example, see theading and unloading databasgsction in the
chapterUsing the SQL/APRI

Related functions

sqlunl

sgllsk - Long SeeK

Synopsis
#include <sgl.h>

SQLTAPI sqllsk (cur,slc,pos)

SQLTCUR cur; /* Cursor handle */
SQLTSLC slc; /* Select column */
SQLTLSI pos; [* Desired byte position */

Description

This function sets the position to start reading within a LONG VARCHAR column. In
other words, you do not have to stsgirlo reading a LONG VARCHAR at the first
byte.

You cannotseek to a position within a LONG VARCHAR to start writing with
sglwlo. Thesglwlofunction must write the entire LONG VARCHAR column.

You must call this function aftesglfetand beforesqlrlo.

If the requested byte position is beyond the end of the data, this function returns an
error.

Parameters
cur
The cursor handle associated with this function.
slc

The column number in the SELECT list. The first column is column 1.

SQL Application Programming Interface Reference 5-183

Chapter 5 SQL/API Function Reference

pos

The byte position within the LONG VARCHAR column to start reading. Byte
position 1 is the first byte in the LONG VARCHAR column.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

static char sqlsel[] = "select biography from people where
name =:1"

/* position read to last 80 bytes of the long */
long size;

/* Get size of long */
if (I(ret = sqlgls(cur, 1, &size)))
{
if (I(ret = sqllsk (cur, 1, size-80))/* set position */
... process error (sqllsk)

}

else
process error

Related functions

sqlrlo sqlfet sqglelo

sglmcl - reMote CLose server file

Syntax
#include <sql.h>
SQLTAPI sgimcl (shandle, fd)
SQLTSVH shandle; /* Server handle */
SQLTFLH fd; /* File handle */
Description

This function closes a file on the server.

5-184 sqQL Application Programming Interface Reference

sqglmcl - reMote CLose server file

You must first open the server file usisgimop

Parameters

shandle

The server handle returned sgicsv

fd

The file handle returned ksglmop.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

unsigned

SQLTSVH
SQLTSVN
SQLTDAP
SQLTFLH
SQLTFLH
SQLTDAL
SQLTDAL

char buffer[1024];
handle;
svno;
password;
fdin;
fdout;
len;
rlen;

if ((ret = sglcsv(&handle, srvno, password)) == 0)

{

if ((rcd = sgimop(handle, &fdin, "infile",SQLORDONLY |

SQLOBINARY)) == 0)

if ((rcd = sgimop(handle, &fdout, "outfile",SQLOCREAT

{

for (;;)

| SOLOTRUNC | SQLOWRONLY | SQLOBINARY)) == 0)

rcd = sqimrd(handle, fdin, buffer, sizeof(buffer),

&len);

if (rcd 1= 0| rlen == 0)

break;

rcd = sqgimwr(handle, fdout, buffer, len, &rlen);
if (rcd = 0] len !'=rlen)

}

break;

SQL Application Programming Interface Reference 5-185

Chapter 5 SQL/API Function Reference

rcd = sglmcl (handle, fdout);

}
rcd = sqlmcl(handle, fdin);

}
sqldsv(handle);
}
Related functions
sqglcsv sqglmop sqlmsk
sqimdl sqlmrd sqlmwr

sglmdl - reMote DelLete server file

Syntax
#include <sgl.h>
SQLTAPI sqgimdl (shandle, filename)
SQLTSVH shandle; /* Server handle */
SQLTDAP flename; /* File name to delete */
Description
This function deletes a file on the server.
Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
Parameters
shandle

The server handle returned sgicsv
filename

A pointer to the null-terminated string that contains the name of the file to delete.

5-186 sQL Application Programming Interface Reference

sqglmop - reMote OPen server file

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

sqimdl (shandle, filename);

Related functions

sqglcsv sqglmop sqlmsk
sqlmcl sqlmrd sqlmwr

sglmop - reMote OPen server file

Syntax
#include <sgl.h>
#include <sqglsrv.h>
SQLTAPI sqlmop (shandle, fdp, filename, openmode)
SQLTSVH shandle; /* Server handle */
SQLTFLH PTR fdp; /* File handle */
SQLTDAP filename; /* File name to open or create */
SQLTFMD openmode; /* File open mode */
Description
This function opens or creates a file on the server.
There is a limit of four file handles open per each server connect.
Note: SQLBase supports filenames up to 256 characters including the terminating null
character.
Parameters
shandle

The server handle returned sgicsv

SQL Application Programming Interface Reference 5-187

Chapter 5 SQL/API Function Reference

fdp

The file handle returned tsglmop

filename

A pointer to the null-terminated string that contains the name of the file to open

or create.

openmode

The type of operations allowed. This argument is formed by combining one or

more of the constants in the following table.

When more than one constant is specified, the constants are joined with the
bitwise OR operator (|). These constants are definedlénv.hand are listed in

the table below.

Constant

Description

SQLOAPPEND

Reposition the file pointer at the end of the file
before every write.

SQLOCREAT

Create and open a new file for writing. Has no
effect if filenameexists.

SQLOEXCL

Return an error valuefifenameexists. Used only
with SQLOCREAT.

SQLORDONLY

Open file for reading only. If this is specified,
neither SQLORDWR nor SQLOWRONLY can be
given.

SQLORDWR

Open file for both reading and writing. If this is
specified, neither SQLORDONLY nor
SQLOWRONLY can be specified.

SQLOTRUNC

Open and truncate an existing file to zero length).
The file must have write permission. The file
contents are destroyed.

SQLOWRONLY

Open file for writing only. If this is given, neither
SQLORDONLY nor SQLORDWR can be given.

SQLOBINARY

Open file in binary mode.

SQLOTEXT

Open file in text mode.

SQLODIRCREA

Create directory.

5-188 sQL Application Programming Interface Reference

sqglmop - reMote OPen server file

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
This example copiesfile on the server toutfile on the server.
{
unsigned char buffer[1024];
SQLTSVH handle;
SQLTSVN SIvno;
SQLTDAP password;

SQLTFLH fdin;
SQLTFLH fdout;
SQLTDAL len;
SQLTDAL rlen;

if ((ret = sglcsv(&handle, srvno, password)) == 0)

{
if ((rcd = sgimop(handle, &fdin, "infile", SQLORDONLY |
SQLOBINARY)) == 0)

{
if (red = sgimop (handle, &fdout, "outfile", SQLOCREAT
| SQLOTRUNC | SQLOWRONLY | SQLOBINARY)) == 0)
{
for ()
{
rcd = sgimrd(handle, fdin, buffer, sizeof(buffer),
&len);
if (red 1= 0 || rlen == 0)
break;
rcd = sqgimwr(handle, fdout, buffer, len, &rlen);
if (rcd = 0| len !'=rlen)
break;

}
rcd = sglmcl(handle, fdout);

}
rcd = sqlmcl(handle, fdin);

}
sqldsv(handle);

SQL Application Programming Interface Reference 5-189

Chapter 5 SQL/API Function Reference

Related functions

sglcsv sqlmop sqlmsk
sqlmcl sqlmrd sqglmwr
sqimdl

sglmrd - reMote ReaD server file

Syntax
#include <sqgl.h>
SQLTAPI sqgimrd (shandle, fd, buffer, len, rlen)
SQLTSVH shandle; /* Server handle */
SQLTFLH fd; /* File handle */
SQLTDAP buffer; /* Read buffer */
SQLTDAL len; /* Read length */
SQLTDAL PTR rlen; /* Number of bytes read */
Description
This function readten bytes from the file associated withinto buffer The read
operation begins at the current position of the file pointer associated with the file.
After the read operation, the file pointer is positioned at the next unread character.
Parameters

shandle
The server handle returned sgicsv
fd
The file handle returned tsglmop
buffer
A pointer to the variable where this function returns the data that is read.
len

The number of bytes to read.

5-190 sQL Application Programming Interface Reference

sglmrd - reMote ReaD server file

rlen

A pointer to the variable where this function returns the number of bytes read into
buffer

When this function returns zeroriken, it has reached the end of file.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
{

unsigned char buffer[1024];
SQLTSVH handle;
SQLTSVN sSvno;
SQLTDAP password;
SQLTFLH fdin;
SQLTFLH fdout;
SQLTDAL len;
SQLTDAL rlen;

if ((ret = sglcsv(&handle, srvno, password)) == 0)

{
if ((red = sqlmop(handle, &fdin, "infile", SQLORDONLY |
SQLOBINARY)) == 0)

{
if ((rcd = sgimop(handle, &fdout, "outfile", SQLOCREAT
| SQLOTRUNC | SQLOWRONLY | SQLOBINARY)) == 0)
{
for ;)
{
rcd= sqglmrd (handle, fdin, buffer, sizeof(buffer),
rlen);
if (rcd!=0]| rlen == 0)
break;
rcd = sqgimwr(handle, fdout, buffer, len, &rlen);
If (red =01 len !=rlen)
break;

}

rcd = sqlmcl(handle, fdout);
}
rcd = sqlmcl(handle, fdin);

}
sgldsv(handle);

SQL Application Programming Interface Reference 5-191

Chapter 5 SQL/API Function Reference

Related functions

sglcsv sqglmop sqlmwr
sqimdl sqglmsk

sglmsk - reMote SeeK server file

Syntax

#include <sqgl.h>
SQLTAPI sqlmsk (shandle, fd, offset, whence, roffset);

SQLTSVH shandle; /* Server handle */
SQLTFLH fd; [* File handle */
SQLTLNG offset; /* Seek offset */

SQLTWNC whence; [* Seek origin */
SQLTLNGPTR roffset; /* Resulting seek address */

Description

This function moves the file pointer féat to a new location that effsetbytes from
whence This function returns the new locationraffset The next operation on the
file occurs at the newoffsetlocation.

Parameters
shandle
The server handle returned sgicsv
fd
The file handle returned tsglmop
offset

The number of bytes fromhence

whence

The position where the seek begins:

0 Seek relative to beginning of file.

1 Seek relative to current position.

5-192 sQL Application Programming Interface Reference

sglmwr - reMote WRite server file

2 Seek relative to end of file.

roffset

The resulting offset of the new position from the beginning of the file.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

sqimsk (shandle, fhandle, offset, whence, roffset);

Related functions

sglcsv sqimdl sqlmrd
sqlmcl sglmop sqlmwr

sglmwr - reMote WRite server file

Syntax
#include <sql.h>
SQLTAPI sqimwr (shandle, fd, buffer, len, rlen);
SQLTSVH shandle; /* Server handle */
SQLTFLH fd; /* File handle */
SQLTDAP buffer; /* Data to write */
SQLTDAL len; /* Length of buffer */
SQLTDAL PTR rlen; /* Number of bytes written */
Description

This function writeden bytes from thdoufferinto the file associated witid. The

write operation begins at the current position of the file pointer associated with the
given file. If the file is opened for appending, the operation begins at the current end
of the file. After the write operation, the file pointer is incremented by the number of
bytes actually written.

SQL Application Programming Interface Reference 5-193

Chapter 5

SQL/API Function Reference

Parameters

Return valu

Example

shandle
The server handle returned sgicsv
fd
The file handle returned tsglmop
buffer
A pointer to the variable that contains the data to write.
len
The number of bytes to write frohuffer.
rlen

A pointer to the variable where this function returns the number of bytes actually
written.

e

The return value is zero (0) if the function succeeds and non-zero if it fails.

{
unsigned char buffer[1024];
SQLTSVH handle;
SQLTSVN Srvno;
SQLTDAP password;

SQLTFLH fdin;
SQLTFLH fdout;
SQLTDAL len;
SQLTDAL rlen;

if ((ret = sglcsv(&handle, srvno, password)) == 0)

{
if ((red = sqlmop(handle, &fdin, "infile", SQLORDONLY |
SQLOBINARY)) == 0)

{
if ((rcd = sglmop(handle, &fdout, "outfile”, SQLOCREAT
SQLOTRUNC | SQLOWRONLY | SQLOBINARY)) == 0)
{
for ()
{

5-194 sqQL Application Programming Interface Reference

sginbv - Number of Bind Variables

rcd = sqimrd(handle, fdin, buffer, sizeof(buffer),

rlen);
if (rcd 1= 0| rlen == 0)
break;
rcd= sqglmwr (handle, fdout, buffer, len, &rlen);
if (rcd = 0] len !=rlen)
break;
rcd = sqlmcl(handle, fdout);
}
rcd = sqlmcl(handle, fdin);
}
sgldsv(handle);
}

Related functions

sglcsv sqimdl sqlmrd
sqlmcl sqlmop sglmsk

sqginbv - Number of Bind Variables

Syntax
#include <sql.h>
SQLTAPI sqlnbv (cur, nbv)
SQLTCUR cur /* Cursor handle */
SQLTNBV PTR nbv; [* Variable */
Description
This function returns the number of bind variables in the current SQL command being
processed for the specified cursor. The number of bind variables is set after the
compile.
Parameters
cur

The cursor handle associated with this function.

SQL Application Programming Interface Reference 5-195

Chapter 5 SQL/API Function Reference

nbv

A pointer to the variable where this function returns the number of bind
variables.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
unsigned char nbv; /* number of bind variables */
short ret; /* return code */
ret= sqlnbv (cur, &nbv);

Related functions

sqlbld sqlbnd sqlbnu
sqlbin sqlbnn sqlcbv
sqlbna sqlbss

sglnii - get the Number of Into variables

Syntax

#include <sgl.h>

SQLTAPI sqlnii (cur,nii)

SQLTCUR cur; /* Cursor handle*/

SQLTCHL PTR nii; /* INTO variable name length*/
Description

This function retrieves the number of INTO variables.

Parameters

cur

The cursor handle associated with this function.

5-196 sQL Application Programming Interface Reference

sqlnii - get the Number of Into variables

nii
A pointer to the variable where this function returns the number of INTO
variables.

Return value

Example

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

#include "sql32.h"
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>

I* */
* *
/* Example of a simple fetch */
I* *
/* Run EMP.SQL via SQLTALK to initialize tables and data */
I* *
I* */
SQLTCUR cur; /* SQLBASE cursor number*/
SQLTRCD rcd; [* error number */
char errmsg[SQLMERR]; [* error msg text buffer*/
void failure(char*); [* error routine */
main()
{

char name[20]; [* employee name buffer */

SQLTCHL PTR nii;
static char selemd [] = # SQL SELECT statement */
"SELECT EMP_NAME into :name FROM EMP ";

/*
CONNECT TO THE DATABASE
*/

if (rcd = sqglcnc(&cur, "ISLAND", 0))

sqglerr(rcd, errmsg); /* get error message text */
printf("%s \n",errmsg);
return(l);

}

SQL Application Programming Interface Reference 5-197

Chapter 5 SQL/API Function Reference

/*
COMPILE SELECT STATEMENT
*/

if (sqlcom(cur, selcmd, 0))
failure("SELECT COMPILE");

/*
PERFORM sqlnii
*/

if (sqlnii(cur,nii))
failure ("SQLNII™);

else
printf("Number of select items is %d\n",*nii);
/*
SET UP SELECT BUFFER
*/

if (sqlssb(cur, 1, SQLPBUF, name, 20, 0, SQLNPTR,
SQLNPTR))

failure("SET SELECT BUFFER");
/*

EXECUTE SELECT STATEMENT

*/

if (sqlexe(cur))
failure("EXECUTING SELECT");

/*

FETCH DATA
*/

for (;;)

{

memset(name,' ',20);/* clear employe name buf */

if (rcd = sqlfet(cur))/* fetch the data */
break;

printf("%s\n", name);/* print employe name */

}

if (red 1=1) [* failure on fetch ~ */
failure("FETCH");

5-198 sQL Application Programming Interface Reference

sqinrr - Number of Rows in Result set

/*
DISCONNECT FROM THE DATABASE
*/

if (rcd = sqldis(cur))
failure("DISCONNECT");

}
void failure(ep)
char* ep; [* failure msg string */
{
SQLTEPO epo; [* error position */

printf("Failure on %s \n", ep);

sqlrcd(cur, &rcd); /* get the error */
sqlepo(cur, &epo); /* get error position */
sqlerr(rcd, errmsg); /* get error message text */
sqldis(cur); [* disconnect cursor*/

printf("%s (error: %u, position: %u) \n",errmsg,rcd,epo);
exit(1);
}

sginrr - Number of Rows in Result set

Syntax
#include <sgl.h>
SQLTAPI sqlnrr(cur, rcountp)
SQLTCUR cur; /* Cursor handle */
SQLTROW PTR rcountp; /* Number of rows */
Description

This function retrieves the number of rows in a result set.

INSERTSs into the result set increase the row count EItHT Es, which appear as
blanked-out rows in result set mode, do not decrease the row count. However, the
deleted rows disappear on the next SELECT.

The program must be in result set mode (enabled witbglisesfunction).

SQL Application Programming Interface Reference 5-199

Chapter 5 SQL/API Function Reference

Parameters
cur
The cursor handle associated with this function.
rcountp

A pointer to the variable where this function returns the number of rows in the
result set.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

main()

{
char* p; [* misc. pointer */
FILE* in; [*input file */
SQLTDAP cp; /* character pointer */
SQLTDAL length; [* length */
SQLTPDL pdl; [* program buffer length */
int rows=0; /* number of rows */
SQLTDDT ddt; /* database data type */
SQLTPDT pdt; /* program data type */
SQLTBNN bnn; /* bind number */
SQLTSLC slc; /* select list column */
SQLTNBV nbv; /* number of bind variables */
SQLTNSI nsi; /* number of select items */
SQLTROW nrows=0;
char line[200]; /*1/O line */
nt i;

static char selcom[] = /* SELECT command */

"SELECT A FROM X WHERE A < 1000"

if (red = sglenc(&cur, dbnam, 0))
apierr("SQLCNC");
else
printf("Connection Established to Database DEMO \n");

5-200 sQL Application Programming Interface Reference

sqinrr - Number of Rows in Result set

if (red = sglcom(cur, selcom, 0))
apierr("SQLCOM");
cp = line; [* set pointer to input line */
if (red = sqlInsi(cur, &nsi))/* get # select items */
apierr("SQLNSI");
for (slc = 1; slc <= nsi; slc++)/* get information on each
column */

if (rcd = sqldes(cur, slc, &ddt, &pdl,SQLNPTR, SQLNPTR,
SQLNPTR, SQLNPTR))
apierr("SQLDES");
if (rcd = sqlssb(cur, slc, pdt, cp, pdl, 0, SQLNPTR,
SQLNPTRY))
apierr("SQLSSB");
cp += (pdl + 1);/* locate next area */

if (red = sqglexe(cur))/* failure on select execute? */
apierr("SQLEXE");

if (red = sqinrr (cur, &nrows))
apierr("SQLNRR");
else
printf("Number of rows in Result Set = %d\n",nrows);

length=cp - line; /* compute the length */
cp =0; / concatenate a zero to the string */
printf("data: \n");
for (i= 0;i < nrows; i++)
{

memset(line, ' ', length);/* fill the line with spaces

*/
if (rcd = sqffet(cur)) /* failure or end of file?*/
break;
printf("%s\n", line); /* print the line */

}

printf("Number of rows fetched = %d \n", i);

if (red = sgldis(cun))
apierr("SQLDIS");

SQL Application Programming Interface Reference 5-201

Chapter 5 SQL/API Function Reference

Related functions

sqlgnr sqlrow sqlsrs

sginsi - Number of Select Items

Syntax
#include <sqgl.h>
SQLTAPI sqglnsi (cur, nsi)
SQLTCUR cur; /* Cursor handle */
SQLTNSI PTR nsi; /* Number of SELECT items */
Description
This function returns the number of items in the SELECT list of a SQL command
now being processed by the specified cursor. The number of SELECT items is set
aftersqglcomor sglcex For example, if you compiled and executed the SQL command
SELECT * FROM EMP and the columns in EMP are ID, NAME, and DEPT, then
sqlnsireturns 3.
Parameters

cur
The cursor handle associated with this function.
nsi

A pointer to the variable where this function returns the number of SELECT
items.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
unsigned char nsi; /* command type */
short ret; /* return code */
ret= sqlnsi (cur, &nsi);

5-202 sQL Application Programming Interface Reference

sgloms - Output Message Size

Related functions

sgloms -

Syntax

Description

sglcom sglexe

Output Message Size

#include <sqgl.h>
SQLTAPI sgloms (cur,outsize)

SQLTCUR cur; /* Cursor number */
SQLTDAL outsize; /* Output message buffer size */

This function sets the size (in bytes) of the output message buffer.

The output message buffer is allocated on both the client computer and on the
database server. The client builds an output message in this buffer and sends itto a
buffer of the same size on the database server. It is calma@nt message buffer
because it is output from the client's point of view.

The most important messages sent from the client to the database server are SQL
commands to compile or a row of data to insert.

A large output message buffer does not necessarily increase performance because it
only needs to be large enough to hold the largest SQL command to compile, or large
enough to hold the largest row of data to insert. A large output message buffer can
allocate space unnecessarily on the both the client and the server. Rows are always
inserted and sent one row at a time (except in bulk execute mode). A larger output
message buffer do@®treduce network traffic unless bulk execute is on.

SQLBase automatically maintains an output message buffer large enough to hold any
SQL command or a row to insert of any length (given available memory). Despite the
specified output message buffer size, SQLBase dynamically allocates more space for
the output message buffer if needed.

A large output message buffer can help performance when writing LONG
VARCHAR columns.

SQL Application Programming Interface Reference 5-203

Chapter 5 SQL/API Function Reference

Parameters
cur

The cursor handle associated with this functiéach cursor has one output
message buffer associated with it on the client.

outsize

The size of the output message buffer in bytes. Specify zero to use the default
message output buffer sizesgl.h(1000).

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

main()

{

SQLTDAL insize=500;
SQLTDAL outsize=500;

static char dbnam[] = "demox";/* database name */
/* CONNECT TO THE DATABASE */

cur =0;
if (rcd = sqglenc(&cur, dbnam, 0))/* perform connect
operation */
apierr("SQLCNC");

if (red = sglims(cur,insize))
apierr("SQLIMS");
else
printf("Input Message Size setto = %d \n", insize);

if (red = sgloms (cur,outsize))
apierr("SQLOMS");
else
printf("Output Message Size set to = %d \n", outsize);

/* DISCONNECT FROM THE DATABASE */
if (red = sqldis(cur))/* failure on disconnect? */

apierr("SQLDIS");
}

5-204 sqQL Application Programming Interface Reference

sglopc - OPen Cursor

Related functions

sglims

sglopc - OPen Cursor

Syntax
#include <sql.h>
SQLTAPI sglopc (curp, hCon, flag)
SQLTCUR PTRcurp; /*Cursor handle */
SQLTCHN hCon; /* Connection handle */
SQLTMOD flag; [* future flag */
Description
This function opens a new cursor for a specific connection. You can open 256 cursors
per connection handle.
Parameters

curp

A pointer to a cursor handle where this function returns a cursor handle
hCon

The newly created cursor is associated with this connection handle.
flag

Future flag. Currently not defined. You can specify zero for this parameter.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

if(red = sglopc(&cur, hCon, 0))
{

printf(“Failure on cursor open (rcd = %d)\n”, rcd);
exit(0);
}

else printf(“New cursor opened\n”);

SQL Application Programming Interface Reference 5-205

Chapter 5 SQL/API Function Reference

Related functions
sqglcch sqldis sqgldch

sqlprs - Position in Result Set

Syntax
#include <sqgl.h>
SQLTAPI sqlprs (cur, row)
SQLTCUR cur; /* Cursor handle */
SQLTROW row; /* Row number wanted */
Description

When in result set mode, this function sets a row position in the current result set. A
latersqlfetreturns the row at the position indicatedrdmy. The first row is row zero.

In result set mode, once a result set has been created, you can get any row in the result
set with thesglprsfunction without sequentially fetching forward. Once the cursor is
positioned, later fetches start from that row.

Parameters
cur

The cursor handle associated with this function.

row

The position (starting with 0) of the row to return in a |atgfet If the row is
not in the result set, this function returns an error.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

/* Set the position to a row in the result set of an array of
strings */

char *rows[100];

5-206 sQL Application Programming Interface Reference

sqlrbf - Roll Back Flag

short ret;
long i;
i = getrow(); [* routine to get value of i ¥/
if (ret = sqlprs (cur, i)
... process error
}
else

Related functions

sqglcrs sqlspr
sqldrs sqlsrs
sqlrrs

sqlrbf - Roll Back Flag

sqlstr
sqlurs

/* Cursor handle */
/* Rollback flag */

This function returns the system rollback flag for the current transaction.

A rollback can happen automatically because of a deadlock or system failure.

The rollback flag iswotset for a user-initiated rollback.

If the rollback flag is set, the work for all cursors that the program has connected to
the database has been rolled back and all compiled commands have been destroyed
unless cursor-context preservation is on.

Syntax
#include <sqgl.h>
SQLTAPI sqirbf (cur, rbf)
SQLTCUR
SQLTRBF PTR
Description
Parameters

cur

The cursor handle associated with this function (transaction).

SQL Application Programming Interface Reference 5-207

Chapter 5 SQL/API Function Reference

rbf

A pointer to the variable where this function returns the rollback flag. This
function returns a 1 if a server-initiated rollback occurred; otherwise, the value is
0.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

char rbkflag; /* rollback flag */
short ret; /* return code */

ret = sqlrbf (cur, &rbkflag);

Related functions

sqlerr sqlfer sqlrcd

sglrbk - RollBacK

Syntax

#include <sgl.h>

SQLTAPI sqlrbk (cur);

SQLTCUR cur; /* Cursor handle *
Description

This function rolls back the database to the state it was in at the completion of the last
implicit or explicit COMMIT. All uncommitted work is undone. This function also
establishes the starting point of the next transaction.

This function rolls back all work done since the last commigfiocursors that the
application has connected to the database.

If cursor-context preservation is off, this function destroys all compiled commands
for all cursors that the program has connected to the database. If cursor-context
preservation is on, this function does not destroy compiled commands if both of the
following are true:

5-208 sQL Application Programming Interface Reference

sqlrcd - Return CoDe

Parameters

Return valu

Example

Related fun

* The application is in Release Locks (RL) isolation level.
e A DDL operation was not performed.

cur

The cursor handle associated with this function.

e

The return value is zero (0) if the function succeeds and non-zero if it fails.

ret= sqlrbk (cur);

ctions
sqlcmt sqlrbf

sglrcd - Return CoDe

Syntax

Description

#include <sql.h>

SQLTAPI sqlrcd (cur, rcd)

SQLTCUR cur; /* Cursor handle */
SQLTRCD PTR rcd; /* Return code */

This function gets the return code for the most-recent SQL/API function. The same
code is also returned directly from the function call.

Call thesglerr or sglferfunction to get the text associated with the return code. The
message text for the return code igiiror.sql

SQL Application Programming Interface Reference 5-209

Chapter 5 SQL/API Function Reference

Parameters
cur
The cursor handle associated with this function.
rcd

A pointer to the variable where this function returns the return code.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

short rcode; /* return code */

if (sglexe(cur)) [* if execute fails */
sqlrcd (cur, &rcode); /* get the return code */
... process error

Related functions

sqlerr sqlfer sqlxer
sgletx

sqlrdb - Restore DataBase

Syntax

#include <sql.h>

SQLTAPI sqlrdb (shandle, dbname, dbnamel, bkpdir, bkpdirl,
local, over)

SQLTSVH shandle; /* Server handle */

SQLTDAP dbname; /* Database name */

SQLTDAL dbnamel; /* Database name length */

SQLTFENP bkpdir; [* Backup directory */

SQLTFNL bkpdirl; /* Backup directory length */

SQLTBOO local; [* True: backup directory on local node */
SQLTBOO over; /* True: overwrite existing file */

5-210 sQL Application Programming Interface Reference

sqlrdb - Restore DataBase

Description

This function restores a database from the specified directory. The database is always
restored from the file:

database-namBKP

If this function finds a control file in the restore directory, the function performs the
restore operation based on the segmented backups specified in the control file. For
details, read thBatabase Administrator's Guide

You cannot perform a restore while users are connected to the database.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to Bgnamelf the string pointed to bgtbname
is null-terminated, specify zero and the system will compute the length.

bkpdir
A pointer to the string that contains the backup directory name.
bkpdirl

The length of the string pointed to bipdir. If the string pointed to bigkpdiris
null-terminated, specify zero and the system will compute the length.

local

Source of backup:

0 Backup directory on server.

1 Backup directory on local (client) node.

SQL Application Programming Interface Reference 5-211

Chapter 5 SQL/API Function Reference

over

Overwrite indicator:

0 Do not overwrite existing file.

1 Overwrite existing file.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

SQLTSVH shandle;

char* password;

SQLTDPV Ibmset;

SQLTFENP bkpdir;

SQLTFNL bkpdirl;

SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbnamel[] = "omed";

password = 0;

bkpdir = "\BACKUPW\OMED";

bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER*/

if (red = sglcsv(&shandle,srvname password))
apierr("SQLCSV");

/* RESTORE DATABASE */

if (red =

sqirdb (shandle,dbnamel,0,bkpdir,bkpdirl,local,over))
apierr("SQLRDB");

else
printf("Restored Database \n");

5-212 sqQL Application Programming Interface Reference

sqlrdb - Restore DataBase

/* ROLLFORWARD TO END */
sqlrof(shandle,dbnamel,0,mode,0,0);
lognum=0;

/*
The loop below assumes that all log file backups are on
disk. If a log file backup is not on disk, lognum is set
to a non-zero value which causes the loop to terminate.
*/
while (lognum == 0)

/* GET NEXT LOG */
sqlgnl(shandle,dbnamel,0,&lognum);

/* RESTORE LOG FILES */
sqlrif(shandle,dbnamel,0,bkpdir,bkpdirl,local,over);
}

/* END ROLLFORWARD */

if (red = sglenr(shandle,dbname1l,0))
apierr("SQLENR");

else
printf("End Rollforward \n");

Related functions

sqlbdb sglcsv sqlrlf

sqlblf sglenr sqlrof

sqlbss sqlgnl sqlrss
sqlcrf sqlrel

SQL Application Programming Interface Reference 5-213

Chapter 5 SQL/API Function Reference

sglrel - RELease current log

Syntax
#include <sql.h>
SQLTAPI sqlrel (cur)
SQLTCUR cur; /* Cursor handle */
Description
This function releases the current active log file without waiting for it to fill
completely.
A new log file is created automatically when the current active log file becomes full
(this is called a log rollover). Thaglrel function forces a log rollover and is useful
when executed just prior to a backup. In releasing the current active log file,
SQLBase can back it up (if logbackup is enabled) and delete it. In doing so, the most
up-to-date backup is created.
Parameters

cur

The cursor handle associated with this function.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

SQLTSVH shandle;

char* password;
SQLTDPV Ibmset;
SQLTFENP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL,;
SQLTLNG loghum;
SQLTBOO local,over;

static char dbnamel[] = "omed";

password = 0;

5-214 sqQL Application Programming Interface Reference

sqlrel - RELease current log

bkpdir = "\BACKUPW\OMED";
bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO OMED ¥

if (rcd = sglcnc(&curl,dbnamel,0))
apierr("SQLCNC");

else
printf("Connected to OMED \n");

/* SET LOGBACKUP MODE ON */

Ibmset=1;

if (rcd = sqlset(curl,SQLPLBM,(ubytelp)&lbmset,0))
apierr("SQLSET");

else
printf("Logbackupmode is set to %d \n", Ibmset);

/* MAKE BACKUP DIRECTORIES */

system("mkdir \\backup");
system("mkdir \\backup\\omed");

/* CONNECT TO SERVER*/

if (red = sglcsv(&shandle,srvname password))
apierr("SQLCSV");

/* BACKUP DATABASE */

if (red =
sqlbdb(shandle,dbnamel,0,bkpdir,bkpdirl,local,over))
apierr("SQLBDB");
else
printf("Backed Up Database \n");

/* RELEASE LOG *
if (red = sqglrel (curl))

apierr("SQLREL");
else

SQL Application Programming Interface Reference 5-215

Chapter 5

SQL/API Function Reference

printf("Released Logs \n");
/* BACKUP LOGS */

if (red =
sqglblf(shandle,dbname1,0,bkpdir,bkpdirl,local,over))
apierr("SQLBLF");
else
printf("Backed Up Logs \n");

Related functions

sglret - RETrieve a stored command/procedure

Syntax

Description

sqlbdb sglenr sqlrif
sqlblf sqlgnl sqlrof
sqlbss sqlrdb sqlrss
sqlcrf

#include <sql.h>

SQLTAPI sqlret (cur, cnp, cnl)

SQLTCUR cur; /* Cursor handle */
SQLTDAP cnp; /* Name of stored command/procedure*/
SQLTDAL cnl; /* Length of stored name */

This function retrieves a stored SQL command or stored procedure. Once a
command/procedure has been retrieved, data can be bound if needed and the

command/procedure can be executed.

Once a command or procedure is retrieved, it cannot be destroyed by a commit or

rollback.

If another transaction changes the system catalog items that the retrieved command or
procedure depends on between the commit and the execute, the execute fails.

You cannot use stored commands while in restriction mode.

5-216 sQL Application Programming Interface Reference

sqlret - RETrieve a stored command/procedure

Chained Commands

Several stored commands can be retrieved witlsqinetand executed with one
sglexe Thesglretfunction allows a list of stored command names separated by
commas.

Bind variables can be shared across commands. The same bind variable can be used
in more than one command and it only needs to be bound once.

Commands with a CURRENT OF clause; cannot be part of a chained command.
The command type of a chained command is SQLTCHN.

When using UPDATE in a chained command, you can specify the CHECK EXISTS
clause to cause an error to be returned if at least one rmwipdated.

You can use a SELECT command in a chained command with the following
restrictions:

* Only one SELECT command can be in a chained command.
 The SELECT command must be the last command in the chain.

* You cannot use bulk execute mode with a chained command that contains a
SELECT.

You can check the SQLPCHS parameter wilyetto see if the chained command
contains a SELECT.

Parameters
cur
The cursor handle associated with this function.
cnp

A pointer to the string that contains the name of the SQL command or SQL
commands to retrieve. If you are not the creator of the stored command, you must
qualify the command name with the creator name and a period. For example, if
SYSADM created the command:

SYSADM.command-name
cnl

The length of the string pointed to byp If the string pointed to bgnpis null-
terminated, specify zero and the system will compute the length.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

SQL Application Programming Interface Reference 5-217

Chapter 5 SQL/API Function Reference

Examples
To retrieve a stored command:
ret= sqlret (cur, "myquery”, 0);
This example repetitively executes the stored comrtiaeccmd
sqlret (cursor, "the_cmd", 0);/* retrieve the command */
for (3))
sglexe(cursor);/* execute the retrieved command */

sglcmt(cursor);/* commit the work */

}
If you have the stored commands:_first do_nextanddo_last then instead of:

sqlret (cursor, "do_first", 0);/* retrieve the first command

*/
sqglexe(cursor); /* execute it */
sqlret (cursor, "do_next", 0);/* retrieve the next command */
sqlexe(cursor); /* execute it */
sqlret (cursor, "do_last", 0);/* retrieve the last command */
sglexe(cursor); /* execute it */

use:

/* retrieve all 3 commands */

sqlret (cursor, "do_first, do_next, do_last", 0);
sqglexe(cursor); /* execute them in sequence */

Related functions

sqldst sqlsto

5-218 sqQL Application Programming Interface Reference

sqlrif - Restore Log Files

sqlrlf - Restore Log Files

Syntax

#include <sql.h>

SQLTAPI

SQLTSVH
SQLTDAP
SQLTDAL

SQLTFNP
SQLTFNL

SQLTBOO
SQLTBOO

Description

sqlrlf(shandle, dbname, dbnamel, bkpdir, bkpdirl,

local, over)

shandle; /* Server handle */

dbname; /* Database name */

dbnamel; /* Database name length */

bkpdir; /* Backup directory */

bkpdirl; /* Backup directory length */

local; /* True: backup directory on local node */
over; [* True: overwrite existing file */

This function restores as many transaction log files as possible from the specified
directory. It continues restoring logs until all the logs from the backup directory that
need to be applied to the database have been exhausted.

After eachsqlrlf function call, SQLBase displays a message indicating the next log

file to be restored. If the log file requested is not available, ussgtbarfunction to
terminate media recovery and recover the database using the information obtained up
to that point (if possible).

You cannot perform a restore while users are connected.

Note: SQLBase supports filenames up to 256 characters including the terminating null

character.

Parameters

shandle

The server handle returned sgicsv

dbname

A pointer to the string that contains the database name.

SQL Application Programming Interface Reference 5-219

Chapter 5 SQL/API Function Reference

dbnamel

The length of the string pointed to Bgname If the string pointed to bgbname
is null-terminated, specify zero and the system will compute the length.

bkpdir
A pointer to the string that contains the backup directory name.
bkpdirl

The length of the string pointed to bigpdir. If the string pointed to bigkpdir is
null-terminated, specify zero and the system will compute the length.

local

Source of backup:

0 Backup directory on server.

1 Backup directory on local (client) node.

over

Overwrite indicator:

0 Do not overwrite existing file.

1 Overwrite existing file.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTSVH shandle;
char* password;
SQLTDPV Ibmset;
SQLTFNP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;
static char dbnamel[] = "omed";

5-220 sQL Application Programming Interface Reference

sqlrif - Restore Log Files

password = 0;

bkpdir = "\BACKUP\\OMED";

bkpdirl = strlen(bkpdir);

printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER */

if (rcd = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */

if (red = sqlrdb(shandle,dbname1l,0,bkpdir,bkpdirl,local,over))
apierr("SQLRDB");

else
printf("Restored Database \n");

/* ROLLFORWARD TO END */
sqlrof(shandle,dbnamel,0,mode,0,0);
lognum=0;

/*
The loop below assumes that all log file backups are on disk.
If a log file backup is not on disk, lognum is set to a non-
zero value which causes the loop to terminate.
*/
while (lognum == 0)
{
/* GET NEXT LOG */
sglgnl(shandle,dbnamel,0,&lognum);

/* RESTORE LOG FILES */
sqirlf (shandle,dbnamel,0,bkpdir,bkpdirl,local,over);
}

/* END ROLLFORWARD */

if (rcd = sglenr(shandle,dbname1,0))
apierr("SQLENR");

else
printf("End Rollforward \n");

SQL Application Programming Interface Reference 5-221

Chapter 5 SQL/API Function Reference

Related functions
sqlbdb sqlcsv

sqlblf sqlenr
sqlbss sqlgnl
sqlcrf sqlrdb

sglrlo - Read LONg

Syntax

#include <sqgl.h>

sqlrel
sqlrof
sqlrss

SQLTAPI sqirlo (cur, slc, bfp, bufl, readl)

SQLTCUR
SQLTSLC
SQLTDAP
SQLTDAL
SQLTDAL PTR

Description

cur; /* Cursor handle */

slc; /* Column number */
bufp; /* Data buffer */

bufl; /* Length of buffer */
readl; /* Length of data read */

This function reads data stored in a LONG VARCHAR column.

The number of bytes that can be read in one operation can be less than the length of
the LONG VARCHAR column. Theglrlo function can be repeated while there is

data to read from the LONG VARCHAR column. This allows incremental reading of
columns which contain large amounts of data without having to set up equivalent size

data buffers.

Thesqlrlo call is followed bysglelowhich ends the read operation for the LONG

VARCHAR column.

The maximum length that you can read in one cadbido is 32,767 bytes.

Parameters

cur

The cursor handle associated with this function.

slc

The sequence number (starting with 1) of the column in the SELECT list.

5-222 sqQL Application Programming Interface Reference

sqlrlo - Read LONng

bufp

A pointer to the variable where this function returns the LONG VARCHAR data
that was read.

bufl
The length of the variable pointed to lyfp.
read|

A pointer to the variable where this function returns the number of bytes read. If
this value is zero, it means that the end of data was reached.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

static char sqlsel[] = "select text from documents where
caseno = 100"

char buffer[BUFSIZ]; /* output buffer */
intlen = 1;
short ret;

while ((ret = sqlfet(cur)) == 0) /* till end of fetch */

while (len) /*till no more data */
{
if (ret = sqirlo (cur, 1, buffer, BUFSIZ, &len))
... process error
}
if (sqlelo (cur)) /* end long for this fetch */

process error

Related functions

sqlelo sqllsk sqlwlo

SQL Application Programming Interface Reference 5-223

Chapter

SQL/API Function Reference

sqlrof - ROIlIForward

Syntax
#include <sql.h>
SQLTAPI sqlrof (shandle, doname, dbnamel, mode, datetime,
datetimel)
SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; /* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTRFM mode; /* Rollforward mode */
SQLTDAP datetime; /* Date/time value: "mm/dd/yy hh:mm:ss" */
SQLTDAL datetimel;/* Length of date/time value */
Description
This function recovers a database by applying transaction log files to bring a backup
up-to-date after aqlrdh
A restore function cannot be performed while users are connected.
You must have backed up all the database's log files and must apply them in order or
the ROLLFORWARD will fail. If you are missing any of the log files, you will not be
able to continue rolling forward from the point of the last consecutive log. For
example, if you havé.log, 2.log, 4.log and5.log, but3.logis missing, you will only
be able to recover the work logged uptlng. 4.logand5.log cannot be applied to
the database. An unbroken sequence of log files is required by recover a database
backup to its most consistent state.
Parameters

shandle

The server handle returned sgicsv
dbname

A pointer to the string that contains the database name.
dbnamel

The length of the string pointed to dipname If the string pointed to bgbname
is null-terminated, specify zero and the system will compute the length.

5-224 sqQL Application Programming Interface Reference

sqlrof - ROIIForward

mode

The following rollforward modes are definedsql.h:

Constant Description

SQLMEOL Rollforward to end of all available logs. This recovers|as
much work as possible.

SQLMEOB Rollforward to end of backup. This recovers all
committed work up to the point when the database
backup was completed.

SQLMTIM Rollforward to specified time. This recovers a database
up to a specific point in time, and in effect rolls back

large "chunks" of committed and logged work that yo
no longer want applied to the database. For example, if
data is erroneously entered into the database, you wpuld
want to restore the database to the state it was in before
the bad data was entered.

—

datetime

A pointer to the string that specifies the date and time to roll forward to in the
format "mm/dd/yy hh:mm:ss".

datetimel

The length of the string pointed to bgtetime If the string pointed to by
datetimeis null-terminated, specify zero and the system will compute the length.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

SQLTSVH shandle;

char* password;
SQLTDPV Ibmset;
SQLTFENP bkpdir;
SQLTFNL bkpdirl;
SQLTRFM mode=SQLMEOL,;
SQLTLNG loghum;
SQLTBOO local,over;

static char dbnamel[] = "omed";

password = 0;

SQL Application Programming Interface Reference 5-225

Chapter 5 SQL/API Function Reference

bkpdir = "\BACKUP\\OMED";
bkpdirl = strlen(bkpdir);
printf("value of bkpdir = %s \n",bkpdir);

local=1;
over=1;

/* CONNECT TO SERVER*/

if (rcd = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* RESTORE DATABASE */

if (red =
sqlrdb(shandle,dbname1l,0,bkpdir,bkpdirl,local,over))
apierr("SQLRDB";
else
printf("Restored Database \n");

/* ROLLFORWARD TO END */
sqlrof (shandle,dbnamel,0,mode,0,0);

lognum=0;
/*
The loop below assumes that all log file backups are on
disk.
If a log file backup is not on disk, lognum is setto a
non-
zero value which causes the loop to terminate.
*/
while (lognum == 0)
{
/* GET NEXT LOG */
sglgnl(shandle,donamel,0,&ognum);

/* RESTORE LOG FILES */
sqlrif(shandle,dbnamel,0,bkpdir,bkpdirl,local,over);

}

/* END ROLLFORWARD */

if (rcd = sglenr(shandle,dbnamel,0))
apierr("SQLENR™);

else
printf("End Rollforward \n");

5-226 sQL Application Programming Interface Reference

sglrow - number of ROWs

Related functions

sqlbdb sqlcsv sqlrel
sqlblf sqlenr sqlrlf
sqlbss sqlgnl sqlrss
sqlcrf sqlrdb

sglrow - number of ROWs

Syntax
#include <sql.h>
SQLTAPI sqlrow (cur, row)
SQLTCUR cur; /* Cursor handle */
SQLTROW PTR row; /*Variable */

Description

This function gets the number of rows affected by the most-recent UPDATE,
DELETE, INSERT, osqglfet.This function is most useful for counting the number of
rows affected by an UPDATE or DELETE

Parameters
cur
The cursor handle associated with this function.
row

A pointer to a variable where this function returns the number of rows.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

SQL Application Programming Interface Reference 5-227

Chapter 5 SQL/API Function Reference

Example

long rows; /* return code */

ret= sqlrow (cur, &rows)) [* get number of rows */

Related functions

sqlgnr sqlnrr

sqlrrs - restart Restriction and Result Set modes

Syntax
#include <sql.h>
SQLTAPI sqlrrs; (cur,rsp,rsl)
SQLTCUR cur; [* Cursor handle */
SQLTDAP rsp; /* Result set name buffer */
SQLTDAL rsl; /* Result set name length */
Description
This function opens a saved result set and turns on restriction mode and result set
mode. The result set must have been saved with the sglcrs function.
The SELECT command must be recompiled and re-executed before the rows can be
fetched withsqglfet
Be cautious about using saved result sets. Internally, a saved result set is a list of row
identifiers (ROWIDSs) that is stored in the SYSROWIDLISTS system catalog table. A
ROWID changes whenever the row is updated. If one of the rows is updated after you
have saved and closed a result set, you will get an error if you open the result set later
and try to fetch the row.
Parameters

cur
The cursor handle associated with this function.
rsp

A pointer to the string that contains name of the result set.

5-228 sqQL Application Programming Interface Reference

sqlrsi - Reset Statistical Information

rsl

The length of the string pointed to tgp. If the string pointed to byspis null-
terminated, specify zero and the system will compute the length.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

ret= sqlrrs (cur, "saveres", 0);

Related functions

sqglcrs sqlscn sqlstr
sqldrs sqlspr sqlurs
sqlprs sqlsrs

sqlrsi - Reset Statistical Information

Syntax
#include <sql.h>
SQLTAPI sqlrsi (shandle)
SQLTSVH shandle; /* Server handle */
Description
This function resets the statistical information counters in the server. After this
function completes the server's statistical counters will be reset.
Parameters

shandle

The server handle returned sgicsv.

SQL Application Programming Interface Reference 5-229

Chapter 5 SQL/API Function Reference

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

sqlrsi (shandle);

sqlrss - Restore SnapShot

Syntax
#include <sql.h>
SQLTAPI sqlrss (shandle, doname, dbnamel, bkpdir, bkpdirl,
local, over)
SQLTSVH shandle; /* Server handle */
SQLTDAP dbname; [* Database name */
SQLTDAL dbnamel; /* Database name length */
SQLTFNP bkpdir; /* Backup directory */
SQLTFNL bkpdirl; /* Backup directory length */
SQLTBOO local; /* True: backup directory on local mode */
SQLTBOO over; [* True: overwrite existing file */
Description

This function restores and recovers a database and its associated log files that were
created with theglbssfunction. This is the only step necessary to recover the
database; you should not follow this call with sugdrof function.

The database is always restored from the file:
database-name .BKP

A restore function cannot be performed while users are connected.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

5-230 sQL Application Programming Interface Reference

sqlrss - Restore SnapShot

Parameters
shandle
The server handle returned sgicsv
dbname
A pointer to the string that contains the database name.
dbnamel
The length of the string pointed to Bgnamelf the string pointed to bgbname
is null-terminated, specify zero and the system will compute the length.
bkpdir
A pointer to the string that contains the backup directory name.
bkpdirl
The length of the string pointed to bigdir. If the string pointed to bigkpdir is
null-terminated, specify zero and the system will compute the length.
local
Source of backup:
0 Backup directory on server.
1 Backup directory on local (client) node.
over

Overwrite indicator:

0 Do not overwrite existing files.

1 Overwrite existing files.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

SQLTSVH shandle;
char* password;
SQLTDPV Ibmset;
SQLTFNP bkpdir;

SQL Application Programming Interface Reference 5-231

Chapter 5 SQL/API Function Reference

SQLTFNL bkpdirl;

SQLTRFM mode=SQLMEOL;
SQLTLNG lognum;
SQLTBOO local,over;

static char dbnamel[] = "omed";/* default database name */

static char dbname2[] = "xomed";/* default database name
*/

static char srvname[] = ""; /* server name */

password = 0;

local=1;
over=1;

/* CONNECT TO SERVER */

if (red = sglcsv(&shandle,srvname,password))
apierr("SQLCSV");

/* MAKE BACKUP DIRECTORIES */
system("mkdir \\backup\\snapshot");

bkpdir = "\BACKUPW\SNAPSHOT";
bkpdirl = strlen(bkpdir);

/* BACKUP SNAPSHOT */

if (red =
sqlbss(shandle,dbnamel,0,bkpdir,bkpdirl,local,over))
apierr("SQLBSS");
else
printf("Backup Snapshot Database \n");

/* RESTORE SNAPSHOT */

if (red =

sglrss (shandle,dbname1,0,bkpdir,bkpdirl,local,over))
apierr("SQLRSS");

else
printf("Restore Snapshot \n");

5-232 sqQL Application Programming Interface Reference

sglsab - Server ABort database process

Related functions

sqlbdb sqlcsv sqlrel
sqlblf sqlenr sqlrlf
sqlbss sqlgnl sqlrof
sqlcrf sqlrdb

sqlsab - Server ABort database process

Syntax

#include <sqgl.h>
SQLTAPI sqlsab (shandle, pnum)

SQLTSVH shandle; /* Server handle */
SQLTPNM pnum; [* Server process number */

Description

This function aborts a database server process. You cannot abort a process that the
server is currently processing. For example, if a client senB& BT statement to a
server, the process cannot be aborted until the server begins returning rows.

When a database process is aborted, it ends its network sessions and does a rollback
of its transactions.

Parameters
shandle
The server handle returned sgicsv

pnum

The process number to abort. Retrieve the database process numbers by calling
the sglgsifunction.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

SQL Application Programming Interface Reference 5-233

Chapter 5 SQL/API Function Reference

Example

sglsab (shandle, processno);

Related functions

sqlcdr sqlgsi sglstm
sglcsv sqlsdn

sglscl - Set CLient name

Syntax

#include <sql.h>

SQLTAPI sqlscl (cur/shandle, namp, naml)

SQLTSVH cur/shandle;/* Database cursor or server handle */

SQLTDAP namp; /* Client name */

SQLTDAL naml; /* Length of client name */
Description

This function assigns a client name to a process.

Parameters

cur/shandle

The cursor handle returned sglcncif the parameter is associated with a cursor
or database. The server handle returnesijhysvif the parameter is associated
with a server.

namp

A pointer to a string that contains the client name. The maximum length of the
client name is 12 characters. Client names are case sensitive.

Specify a null value to de-assign a client name.
naml

The length of the string pointed to hgmp If the string pointed to bgampis
null-terminated, specify zero (0) and the system will compute the length.

5-234 sqQL Application Programming Interface Reference

sqglscn - Set Cursor Name

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Examples

SQLTSVH shandle; /* Server handle */

short red; /* Return code */
if (red = sglscl (shandle, “Clname”, 0))
{

...process error

}

sglscn - Set Cursor Name

Syntax

Description

This function assigns a name to a cursor. A cursor name is used in a SQL command

#include <sqgl.h>

SQLTAPI sqglscn (cur, namp, naml)

SQLTCUR cur; /* Cursor handle */
SQLTDAP namp; [* Cursor name */
SQLTDAL naml; [* Length of cursor name */

that contains a CURRENT OF clause or ADJUSTING clause.

There is some overhead for fetches when a a cursor name is assigned because the
server must keep track of the current cursor position. You can deassign a cursor name
by specifying an empty string in tmiampargument. The server optimizes fetches

when a cursor name is not assigned.

Parameters

cur

The cursor handle for the cursor being hamed.

SQL Application Programming Interface Reference 5-235

Chapter 5 SQL/API Function Reference

namp
A pointer to the string that contains the cursor name. The maximum length of the
cursor name is 8 characters. Cursor names are case insensitive ("c1" is the same
as "C1".

To de-assign a cursor name, pass an empty string.
naml

The length of the string pointed to bgmp.If the string pointed to bgampis
null-terminated, specify zero and the system will compute the length.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
short ret; /* return code */
if (ret = sglscn (cur, "C1", 0))
{

... process error

}

5-236 sQL Application Programming Interface Reference

sqlscp - Set Cache Pages

sglscp - Set Cache Pages

Syntax
#include <sql.h>
SQLTAPI sqglscp(pages)
SQLTNPG pages; /* Number of cache pages */
Description
This function sets the number of cache pages to use for the next connect.
The size of the cache is set at server startup byatigekeyword in the configuration
file (sql.ini) and it cannot be changed while the server is running. This function only
changes the number of cache pages at the next connect and it must be the only cursor
connected to a single-user database.
Parameters

pages
The number of cache pages to use in the next connect. If a value of zero is
specified, the default number of cache pages is used.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

main()

{

SQLTNPG pages=500;
static char dbnam[]="demox";/* database name */

/* CONNECT TO THE DATABASE */
cur=0;

if (red = sglenc(&cur, dbnam, 0))/* perform connect */
apierr("SQLCNC");

SQL Application Programming Interface Reference 5-237

Chapter 5 SQL/API Function Reference

if (red = sglscp (pages))
apierr("SQLSCP");

/* DISCONNECT FROM THE DATABASE */
if (red = sqldis(cur))/* failure on disconnect? */

apierr("SQLDIS");
}

sqlsdn - ShutDowN database

Syntax

#include <sqgl.h>
SQLTAPI sglsdn (dbname, dbnaml)

SQLTDAP dbname; /* Database name */

SQLTDAL dbnaml; /* Database name length */

Description

This function prevents new connections to a database so that it can shut down

gracefully.

Only SYSADM can shut down a database.

After this function completes, anyone trying to connect to the database receives a
"shutdown in progress" message. All current users remain connected and all current

transactions continue.

Once this function completes, the only way to reactivate the database isstfdzdl

andsglindto deinstall and install the database.

Parameters

dbname

A pointer to the string that contains the connect string, which is the username,
database name, and password separated by forward slashes:

database/username/password

These rules are used:

* The characters before the first forward slash are the database name.

5-238 sqQL Application Programming Interface Reference

sglsdn - ShutDowN database

* Any characters after the first forward slash and before the second
forward slash are the user name.

* Any characters after the second forward slash are the password.

If the database name, user name, or password is not specified, then the system
uses the current default. For example, you can specify a connect strihg as "
password and use the default database name and username.

The default database name, username:defaultuser name, and password are
determined by:

» Thedefaultdatabaselefaultuseranddefaultpasswordéeywords in
sql.ini.

* The default of DEMO/SYSADM/SY SADM.

dbnaml

The length of the string pointed to Bignamelf the string pointed to bglbname
is null-terminated, specify zero and the system will compute the length.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

sglsdn (dbname, dbnaml);

Related functions

sqlsab sqlstm

SQL Application Programming Interface Reference 5-239

Chapter 5 SQL/API Function Reference

sglsds - ShutDown Server

Syntax

#include <sql.h>

SQLTAPI sqlsdx (shandle, shutdownflag)
SQLTSVH shandle; /* Server handle */
SQLTFLG shutdownflag; /*0 = enable, 1 = shutdown */
/* 2 =reserved, */
/* 3 = shutdown w/ exit, */
/* 4 = shutdown w/crash */

Description

This function prevents new connections to a server. Only SYSADM can shut down a
server.

After this function completes, anyone trying to connect to the database receives a
"shutdown server in progress" message All current users remain connected and all
current transactions continue. SYSADM can reactivate the server with a call with a
flag setting of zero.

Parameters

shandle

The server handle returned sgicsv.

shutdownflag

A flag to shutdown or bring the server back on-line. A value of zero brings the
server back on-line. A value of one shuts down the server. A value of three shuts
down the server after the users exit. A value of four shuts down the server even if
users are on it. If you select a value of four, you must have recovery enabled or
your database will be corrupted.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

sqlsds (shandle, shutdownflag);

5-240 sqQL Application Programming Interface Reference

sqlsdx - ShutDown database eXtended

sqlsdx - ShutDown database eXtended

Syntax

#include <sql.h>
SQLTAPI sqlsdx (dbname, dbnaml, flag)

SQLTDAP dbname; /* Database name */
SQLTDAL dbnaml; [* Database name length */
SQLTFLG shutdownflag;/* 0 = enable, 1 = shutdown */

Description

This function prevents new connections to a database so that it can shut down
gracefully or will bring the database back on-line. Only SYSADM can shut down a
database.

After this function completes anyone trying to connect to the database receives a
"shutdown in progress" message All current users remain connected and all current
transactions continue.

Once this function completes, the SYSADM can reactivate the database with a call to
sqlsdxwith a flag setting of zero.

Parameters
dbname

A pointer to the string that contains the connect string, which is the username,
database name, and password separated by forward slashes:

database/username/password
This parameters has the following guidelines:
» The characters before the first forward slash are the database name.

* Any characters after the first forward slash and before the second
forward slash are the username.

* Any characters after the second forward slash are the password.

If the database name, username, or password is not specified, then the system
uses the current default. For example, you can specify a connect string as "//
password" and use the default database name and username.

SQL Application Programming Interface Reference 5-241

Chapter 5 SQL/API Function Reference

The default database name, username, and password are determined by:

» Thedefaultdatabaselefaultuseranddefaultpasswordéeywords in
sql.ini.

* The default of DEMO/SYSADM/SYSADM.
dbnaml

The length of the string pointed to by dbname. If the string pointed to by dbname
is null-terminated, specify zero and the system will compute the length.

shutdownflag

A flag to shutdown or bring the database back on-line. A value of one will
shutdown the database. A value of zero will bring the database back on-line.

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

Example

sqlsdx (dbname, dbnaml, shutdownflag);

sglset - SET parameter

Syntax
#include <sgl.h>
SQLTAPI sqlset (cur, param, pbuf, length)
SQLTCUR cur; /* Cursor handle */
SQLTPTY param; /* Parameter type */
SQLTDAP pbuf; /* Pointer to value */
SQLTDAL length; /* Length of value */
Description
This function sets a database parameter. The parameter types are shown in the table
below.

Note: SQLBase supports filenames up to 256 characters including the terminating null
character.

5-242 sqQL Application Programming Interface Reference

sqlset - SET parameter

Parameter

Description

SQLPAID

Adapter Identifier. This parameter allows the setting of a network adapter identifica
string.

If you call sglsetand specify the SQLPAID parameter, it changes the setting of the
adapter_idkeyword inwin.ini.

tion

SQLPALG

Process Activity log file nameThe file to which SQLBase writes the messages displa]
on a multi-user server’'s Process Activity screen.

To turn on logging, specify a pointer to the file name inpihef parameter. You must
have DBA authority to set this parameter.

yed

SQLPANL

Apply net log. This parameter disables internal condition checking while a netlog is
being applied.

This keyword is useful to Centura technical support and development personnel o

If you call sglsetand specify the SQLPANL parameter, it changes the setting of the
applynetlogstatement irsql.ini.

0 = Off

1=0n

Y.

SQLPAPT

Activate process timing.When this parameter is On (1), activation times are
accumulated for prepares, executes and fetches. Activation times are accumulated

different levels; system, process and cursor. By default, this parameter is turned off.

0 = Off
1=0n
Note that if you are using tteglsetfunction to set the SQLPAPT (activate process

timing) parameter, settings for the SQLPCTL (command time limit) timing) and
SQLPSTA (statistics for server) parameters can be affected in the following ways:

* When you enable a command time limit (by specifying a non-zero value in eithe
cmdtimeoukeyword of the server'sgl.inifile or with the SQLPCTL parameter),

SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatica
turned on.

« If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPA4
(process timing) are automatically turned off, unless you explicitly turned on eit
parameter after you enabled a command time limit.

« If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (prog
timing), your command time limit (if you enabled on) is turned off agHiniis
updated to refleetmdtimeouto.

It is recommended that if you set a value for any of these three parameters, you sh

the same value for the other two. For example, if you set SQLPAPT parameter On
you should also set SQLPCTL and SQLPSTA parameters On (1).

at three

or the

ally

\PT
her

eSS

uld set

1),

SQL Application Programming Interface Reference 5-243

Chapter 5

SQL/API Function Reference

Parameter

Description

SQLPAUT

Autocommit. Commits the database automatically after each SQL command. By default,

this parameter is Off (0) and SQLBase commits the database only when you issue
COMMIT command.

a

Autocommit is cursor-specific. When you set autocommit On (1) for a cursor and then

perform an operation with that cursor, SQLBase comaliitsf the transaction’s cursors.

Performing operations with cursors that do not have autocommit set on does not affect the

rest of the transaction’s cursors.

You cannot have autocommit and bulk execute on simultaneously.

SQLPAWS

OS averaging window sizeThis parameter specifies the number of samples of the CPU

% Ultilization value to keep for determining the average value. You can specify a wi
size of 1 to 255. The default setting is one (1). If youszg#letand specify the
SQLPAWS parameter, it changes the setting obdsgwindovkeyword insgl.ini.

0 = Off
1 =255 units

ndow

SQLPBLK

Bulk execute mode Reduces the network traffic for multi-row inserts, deletes, and
updates, particularly across a network. In bulk execute mode, data values are buffe
that many rows can be sent to the server in one message.

Increasing the size of the output message buffer (withdlmmsfunction) increases the
number of operations that can be buffered in one message to the server, thereby
improving performance.

This setting is cursor specific.

If this is On (1), as many operations are buffered in the output message buffer as p

red so

pssible.

By default, bulk execute mode is Off (0). Bulk execute mode cannot be on at the same

time as the autocommit (SQLPAUT) option.

SQLPCAC

Size of database cache (in KBytesThis parameter sets the size of the cache, which
buffers database pages in memory. The larger the cache, the less the disk input and
In other words, as you increase the value of the cache setting, disk access is redu

The default cache size for Windows is 500K; for all other platforms, the default is 2
The minimum is 15K and the maximum is 32767K.

If you call sqlgetand specify the SQLPCAC parameter, it changes the setting of the

cache keyword irsql.ini, but the new setting does not take effect until SQLBase is
restarted.

output.
ced.

M.

5-244 sqQL Application Programming Interface Reference

sqlset - SET parameter

Parameter

Description

SQLPCCB

Connect Closure Behavior This parameter specifies the connect closure behavior t
occurs when you terminate a connection usingstildchfunction. Valid options are

COMMIT, ROLLBACK, or DEFAULT. The default is 0 which means that connect

closure behavior is dependent on the database server to which the user is connect
the case of SQLBase, the DEFAULT setting (0) issues a COMMIT before a conneg
handle is terminated. To determine the DEFAULT behavior for other servers, read t
applicable server documentation.

Setting this parameter on (1) instructs the server to issue a COMMIT before a conn
handle is terminated, while a setting of (2) issues a ROLLBACK.

This option also specifies whether a COMMIT or ROLLBACK is issued before
disconnecting to a cursor with an implicit connection usingstlencfunction.

nat

ed. In
tion
he

ection

SQLPCCK

Client check. This parameter tells SQLBase to send the client a RECEIVE upon re
of a request.

By default, clientcheck is off (0). When SQLBase has finished executing a commar
issues a SEND request to the client with the results of the command. If successful
server then issues a RECEIVE request and waits to receive another command.

Setting this parameter on (1) instructs SQLBase to issue a RECEIVE request befo
beginning execution of the command, not after it finishes executing the command.
so allows SQLBase to detect a situation where the client session is dropped or a ¢
request is made during command processing.

If you call sglsetand specify the SQLPCCK parameter, it changes the setting of the
clientcheckkeyword insql.ini.

0 = Off

1=0n

ceipt

d, it
the

e
Doing
ancel

SQLPCGR

Contiguous cache pages in cache grouphis parameter specifies the number of
contiguous cache pages to allocate. For example if you set cache at 3000, and cac
at 30, SQLBase allocates 100 cache groups, consisting of 30 pages each.

To set the number of cache pages per group to 50:
cachegroup =50
The default is 30.

If you call sglsetand specify the SQLPCGR parameter, it changes the setting of the
cachegroupkeyword insgl.ini.

hegroup

SQLPCIS

Client identifier. This parameter returns a client identification string.
The client identification string will consist of:
MAIL_IDINETWORK_ID\ADAPTER_ID\APP_ID\CLIENT_NAME

Each of these identification strings can be returned separately by cajlggtwith the
appropriate parameter.

SQL Application Programming Interface Reference 5-245

Chapter 5

SQL/API Function Reference

Parameter

Description

SQLPCLG

Commit logging. When this parameter is On (1), SQLBase causes every database
transaction in which data was modified to log a row of data. The data that is logged
contains the transaction’s Transaction ID and a unique sequence number.

When the COMMIT operation is executed for a transaction that is modified, the dat
logged in the system utility table SYSCOMMITORDER. This table lists transactions
operated on the database in the order in which they were committed. Turning the

SQLPCLG parameter Off (0) stops commit logging. By default, this parameter is O

You must have DBA privileges to set the SQLPCLG parameter and to use DDL
commands with this parameter.

The following example is a SQL API call to set the commit-order logging to Off (0). |
stops the insertion of rows into the SYSCOMMITORDER table during transaction
COMMIT operations.

SQLTDPV value=1;
if (rcd=sqlset(cur, SQLPCLG,(SQLTDAP)&value, 0)
printf (“Cannot start commit logging \n");

Note that commit logging is also supported for replication
with Centura Ranger.

a is
that

ff (0).

I'his

SQLPCLI

LOAD/UNLOAD Client Value. The load/unload’s ON CLIENT clause value.

0 = Off (file is on the server)
1 =On (file is on the server)

This parameter indicates where the load/unload file will reside. Before using this
parameter, compile the load/unload statement first.

SQLPCLN

Client name. Sets/changes the name of a client computer on the server’s display fa
duration of the session.

rthe

SQLPCMP

Message compressianVhen message compression is On (1), messages sent betw
client and the database server or gateway are

compressed. This means that messages are shorter, and more rows can be packe
single message during bulk insert and fetch operations.

The compression algorithm collapses repeating characters (run-length encoding).
SQLBase performs the compression incrementally as each component of a messa
posted.

By default, message compression is Off (0) because it incurs a CPU cost on both
client and server machines.

This parameter is cursor-specific.

een a

dinto a

ge is

he

SQLPCSV

Commit server status.Indicates whether commit service is enabled for the server.

0 = Off
1=0n

5-246 sQL Application Programming Interface Reference

sqlset - SET parameter

Parameter

Description

SQLPCTI

Checkpoint time interval. How often SQLBase performs a recovery checkpoint
operation. SQLBase’s automatic crash recovery mechanism requires that recovery
checkpoints be done.

The default checkpoint time interval is one minute. This should yield a crash recovery

time of less than a minute. If your site can tole rate a longer crash recovery time, y
increase this interval to up to 30 minutes.

Depending on the applications running against the database server, a checkpoint
operation can affect performance. If this happens, you can increase the checkpoin
interval until you attain the desired

performance.

You must be the DBA to set this parameter.

DU can

SQLPCTL

Command time limit. The amount of time (in seconds) to wait for a SELECT, INSE
UPDATE, or DELETE statement to complete execution. After the specified time ha
elapsed, SQLBase rolls back the command or transaction.

Valid values range from 1 to 43,200 seconds (12 hours maximum), and include O (
which indicates an infinite time limit.

The value of the parameter overrides and changesntitlimeoukeyword in the
server'ssgl.ini file.

Note that if you are using trsgjlsetfunction to set the SQLPCTL (command time limi

RT,

7ero)

)

parameter, parameter settings for the SQLPAPT (activate process timing) and SQLPSTA

(statistics for server) parameters can be affected in the following ways:

* When you enable a command time limit (by specifying a non-zero value in either the

cmdtimeoukeyword of the server'sgl.inifile or with the SQLPCTL parameter),
SQLPSTA (statistics for server) and SQLPAPT (process timing) are automatica
turned on.

ally

« If you turn off a command time limit, SQLPSTA (statistics for server) and SQLPA4
(process timing) are automatically turned off, unless you explicitly turned on eit
parameter after you enabled a command time limit.

« If you explicitly turn off either SQLPSTA (statistics for server) or SQLPAPT (prog
timing), your command time limit (if you enabled on) is turned off agHiniis
updated to refleetmdtimeoutO.

It is recommended that if you set a value for any of these three parameters, you sh

the same value for the other two. For example, if you set SQLPAPT parameter On
you should also set SQLPCTL and SQLPSTA parameters On (1).

\PT
her

eSS

uld set

(1),

SQL Application Programming Interface Reference 5-247

Chapter 5

SQL/API Function Reference

Parameter

Description

SQLPCTS

Character set file nameThis parameter identifies a file that specifies different values
the ASCII character set.

This is useful for non-English speaking countries where characters in the ASCII cha
set have different hex values than those same characters in the U.S. ASCII charac

If you call sqlsetand specify the SQLPCTS parameter, it changes the setting of the
charactersekeyword insql.ini.

for

racter
ter set.

SQLPCTY

Country file section (for example, France)This parameter tells SQLBase to use the
settings in the specified section of tteuntry.sqlfile. SQLBase supports English as th
standard language, but it also supports many national languages including those sp
Europe and Asia. You specify information that enables SQLBase to support anothe
language in theountry.sgffile. If you callsglsetand specify the SQLPCTY parameter,
changes the setting of theuntrykeyword insqgl.ini.

a)

okenin

=

it

SQLPDBD

DBDIR keyword information. Sets the drive, path, and database
directory name information for th&ql.ini's DBDIR keyword.

SQLPDDB

Default database nameSets the default database name, overriding the SQLBase ds
database name of DEMO. Setting this parameter changdsfthdtdatabas&eyword in
the section ofql.ini called [dbdfault] or [winclient].

sfault

SQLPDDR

Database directory The drive, path, and directory name where the database you af
connected to resides.

D

SQLPDIS

Describe information control. When (and if) SQLBase sends describe information fq
SELECT command to a client.

This parameter is cursor-specific.

SQLDELY (0) means early and is the default value. The server sends describe
information after a call teglcom Call sgldes sqlds¢ or sqlgdiaftersqglcomand before
sglexe The server also sends describe information after a cadicex Call sqldes
sqldsc or sqlgdiaftersqglcexand beforesqglfet

SQLDDLD (1) means delayed. The server sends describe information after a call t
sqlexe Call sgldessqlds¢ orsqlgdiaftersqglexe but before the firstqlfet Callingsgldes
sqldsc or sqlgdiat any other time is illegal. The server also sends describe informat
aftersqlcex Call sqldes sqldsc or sglgdiaftersglcexand beforesglfet

Use this setting to reduce message traffic for database servers that do not support
(sqglcom operations.

SQLDNVR (2) means never. The server never sends describe

information. Any call tesqldes sqglds¢ orsqlgdiis illegal. When you set SQLPDIS to
SQLDNVR,sqlnsialways returns zero (0). You must hard-code the number of colum
the SELECT command so that the

application knows how many times to csdjlssb

Use this setting to reduce message traffic when the application always knows the n
and type of columns in a SELECT command and never makes csdjsl&s sqldsé or
sqlgdi

o

on

compile

nsin

umber

5-248 sqQL Application Programming Interface Reference

sqlset - SET parameter

Parameter Description

SQLPDMO Demo version of database.
0=No
1=Yes

SQLPDPW Default password.Sets the default password, overriding the SQLBase default password
of SYSADM. Setting this parameter changesdataultpasswortteyword in the section
of sql.ini called [dbdfault] or [winclient].

SQLPDTL Database command time limitThis parameter sets the amount of time (in seconds) to
wait for a SELECT, INSERT, UPDATE or DELETE command to complete execution.
This only includes the time to prepare and execute, not the time to fetch. After the
specified time has elapsed, SQLBase rolls back the command. The time limit is valid only
for the database requested. A global server command time limit is available by using
SQLPCTL.
0 = no time limit
1=43,000 secs

SQLPDTR Set distributed transaction mode If this parameter is on (1), all subsequent
CONNECTs and SQL statements will be part of a distributed transaction. Currently, you
can have one distributed transaction per session.
The default for this parameter is off (0).
0 = Off
1=0n

SQLPDUS Default user name.Sets the default user name, overriding the SQLBase default user
name of SYSADM. Setting this parameter changedéffeultuseikeyword in the section
of sql.ini called [dbdfault] or [winclient].

SQLPEMT Error message tokensSets the error token strings used to customize user errors.

SQL Application Programming Interface Reference 5-249

Chapter 5

SQL/API Function Reference

ma. The

st,
cur. To
5K (%)

return
de, you
ntry:

Parameter Description

SQLPERF Error filename. Specifies a file that contains entries to translate standard
SQLBase return codes into user-defined return codes:
errorfile=filename
The file contains entries for error code translation in the form:
sbred,udrcd
wheresbrcdis a SQLBase return code foundeimor.sql, andudrcdis a user-defined
return code. Thebrcdvalue must be a positive integer; tidrcd can be a positive or
negative integer. There can be no white space between the values or after the com
client application converts thgbrcdvalue to theudrcd value using thegltecAPI
function. For example, SQLBase returns a value of '1' to indicate an end-of-fetch
condition, while DB2 returns a value of '100'. If you want an application to convert all
SQLBase return codes of '1' to '100', the entry in the errorfile would look like this:
1,100
When your application calls trsgjitecfunction, if the SQLBase return code doesn't ex
SQLBase returns a non-zero return code that means that the translation did not og
force translation to occur, you can create a global translation entry using the asteri
character and a generic return code (like '999').
For example, assume an errorfile of SQLBase return codes and corresponding DB
codes. For those SQLBase return codes that have no corresponding DB2 return cq
can force the application to return the generic return code '999' with the following €
*,999
If you call sqlsetand specify the SQLPERF parameter, it changes the setting of the
errorfile keyword insqgl.ini.

SQLPEXP Execution plan. Retrieves the execution plan of the last SQL statement that SQLB4
compiled.

SQLPEXS Extension sizg(in MBytes for partitioned databases, and in KBytes for

non-partitioned databases).

SQLBase databases grow dynamically as data is added, and expand in units calle
extensionsWhen a database becomes full, SQLBase must add another extension
extenj to the database.

When you set the size for a partitioned database, SQLBase rounds the number up
next megabyte.

to the

5-250 sQL Application Programming Interface Reference

sqlset - SET parameter

Parameter

Description

SQLPFRS

Frontend result sets SQLBase supports backend result sets, but for those databas
servers that do not, Centura offers frontend result sets (maintained on the client
computer).

For SQLBase, SQLPFRS is Off (0). For database servers that do not support backe
result sets, like DB2, SQLPFRS is On (1).

You can usesqglsetto turn off SQLBase’s backend result sets, and force result sets ta
maintained on the client computer. This is useful when you are using SQLBase to
client applications that will eventually access a database server that does not supp
backend result sets.

This parameter is cursor-specific.

1%

nd end

be
est
ort

SQLPFT

Fetchthrough mode

If fetchthrough is On (1), rows are fetched from the database server even if they ar
available from the client’s input message buffer. Since data could have been update
you last fetched it (into the input message buffer), using the fetchthrough feature e
that you see the most up-to-date data. If fetchthrough is Off (0), rows are fetched frg
client’s input message buffer when possible.

In fetchthrough mode, rows are fetched from the backend one at a time; there is ng
row buffering. Because of this, and the network traffic involved, fetchthrough increa
response time.

Note for procedures, if you want the On Procedure Fetch section to execute exactl
for every fetch call from the client, returning one row at a time, set fetchthrough mag
On (1) at the client (the default is Off).

If the result set you are fetching was created by a SELECT command that included
aggregate function, defined a complex view, or included a DISTINCT, GROUP BY,
HAVING, UNION, or ORDER BY clause, then SQLBase creates a virtual table. Thg¢
rows of this virtual tableannotbe mapped to the rows in the database. For this reas
arow in the result set is UPDATEd, when you fetch it, it nolt reflect the UPDATE
even if fetchthrough is On.

This parameter is cursor-specific.

e
d since
nsures
m the

multi-
ses

y once
de to

an

DN, if

SQLPGBC

Global cursor. The 5.2/6.0 COBOL SQLPrecompiler uses this parameter. It is listed
for the sake of completeness.

here

SQLPHFS

Read-only history file size(in KBytes). If read-only mode is enabled, setting this
parameter limits the size of the read-only history file. The default size is 1 MByte (1

000

KBytes).

SQL Application Programming Interface Reference 5-251

Chapter 5

SQL/API Function Reference

Parameter

Description

SQLPISO

Isolation level. Sets the locking isolation level of all the cursors that the program
connects to a database. Seestlsil function for an explanation of the isolation levels

SQLILRR = Repeatable Read
SQLILCS = Cursor Stability
SQLILRO = Read-Only
SQLILRL = Release Locks

If you change isolation levels, SQLBase implicitly commits all cursors that the prog
has connected to the database. In turn, the commit destroys all compiled comman

ram
ds.

SQLPLBM

Transaction log backup mode If media recovery is important to your site, set this
parameter On (1) to instruct SQLBase to backup all logs before deleting them.

This parameter is database-specific and you should set it OpregyThe setting will
stay active until changed. You do not need to set this each time a database is broud
online. Resetting this option affects whether log files are deleted or saved for archi
To avoid gaps in your log files, set this parameter once to On.

By default, this parameter is not enabled (0) and SQLBase deletes log files as soo
they are not needed to perform transaction rollback or crash recovery. This is done

ht back
ing.

n as
so that

log files do not accumulate and fill up the disk. If SQLPLBM is Off (0), you are not able

to recover the database if it is damaged by user error or a media failure.

This parameter must be On (1) when you back up datalsagiedtj and log files ¢qlblf),
but does not need to be On when you back up snapshtis¥.

SQLPLCK

Lock limit allocations. This parameter specifies the maximum number of lock entrie
allocate. SQLBase allocates lock entries dynamically (in groups of 100) on an as-n
basis.

The default setting is 0, which means that there is no limit on the number of locks
allocated; as many lock entries can be allocated as memory permits.

If you callsqlsetand specify the SQLPLCK parameter, it changes the setting lofcthe
keyword insqgl.ini.

s to
eeded

SQLPLDR

Transaction log directory. The disk drive and directory that contains the log files.
SQLBase creates log files in the home database directory by default, but you can r|
them to a different drive and directory with thgl.infs lodgir keyword.

edirect

SQLPLDV

Load version This parameter is not applicable to SQLBase v6.0. If the load file wa
created by a previous SQLBase release, this parameter allows you to specify what
created the load file.

This parameter is cursor-specific.

D

version

SQLPLFF

Support long data with front-end result sets.Lets (1) you or prevents (0) you from
reading and writing long data when using front end result sets with SQLNetwork rg
and gateways.

This parameter is cursor-specific.

uters

5-252 sqQL Application Programming Interface Reference

sqlset - SET parameter

Parameter

Description

SQLPLFS

Transaction log file size(in KBytes). The default log file size is 1 MByte (1000 KByte
and the smallest size is 100,000 bytes.

SQLBase rounds up the size of the actual log file by one MByte from the value that
specify. For example, if you set the log file size to 1024 KBtyes, the file will grow to 2
KBytes.

S)

you
048

When the current log file grows to the specified size, SQLBase creates a new log file.

Specifying a large log file size ensures that log files are not created too frequently,
however, if the log file is too large, it wastes disk space.

SQLPLOC

Local/remote database server. Specifies whether the database being accessed is
remote.

0 = Remote
1 = Local engine

local or

SQLPLRD

Local result set directory. If the database server does not support backend result se
this parameter sets the name of the directory on the client computer that contains
frontend result set file. By default, the current working directory holds the result set

ts,
he

SQLPMID

E-Mail Identifier. This parameter allows the setting of an E-Mail identification string.

If you call sglsetand specify the SQLPMID parameter, it changes the setting of the
mail_id keyword inwin.ini.

SQLPNCK

Check network transmission errors.This parameter enables and disables a checks
feature that detects transmission errors between the client and the server. To use {
feature, both the client and the server must enable netcheck.

The default is off (0).

If you call sgisetand specify the SQLPNCK parameter, it changes the setting of the
netcheckeywordsql.ini.

0 = Off

1=0n

Lim
his

SQLPNCT

Netcheck algorithm. This parameter specifies the algorithm SQLBase uses when
netcheck is enabled. Configure this keyword only when you enable netcheck

By default, checksum(0) is enabled. To switch to CRC/16:
netchecktype = 1

If you call sglsetand specify the SQLPNCT parameter, it changes the setting of the
netchecktypstatement irsql.ini.

0 = Checksum
1=CRC/16

SQLPNDB

Mark as brand new database. Used in conjunction with COUNTRY.DBS.

0 = False
1="True

SQL Application Programming Interface Reference 5-253

Chapter 5

SQL/API Function Reference

Parameter

Description

SQLPNID

Network identifier. This parameter allows the setting of an Network identification stiing.

If you call sqlsetand specify the SQLPNID parameter, it changes the setting of the
network_idkeyword inwin.ini.

SQLPNIE

Null indicator error. Controls whasglfetreturns insqglssts pfc parameter when the
value is null:

0 =sqlfetreturns zero (default).
1 =sqlfetreturns FETRNUL (7).

Note that to use the FETRNUL indicators|lssts PFC parameter, you must set the
SQLPNIE parameter to 1. Setting SQLPNIE affects all the cursors connected by th
application that set it; it does not affect other applications.

[¢)

SQLPNLB

Next transaction log file to back up Specify the number (integer) of the next log file
back up.

If SQLPLBM is On, you need to set this parameter after doirgffime backup. Setting
this parameter tells SQLBase that you did an offline backup and that there are now
files eligible for deletion.

For example, if you back upydbs.dbsl.log, 2.l1og, and3.log offline, you should set
SQLPNLB to 4. SQLBase then knows thadbg, 2.log, and3.log can be deleted, while
4.log and all other logs that follow need to be saved for archiving.

to

09

SQLPNLG

Net log file.This parameter invokes a diagnostic server utility that records database
messages to a specified log file. This utility logs all messages that pass between a
and clients on a network.

Do not use the netlog utility unless instructed to do by Centura’s Technical Support
By default, the netlog utility is off.

If you call sqlsetand specify the SQLPNLG parameter, it changes the setting of the
netlogkeyword insql.ini.

server

staff.

SQLPNPB

Do not prebuild result sets

If SQLPNPB is Off (0), SQLBase prebuilds result sets. The database server releas
shared locks before returning control to the client. The client application must wait
the entire result set is built before it can fetch the first row.

If SQLPNPB is On (1), SQLBase doest prebuild result sets if the clientis in result s
mode and Release Locks (RL) isolation level. The advantage of having SQLPNPB
that the client does not have to wait very long before fetching the first row. SQLBas
builds the result set as the client fetches data.

By default, SQLPNPB is On (1) for single-user engines and Off (0) for multi-user se|
This parameter is cursor-specific.

es
until

et
onis
e

rvers.

5-254 sqQL Application Programming Interface Reference

sqlset - SET parameter

Parameter Description

SQLPNPF Net prefix character. This parameter allows SQLBase to distinguish a database on pne
server from an identically-named database on another server and to circumvent the
network's requirement of name uniqueness. You can specify a value with which SQ|-Base
prefaces each database name on the server.

If you have a netprefix entry in the servesdg.inifile, all clients connecting to database
on that server must specify the same netprefix value in their configuration files.

2]

If you call sglsetand specify the SQLPNPF parameter, it changes the setting of the
netprefixkeyword insgl.ini.

SQLPOBL Optimized bulk execute modeThis is similar to, but even faster than, bulk execute
mode (SQLPBLK) which reduces the network traffic for multi-row inserts, deletes, and
updates. The difference is that if an error occurs, SQLBase rolls back the entire
transaction.

In bulk execute mode, data values are buffered so that many rows can be sent to the server
in one message.

Increasing the size of the output message buffer (witeglmensfunction) increases the
number of operations that can be buffered in one message to the server, thereby
improving performance.

This setting is cursor specific.
If this is On (1), as many operations are buffered in the output message buffer as ppssible.

By default, bulk execute mode is Off (0). Bulk execute mode cannot be on at the same
time as the autocommit (SQLPAUT) option.

SQLPOFF Optimize first fetch. This parameter lets you set the optimization mode for a particular
cursor. All queries that are compiled or stored in this cursor inherit the optimization mode
in effect.

0 = optimizes the time it takes to return the entire result set.
1 = optimize the time it takes to fetch the first row of the result set.

If you call sqlgetand specify the SQLPOFF parameter, it overrides the setting for
optimizefirstfetchn sql.inifor the particular cursor. If you do not specify this parameter,
the optimization mode for the cursor is determined by the setting of the

optimizefirstfetclvalue of the server. Hql.ini does not have asptimizefirstfetch
keyword, the default setting is O (optimize the time it takes to return the entire result set).

Note that a command that earlier stored, retrieved, and executed will continue to use the
execution plan with which it was compiled.

SQL Application Programming Interface Reference 5-255

Chapter 5

SQL/API Function Reference

Parameter

Description

SQLPOOJ

Oracle outer join. This parameter enables and disables Oracle-style join processin
Oracle's outer join implementation differs from the ANSI and industry standard

implementation. To paraphrase the ANSI standard, the correct semantics of an out
are to display all the rows of one table that meet the specified constraints on that ta
regardless of the constraints on the other table. For example, assume two tables (A
with the following rows:

Table A (aint) Table B (b int)
1 1
2 2
3 3
4
5
If you issue the following SQL command:
SELECT a, b
FROM A, B

WHERE A.a =B.b (+)
AND B.b IS NULL;

the ANSI result is:

Table A (a int) Table B (b int)

1

2

3

4

5
Assuming the same two tables and the same SQL command, the correct result for
is:

Table A (a int) Table B (b int)
4
5
If you setoracleouterjoirr1; you receive the Oracle result shown directly above. If yg
call sglsetand specify the SQLPOOJ parameter, it changes the setting of the
oracleouterjoinkeyword insgl.ini.

0 = Off

0.
er join
able,
and B)

Oracle

1=0n

5-256 sQL Application Programming Interface Reference

sqlset - SET parameter

rall

ewer
meter

tics. If

Parameter Description

SQLPOPL Optimizer techniques Determines the optimizing techniques that SQLBase uses fq
clients that connect to a server.
This parameter lets you fall back on old optimizing techniques after upgrading to n
versions of SQLBase. If you discover better performance of a query when this pard
is set to 1, you should report it to Centura’s Technical Support team. Be sure not tg
include compilation time in the comparison of settings 1 and 2.
1 = SQLBase uses old optimizing techniques.
2 = SQLBase uses current optimizing techniques (default).
This parameter setting overrides the value obihimizerlevekeyword insql.ini.

SQLPOSR OS statistics sample rateThis parameter specifies the frequency at which operating
system statistics (CPU % Utilization) are gathered. You can specify a setting of 0 t¢ 255
seconds. The default setting is zero (0), which disables the gathering of CPU statig
you callsglsetand specify the SQLPOSR parameter, it changes the setting of the
ossampleraté&eyword insql.ini.
0 = Off
1 =255 secs

SQLPPAR Partitioned database.Indicates if the database is partitioned.
0=No
1=Yes

SQLPPCX Cursor context preservation

If cursor context preservation is On (1), SQLBase prevents a COMMIT from destro
an active result set, thereby enabling an application to maintain its position after a
COMMIT, INSERT, or UPDATE.

Locks are kept on pages required to maintain the fetch position. Be aware that this
block other applications trying to access the same data. Also, locks can prevent ot
applications from doing DDL operations.

By default, cursor context preservation is Off (0). A COMMIT destroys a cursor’s re
set or compiled command.

SQLBase doesot preserve cursor context after an isolation level change or after a
system-initiated ROLLBACK, such as a deadlock, timeout, etc. SQLBmspreserve
cursor context after a user-initiated ROLLBACK if both of the following are true:

1) The application is in Release Locks (RL) isolation level.
2) A data definition language (DDL) statement was not performed.

If the result set you are fetching was created by a SELECT command that included
aggregate function, defined a complex view, or included a DISTINCT, GROUP BY,

HAVING, UNION, or ORDER BY clause, then SQLBase creates a virtual table. The

rows of this virtual tableannotbe mapped to the rows in the database. For this reas
arow in the result set is UPDATEd, when you fetch it, it ndlt reflect the UPDATE
even if fetchthrough is On.

This parameter is cursor-specific.

ying

can
ner

sult

an

D

bn, if

SQL Application Programming Interface Reference 5-257

Chapter 5

SQL/API Function Reference

ess to
estore

can

e

Parameter Description

SQLPPDB Access to partitioned database€nables and disables access to
partitioned databases. When you set this parameter to TRUE, you enable user acg
partitioned databases; when FALSE (0), you disable user access, allowing you to 1
MAIN.DBS.

SQLPPLF Preallocate transaction log filesBy default, this parameter is Off (0) and a log files
grows in increments of 10% of its current size. This uses space conservatively, but
lead to a fragmented log file which can affect
performance. If this parameter is On (1), log files are created full size (preallocated

SQLPPLV Level of Process Activity displaySets the level (O - 4) of detail of the
messages on a multi-user server’s Process Activity display.

You must have DBA authority to set this parameter.

SQLPROD Read-only databaseMakes a database accessible on a read-only basis. SQLBase
disallows you from executing data definition language (DDL) or data manipulation
language (DML) commands.

Before you can turn on this feature, you musteseipdirin the
autoexec.batr thesql.inifile to point to the directory where
SQLBase should store its temporary files. The temporary files are stored in a subdirectory
of the directory pointed to bgmpdir The name of this subdirectory is the same as th
database name.
You must be the only connected user to set this parameter.
If this parameter is On (1), SQLBase disables both the Read-Only
isolation level and transaction logging.
SQLPROM Read-only transaction mode Allows users connecting to any of the databases on th

server to use the RO (read-only) isolation level. The RO isolation level allows users
a consistent view of data during their session.

If this parameter is On (1), SQLBase allows users to use the RO isolation level. All {
server sessions for all databases on the server are started with RO transactions er]
and SQLBase maintains a read-only history file that contains multiple copies of mo
database pages; when users try to access pages changed by other users, SQLBas
copy of the original page from the history file.

Read-only transactions can affect performance, so, by default, this
parameter is Off (0), prohibiting users from setting the RO isolation level.

If you call sqlsetand specify the SQLPROM parameter, it changes the setting of th
readonlykeyword insql.ini, but the new setting does not take effect until you restart
SQLBase.

0 = Off

1=0n

NOTE: To turn on RO transaction mode for a single database and the current sess
SQLPROT.

e
with

uture
abled;
dified

E retries a

D

on, use

5-258 sqQL Application Programming Interface Reference

sqlset - SET parameter

ne
e or

eter is

Parameter Description

SQLPROT Read-only transaction modelf this parameter is On (SQLVON), SQLBase allows
applications to set the RO (read-only) isolation level on for a single database and t
current server session. SQLBase maintains a read-only history file that contains o
more copies of pages that have been modified.
Read-only transactions can affect performance so, by default, this
parameter is Off (SQLVOFF), prohibiting use of the RO isolation level.
If this parameter is set to the default (SQLVDFL), SQLBase uses the
readonlykeyword setting in theql.inifile to determine whether to allow read-only
transactions. If you do not provide a value for this
keyword, SQLBase uses the internal default (SQLVOFF).
You can turn on the RO isolation level only for multi-user versions of
SQLBase. If you set this feature on withgisetcall, it applies to the
current database. If you set this feature on by modifyingetheonlykeyword setting in
sql.ini, the setting applies to all databases on the server. You can also turn on RO
isolation level for all databases on the server by using the SQLPROM parameter.

SQLPRTO Rollback on lock timeout This parameter is On (1) by default and
SQLBase rolls back an entire transaction when there is a lock timeout. If this param
Off (0), SQLBase rolls back only the current command.
This parameter is cursor-specific.

SQLPSIL Silent mode.This parameter turns the display for multi-user server on (0) and off (1).

To set the display of the server screens off:
silent=1
By default, multi-user server displays are on(0).

If you call sglsetand specify the SQLPSIL parameter, it changes the setting sifehe
statement irsgl.ini.

0=0n

1 = Off

SQL Application Programming Interface Reference 5-259

Chapter 5

SQL/API Function Reference

Parameter

Description

SQLPSTA

Statistics for server.This parameter collects the following timer and counter
information:

Timers:
Compile.
Execute.
Fetch.

Counters:
Physical disk writes.
Physical disk reads.
Virtual disk writes
Virtual disk reads.
Total number of disconnects.
Total number of connects.
Hash joins - number of joins that have occurred.
Sorts - number of sorts that have been performed
Deadlocks - number of deadlocks that have occurred.
Process switches - number of process switches.
Full table scan - number of times a full table scan occurred.
Index use - number of times an index has been used.
Transactions - number of completed transactions.
Command type executed - one counter for each command type.

The default for this parameter is off (0).

0 = off
1=on

Note that if you are using the sqglset function to set the SQLPCTL (command time |

parameter, it affects the setting of the SQLPSTA (statistics for server), as well as the

SQLPAPT (activate process timing) parameter. The following behavior occurs:

imit)

* When you enable a command time limit (by specifying a non-zero value in eithér the

CMDTIMEOUT keyword of the server'sql.inifile or with the SQLPCTL

parameter), statistics for server and process timing are automatically turned on.

« If you turn off a command time limit, statistics gathering and process timing are

automatically turned off, unless you explicitly turned on either statistics gathering or

process timing after you enabled a command time limit.

« If you explicitly turn off either statistics for server or process timing, your comm
time limit (if you enabled on) is turned off asdl.iniis updated to reflect
CMDTIMEQOUT=0.

It is recommended that if you set a value for any of these three parameters, you sh

the same value for the other two. For example, if you set SQLPCTL parameter to C
you should also set SQLPSTA and SQLPAPT parameters to On (1).

and

uld set
n (1),

5-260 sQL Application Programming Interface Reference

sqlset - SET parameter

Parameter

Description

SQLPSTC

Sort cache size in pagedhis parameter specifies the number of cache pages to us
sorting. Sorting is done when you specify a DISTINCT, ORDER BY, GROUP BY, o
CREATE INDEX clause, or when SQLBase creates a temporary table for join purp
The default is 64, as is the maximum.

If you call sglsetand specify the SQLPSTC parameter, it changes the setting of the
sortcachekeyword insqgl.ini.

e for

pSes.

SQLPSVN

Name of serverThis parameter shows the name of the server you are connected tq.

Setting of this parameter will only change the setting irstthéni. To activate the new
setting, the server must be restarted. You must have DBA authority to set this paral

meter.

SQLPTCO

Time colon only. This parameter configures SQLBase to recognize when a delimite
other than a colon(:) is being used to separate the hours, minutes, and seconds po
atime value.

The default is off (0).

If you call sgisetand specify the SQLPTCO parameter, it changes the setting of the
timecolononlykeyword insqgl.ini.

0=No

1=Yes

tions of

SQLPTHM

Thread mode.This parameter specifies whether to use native threads or SQLBase
threads. A value of 1 indicates SQLBase threads and a value of 2 indicates native t
Note for Windows 95, SQLBase now uses Windows 95 native threads only.

By default,threadmodes 1, except on Windows 95 where the default is 2.

On Netware platforms, if you are running in Ring 0, Centura recommends using
SQLBase threads which invoke stack switching. This should yield better performan
Novell disallows stack switching in Ring 3, so be sure to set threadmode to 2 when
Ring 3.

If you call sglsetand specify the SQLPTHM parameter, it changes the setting of the
threadmodeeyword insqgl.ini.

hreads.

in

SQLPTMO

Client request time out.This parameter specifies the time period that the server wait
a client to make a request. If the client does not make a request within the specifie

5 for
i

period, SQLBase rolls back the client session, processes, and transactions. The time-out

clock restarts each time the client makes a request.
The time-out value is O (infinite by default, and the maximum value is 200 minutes.

If you call sglsetand specify the SQLPTMO parameter, it changes the setting of the
timeoutstatement irsql.ini.

SQLPTMS

Timestamp. If set to TRUE (1), SQLBase timestamps the messages on a multi-use
server's Process Activity display; if FALSE (0), SQLBase does not.

You must have DBA authority to set this parameter.

r

SQL Application Programming Interface Reference 5-261

Chapter 5

SQL/API Function Reference

Parameter

Description

SQLPTMZ

Time zone.This parameter sets the value of SYSTIMEZONE, a SQLBase keyword

that

returns the time zone as an interval of Greenwich Mean Time. SYSTIMEZONE usgs the

expression (SYSTIME - TIMEZONE) to return the current time in Greenwich Mean
Time.

By default, timezone is 0.

If you call sqlsetand specify the SQLPTMZ parameter, it changes the setting of the
timezonekeyword in sql.ini.

SQLPTPD

Temp directory. This parameter specifies the directory where SQLBase places
temporary files. In the course of processing, SQLBase can create several kinds of
temporary files: sort files, read-only history files, and general-use files.

To specify d:\tmp as the temporary directory:
tempdir = d:\tmp
You must set tempdir for read-only databases.

If you call sqlsetand specify the SQLPTPD parameter, it changes the setting of the
tempdirkeyword insgl.ini.

SQLPTRC

Trace stored proceduresEnables or disables statement tracing for procedures.

0 = Off
1=0n

SQPTRF

Tracefile name. Directs statement output to a file on the server. If you do not set thi
parameter to a file name, the statement output goes to the server’s Process Activit
screen.

SQLPTSL

Transaction span limit. The number of log files that SQLBase allows an active
transaction to span. When SQLBase creates a new log file, it checks this limit for g
active transactions and rolls back any transaction that violates the limit. By default,
transaction span limit is set to zero (0) which disables the limit checking.

Long running transactions can pin down disk log files that otherwise could be delet
You can limit the amount of logs pinned down by active transactions by specifying
transaction span limit. SQLBase rolls back long running transactions that exceed t
limit, thereby freeing pinned log files and deleting them (or backing them up and de
them if log backup is enabled).

Il
the

ed.
he
he
eting

SQLPTSS

Thread stack sizeThis parameter specifies the stack size.
By default, threadstacksize is 10 kilobytes and the minimum value is 8192 bytes.

You should not decrease the default value. Running complex queries when
threadstacksize is set to 8192 can result in a stack overflow error.

If you receive stack overflow errors, increase the value of threadstacksize by 512 b
a time.

If you call sqlsetand specify the SQLPTSS parameter, it changes the setting of the
threadstacksizkeyword insl.ini.

ytes at

5-262 sQL Application Programming Interface Reference

sqlset - SET parameter

Parameter

Description

SQLPUID

Application identifier. This parameter allows the setting of an user identification stri

If you call sglsetand specify the SQLPUID parameter, it changes the setting of the
app_idkeywordwin.ini.

SQLPUSR

Number of users.This parameter specifies the maximum number of client applicati
that can connect to the server simultaneously. This means, for example, that a ser
configured with users=5 could support five clients running one application each, or
client running five applications, or two clients with one running two applications ang
other running three applications, and so on.

The default value of users is 128, and the maximum is 800.

If you call sglsetand specify the SQLPUSR parameter, it changes the settingusfdte
keyword insql.ini.

ns
er

one
the

SQLPWKA

Work space allocation unit. This parameter specifies the basic allocation unit of a w
space. For example, if a SQL command requires 5000 bytes and the default value

is in effect, SQLBase makes 5 memory allocation requests to the operating system
100 = 5000).

The default is 1000 bytes.

If you call sglsetand specify the SQLPWKA parameter, it changes the setting of the
workallockeyword insgl.ini.

ork
of 1000
(5*

SQLPWKL

Maximum work space limit. This parameter specifies a maximum memory limitation

for SQL commands. For example, if you specify:
worklimit = 4000

SQLBase cannot execute SQL commands requiring more than 4000 bytes of mem
The default is NULL, meaning that no memory limitation exists.

If you call sglsetand specify the SQLPWKL parameter, it changes the setting of the
worklimit statement irsgl.ini.

ory.

SQLPWTO

Lock wait timeout. Specify the number of seconds for SQLBase to wait for a datab
lock to be acquired. After the specified time has elapsed, SQLBase rolls back the
command or transaction.

The default is 300 seconds. Valid timeout values are:

1 - 1800 inclusive (1 second to 30 minutes)
0 = never walit; return error immediately
-1 = wait forever

This parameter is only relevant for multi-user servers and it is transaction-specific.

You can also set the lock wait timeout value withghkio function.

ASe

SQL Application Programming Interface Reference 5-263

Chapter 5 SQL/API Function Reference

Parameters

cur
A cursor handle if the parameter is associated with a cursor. A value of ‘No’ in
the following table indicates that a cursor handle is not required. In this case,
specify a zero (0).

parm
The name of the parameter to set. The parameter types are detaét amd
are shown in the following table.

pbuf
A pointer to the variable that contains the parameter setting. The data type and
size of the variable depends on the parameter as defined in the following table.

length

The length of the value pointed to pluf. The following table shows whether a
length needs to be specified for a parameter.

For strings, even if a length is needed, you can specify zero to indicate that the
value pointed to bpbufis null-terminated and the system will compute the
length.

Specify a length of zero for null-terminated string parameters such as SQLPISO.

Parameter Types
The following table lists:
e parm- the parameter type.
e cur- whether the parameter requires a cursor handle.
» pbuf- the size of the variable pointed to fiyuf.

* len- whether you need to specify a length for the
parameter.

The parameter types apbuftypes and sizes are definedsil.h

parm cur pbuf len
SQLPALG Yes SQLMFNL Yes
SQLPAPT Yes SQLTDPV No
SQLPAUT Yes SQLTDPV No

5-264 sqQL Application Programming Interface Reference

sqlset - SET parameter

parm cur pbuf len
SQLPBLK Yes SQLTDPV No
SQLPCAC Yes SQLTDPV No
SQLPCLG Yes SQLTDPV No
SQLPCLN Yes SQLMFNL Yes
SQLPCMP Yes SQLTDPV No
SQLPCSV No SQLTDPV No
SQLPCTI Yes SQLTDPV No
SQLPCTL Yes SQLTDPV No
SQLPCTS No SQLMNPL Yes
SQLPDBD Yes SQLMFNL Yes
SQLPDDB No Character field of size Yes
SQLMDNM + 1
SQLPDIS Yes SQLTDPV No
SQLPDMO Yes SQLTDPV No
SQLPDPW No Character field of size Yes
SQLMSID + 1
SQLPDTR No SQLTDPV No
SQLPDUS No Character field of size Yes
SQLMSID + 1
SQLPEMT Yes SQLMXER Yes
SQLPEXP Yes SQLMFNL Yes
SQLPEXS No SQLMFNL No
SQLPFRS Yes SQLTDPV No
SQLPFT Yes SQLTDPV No
SQLPGBC Yes Pass a null pointer (suchi No
as SQLNPTR)
SQLPHFS Yes SQLTDPV No
SQLPISO Yes SQLMFNL Yes

SQL Application Programming Interface Reference 5-265

Chapter 5 SQL/API Function Reference

parm cur pbuf len
SQLPLBM Yes SQLTDPV No
SQLPLDV Yes SQLMFNL Yes
SQLPLFF Yes SQLTDPV No
SQLPLFS Yes SQLTDPV No
SQLPLOC Yes SQLTDPV No
SQLPOFF Yes SQLTDPV No
SQLPLRD Yes SQLMFNL Yes
SQLPNDB Yes SQLTDPV No
SQLPNIE No SQLTDPV No
SQLPNLB Yes SQLTDPV No
SQLPNPB Yes SQLTDPV No
SQLPOPL Yes SQLTDPV No
SQLPPAR Yes SQLTDPV No
SQLPPCX Yes SQLTDPV No
SQLPPDB No SQLTDPV No
SQLPPLF Yes SQLTDPV No
SQLPPLV Yes SQLTDPV No
SQLPROD Yes SQLTDPV No
SQLPROM Yes SQLTDPV No
SQLPROT Yes SQLTDPV No
SQLPRTO Yes SQLTDPV No
SQLPSTA Yes SQLTDPV No
SQLPTMS Yes SQLTDPV No
SQLPTRC Yes SQLTDPV No
SQLPTRF Yes Character field of size Yes
SQLMFNL + 1

5-266 sQL Application Programming Interface Reference

sqlset - SET parameter

parm cur pbuf len
SQLPTSL Yes SQLTDPV No
SQLPWTO Yes SQLTDPV No

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Examples

#include <sgl.h>

char dbn [SQLMDNM + 1];/* database name buffer */
SQLTRCDrcd; [* return code */

if (red = sqlset (0, SQLPDDB, dbn, 0))/* set dbname */
printf("Failure Setting Database Name (rcd = %d)\n", rcd);

The function below sets the log file size to 500 kilobytes. When the active log grows
to this size, itis closed and a new log is started.

SQLTDPVsize=500
sqlset (cur, SQLPLFS, (SQLTDAP)&size, 0);

The function below sets the log backup mode to OFF. This means that the user does

not want to backup log files and wants to delete log files from disk as soon as they are
not needed for crash recovery.

Ibmset=0;

if (red = sglset (curl,SQLPLBM,(SQLTDAP)&Ibmset,0))
apierr("SQLSET");

else

printf("Logbackupmode is set to %d \n", lbmset);

Related functions
sqlget

SQL Application Programming Interface Reference 5-267

Chapter 5 SQL/API Function Reference

sqlsil - Set Isolation Level

Syntax
#include <sql.h>
SQLTAPI sqlsil (cur, isolation)
SQLTCUR cur; /* Cursor handle */
SQLTILV isolation; /* Isolation level */
Description

This function sets the isolation level at which the application will operate in a multi-
user environment.

The isolation level controls the effect that changes made by one user have on another
user accessing the same tables. SQLBase supports these isolation levels:

* Read Repeatability (RR)
e Cursor Stability (CS)

* Read Only (RO)

* Release Locks (RL)

Choose an isolation level based on the application's requirements for consistency and
concurrency.

The isolation level you set appliesaibthe cursors that an application connects to the
same database.

If you change isolation levels, it causes an implicit commitafbcursors that the
program has connected to the database. In turn, an implicit commit destroys all
compiled commands for the database. However, catjigl and specifying an
isolation level that is the same as the current isolation levelndbeause an implicit
commit.

Isolation Levels and the Input Message Buffer

Each isolation level uses the input message buffer differently. This buffer is allocated
on the client computer and the server computer. The database server builds a message
and sends it to the input message buffer on the client computer. This buffer is
considered "input" with respect to the client computer.

There is one input message buffer per connected cursor on the client computer. On
the server, there is one input message buffer that is the size of the largest input
message buffer on the client computer.

5-268 sQL Application Programming Interface Reference

sqlsil - Set Isolation Level

The input message buffer receives data requested by the client that has been fetched
with sqlfetand sent by the server.

Any row in the input message buffer may have a shared lock on it depending on the
isolation level setting, preventing other users from changing that row.

The table below summarizes how page locking and the input message buffer are
affected by each isolation level.

Isolation level | Input message buffer Shared lock duration and scope

RR Fills the input message Maintained for duration of transaction
buffer. and more than one page may be lockef.

CS One row sent to input| Maintained for duration of transaction,
message buffer. but only the current page is locked.

RO Fills the input message None.
buffer.

RL Fills the input message All shared locks are released by the time
buffer. control returns to the client.

Read Repeatability (RR)

This isolation level means that all pages which you access stay locked for other users
until you COMMIT your transaction. If the same data is read again during the
transaction, those rows would not have changed. This guarantees that the data
accessed is consistent for the life of the transaction. Identical SELECT commands
will return identical rows since data cannot be changed by other users during the
transaction. In this situation, other users must wait for your COMMIT command.

Read Repeatability is the default isolation level.

The Read Repeatability isolation level fills the input message buffer with rows. All
shared locks remain regardless of the size of the input message buffer until the
application issues COMMIT or ROLLBACK.

Cursor Stability (CS)

This isolation level means that only the page you are processing at the moment is
locked to other users. A shared lock is placed on a page for as long as the cursor is on
that page (while the cursor is stable). Exclusive locks and shared locks are held until a
COMMIT. Other pages you accessed during the transaction are available to other
users and they do not have to wait for your COMMIT.

Data that has been read during a transaction may be changed by other users when the
cursor moves to a new page.

SQL Application Programming Interface Reference 5-269

Chapter 5 SQL/API Function Reference

Only one row is sent to the input message buffer under the Cursor Stability isolation
level despite the size of the buffer. In other words, sgtfietcauses the client and
server to exchange messages across the network.

Use Cursor Stability when you want to update one row at a time using the CURRENT
OF cursor clause. When the row is fetched to the client input message buffer, its page
will have a shared lock, which means that no other transaction will be able to update
it.

Read-Only (RO)

This isolation level places no locks on the database and can only be used for reading
data. DDL and DML operations are not allowed while in read-only isolation. This
isolation level provides a view of the data as it existed when the transaction began. If
you request a page that is locked by another concurrent transaction, SQLBase
provides an older copy of the page from the read-only history file. The read-only
history file maintains multiple copies of database pages that have been changed.

This is an appropriate isolation level if the data wanted must be consistent but not
necessarily current. This isolation level also guarantees maximum concurrency.

Read-only transactions may affect performance, so they are disabled by default.
Read-only transactions can be turned on by callinggtsetfunction with the
SQLPROM or SQLPROT parameters, or by specifying¢hdonlykeyword in

sql.ini. If you set the read-only isolation level withlsetand the SQLPROM
parameter, or with theeadonlykeyword insql.ini, all future server sessions and all
databases on the server are started with read-only transactions enabled. If you call
sqlsetwith the SQLPROT parameter, read-only isolation level is set only for a single
database and the current server session. Read the sectiorsgiséffanction for

details.

This isolation level fills the input message buffer with rows.

The Read-Only isolation level is disabled when3ig. PRODparameter is on.

Release Locks (RL)

Under Cursor Stability, when a reader moves off a database page, the shared lock
acquired when the page was read is dropdesever if a row from the page is still

in the message buffer, the page is still locked. In contrasRetease Locks (RL)
isolation level increases concurrency by releasing all shared locks at the time that
control returns to the client.

When the next message or command is sent to the database, SQLBase acquires share
locks on only those pages that belong the current cursor. The locks are obtained
regardless of the current command type. Just before returning to the user, SQLBase
releases all shared locks. It also internally notes the page numbers of those pages that
had locks on them.

5-270 sQL Application Programming Interface Reference

sqlsil - Set Isolation Level

This isolation level fills the input message buffer with rows, which minimizes
network traffic.

Use this isolation level for browsing applications which display a set of rows to a user.

Parameters
cur
The cursor handle associated with this function.
isolation
A pointer to the variable that contains the isolation level:

SQLILRR "RR" /* Repeatable Read isolation */
SQLILCS "CS" /* Cursor Stability isolation */
SQLILRO "RO" [* Read-Only isolation */
SQLILRL "RL" /* Release Locks isolation */

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
This example sets the isolation level to Cursor Stability.
ret= sqlsil (cur, SQLILCS);

Related functions

sglims

SQL Application Programming Interface Reference 5-271

Chapter 5 SQL/API Function Reference

sqlspr - StoP Restriction mode

Syntax
#include <sql.h>
SQLTAPI sqlspr (cur)

SQLTCUR cur; /* Cursor handle */

Description

This function turns off restriction mode but leaves on result set mode. Result set mode
lets the application set a position at any row in the result set while not restricting each
subsequent query.

In result set mode, once a result set has been created, you can get any row in the result
set with thesqglprsfunction without sequentially fetching forward. Once the cursor is
positioned, later fetches start from that row.

Parameters
cur

The cursor handle associated with this function.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

if (red = sqlspr (cur))
apierr("SQLSPS");

Related functions

sqlcrs sqlrrs sqlstr
sqldrs sqlsrs sqlurs
sqlprs

5-272 sQL Application Programming Interface Reference

sglsrs - Start Restriction Set and Result Set modes

sqlsrs - Start Restriction Set and Result Set modes

Syntax

#include <sql.h>

SQLTAPI sqlsrs(cur)

SQLTCUR cur; /* Cursor handle */
Description

This function starts restriction mode and result set mode.

In result set modeonce a result set has been created, you can get any row in the result
set with thesglprsfunction without sequentially fetching forward. Once the cursor is
positioned, later fetches start from that row.

In restriction modethe result set of one query is the basis for the next query. Each
query further restricts the result set. This continues for each subsequent query.

After you callsglsrs you can call theqlsprfunction to turn off restriction mode but
leave result set mode on. You can calldkstrfunction to turn on restriction mode
again after being in only result set mode.

While in restriction mode, you can "undo" the current result set and return to the
result set as it was before the last SELECT witrstilersfunction.

If you are in restrictioomode and you query a different table, the previous result set is
lost.

You turn off both result set mode and restriction mode wittsgfersfunction. The
sqlcrsfunction lets you optionally give a name to the result set and save it. To use a
saved result set later, call thglrrsfunction and specify the saved result set name.
Thesqlrrs function turns on result set mode and restriction mode.

Be cautious about using saved result sets. Internally, a saved result set is a list of row
identifiers (ROWIDs) that is stored in the SYSROWIDLISTS system catalog table. A
ROWID changes whenever the row is updated. If one of the rows is updated after you
have saved and closed a result set, you will get an error if you open the result set later
and try to fetch the row.

You cannot use restriction mode with the following features:

* Aggregate functions
e DISTINCT

SQL Application Programming Interface Reference 5-273

Chapter 5 SQL/API Function Reference

+ GROUP BY
* HAVING

* UNION

+ ORDERBY

e Stored commands

Parameters
cur

The cursor handle associated with this function.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

ret= sqlsrs (cur);

Related functions

sqglcrs sqlrrs sqlstr
sqldrs sqlspr sqlurs
sqlprs sqlsrs

sqlssb - Set SELECT Buffer

Syntax

#include <sql.h>

SQLTAPI sqlssb(cur, slc, pdt, pbp, pdl, sca, cvl, pfc)

SQLTCUR cur; /* Cursor handle */

SQLTSLC slc; /* Column number */

SQLTPDT pdt; /* Program data type */

SQLTDAP pbp; /* Program buffer */

SQLTPDL pdl; /* Program buffer length */
SQLTSCA sca; [* Scale of packed decimal data */

SQLTCDL PTR cvl; /* Current value length */
SQLTFSC PTR pfc; /* Fetch status code */

5-274 sqQL Application Programming Interface Reference

sqlssb - Set SELECT Buffer

Description

This function sets up buffers that receive data fraygléet This function associates
an item in the SELECT list with a data buffer where the data is fetched.

This function tells the system where to put fetched data, the size of the receiving area,
and the application program data type.

Also, this function sets up variables that are set after st

e Length of fetched datayl argument).
» Fetch status codgfc argument).

This function must be issued once for each item in EHeEEET list for which data is
to be retrieved.

Parameters
cur
The cursor handle associated with this function.
slc

The column number indicates the sequence number (starting with 1) of the item
in the SELECT list for which the program is setting up a select buffer.

pdt

The data type of the SELECT item as declared by the program. SQLBase
automatically converts fetched data into this requested data type.

The program data types are listed below. These are defisggihn

Program Data Type Description
SQLPBUF Character buffer
SQLPDAT Internal datetime
SQLPDOU Double
SQLPDTE Date only
SQLPEBC EBCDIC buffer
SQLPFLT Float
SQLPLON Long text string
SQLPLBI Long binary buffer

SQL Application Programming Interface Reference 5-275

Chapter 5 SQL/API Function Reference

Program Data Type Description
SQLPLVR Char/long varchar >254
SQLPNBU Numeric buffer
SQLPNST Numeric string
SQLPNUM Internal numeric
SQLPSCH Character
SQLPSIN Integer
SQLPSLO Long
SQLPSPD Signed packed decimal
SQLPSSH Short
SQLPSTR String (null-terminated)
SQLPTIM Time only
SQLPUCH Unsigned character
SQLPUIN Unsigned integer
SQLPULO Unsigned long
SQLPUPD Unsigned packed decimal
SQLPUSH Unsigned short

pbp
A pointer to the variable where a lasgifetreturns the data for a SELECT list
item.

Assign a value to this variable before eaghliet When you fetch a column with
a null value, the value gbpis not changed.

pdl
The length of the value pointed to plp

SCa

The scale (humber of decimal places) for a packed-decimal data type. This
argument is ignored for other data types. If you are not using a packed-decimal
data type, specify zero.

5-276 sQL Application Programming Interface Reference

sqlssb - Set SELECT Buffer

cvl

pfc

The length of the data receivedilyp If the size opbpis smaller than the actual
data received, the data is truncated and an error will be indicated in the fetch
status code for this column.

If the actual data received inpipis shorter thampdl, thencvlis set to the actual
length received aftersyglfet For example, if the string "TEST" is received into a
20 character variableyl is set to 4.

Specify a null pointer (SQLNPTR) if this information is not wanted by the
application.

If the data type is packed-decimal, see the section dadlekkd-Decimal Data
Typesin chapter 3.

A pointer to the variable where thglfetfunction returns the fetch status code for
the specified column. If the fetch was successful, the fetch return code is zero.
The following is a list of the fetch errors which can be returned. These codes are
defined insql.h

Note: To set the pfc parameter to the constant FETRNUL, you must set the SQLPNIE parameter
of thesglfetfunction to 1 (on). Setting SQLPNIE affects all the cursors connected by the
application that set it; it does not affect other applications.

Specify a null pointer (SQLNPTR) if this information is not wanted by the
application.

Constant Value Description
FETRTRU 1 Data was truncated
FETRSIN 2 Signed number fetched into unsigned
variable
FETRDNN 3 Data is not numeric
FETRNOF 4 Numeric overflow
FETRDTN 5 Data type is not supported
FETRDND 6 Data is not a date
FETRNUL 7 Data is null

SQL Application Programming Interface Reference 5-277

Chapter 5 SQL/API Function Reference

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

#define NAMESIZE 25
#define COLWID 30

static char select[] = "select name, phone from emp where
acode =:1";

char dataline[80];

unsigned char cvl;

char fcd;

short ret; /* return code */

char *Ip = dataline;/* line pointer */
SQLTCUR cur; /* cursor*/
SQLTSLC col; /* column number */

/* Set buffer for receiving data as locations on a line */

memset (dataline, ' ', sizeof(dataline));/*initialize */
for (col=1, col <= 2, col++)

{
if (ret= sqglssb (cur,col,SQLPBUF, Ip, COLWID, 0, &cvl,
&fcd))
{

... process error

}

/* set line location for next item of data*/
Ip += (COLWID+2);

Related functions
sqldes sqlfet sqldfi

5-278 sQL Application Programming Interface Reference

sqlsta - STAtistics

sqlsta - STAtistics

Syntax

#include <sql.h>
SQLTAPI sqlsta (cur, svr, svw, Spr, Spw)

SQLTCUR cur; /* Cursor handle */
SQLTSTC PTR svr; /* Virtual reads */
SQLTSTC PTR sww; /* Virtual writes */
SQLTSTC PTR spr; /* Physical reads */
SQLTSTC PTR spw; /* Physical writes */

Description

This function returns database statistics about physical and virtual disk reads and
writes since the specified cursor was connected.

The numbers returned for physical reads and writes refer to disk input/output
operations. Physical means that data was physically transferred to or from the disk.
Logical means that data was accessed by SQLBase access methods. This may or may
not result in physical input/output.

The number of virtual reads and writes can be greater than, but never less than, the
physical reads and writes. More physical writes can occur because a page may be
forced out of the cache by a commit or a read.

The amount of disk input/output can be affected by the size of the server cache.

Parameters
cur
The cursor handle associated with this function.
svr
A pointer to the variable where this function returns the number of virtual reads.
svw
A pointer to the variable where this function returns the number of virtual writes.
spr

A pointer to the variable where this function returns the number of physical
reads.

SQL Application Programming Interface Reference 5-279

Chapter 5 SQL/API Function Reference

spw

A pointer to the variable where this function returns the number of physical
writes.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

SQLTCUR cur;

unsigned long svr; /* virtual reads */
unsigned long sww; /* virtual writes */
unsigned long spr; /* physical reads */
unsigned long spw; /* physical writes */

if (sqlsta (cur,&svr,&svw,&spr,&spw))
{

process error

}

printf("Virtual reads:%ld Virtual writes:%ld\n",svr,svw);
printf("Physical reads:%Id Physical writes: %ld\n",
Spr,spw);

Related functions
sqlgsi

sqlstm - Server TerMinate

Syntax

#include <sql.h>

SQLTAPI sqlstm (shandle)

SQLTSVH shandle; /* Server handle */
Description

This function causes the server program to exit. The server program terminates just as
though a user had presdesc at the server computer.

5-280 sQL Application Programming Interface Reference

sqlsto - STOre a compiled command/procedure

You must calkglcsv(Connect to SerVer) prior to calling this function.
If no users are connected, then it is a graceful shutdown.

If users are connected, then their sessions are terminated and the server exits.
Connected users will get a "session terminated” message. All open transactions are
left uncommitted. When the server is brought back up, crash recovery is performed
and any uncommitted transactions will be rolled back.

Parameters
shandle

The server handle returned sgicsv

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

if (red = sglcsv(&handle,srvname,password))
printf("Error : SQLCSV : rcd= %d\n" rcd);

if (red = sglstm (handle))
printf("Error : SQLSTM : rcd= %d\n",rcd);

Related functions

sqlcdr sqlsab sqlsdn
sglcsv

sglsto - STOre a compiled command/procedure

Syntax

#include <sqgl.h>
SQLTAPI sqlsto (cur,cnp,cnl,ctp,ctl)

SQLTCUR cur; /* Cursor handle */

SQLTDAT cnp; /* Command/procedure name buffer */
SQLTDAL cnl; /* Command/procedure name length */
SQLTDAP ctp; /* Command/procedure text buffer */
SQLTDAL ctl; /* Command/procedure text length */

SQL Application Programming Interface Reference 5-281

Chapter 5 SQL/API Function Reference

Description

This function compiles and stores a SQL command or procedure in the database with
the specified name in the SYSCOMMANDS system catalog table. A stored SQL
command or procedure must be retrievaglré) before it can be executed.

Parameters
cur
The cursor handle associated with this function.
cnp

A pointer to the string that contains the name of the SQL command or procedure.
The maximum length of the name is 18 characters.

cnl

The length of the string pointed to byp. If the string pointed to bgnpis null-
terminated, specify zero and the system will compute the length.

ctp

A pointer to the string that contains the SQL command or procedure to compile
and store.

ctl

The length of the string pointed to bip. If the string pointed to bgtpis null-
terminated, specify zero and the system will compute the length.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

short rcd; /* return code */
static char statement []="INSERTINTO CUST (:1,:2, :3,
4"

if (red = sglsto (cur, "ADDCUST", 0, statement, 0))

{
printf("Error storing SQL statement (rcd = %d)\n",rcd);

exit(0);
}

5-282 sqQL Application Programming Interface Reference

sqlstr - STart Restriction mode

Related functions
sqldst sqlret

sqlstr - STart Restriction mode

Syntax

#include <sqgl.h>
SQLTAPI sqlstr (cur);

SQLTCUR cur; /* Cursor handle */

Description
This function turns on restriction mode after being in result mode only.

In restriction mode, the result set of one query is the basis for the next query. Each
query further restricts the result set. This continues for each subsequent query.

After you callsqlstr, you can call theqlsprfunction to turn off restriction mode but
leave result set mode on.

While in restriction mode, you can "undo" the current result set and return to the
result set as it was before the last SELECT wittstilersfunction.

If you are in restrictiormode and you query a different table, the previous result set is
lost.

You turn off both result set mode and restriction mode witlsghersfunction. The
sqglcrsfunction lets you optionally give a name to the result set and save it. To use a
saved result set later, call thglrrsfunction and specify the saved result set name.
Thesqlrrs function turns on result set mode and restriction mode.

Be cautious about using saved result sets. Internally, a saved result set is a list of row
identifiers (ROWIDS) that is stored in the SYSROWIDLISTS system catalog table. A
ROWID changes whenever the row is updated. If one of the rows is updated after you
have saved and closed a result set, you will get an error if you open the result set later
and try to fetch the row.

Parameters
cur

The cursor handle associated with this function.

SQL Application Programming Interface Reference 5-283

Chapter 5 SQL/API Function Reference

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

if (red = sglstr (cur))
apierr("SQLSTR");

Related functions

sqlcrs sqlrrs sqlsrs
sqldrs sqlspr sqlurs
sqlprs

sqltec - Translate Error Code

Syntax

#include <sql.h>
SQLTAPI sqltec (rcd, np)

SQLTRCD rcd; /* SQLBase return code to convert */
SQLTRCD PTR np; /* Converted return code */

Description

This function translates the specified SQLBase return code to another return code
based on an entry in the error translation file specified bgrtoefile keyword in
sql.ini.

For information on therrorfile configuration keyword, see Chapter 4 and the
Configurationchapter in th®atabase Administrator’'s Guide

Parameters
rcd
The SQLBase return code to translate.

np
A pointer to the variable where this function returns the translated return code.

5-284 sqQL Application Programming Interface Reference

sqgltem - Tokenize Error Message

Return value

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful or the SQLBase return code was not found in the error
translation file.

Example

#include <sgl.h>

SQLTRCD srcd; /* SQLBase return code */
SQLTRCD trcd; [* translated return code */
SQLTRCD rcd; /* function call return code */

if (red = sgltec (srcd, &trcd))/* translate SQLBase rcd */
printf("Failure translating rcd (rcd = %d)\n", rcd);

Related functions

sqlerr sqlfer sqlrcd

sqltem - Tokenize Error Message

Syntax
#include <sql.h>
SQLTAPI sqltem (cur, rcd, msgtyp, bfp, bfl, txtlen)
SQLTCUR cur /* Cursor handle */
SQLTXER PTR rcd; /* Database return code */
SQLTPTY msgtyp;/* Error message text type to return*/
SQLTDAP bfp; /* Pointer to error text buffer */
SQLTDAL bfl; /* Length of error text buffer */
SQLTDAL PTR txtlen;/* Length of error text */
Description

This function returns one or more of the following from ¢her.sql file for the
specified cursor handle:

* Error message
e Error reason

SQL Application Programming Interface Reference 5-285

Chapter

5

SQL/API Function Reference

* Error remedy

Each API function call returns a code. You can retrieve the most recent return code
with thesgltemfunction, and use it to look up the error message, error reason, and
error remedy.

This function formats an error message with tokens in order to provide users with
more informational error messages. A tokenized error message contains one or more
variables that SQLBase substitutes with object names (tokens) when it returns the
error message to the user.

For example, formerly, SQLBase error 175:
SQL OLC Cannot open local client workstation file
is now:

SQL OLC Cannot open local client workstation file <filename>

wherefilenameis a variable that gets replaced with the name of the file that SQLBase
was unable to open.

Tokenized error messages produce informative integrity errors. For example, the
following message text for error 9601 reports the table or index name as well as
merely informing you that the table is corrupt or the index is bad:

CHECK Failure (IDX BPT): <index page corrupted>

When this error occurs, SQLBase replacesrttiex pagecorruptedvariable (and the
brackets) with the actual name of the index that contains the corruption.
Non-SQLBase database servers

By default, thesqgltemfunction returns the native error code and message from non-
SQLBase database servers, but does not return the error reason or remedy.

For example, if you are connected to the Informix server and you receive an error for
a table that already exists, the error returned is the Informix error code 310:

An attempt was made to create a tablespace which already
exists

not SQLBase’s equivalent 338:
Table, view, or synonym <name> already exists

If you are accessing a non-SQLBase database server and have set error mapping on,
any non-SQLBase error that doesn't have a corresponding SQLBase error is mapped
to a generic error message. You can ussgliemfunction to retrieve the native error

code and message that caused the problem.

5-286 sQL Application Programming Interface Reference

sqgltem - Tokenize Error Message

Note: The other error message handling functiaaggr, sqlfer, andsglety use a specified
return code to retrieve the corresponding error message framohsqglfile. An error message
returned by any of these functions contains the variable, not the object name; aqlyeime
function replaces the variable with an actual object name.

Parameters

cur

rcd

The cursor handle on which an error occurred. Use this cursor handle to retrieve
the error message, reason, and/or remedy of a SQLBase error.

Do not attempt to call thegltemfunction when you fail to establish a connection
to a database. In such a case, the cursor is invalid because it was unable to
connect to the database. Useghietxfunction, pass it the error code, and
specify amsgtypparameter value of 6 in order to retrieve the error message
reason and remedy.

A pointer to the return code value.

The error code is database-specific, so when you are accessing a non-SQLBase
database server, the return code value does not have a corresponding error reason
and/or remedy ierror.sqgl

msgtyp

bfp

You can specify the following message types individually or together by adding
their constant values. For example, a value of seven indicates that you want the
error message text, reason, and remedy all returned in the buffer tobfighich
points.

Constant name Value Explanation

SQLXMSG 1 Retrieve the error message text.

SQLXREA 2 Retrieve the error message reason.

SQLXREM 4 Retrieve the error message remedy.

A value of SQLXMSG (1) is assumed for non-SQLBase database servers.

A pointer to the buffer where this function copies the error message text, reason, or
remedy.

SQL Application Programming Interface Reference 5-287

Chapter 5 SQL/API Function Reference

bfl
The length of the buffer pointed to byp.
If you are retrieving the error message text, reason, and remedy, you can specify
thesqgl.hconstant SQLMETX for this argument. SQLMETX is always set to a
value that is large enough to hold the error message text, reason, and remedy.
If you are only retrieving the error message text, you can specifgtie
constant SQLMERR for this argument. SQLMERR is always set to a value that
is large enough to hold the error message text.

txtlen

A pointer to the variable where this function returns the number of bytes that
exist for either the error message text, reason, or remedy.

If the buffer pointed to bipfp holds 100 bytes but the text you are retrieving is
500 bytessgltemreturns 100 bytes of text to your application and sets this
parameter to 500. At this point, your application can reallocate a larger buffer in
order to retrieve all the text.

Specify a null pointer to indicate that you are not interested in the total length of
the text.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example
SQLTCUR cur; /* Cursor value */
SQLTXER rcd; /* Return code */
char buf[SQLMETX]; /* Buffer to receive the text */
SQLTDAL txtlen; I* Length of text returned*/

if (sqlcom (cur, “CREATE TABLE EMP (LASTNAME CHAR(20))", 0))
sqltem (cur, &rcd, SQLXMSG + SQLXREA + SQLXREM, buf,
sizeof(buf), &txtlen)
printf (“Error Explanation:\n%s\n”, buf);

}

Related functions

sqlerr sgletx sqlfer
sqlxer

5-288 sqQL Application Programming Interface Reference

sqltio - TIme Out

sqgltio - TIme Out

Syntax

Description

#include <sql.h>
SQLTAPI sqltio (cur, timeout)

SQLTCUR cur; /* Cursor handle */
SQLTTIV timeout; /* Wait period in seconds */

This function specifies a wait time for getting a lock after which a timeout happens
and the transaction rolls back. The timeout is set on a per-cursor basis and stays in
effect until the nexsqltio function.

This function is not useful for a single-user server.

Parameters

cur

The cursor handle associated with this function.

timeout

Return value

The timeout period in seconds to wait for a database lock to be acquired. After
the specified time has elapsed, the transaction is rolled back.

Valid timeout values are:

1-1800 Seconds to wait for a lock (1 second to 30 minutes)

-1 Wait forever for a lock held in an incompatible mode by another
transaction (infinite timeout)

0 Never wait for a lock and immediately return a timeout error

The default setting is 300 seconds.

The return value is zero (0) if the function succeeds and non-zero if it fails.

SQL Application Programming Interface Reference 5-289

Chapter 5 SQL/API Function Reference

Example
main()
{
SQLTCUR cur,;
SQLTTIV timeout=500;
static char dbnam[]="demox"; /* database name */

/* CONNECT TO THE DATABASE */

cur =0;
if (red = sqglenc(&cur, dbnam, 0))/* perform connect
operation */
apierr("SQLCNC");

if (red = sgltio (cur,timeout))
apierr("SQLTIO");

/* DISCONNECT FROM THE DATABASE */
if (rcd = sqldis(cur)) [* failure on disconnect? */

apierr("SQLDIS");
}

Related functions

sqlsil

sglunl - UNLOAD command

Syntax
#include <sgl.h>
SQLTAPI sqluni(cur, cmdp, cmdl)
SQLTCUR cur; /* cursor number */
SQLTDAP cmdp; /* UNLOAD command */
SQLTDAL cmdl; /* length of above command */
Description

This function processes the UNLOAD command and sends it to the backend for
compilation and execution. If the unload file destination is on the server, the

5-290 sQL Application Programming Interface Reference

sqlunl - UNLOAD command

Parameter

execution is handled completely at SERVER. If it is ON CLIENT, this function
handles the retrieval of the unload data from the SERVER and writes it to the
destination file.

To unload to multiple file segments, you can create a control file that defines your
segments and specify the control file name in this function. For details on creating the
control file, read th®atabase Administrator’'s Guide

cur

The cursor handle associated with this function
cmdp

A pointer to the string that contains the UNLOAD command.
cmdl

The length of the string pointed to byndp If the string pointed to bgmdpis
null-terminated, specify zero and the system will compute the length.

Return value

Example

If this function returns zero, it was successful. If this function returns a non-zero
value, it was unsuccessful.

The following sample program calls the UNLOAD command and inputs a file name
that exists online:

static char unlemd[] =
"UNLOAD COMPRESS DATA SQL db.unl ALL ON SERVER ;*;
ret = sqlunl(cur, unlcmd, 0);

You can also create a customized program to manipulate the unload buffer in the
client, such as unloading to archive data. For an example, skeatimg and
unloading databasesection in the chaptddsing the SQL/API.

SQL Application Programming Interface Reference 5-291

Chapter 5 SQL/API Function Reference

sqlurs - Undo Result Set

Syntax

#include <sql.h>
SQLTAPI sqlurs (cur)

SQLTCUR cur; /* Cursor handle *

Description

In restriction mode, this function undoes the current result set and returns the result
set to the state it was in before the last query.

Parameters
cur

The cursor handle associated with this function.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

Execute these commands in restriction mode:

SELECT * FROM LOC WHERE STATE_POP > 2000000;
SELECT * FROM LOC WHERE STATE_AREA > 150000;

Thesqglursfunction below drops the result table created by the second command and
makes all later queries for the table operate on the result table produced by the first
command.

ret = sqlurs (cur);

Related functions

sqlcrs sqlrrs sqlsrs
sqldrs sqlspr sqlstr
sqlprs

5-292 sqQL Application Programming Interface Reference

sqlwlo - Write LOng

sqlwlo - Write LONg

Syntax

Description

Parameters

#include <sql.h>
SQLTAPI sqglwlo (cur, bufp, bufl)

SQLTCUR cur; /* Cursor handle */
SQLTDAP bufp; /* Data to write */
SQLTDAL bufl; /* Length of long data */

This function writesufl bytes at a time to a LONG VARCHAR column.

This function is called aftesglcomhas been performed and the LONG VARCHAR
column has been bound, but befeggexe

This function allows the incremental writing of large columns without having to set
up equivalent size data buffers to hold the data.

The function is called repeatedly until the total amount of data is written to the
database column. After each calbgiwlo, the APl increments a pointer that indicates
where the nextglwloshould begin. The API resets the pointer afteglala

The sequence of binding, writing, and ending the operation must be completed before
the next bind for a LONG VARCHAR.

You cannotseek to a position within a LONG VARCHAR with thellskfunction
and start writing witlsglwlo. You must always start writing the LONG VARCHAR
column at the first byte.

The maximum length that you can write in one cafidqtwlois 32,767 bytes.

cur
The cursor handle associated with this function.
bufp
A pointer to the string that contains the LONG VARCHAR data to write.

SQL Application Programming Interface Reference 5-293

Chapter 5 SQL/API Function Reference

bufl

The length of the string pointed to byfp. If the string pointed to bgufpis null-
terminated, specify zero and the system will compute the length.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

static char updlong][] = "update people set biography = :1
where name =:2";

/* Prior to sglwlo, the above SQL statement has been */
/* compiled */

/* (sglcom), :1 is bound using sqlbln; :2 is bound */

/* using sqglbnn */

FILE *fp;
int count;

char buffer[500];
while (count = fread(buffer, 1, sizeof(buffer), fp))

if (I(ret = sqlwlo (cur, buffer, count)))
{
... process error
}
}

if (sqglelo(cur))

Related functions

sqlbld sqlelo sqlrlo
sqlbin

5-294 sqQL Application Programming Interface Reference

sqlxad - eXtended ADd

sglxad - eXtended ADd

Syntax
#include <sql.h>
SQLTAPI sqlxad(op, npl, nll, np2, nl2);
SQLTNMP op; [* Output number */
SQLTNMP np1l; /* First number */
SQLTNML nl1; /* Length of first number */
SQLTNMP np2; /* Second number */
SQLTNML ni2; /* Length of second number */
Description
This function adds two SQLBase internal numbers.
Incorrect data in any argument can cause unpredictable results.
Parameters

op

A pointer to a variable where this function returns the sum. Define the length of
this variable as SQLSNUM.

npl

A pointer to a variable that contains the first number to add. Define the length of
this variable as SQLSNUM.

ni1
The length of the number pointed to gyl
np2

A pointer to a variable that contains the second number to add. Define the length
of this variable as SQLSNUM.

ni2
The length of the number pointed to tyy2

SQL Application Programming Interface Reference 5-295

Chapter 5 SQL/API Function Reference

Return value

This function returns the length of the resulting number if execution is successful. If
execution is not successful, this function returns a negative value.

Example

/* ADD NUMBER 1 AND NUMBER 2, PUTTING THE RESULT */
/*INTO NUMBER 3 */

char numl[SQLSNUM]; /*number 1*/

int ni1; /* number 1 length */
char num2[SQLSNUM]; /* number 2 */
int ni2; [* number 2 length */
char num3[SQLSNUM]; /* number 3 */
int ni3; /* number 3 length */

nl3= sqglxad (num3, numl, nll, num2, nl2);

Related functions

sqlxdv sqlxml sqlxsb

sgixcn - eXtended CoNvert

Syntax
#include <sqgl.h>
SQLTAPI sqglxcn(op, ip, i)
SQLTNMP op; [* Output number */
SQLTDAL ip; [* Input character string */
SQLTNML il; /* Length of input string */
Description

This function converts a character string to a SQLBase internal number.

Incorrect data in any argument can cause unpredictable results.

5-296 sQL Application Programming Interface Reference

sqlxcn - eXtended CoNvert

Parameters

op

A pointer to the variable where this function returns the SQLBase internal
number. Define the length of this variable as SQLSNUM.

A pointer to the string that contains the character string to convert.

The length of the string pointed to lpy If the string pointed to bip is null-
terminated, specify zero and the system will compute the length.

Return value

This function returns the length of the resulting number if execution is successful. If
execution is not successful, this function returns a negative value.

Examples

Example 1

char num[SQLSNUM]; /*internal SQLBase number */
int nl; /* length of internal number */

nl= sglxen (num, "5900.99", 7);
Example 2

#include “sql.h”
#include “stdio.h”
#include “string.h”

main ()

{

char output[12];

int rcd;

char num[SQLSNUM];
int nl;

nl= sglxcn (num, “123456",6);

printf(“nl = %d\n”, nl);

rcd = sqlxnp(output,sizeof(output),num,nl,”zzz,zzz.99",10);
printf(“RCD = %d output = %s\n",rcd,output);

exit(1);

SQL Application Programming Interface Reference 5-297

Chapter 5 SQL/API Function Reference

Related functions
sqlxnp

sgixda - eXtended Date Add

Syntax
#include <sqgl.h>
SQLTAPI sqglxda(op, dp, dl, days)
SQLTNMP op; /* Output date */
SQLTNMP dp; [* Internal SQLBase date */
SQLTNML dI; [* Length of internal SQLBase date */
SQLTDAY days; /* Number of days to add */
Description
This function adds days to a SQLBase internal date.
Incorrect data in any argument can cause unpredictable results.
Parameters

op

A pointer to the variable where this function returns the output date. Define the
length of this variable as SQLSDAT.

dp

A pointer to the variable that contains the SQLBase internal date. Define the
length of this variable as SQLSDAT.

di
The length of the internal date pointed todpy Pass the length from tisglxpd
orsqlssh

days

The number of days to adddep.

5-298 sQL Application Programming Interface Reference

sgixdp - eXtended Date to Picture

Return value

This function returns the length of the resulting date if execution is successful. If
execution is not successful, this function returns a negative value.

Example
/* ADD 30 DAYS TO A DATE */

char datel[SQLSDAT];/* starting date */

int di1; [* starting date length */
char date2[SQLSDAT];/* resulting date */
int diz; [* resulting date length */

di2 = sqlxda (date2, datel, dl1, 30);

Related functions
sqlxdp sqlxpd

sqixdp - eXtended Date to Picture

Syntax
#include <sql.h>
SQLTAPI sqlxdp (op, o, ip, il, pp, pI)
SQLTDAP op; /* Null-terminated string */
SQLTDAL ol; /* Length of null-terminated string */
SQLTNML ip; /* Internal SQLBase date */
SQLTNLM il; /* Length of internal SQLBase date */
SQLTDAP pp; /* Picture specification */
SQLTDAL pl; /* Length of picture specification */
Description

This function converts a SQLBase internal date to a string using the specified picture
format.

Use thecvl argument in theglssbfunction to pass the length ¢qglxdp(il argument).

Incorrect data in any argument can cause unpredictable results.

SQL Application Programming Interface Reference 5-299

Chapter 5 SQL/API Function Reference

Parameters

op

A pointer to the variable where this function returns the output string. The output
is formatted as a null-terminated string. If the length is less than the specified
picture length, the output is truncated.

ol

The length of the variable pointed to by

A pointer to the variable that contains the SQLBase internal date. Define the size
of this variable as SQLSDAT.

The length of the internal date pointed taayDonotuse a fixed length because
SQLBase internal numbers are variable length.

pp

A pointer to the variable that contains the picture specification. This function
performs the following substitutions in the picture specification.

Characters Replaced by
MM A two digit number representing the month.
MON A three character abbreviation for the month.
DD A two digit number representing the day of the month.
YY The last two digits of the year.
YYYY The four digits of the year.
HH A two digit number representing hours in military time.
MI A two digit number representing minutes.
SS A two digit number representing seconds.
AM or PM Two characters: either AM or PM.
999999 A 6 or more digit number representing microseconds.

The characters, such as MM, are not case-sensitive. They can appear in upper- or
lower-case in the picture. For example, if the input picture string is
"Mon.dd.yyyy" and the input date is June 28, 1987, the output is "Jun.28.1987".

5-300 sQL Application Programming Interface Reference

sqgixdv - eXtended DiVide

Return value

A backslash forces the next character into the output from the picture. For
example: a picture of "Mo\mmy was born in YYYY" produces an output string
of "Mommy was born in 1956" instead of "Mo04y was born in 1956".

The length of the string pointed to pg. Specify a zero if the string pointed to by
pp is null-terminated.

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

char date[SQLSDAT];
char buf[14];
int cvl;

rcd = sqlxdp (buf, sizeof(buf), date, cvl, "mon. dd, yyyy",
0);

Related functions

sqlxpd

sqixdv - eXtended DiVide

Syntax

Description

#include <sql.h>
SQLTAPI sqglxdv(op, npl, nl1, np2, nl2)

SQLTNMP op; [* Output number */
SQLTNMP npl; /*First number*/

SQLTNML nil; /* Length of first number */
SQLTNMP np2; /*Second number */
SQLTNML nl2; /*Length of second number */

This function divides a SQLBase internal number by another SQLBase internal
number.

SQL Application Programming Interface Reference 5-301

Chapter 5 SQL/API Function Reference

Incorrect data in any argument can cause unpredictable results.

Parameters
op

A pointer to the variable where this function returns the output number. Define
the length of this variable as SQLSNUM.

npl

A pointer to the variable that contains the first number. This number is divided by
the number imp2 Define the length of this variable as SQLSNUM.

ni1
The length of the number pointed to gyl
np2

A pointer to the variable that contains the second number. This number is divided
into the number imp1.Define the length of this variable as SQLSNUM.

ni2
The length of the number pointed to tyy2

Return value

This function returns the length of the resulting number if execution is successful. If
execution is not successful, this function returns a negative value.

Example

/* DIVIDE NUMBER 1 BY NUMBER 2; PUTTING THE RESULT */
/*INTO NUMBER 3 */

char numl[SQLSNUM]; /*number 1 */

int ni1; /* number 1 length */
char num2[SQLSNUM]; /* number 2 */
int ni2; [* number 2 length */
char num3[SQLSNUM]; /* number 3 */
int ni3; /* number 3 length */
ni3= sqglxdv (num3, numl, nll, num2, nl2);

5-302 sQL Application Programming Interface Reference

sqlxer - eXtended ERror

Related functions

sqlxad sqlxml sqlxsb

sglxer - eXtended ERror

Syntax
#include <sqgl.h>
SQLTAPI sqlxer (cur, rcd, errbuf, buflen)
SQLTCUR cur; /* Cursor handle */
SQLTXER PTR rcd; /* Return code */
SQLTDAP errbuf; /* Ptr to receiving buffer */
SQLTDAL PTR buflen; [* Length of receiving buffer */
Description

This function returns the most recent error code and associated error message text for
the specified cursor handle. This function is used with non-SQLBase database servers
to retrieve the native error code and message from the server.

You call this function when users or developers prefer to use native database error
codes and messages instead of thoseronsql. Each SQLNetwork router or

gateway has an equivalence table that maps native database error numbers to
SQLBase error numbers (froenror.sql). The router or gateway automatically
translates the native database error codes &rtiesqlerror codes. You usslxerto
retrieve the native error codes and messages.

For example, the Informix error code for a duplicate table is 310. The router or
gateway translates this to SQLBase error code 336:

» Thesqglexeeturn code is 336 asgjlerr returns "table or view already exists".

* Thesqlxerfunction returns 310 and “An attempt was made to create a
tablespace which already exists.”

You also use this function to get more information about generic errors. Any native
database error number that does not have an equivalent SQLBase error number is
mapped to a common generic error number. The generic error number is 2550 plus
the value of SQLPBRN (database brand parameter). Yosgbserto retrieve the

native error code and message that caused the generic error.

For example, if the error code is Informix’s 310, the router or gateway translates this
to the SQLBase generic error code 2553 (2550 plus 3):

SQL Application Programming Interface Reference 5-303

Chapter 5 SQL/API Function Reference

» Thesqlexereturn code is 2553 arzdjlerr returns "Oracle processing error;
more info available".

e Thesqlxerfunction returns 310 and “An attempt was made to create a
tablespace which already exists.”

Parameters
cur
The cursor handle associated with this function.
rcd

A pointer to the buffer where this function returns the most-recent error code for
the cursor.

errbuf
A pointer to the buffer where this function copies the error message text.
You can use thegl.hconstant SQLMXER to set the size of this buffer.
buflen

A pointer to the variable where this function returns the number of bytes in the
retrieved error message text.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Example

sqlxer (cur, rcd, errbuf, buflen)

Related functions

sqlerr sqlfer sqlrcd
sgletx

5-304 sQL Application Programming Interface Reference

sglxml - eXtended MulLtiply

sqglxml - eXtended MulLtiply

Syntax
#include <sgl.h>
SQLTAPI sqlxmli(op, npl, nl1, np2, ni2)
SQLTNMP op; /* Output number */
SQLTNMP npl; /* First number */
SQLTNML nl1; /* Length of first number */
SQLTNMP np2; /* Second number */
SQLTNML nl2; /* Length of second number */
Description
This function multiplies two SQLBase internal numbers.
Incorrect data in any argument can cause unpredictable results.
Parameters

op
A pointer to the variable where this function returns the output number.
npl

A pointer to the variable that contains the first number. This number is multiplied
by the number imp2 Define the length of this variable as SQLSNUM.

ni1
The length of the number pointed to gyl
np2

A pointer to the variable that contains the second number. This number is
multiplied by the number inpl Define the length of this variable as
SQLSNUM.

ni2
The length of the number pointed to tyy2

SQL Application Programming Interface Reference 5-305

Chapter 5 SQL/API Function Reference

Return value

This function returns the length of the resulting number if execution is successful. If
execution is not successful, this function returns a negative value.

Example

/* MULTIPLY NUMBER 1 & NUMBER 2; PUTTING THE RESULT *
/*INTO NUMBER 3 */

char NnuM1[SQLSNUM]; /* number 1 ¥/

int ni1; /* number 1 length */
char num2[SQLSNUM]; /* number 2 */
int nl2; /* number 2 length */
char num3[SQLSNUM]; /* number 3 */
int ni3; /* number 3 length */
ni3=sqglxml (num3, numl, nll, num2, nl2);

Related functions

sqlxad sqlxdv sqlxsb

sgixnp - eXtended Number to Picture

Syntax
#include <sqgl.h>
SQLTAPI sqixnp (outp, outl, isnp, isnl, picp, picl)
SQLTDAP outp; [* Converted internal number */
SQLTDAL outl; /* Output buffer length */
SQLTNMP isnp; [* Internal SQLBase number */
SQLTNML isnl; /* Internal SQLBase number length */
SQLTDAP picp; [* Picture specification */
SQLTDAL picl; [* Picture specification length */
Description

This function converts a SQLBase internal number to a string using a picture format.

Incorrect data in any argument can cause unpredictable results.

5-306 sQL Application Programming Interface Reference

sqlxnp - eXtended Number to Picture

Parameters
outp

A pointer to the variable where this function returns the converted SQLBase
internal number. The outputis a null-terminated string. If the output length is less
than the specified picture length, the output is truncated.

outl
The length of the variable pointed to dytp.

isnp
A pointer to the variable that contains the SQLBase internal number to convert.
Define the length of this variable as SQLSNUM.

isnl
The length of the value pointed to isyp.

picp
A pointer to the variable that contains the picture specification. The picture
specification must combine to represent a valid number. For example, commas

must be spaced three to the left of the decimal point and only one decimal point
allowed per number.

If the input number exceeds the number of digits in the picture string, the number
is not displayed. Instead, the string is filled with asterisks meaning numeric
overflow. If the number contains decimal digits and there are not enough
significant decimal places in the picture, the number is rounded.

The following table shows the components that can be used in the picture string.

Character Description

3>

9 For every "9" in the picture string, a position is reserved. A
value of 0 through 9 appears in every position indicated by
ngn

Positions a decimal point in the output string. It can appear
only once in a picture string.

, Positions a comma in the output string. The commas in a
picture string must conform to standard numeric notation.

z Replaces leading zeros with blanks (spaces) in the output
string. This symbol must appear to the left of any digit
specification of a numeric picture string.

SQL Application Programming Interface Reference 5-307

Chapter 5 SQL/API Function Reference

Character

Description

Places a dollar sign in the output string. It can be at the
beginning of a picture string or it can be used as a floating
character (the symbol then only appears next to the most

)

significant digit). The $ symbol cannot appear to the right of a

9, Z, or decimal point.

Places a minus sign in the output string if the algebraic vg

is negative.

lue

Puts the output string in scientific

notation.

picl

The length of the string pointed to picp.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

Examples

Example 1

chari numb[SQLSNUM];

char inuml;

char output[SQLSDAT];

rcd= sqglxnp (output,sizeof(output),inumb,inuml,"Z2z2z,7727.99-

"0);

Input Number Picture String Output String
123456 999999 123456
123456 9999999 0123456
123456 -99 9,999,999 000,123,456
-123456 -999,999,999 -000,123,456
123456 999,999.99 123,456.00
1234.56 9 99,999.99 001,234.56
12.3456 999,999.99 000,012.35

5-308 sQL Application Programming Interface Reference

sqlxnp - eXtended Number to Picture

Input Number Picture String Output String
123456 -222,222,222 123,456
-123456 -222,2 22,227 -123,456
123456 222,222.99 123,456.00
1234.56 222,222.99 1,234.56
12.3456 222,222.99 12.35
123456 -$53,$55,5 $123,456
-123456 -$535,$55,$55 - $123,456
123456 $$$,$$$.99 123,456.00
1234.56 $$$,$$$.99 $1,234.56
12.3456 $$$,$$$.99 $12.35

Example 2
#include “sql.h”
#include “stdio.h”
#include “string.h”
main ()
{
char output[12];
int rcd;
char num[SQLSNUM];
int nl;

nl = sglxcn(num, “123456",6);

printf(*nl = %d\n”, nl);

rcd = sqlxnp (output,sizeof(output),num,nl,”zzz,zzz.99",10);
printf(“RCD = %d output = %s\n",rcd,output);

exit(1);

Related functions

sqglxcn

SQL Application Programming Interface Reference 5-309

Chapter 5 SQL/API Function Reference

sqixpd - eXtended Picture to Date

[* Output internal SQLBase date */
[* Output length */
/* Null-terminated input string */

[* Picture specification */
[* Length of picture */

This function converts a null-terminated string to a SQLBase internal date.

Use thesqlxpdfunction @lp argument) before thexixdpfunction to pass the length

Incorrect data in any argument can cause unpredictable results.

A pointer to the variable where this function returns the SQLBase internal date.
Define the length of this variable as SQLSDAT.

A pointer to the variable that contains the null-terminated string to convert to a

Syntax
#include <sql.h>
SQLTAPI sqlxpd (op, olp, ip, pp, pl)
SQLTNMP op;
SQLTNML PTR olp;
SQLTDAP ip;
SQLTDAP pp;
SQLTDAL pl;
Description
to sqlxdp(il argument).
Parameters
op
olp
The length of the value pointed to by.
ip
SQLBase internal date.
pp

A pointer to the string that contains the picture specification. This function
performs the following substitutions in the picture string.

5-310 sQL Application Programming Interface Reference

sglxpd - eXtended Picture to Date

Characters

Replaced by

MM

A two digit number representing the month.

MON

A three character abbreviation for the month.

DD

A two digit number representing the day of the montt).

YY

The last two digits of the year.

YYYY

The four digits of the year.

HH

A two digit number representing hours in
military time.

MI

A two digit number representing minutes.

SS

A two digit number representing seconds.

AM or PM

Two characters: either AM or PM.

999999

A 6 or more digit number representing
micro-seconds. Only the least significant 6 digits are
considered.

The characters, such as MM, are not case-sensitive. They can appear in upper- or
lower-case in the picture. For example, if the picture string is "Mon.dd.yyyy" and
the input string is Jun.28.1987, the output is a SQLBase internal date of Jun-28-
1987 12:00:00 PM.

A backslash forces the next character in the input to be skipped. For example: a
picture of "Mo\mmy was born in YYYY" with an input string of "Mommy was
born in 1956" produces a SQLBase internal date of Dec-31-1956 12:00:00 PM.

The length of the string pointed to pp.

Return value

The return value is zero (0) if the function succeeds and non-zero if it fails.

SQL Application Programming Interface Reference 5-311

Chapter 5 SQL/API Function Reference

Example

char date[SQLSDAT];

int len;

rcd = sqlxpd (date, &en, "Jun. 28, 1987", "mon. dd, yyyy", 0);

Related functions
sqlxdp

sglxsb - eXtended SuBtract

Syntax
#include <sgl.h>
SQLTAPI sqglxsb (op, npl, nl1, np2, ni2);
SQLTNMP op; [* Output number */
SQLTNMP npl; /* First number */
SQLTNML nl1; /* First number */
SQLTNMP np2; /* Second number */
SQLTNML ni2; /* Second number */
Description
This function subtracts one SQLBase internal number from another and puts the
result in a third SQLBase internal number.
Incorrect data in any argument can cause unpredictable results.
Parameters

op

A pointer to the variable where this function returns the output number.

npl

A pointer to the variable that contains the first number. The value pointed to by
np2is subtracted from this number. Define the length of this variable as
SQLSNUM.

5-312 sqQL Application Programming Interface Reference

sqlxsb - eXtended SuBtract

ni1
The length of the number pointed to gyl
np2

A pointer to the variable that contains the second number. This number is
subtracted from the number pointedripl Define the length of this variable as
SQLSNUM.

ni2
The length of the number pointed to tyy2

Return value
This function returns the length of the resulting number if execution is successful. If
execution is not successful, this function returns a negative value.

Example

/* SUBTRACT NUMBER 2 FROM NUMBER 1 AND PUTTING *
/* THE RESULT INTO NUMBER 3 */

char numM1[SQLSNUM];/* number 1 */
int nl1; /* number 1 length */
char numM2[SQLSNUM];/* number 2 */
int ni2; /* number 2 length */
char numM3[SQLSNUM];/* number 3 */
int ni3; /* number 3 length */
ni3=sqglxsb (num3, numi, nll, num2, nl2);

Related functions

sqlxad sqlxdv sqlxml

SQL Application Programming Interface Reference 5-313

Glossary

access path—Fhe path used to get the data specified in a SQL command. An access
path can involve an index or a sequential search (table scan), or a combination of
the two. Alternate paths are judged based on the efficiency of locating the data.

aggregate function—A SQL operation that produces a summary value from a set of
values.

alias—An alternative name used to identify a database object.

API (application programming interface)-A set of functions that a program uses to
access a database.

application—A program written by or for a user that applies to the user's work. A
program or set of programs that perform a task. For example, a payroll system.

argument—A value entered in a command that defines the data to operate on or that
controls execution. Also called parameter or operand.

arithmetic expression-An expression that contains operations and arguments that
can be reduced to a single numeric value.

arithmetic operator—A symbol used to represent an arithmetic operation, such as the
plus sign (+) or the minus sign (-).

attribute—A characteristic or property. For example, the data type or length of a row.
Sometimes, attribute is used as a synonym for column or field.

audit file—A log file that records output from an audit operation.
audit message-A message string that you can include in an audit file

audit operation—A SQLBase operation that logs database activities and
performance, writing output to an audit file. For example, you can monitor who
logs on to a database and what tables they access, or record command execution
time.

authorization—The right granted to a user to access a database.

authorization-ID—A unique name that identifies a user. Associated to each
authorization-id is a password. Abbreviated auth-id. Also called username.

back-end—See database server.

backup—To copy information onto a diskette, fixed disk, or tape for record keeping
Or recovery purposes.

SQL Application Programming Interface Reference Glossary—l

Glossary

Glossary-2

base table—Fhe permanent table on which a view is based. A base table is created
with the CREATE TABLE command and does not depend on any other table. A
base table has its description and its data physically stored in the database. Also
called underlying table.

bindery—A NetWare 3.x database that contains information about network resources
such as a SQLBase database server.

bind variable—A variable used to associate data to a SQL command. Bind variables
can be used in the VALUES clause of an INSERT command, in a WHERE
clause, or in the SET clause of an UPDATE command. Bind variables are the
mechanism to transmit data between an application work area and SQLBase.
Also called into variable or substitution variable.

browse—A mode where a user queries some of a database without necessarily
making additions or changes. In a browsing application, a user needs to examine
data before deciding what to do with it. A browsing application allows the user to
scroll forward and backward through data.

buffer—A memory area used to hold data during input/output operations.

C/API—A language interface that lets a programmer develop a database application
in the C programming language. The C/API has functions that a programmer
calls to access a database using SQL commands.

cache—A temporary storage area in computer memory for database pages being
accessed and changed by database users. A cache is used because it is faster to
read and write to computer memory than to a disk file.

Cartesian product—n a join, all the possible combinations of the rows from each of
the tables. The number of rows in the Cartesian product is equal to the number of
rows in the first table times the number of rows in the second table, and so on. A
Cartesian product is the first step in joining tables. Once the Cartesian product
has been formed, the rows that do not satisfy the join conditions are eliminated.

cascade—Adelete rule which specifies that changing a value in the parent table
automatically affects any related rows in the dependent table.

case sensitive-Acondition in which names must be entered in a specific lower-case,
upper-case, or mixed-case format to be valid.

cast—The conversion between different data types that represent the same data.

CHAR—A column data type that stores character strings with a user-specified length.
SQLBase stores CHAR columns as variable-length strings. Also called
VARCHAR.

character—A letter, digit, or special character (such as a punctuation mark) that is
used to represent data.

SQL Application Programming Interface Reference

character string—A sequence of characters treated as a unit.

checkpoint—A point at which database changes older than the last checkpoint are
flushed to disk. Checkpoints are needed to ensure crash recovery.

clause—A distinct part of a SQL command, such as the WHERE clause; usually
followed by an argument.

client—A computer that accesses shared resources on other computers running as
servers on the network. Also called front-end or requester.

column—A data value that describes one characteristic of an entity. The smallest unit
of data that can be referred to in a row. A column contains one unit of datain a
row of a table. A column has a hame and a data type. Sometimes called field or
attribute.

command—A user request to perform a task or operation. In SQLTalk, each
command starts with a name, and has clauses and arguments that tailor the action
that is performed. A command can include limits or specific terms for its
execution, such as a query for names and addresses in a single zip code.
Sometimes called statement.

commit—A process that causes data changed by an application to become part of the
physical database. Locks are freed after a commit (except when cursor-context
preservation is on). Before changes are stored, both the old and new data exist so
that changes can be stored or the data can be restored to its prior state.

commit server—A database server participating in a distributed transaction, that has
commit service enabled. It logs information about the distributed transaction and
assists in recover after a network failure.

composite primary key-A primary key made up of more than one column in a table.

concatenated key-An index that is created on more than one column of a table. Can
be used to guarantee that those columns are unique for every row in the table and
to speed access to rows via those columns.

concatenation—€ombining two or more character strings into a single string.

concurrency—The shared use of a database by multiple users or application
programs at the same time. Multiple users can execute database transactions
simultaneously without interfering with each other. The database software
ensures that all users see correct data and that all changes are made in the proper
order.

configure—To define the features and settings for a database server or its client
applications.

connect—0 provide a valid authorization-id and password to log on to a database.

SQL Application Programming Interface Reference Glossary—3

Glossary

Glossary-4

connection handle-Used to create multiple, independent connections. An
application must request a connection handle before it opens a cursor. Each
connection handle represents a single transaction and can have multiple cursors.
An application may request multiple connection handles if it is involved in a
sequence of transactions.

consistency-A state that guarantees that all data encountered by a transaction does
not change for the duration of a command. Consistency ensures that
uncommitted updates are not seen by other users.

constant—Specifies an unchanging value. Also called literal.

control file—An ASCII file containing information to manage segmented load/
unload files.

cooperative processingRrocessing that is distributed between a client and a server
in a such a way that each computer works on the parts of the application that it is
best at handling.

coordinator—T he application that initiates a distributed transaction.

correlated subquery-A subquery that is executed once for each row selected by the
outer query. A subquery cannot be evaluated independently because it depends
on the outer query for its results. Also called a repeating query. Also see
subquery and outer query.

correlation name—A temporary name assigned to a table in an UPDATE, DELETE,
or SELECT command. The correlation name and column name are combined to
refer to a column from a specific table later in the same command. A correlation
name is used when a reference to a column name could be ambiguous. Also
called range variable.

crash recovery—Fhe procedures that SQLBase uses automatically to bring a
database to a consistent state after a failure.

current rown—The latest row of the active result set which has been fetched by a
cursor. Each subsequent fetch retrieves the next row of the active result set.

cursor—The term cursor refers to one of the following definitions:

* The position of a row within a result table. A cursor is used to retrieve rows
from the result table. A named cursor can be used in the CURRENT OF
clause or the ADJUSTING clause to make updates or deletions.

A work space in memory that is used for gaining access to the database and
processing a SQL command. This work space contains the return code,
number of rows, error position, number of select list items, number of bind
variables, rollback flag, and the command type of the current command.

SQL Application Programming Interface Reference

* When the cursor belongs to an explicit connection handle that is created using
the SQL/API function caléglcchor the SQLTalk BEGIN CONNECTION
command, it identifies a task or activity within a transaction. The task or
activity can be compiled/executed independently within a single connection
thread.

Cursors can be associated with specific connection handles, allowing
multiple transactions to the same database within a single application. When
this is implemented, only one user is allowed per transaction.

e When a cursor belongs to an implicit connection handle created using the
SQL/API function callsglcncor sqlcni, or the SQLTalk CONNECT
command, the cursor applies to an application in which you are connecting
the cursor to a specific database that belongs to a single transaction.

cursor-context preservatior-A feature of SQLBase where result sets are maintained
after a COMMIT. A COMMIT does not destroy an active result set (cursor
context). This enables an application to maintain its position after a COMMIT,
INSERT, or UPDATE. For fetch operations, locks are kept on pages required to
maintain the fetch position.

cursor handle—Identifies a task or activity within a transaction. When a connection
handle is included in a function call to open a new cursor, the function call
returns a cursor handle. The cursor handle can be used in subsequent SQL/API
calls to identify the connection thread. A cursor handle is always part of a
specific transaction and cannot be used in multiple transactions. However, a
cursor handle can be associated with a specific connection handle. The ability to
have multiple transactions to the same database within a single application is
possible by associating cursor handles with connection handles.

Cursor Stability (CS)—Fhe isolation level where a page acquires a shared lock on it
only while it is being read (while the cursor is on it). A shared lock is dropped as
the cursor leaves the page, but an exclusive lock (the type of lock used for an
update) is retained until the transaction completes. This isolation level provides
higher concurrency than Read Repeatability, but consistency is lower.

data dictionary—See system catalog.

data type—Any of the standard forms of data that SQLBase can store and manipulate.
An attribute that specifies the representation for a column in a table. Examples of
data types in SQLBase are CHAR (or VARCHAR), LONG VARCHAR (or
LONG), NUMBER, DECIMAL (or DEC), INTEGER (or INT), SMALLINT,
DOUBLE PRECISION, FLOAT, REAL, DATETIME (or TIMESTAMP), DATE,
TIME.

SQL Application Programming Interface Reference Glossary—5

Glossary

database-A collection of interrelated or independent pieces of information stored
together without unnecessary redundancy. A database can be accessed and
operated upon by client applications such as SQLTalk.

database administrator (DBA)-A person responsible for the design, planning,
installation, configuration, control, management, maintenance, and operation of
a DBMS and its supporting network. A DBA ensures successful use of the
DBMS by users.

A DBA is authorized to grant and revoke other users’ access to a database, modify
database options that affect all users, and perform other administrative functions.

database area-A database area corresponds to a file. These areas can be spread
across multiple disk volumes to take advantage of parallel disk input/output
operations.

database management system (DBMS)-software system that manages the
creation, organization, and modification of a database and access to data stored
within it. A DBMS provides centralized control, data independence, and
complex physical structures for efficient access, integrity, recovery, concurrency,
and security.

database object-Atable, view, index, synonym or other object created and
manipulated through SQL.

database serverA-DBMS that a user interacts with through a client application on
the same or a different computer. Also called back-end or engine.

DATE—A column data type in SQL that represents a date value as a three-part value
(day, month, and year).

date/time value-A value of the data type DATE, TIME, or TIMESTAMP.

DCL (Data Control Language)-SQL commands that assign database access
privileges and security such as GRANT and REVOKE.

DDL (Data Definition Language)—SQL commands that create and define database
objects such as CREATE TABLE, ALTER TABLE, and DROP TABLE.

deadlock—A situation when two transactions, each having a lock on a database page,
attempt to acquire a lock on the other's database page. One type of deadlock is
where each transaction holds a shared lock on a page and each wishes to acquire
an exclusive lock. Also called deadly embrace.

DECIMAL— A column data type that contains numeric data with a decimal point.
Also called DEC.

default—An attribute, value, or setting that is assumed when none is explicitly
specified.

Glossary-6 SQL Application Programming Interface Reference

delimited identifier—An identifier enclosed between two double quote characters (*).
because it contains reserved words, spaces, or special characters.

delimiter—A character that groups or separates items in a command.
dependent objeet-An object whose existence depends on another object.

For example, if a stored procedure calls an external function, the stored procedure
is the dependent object of the external function, since its existence depends on the
external function.

dependent table-the table containing the foreign key.
determinant object-An object that determines the existence of another object.

For example, if a stored procedure calls an external function, the external function
is the determinant object, since it determines the existence of the stored procedure.

dirty page—A database page in cache that has been changed but has not been written
back to disk.

distributed database-A- database whose objects reside on more than one system in a
network of systems and whose objects can be accessed from any system in the
network.

distributed transaction—€oordinates SQL statements among multiple databases that
are connected by a network.

DLL (Dynamic Link Library)—A program library written in C or assembler that
contains related modules of compiled code. The functions in a DLL are not read
until run-time (dynamic linking).

DML (Data Manipulation Language)—SQL commands that change data such as
INSERT, DELETE, UPDATE, COMMIT, and ROLLBACK.
DOUBLE PRECISION—A column data type that stores a floating point number.

DQL (Data Query Language)+Fhe SQL SELECT command, which lets a user
request information from a database.

duplicates—An option used when creating an index for a table that specifies whether
duplicate values are allowed for a key.

embedded SQL-SQL commands that are embedded within a program, and are
prepared during precompilation and compilation before the program is executed.
After a SQL command is prepared, the command itself does not change
(although values of host variables specified within the command can change).
Also called static SQL.

engine—See database server.

SQL Application Programming Interface Reference GIossary—?

Glossary

Glossary-8

entity—A person, place, or thing represented by a table. In a table, each row
represents an entity.

equijoin—A join where columns are compared on the basis of equality, and all the
columns in the tables being joined are included in the results.

Ethernet—A LAN with a bus topology (a single cable not connected at the ends).
When a computer wants to transmit, it first checks to see if another computer is
transmitting. After a computer transmits, it can detect if a collision has happened.
Ethernet is a broadcast network and all computers on the network hear all
transmissions. A computer selects only those transmissions addressed to it.

exclusive lock (X-lock)-An exclusive lock allows only one user to have a lock on a
page at a time. An exclusive lock prevents another user from acquiring a lock
until the exclusive lock is released. Exclusive locks are placed when a page is to
be modified (such as for an UPDATE, INSERT, or DELETE).

An exclusive lock differs from a shared lock because it does not permit another
user to place any type of lock on the same data.

expression—An item or a combination of items and operators that yield a single
value. Examples are column names which yield the value of the column in
successive rows, arithmetic expressions built with operators such as + or - that
yield the result of performing the operation, and functions which yield the value
of the function for its argument.

extent page-A database page used when a row is INSERTed that is longer than a
page or when a row is UPDATEd and there is not enough space in the original
page to hold the data.

external function—A user-defined function that resides in an "external” DLL
(Dynamic Link Library) invoked within a SQLBase stored procedure.

event—See timer event.

field—See column.

file server—A computer that allows network users to store and share information.
FLOAT—A column data type that stores floating point numbers.

floating point—A number represented as a number followed by an exponent
designator (such as 1.234E2, -5.678E2, or 1.234E-2). Also called E-notation or
scientific notation.

foreign key—Foreign keys logically connect different tables. A foreign key is a
column or combination of columns in one table whose values match a primary
key in another table. A foreign key can also be used to match a primary key
within the same table.

SQL Application Programming Interface Reference

front-end—See client.

function—A predefined operation that returns a single value per row in the output
result table.

grant—That act of a system administrator to permit a user to make specified use of a
database. A user may be granted access to an entire database or specific portions,
and have unlimited or strictly-limited power to display, change, add, or delete
data.

GUI (Graphical User Interface)—A graphics-based user interface with windows,
icons, pull-down menus, a pointer, and a mouse. Microsoft Windows and
Presentation Manager are examples of graphical user interfaces.

history file—Contains previous versions of changed database pages. Used when read-
only (RO) isolation level is enabled.

host language—A program written in a language that contains SQL commands.
identifier—The name of a database object.

index—A data structure associated with a table used to locate a row without scanning
an entire table. An index has an entry for each value found in a table’s indexed
column or columns, and pointers to rows having that value. An index is logically
ordered by the values of a key. Indexes can also enforce uniqueness on the rows
in a table.

INTEGER—A column data type that stores a number without a decimal point. Also
call INT.

isolation level—The extent to which operations performed by one user can be
affected by (are isolated from) operations performed by another user. The
isolation levels are Read Repeatability (RR), Cursor Stability (CS), Release
Locks (RL), and Read Only (RO).

join—A query that retrieves data from two or more tables. Rows are selected when
columns from one table match columns from another table. See also Cartesian
product, self-join, equijoin, natural join, theta join, and outer join.

key—A column or a set of columns in an index used to identify a row. A key value
can be used to locate a row.

keyword—One of the predefined words in a command language.

local area network (LAN)—A collection of connected computers that share data and
resources, and access other networks or remote hosts. Usually, a LAN is
geographically confined and microcomputer-based.

SQL Application Programming Interface Reference GIossary—Q

Glossary

lock—To temporarily restrict other users® access to data to maintain consistency.
Locking prevents data from being modified by more than one user at a time and
prevents data from being read while being updated. A lock serializes access to
data and prevents simultaneous updates that might result in inconsistent data. See
shared lock (S-lock) and exclusive lock (X-lock).

logical operator—A symbol for a logical operation that connects expressions in a
WHERE or HAVING clause. Examples are AND, OR, and NOT. An expression
formed with logical operators evaluates to either TRUE or FALSE. Logical
operators define or limit the information sought. Also called Boolean operator.

LONG VARCHAR—In SQL, a column data type where the value can be longer than
254 bytes. The user does not specify a length. SQLBase stores LONG
VARCHAR columns as variable-length strings. Also called LONG.

mathematical function—An operation such as finding the average, minimum, or
maximum value of a set of values.

media recovery-Restoring data from backup after events such as a disk head crash,
operating system crash, or a user accidentally dropping a database object.

message buffer—Fhe input message buffer is allocated on both the client computer
and the database server. The database server builds an input message in this
buffer on the database server and sends it across the network to a buffer on the
client. It is called an input message buffer because it is input from the client’s
point of view.

The out put message buffer is allocated on both the client computer and on the
database server. The client builds an output message in this buffer and sends it to
a buffer on the database server. Itis called an output message buffer because it is
output from the client’s point of view.

modulo—An arithmetic operator that returns an integer remainder after a division
operation on two integers.

multi-user—The ability of a computer system to provide its services to more than
one user at a time.

natural join—An equijoin where the value of the columns being joined are compared
on the basis of equality. All the columns in the tables are included in the results
but only one of each pair of joined columns is included.

NDS (NetWare Directory Services)A network-wide directory included with
NetWare 4.x, that provides global access to all network resources, regardless of
their physical location. The directory is accessible from multiple points by
network users, services and applications.

nested query-See subquery.

GIossary-lO SQL Application Programming Interface Reference

NetWare—The networking components sold by Novell. NetWare is a collection of
data link drivers, a transport protocol stack, client computer software, and the
NetWare server operating system. NetWare runs on Token Ring, Ethernet, and
ARCNET.

NetWare 386-A server operating system from Novell for computers that controls
system resources on a network.

NLM (NetWare Loadable Module)-An NLM is a NetWare program that you can
load into or unload from server memory while the server is running. When
loaded, an NLM is part of the NetWare operating system. When unloaded, an
NLM releases the memory and resources that were allocated for it.

null—A value that indicates the absence of data. Null is not considered equivalent to
zero or to blank. A value of null is not considered to be greater than, less than, or
equivalent to any other value, including another value of null.

NUMBER—A column data type that contains a number, with or without a decimal
point and a sign.

numeric constant—A fixed value that is a number.

ODBC—The Microsoft Open DataBase Connectivity (ODBC) standard, which is an
application programming interface (API) specification written by Microsoft. It
calls for all client applications to write to the ODBC standard API and for all
database vendors to provide support for it. It then relies on third-party database
drivers or access tools that conform to the ODBC specification to translate the
ODBC standard API calls generated by the client application into the database
vendor’s proprietary API calls.

operator—A symbol or word that represents an operation to be performed on the
values on either side of it. Examples of operators are
arithmetic (+, -, *, /), relational (=, !=, >, <, >=, <=), and logical (AND, OR,
NOT).

optimization—The determination of the most efficient access strategy for satisfying a
database access.

outer join—A join in which both matching and non-matching rows are returned. Each
preserved row is joined to an imaginary row in the other table in which all the
fields are null.

outer query—When a query is nested within another query, the main query is called
the outer query and the inner query is called the subquery. An outer query is
executed once for each row selected by the subquery. A subquery cannot be
evaluated independently but that depends on the outer query for its results. Also
see subquery.

SQL Application Programming Interface Reference Glossary-11

Glossary

page—The physical unit of disk storage that SQLBase uses to allocate space to tables
and indexes.

parent table—The table containing the primary key.

parse—To examine a command to make sure that it is properly formed and that all
necessary information is supplied.

partitioning—A method of setting up separate user areas to maximize disk space.
Databases can be stretched across several different network partitions.

password—A sequence of characters that must be entered to connect to a database.
Associated to each password is an authorization-id.

picture—A string of characters used to format data for display.
precedence—Fhe default order in which operations are performed in an expression.
precision—The maximum number of digits in a column.

precompilation—Processing of a program containing SQL commands or procedures
that takes place before compilation. SQL commands are replaced with
statements that are recognized by the host language compiler. Output from
precompilation includes source code that can be submitted to the compiler.

predicate—An element in a search condition that expresses a comparison operation
that states a set of criteria for the data to be returned by a query.

primary key—The columns or set of columns that are used to uniquely identify each
row in a table. All values for a key are unique and non-null.

privilege—A capability given to a user to perform an action.

procedure—A named set of SAL or SQL statements that can contain flow control
language. You compile a procedure for immediate and/or later execution.

guery—A request for information from a database, optionally based on specific
conditions. For example, a request to list all customers whose balance is greater
than $1000. Queries are issued with tE:BCT command.

Read Only (RO)—Fhe isolation level where pages are not locked, and no user has to
wait. This gives the user a snapshot view of the database at the instant that the
transaction began. Data cannot be updated while in the read-only isolation level.

Read Repeatability (RR)Fhe isolation level where if data is read again during a
transaction, it is guaranteed that those rows would not have changed. Rows
referenced by the program cannot be changed by other programs until the
program reaches a commit point. Subsequent queries return a consistent set of
results (as though changes to the data were suspended until all the queries
finished). Other users will not be able to update any pages that have been read by
the transaction. All shared locks and all exclusive locks are retained on a page

Glossary-12 SQL Application Programming Interface Reference

until the transaction completes. Read repeatability provides maximum protection
from other active application programs. This ensures a high level of consistency,
but lowers concurrency. SQLBase default isolation level.

REAL—A column data type that stores a single-precision number.
record—See row.

recovery—Rebuilding a database after a system failure.

referential cycle—Fables which are dependents of one another.

referential integrity—Guarantees that all references from one database table to
another are valid and accurate. Referential integrity prevents problems that occur
because of changes in one table which are not reflected in another.

relation—See table.

relational database-A database that is organized and accessed according to
relationships between data items. A relational database is perceived by users as a
collection of tables.

relational operator—A symbol (such as =, >, or <) used to compare two values. Also
called comparison operator.

Release Locks (RL)-With the Cursor Stability isolation level, when a reader moves
off a database page, the shared lock is dropped. However, if a row from the page
is still in the message buffer, the page is still locked.

In contrast, the Release Lock (RL) isolation level increases concurrency. By the
time control returns to the application, all shared locks have been released.

repeating query—See correlated subquery.
requester—See client.
restore—Copying a backup of a database or its log files to a database directory.

restriction mode—n restriction mode, the result set of one query is the basis for the
next query. Each query further restricts the result set. This continues for each
subsequent query.

result set mode-Normally, result table rows are displayed and scrolled off the
screen. In result set mode, the rows of the result table are available for subsequent
scrolling and retrieval.

result table—The set of rows retrieved from one or more tables or views during a
guery. A cursor allows the rows to be retrieved one by one.

revoke—The act of withdrawing a user's permission to access a database.

SQL Application Programming Interface Reference Glossary-13

Glossary

rollback—To restore a database to the condition it was in at its last COMMIT. A
ROLLBACK cancels a transaction and undoes any changes that it made to the
database. All locks are freed unless cursor-context preservation is on.

rollforward—Reapplying changes to a database. The transaction log contains the
entries used for rollforward.

router—A client application talks to a SQLBase server through a router program.
The router enables a logical connection between a client and the server. Once this
connection is established on the LAN, the client application uses the router
program to send SQL requests to the server and to receive the results.

row—A set of related columns that describe a specific entity. For example, a row
could contain a name, address, telephone number. Sometimes called record or
tuple.

ROWID—A hidden column associated with each row in a SQLBase table that is an
internal identifier for the row. The ROWID can be retrieved like any other
column.

ROWID validation—A programming technique that ensures that a given row that
was SELECTed has not been changed or deleted by another user during a
session. When a row is updated, the ROWID is changed.

SAP (Service Advertisement Protocolp-NetWare protocol that resources (such as
database servers) use to publicize their services and addresses on a network.

savepoint—An intermediate point within a transaction to which a user can later
ROLLBACK to cancel any subsequent commands, or COMMIT to complete the
commands.

scale—The number of digits to the right of the decimal pointin a number.

search condition—A criterion for selecting rows from a table. A search condition
appears in a WHERE clause and contains one or more predicates.

search—o scan one or more columns in a row to find rows that have a certain
property.

self-join—A join of a table with itself. The user assigns the two different correlation
names to the table that are used to qualify the column names in the rest of the

query.

self-referencing table-A table that has foreign and primary keys with matching
values within the same table.

server—A computer on a network that provides services and facilities to client
applications.

shared cursor—A handle that is used by two or more Windows applications.

Glossary-14 SQL Application Programming Interface Reference

shared lock (S-lock)-A shared lock permits other users to read data, but not to
change it. A shared lock lets users read data concurrently, but does not let a user
acquire an exclusive lock on the data until all the users’ shared locks have been
released. A shared lock is placed on a page when the page is read (during a
SELECT). At a given time, more than one user can have a shared lock placed on
a page. The timing of the release of a shared lock depends on the isolation level.

A shared lock differs from an exclusive lock because it permits more than one user
to place a lock on the same data.

single-user—A computer system that can only provide its services to one user at a
time.

SMALLINT— A column data type that stores numbers without decimal points.

socket—An identifier that Novell's IPX (Internetwork Packet Exchange) uses to route
packets to a specific program.

SPX (Sequenced Packet ExchangelNovell communication protocol that
monitors network transmissions to ensure successful delivery. SPX runs on top of
Novell's IPX (Internetwork Packet Exchange).

SQL (Structured Query Language)-A-standard set of commands used to manage
information stored in a database. These commands let users retrieve, add, update,
or delete data. There are four types of SQL commands

Data Definition Language (DDL), Data Manipulation Language (DML), Data
Query Language (DQL), and Data Control Language (DCL). SQL commands
can be used interactively or they can be embedded within an application program.
Pronounced ess-que-ell or sequel.

SQLBase-A relational DBMS that lets users access, create, and update data.

SQLTalk—SQLTalk is an interactive user interface for SQLBase that is used to
manage a relational database. SQLTalk has a complete implementation of SQL
and many extensions. SQLTalk is a client application.

static SQL—See embedded SQL.

statistics—Attributes about tables such as the number of rows or the number of pages.
Statistics are used during optimization to determine the access path to a table.

storage group-A list of database areas. Storage groups provide a means to allow
databases or tables to be stored on different volumes.

stored procedure-A precompiled procedure that is stored on the backend for future
execution.

string delimiter—A symbol used to enclose a string constant. The symbol is the
single quote ().

SQL Application Programming Interface Reference Glossary-15

Glossary

string—A sequence of characters treated as a unit of data.

subquery—A SELECT command nested within the WHERE or HAVING clause of
another SQL command. A subquery can be used anywhere an expression is
allowed if the subquery returns a single value. Sometimes called a nested query.
Also called subselect. See also correlated subquery.

synonym—A name assigned to a table, view, external function that may be then used
to refer to it. If you have access to another user’s table, you may create a
synonym for it and refer to it by the synonym alone without entering the user’s
name as a qualifier.

syntax—The rules governing the structure of a command.

system catalog-A set of tables SQLBase uses to store metadata. System catalog
tables contain information about database objects, privileges, events, and users.
Also called data dictionary.

system keywordskeywords that can be used to retrieve system information in
commands.

table—The basic data storage structure in a relational database. A table is a two-
dimensional arrangement of columns and rows. Each row contains the same set
of data items (columns). Sometimes called a relation.

table scan—A method of data retrieval where a DBMS directly searches all rows in a
table sequentially instead of using an index.

theta join—A join that uses relational operators to specify the join condition.

TIME— A column data type in the form of a value that designates a time of day in
hours, minutes, and possibly seconds (a two- or three-part value).

timeout—A time interval allotted for an operation to occur.

TIMESTAMP—A column data type with a seven-part value that designates a date
and time. The seven parts are year, month, day, hour, minutes, seconds, and
microseconds (optional). The format is

yyyy-mm-dd-hh.mm.ss.nnnnnn

timer event—Executes a procedure at a predetermined time. You can optionally
repeat the timer event at specified intervals.

token—A character string in a specific format that has some defined significance in a
SQL command.

Token-Ring—A LAN with ring topology (cable connected at the ends). A special
data packet called a token is passed from one computer to another. When a
computer gets the token, it can attach data to it and transmit. Each computer

Glossary-16 SQL Application Programming Interface Reference

passes on the data until it arrives at its destination. The receiver marks the
message as being received and sends the message on to the next computer. The
message continues around the ring until the sender receives it and frees the token.

tokenized error messageAn error message formatted with tokens in order to
provide users with more informational error messages. A tokenized error
message contains one or more variables that SQLBase substitutes with object
names (tokens) when it returns the error message to the user.

transaction—A logically-related sequence of SQL commands that accomplishes a
particular result for an application. SQLBase ensures the consistency of data by
verifying that either all the data changes made during a transaction are
performed, or that none of them are performed. A transaction begins when the
application starts or when a COMMIT or ROLLBACK is executed. The
transaction ends when the next COMMIT or ROLLBACK is executed. Also
called logical unit of work.

transaction log—A collection of information describing the sequence of events that
occur while running SQLBase. The information is used for recovery if there is a
system failure. A log includes records of changes made to a database. A
transaction log in SQLBase contains the data needed to perform rollbacks, crash
recovery, and media recovery.

trigger—Activates a stored procedure that SQLBase automatically executes when a
user attempts to change the data in a table, such as on a DELETE or UPDATE
command.

two-phase commit-Fhe protocol that coordinates a distributed transaction commit
process on all participating databases.

tuple—See row.

unigue key—One or more columns that must be unique for each row of the table. An
index that ensures that no identical key values are stored in a table.

username—See authorization-id.

value—Data assigned to a column, a constant, a variable, or an argument.
VARCHAR—See CHAR.

variable—A data item that can assume any of a given set of values.

view—A logical representation of data from one or more base tables. A view can
include some or all of the columns in the table or tables on which it is defined. A
view represents a portion of data generated by a query. A view is derived from a
base table or base tables but has no storage of its own. Data for a view can be
updated in the same manner as for a base table. Sometimes called a virtual table.

SQL Application Programming Interface Reference Glossary-17

Glossary

wildcard—Characters used in the LIKE predicate that can stand for any one character
(the underscore _) or any number of characters (the percent sign%) in pattern-
matching.

Windows—A graphical user interface from Microsoft that runs under DOS.

With Windows, commands are organized in lists called menus. Icons (small
pictures) on the screen represent applications. A user selects a menu item or an
icon by pointing to it with a mouse and clicking.

Applications run in windows that can be resized and relocated. A user can run two
or more applications at the same time and can switch between them. A user can
run multiple copies of the same application at the same time.

write-ahead log (WAL)-A transaction logging technique where transactions are
recorded in a disk-based log before they are recorded in the physical database.
This ensures that active transactions can be rolled back if there is a system crash.

Glossary-18 SQL Application Programming Interface Reference

Index

A

abort
database proce$s233
database server-8
rollback 5-233
access
partitioned database-150 5-258
access patB3-4
identify 5-51
access to databader
activate process timing-135
add2-3, 4-8
days to dat&-298
internal number$-295
add date/time2-6
add internal date4-8
ADJUSTING
sqlscn5-235
aggregate functions
restriction modesb-273
alphanumeric bind variabl@-5
LONG VARCHAR 3-33
ALTER DATABASE 5-42, 5-52, 5-114
ALTER DBAREA 5-42, 5-52, 5-114
ALTER STOGROUP5-42, 5-52, 5-114
ALTER TABLE
referential integrity3-53
ANTI JOIN 5-115
application
running 1-10, 1-17
AS/4005-136
assign
cursor name-235
result set namé-273 5-283
autocommit
bulk execute3-45, 5-18
parameteb-135 5-244

B

backend curso4-5

backend information
get4-9

backend result sets136

backup
committed transactions-4
database-55, 3-58, 4-2, 5-4, 5-34

name5-230
overwrite indicators-212
source5-211, 5-231
database file&3-56
directory 3-58
destination5-5, 5-15
filename5-4
files
delete5-5, 5-15
functions4-2
guidelines3-56
incremental3-58
log files 4-2
next5-254
offline 3-57
online 3-56
overwrite indicator5-220, 5-231
snapshot-2, 5-34
transaction log file$-56, 5-15
bind
LONG VARCHAR 3-33, 3-38, 5-20
by name4-3
by number4-3
bind data3-5, 4-3
by name4-3, 5-25
with null indicator4-3, 5-22
by number4-3, 5-28
with null indicator4-3, 5-31
bind functions
LONG VARCHAR 3-5
bind variables3-13, 3-15, 3-28
alphanumeric-5, 5-22, 5-25
clear4-3, 5-37
LONG VARCHAR 5-13
number4-3
number of
get5-195
numeric3-5, 5-28, 5-31
LONG VARCHAR 5-20
purpose3-5
binding data3-12, 3-14, 3-17, 3-32, 3-41
binding LONG VARCHAR date3-41
boolean
internal data type-2
brand
database parametBr136, 5-303

SQL Application Programming Interface Reference

Index-1

Index

bring down database
server5-280 size5-136 5-244
buffer pages
bulk executes-8 set4-5, 5-237
date/time data server
length2-5 size5-279
input message size
isolation levels5-268 set5-237
size4-5 callback function3-66
input message siZze-174 set up5-178
output messagg-45 chained commands-18, 5-137, 5-217
size 4-5, 5-147, 5-203 bulk execute3-45, 5-18
set SELECT4-6 bulk execute modé-217
set up5-275 CURRENT OF5-217
size5-275 SELECT5-217
buffers UPDATE 5-217
data change
SELECT list5-275 isolation level5-252, 5-268
SELECT 3-5, 3-32, 3-37 process activity log filel-9
bulk executes-18 ROWIDs 5-283
autocommit3-45, 5-18 character
chained command3-45 data
error codeb-2, 5-10 convert to numbeR-3
error codes storage2-2
return3-45 internal data type-2
flush 4-3 CHECK EXISTS
mode5-136 UPDATE 5-217
optimized5-147 checkpoint
performances-18 time interval5-139, 5-247
return4-3 clear
bulk execute buffeb-8 bind variables4-3, 5-37
flush data3-45 client file
bulk execute modd-3, 5-244 copy
chained comman8-217 to servers-122
optimized5-255 client name
setting5-18 set4-9, 5-237
SQLPAUT 5-255 SQLPCLN5-138 5-246
turn on/off 3-45, 5-18 close
bulk execute returs-2, 5-10 database director§-90
bulk insert modet-3 directory4-7
file on servers-184
C remote server file-7
C++ result se¥4-7
library for writing programsl-2 column
C/API data lengthb-162
how to use3-1 describe information
logic flow 3-1 get5-129
cache fetched

Index-2 SQL Application Programming Interface Reference

return codeb-162
get fetched informatios-162
heading
length5-131
name5-131
label 5-131
definition 5-180
get5-129
information
get5-180
length5-131
where stored-180
length
external5-133
name
fully qualified 4-6
fully-qualified 5-124
verify 5-51
number5-131
commands
chained5-217
bulk execute mod&-217
CURRENT OF5-217
SELECT5-217
UPDATE 5-217
compiled
destroy5-46, 5-208 5-268
destroyeds-252
stored
drop 5-103
restriction modeb-216, 5-274
retrieve5-216
stored SQL4-8
time limit
SQLPCTL5-139
type 3-28, 4-9
SQL 5-63
COMMIT
compiled commands-4
commit 3-3, 3-20, 3-29
implicit 5-46, 5-252, 5-268
transactiord4-9, 5-45
commit logging5-138
commit server3-22
communication libraryl-4
compile4-4
INSERT 3-14, 3-41
LONG VARCHAR 3-33

SQL Application Programming Interface Reference

security checkB-4
SELECT3-9, 3-32, 3-37
SQL command-4, 3-11, 5-41, 5-51, 5-282
steps5-51
UPDATE 3-17, 3-24
compile and executg-4, 4-4
compiled commands
destroy5-46
compiling and linking
NetWare applicationg-14
Windows applicationd-11
Windows NT applicationd-12
compression
messagé-138 5-246
concurrencys-268
connect
cursor3-27, 4-4, 5-47
databaset-4, 5-47, 5-49
database servé-4, 4-8, 5-61
connect with no recover§-4
connection
to database
prevent5-238
connection handle
create4-4, 5-38
destroy4-4
connection handle5-70
consistencyb-268
continue
rollforward 4-2, 5-58
control
pass to Window$-66, 5-178
conversion
data type2-6
convert
character to numbex-3
date
from string5-310
to string5-299
number
to string5-306
string
from date5-299
from number5-306
to date5-310
to numbers-296
copy4-9
data

Index-3

Index

from table to tablé-53

CURRENT OF5-270

file cursors

from client5-122

opening5-205

count customize

SELECT items4-6
count rows4-9

error messag8-52

result set4-6 D
crash recoverg-55, 5-281 data
CREATE 3-4 bind 3-5, 4-3, 5-13

create
databaset-4, 5-56
directory5-188
error
user-defined3-52
file
for writing 5-188
on servers-187
log file 5-214
CREATE DATABASE 5-42, 5-52, 5-114
CREATE DBAREAS5-42, 5-52, 5-114
CREATE STOGROUP-42, 5-52, 5-114
creating
connection handl&-38
CURRENT OF
Cursor Stability5-270
sglscn5-235
cursor
assign name t6-235
backend4-5
connect4-4, 5-47
connect to database27
context preservatioi-4, 5-45, 5-149 5-207,
5-257
caveatss-208
declare3-3
disconnect3-33, 5-84, 5-86
done4-4
file handles
limit 5-187
get backend-126
global 5-143 5-251
handle3-27, 3-28
name
deassigrb-235
set4-9
position 3-10
work space3-4
Cursor Stability5-144, 5-268 5-269

Index-4 SQL Application Programming Interface Reference

by name with null indicatob-22
by number5-28
by number with null indicatos-31
bind by namet-3, 5-25
with null indicator4-3
bind by numbe#-3
with null indicator4-3
binding 3-12, 3-14, 3-17, 3-32, 3-41
buffer
receive into5-275
sizeb-275
buffers
SELECT list5-275
copy
from table to tablé-53
date/time
functions2-6
external length
retrieve5-98
fetched
length5-275
location5-275
flush 5-8
integrity
checking3-54
internal format2-2
long
frontend result set§-252
LONG VARCHAR
bind 5-20
by name4-3
by number4-3
length5-165
read5-222
not a dates-277
not numerics-277
null 5-277
numeric
functions2-3

storage2-2
truncateds-277
data type
binary 2-8
boolean2-8
char2-8
char/long varchar >252-6, 5-23, 5-26, 5-29,
5-32, 5-276
character-2, 2-7, 5-24, 5-26, 5-29, 5-32, 5-276
character buffeR-6, 5-23, 5-26, 5-29, 5-32, 5-275
conversion2-6
databasé-75
date2-6, 2-8, 5-23, 5-26, 5-29, 5-32, 5-275
date/time2-2, 2-5
decimal2-8
double2-6, 2-8, 5-23, 5-26, 5-29,
EBCDIC buffer2-6, 5-23, 5-26, 5
external2-8, 5-132
retrieve’5-98
float 2-6, 2-8, 5-23, 5-26, 5-29, 5-32, 5-275
graphic2-8
integer2-7, 2-8, 5-24, 5-26, 5-29, 5-32, 5-276
internal datetime-6, 5-23, 5-26, 5-29, 5-32,
5-275
internal numeri@-7, 5-23, 5-26, 5-29, 5-32, 5-276
long 2-7, 5-24, 5-26, 5-29 5-32, 5-276
long binary2-8
long binary buffer2-6, 5-23, 5-26, 5-29, 5-32,
5-275
long text string2-6, 5-23, 5-26, 5-29, 5-32, 5-275
long var graphi@-8
long varchar2-8

5-32, 5-275
-29, 5-32, 5-275

money2-8

not supported-277

number2-2

numeric buffer2-6, 5-23, 5-26, 5-29, 5-32, 5-276
numeric string2-6, 5-23, 5-26, 5-29, 5-32, 5-276
program2-6, 5-23, 5-26, 5-29, 5-32, 5-275

SELECT item5-275

short2-7, 5-24, 5-27, 5-29, 5-33, 5-276

signed packed decimat7, 5-24, 5-26, 5-29, 5-32,
5-276

smallint 2-9

string(null-terminated®-7, 5-24, 5-27, 5-29, 5-33,
5-276

time 2-7, 2-9, 5-24, 5-27, 5-29, 5-33, 5-276

timestamp2-9

unsigned charact&-7, 5-24, 5-27, 5-30, 5-33,

5-276
unsigned intege?-7, 5-30, 5-33, 5-276
unsigned lon@-7, 5-30, 5-33, 5-276

unsigned packed decimai7, 5-30, 5-33, 5-276

unsigned shore-7, 5-30, 5-33, 5-276
var binary2-9

var graphic2-9

varchar2-9

database

administration functiong-4
backup3-55, 3-58, 4-2, 5-4
filename5-4
functions4-2
overwrite indicators-212
source5-211, 5-231
backup file
name5-230
backup shapshet-2, 5-34
brand5-136
paramete5-303
cache
size5-136, 5-244
cancel request-4, 5-40
connect4-4, 5-49
connect tab-47
connection
prevent5-238
consistent stat8-55
crash recoverg-55
create4-4, 5-56
data types-75
deinstall4-4, 5-71
delete4-4, 5-73
directory4-4, 5-14Q 5-248
accesst-7
close5-90
delete5-73
directory names-140
disconnect-4, 5-84, 5-86
end recoven3-59
install 4-4, 5-176
location5-140
maintenance3-55
media recoverB-55
name4-4, 5-140
default5-14Q 5-239 5-242, 5-248
maximum lengths-56
names

SQL Application Programming Interface Reference

Index-5

Index

retrieve5-83
parameter
get4-5, 5-134
set4-5, 5-242
partitioned
acces$h-150 5-258
extent5-250
process
abort5-233
read-only5-150, 5-151, 5-258
recover3-55, 3-58, 5-224
restore3-55, 3-57, 3-58, 4-3, 5-230
from directory5-211
functions4-2
restore snapsheat-3
rollback 5-208
security3-3
server
local 5-145
multi-user5-145
name5-142
remote5-145
shut down3-57
shut down4-4, 5-238
extended4-4
shutdown extendeB-241
statistics5-279
database server
abort4-8
accessd-7
connect3-4, 4-8, 5-61
disconnec#-8, 5-104
security
functions4-8
shut down4-8
terminate4-8
databases
retrieve list 0f5-68
date
adding day$-298
convert
from string5-310
to string5-299
convert from picturet-8
internal
add4-8
convert to picturet-8
internal data type-2

date/time dat&-5
add2-6
convert from picture-6
convert to picture2-6
format 2-5
function 2-6
internal data type-2
receive buffer
length2-5
days
adding to daté-298
DB2 5-136
DBC 5-136
DBDIR 5-14Q 5-248
dbname5-56, 5-71, 5-73, 5-176
dbwindow.exel-12, 1-13
deadlock
rollback 5-207
deadlocks
SQLPDLK 5-141
deassign
cursor nameb-235
declare cursoB-3
declare functior8-50
declare variable-3
default
database name-140, 5-248
passwordb-141, 5-239, 5-242, 5-249
usernames-141
defaultdatabasB-47, 5-50, 5-239, 5-242
defaultpassword-47, 5-50, 5-239, 5-242
defaultuses-47, 5-50, 5-239, 5-242
DEINSTALL DATABASE 5-42, 5-52, 5-114
deinstall databasé-4, 5-71
DELETE 3-12
count rows5-227
delete
backup file5-5
backup files5-15
databaset-4, 5-73
file on servers-186
remote server directorg-7
remote server fil&l-7
transaction log file$-15
transaction log$-73
deletion
transaction log8-57
describe

Index-6 SQL Application Programming Interface Reference

item of a SELECT4-6
items in a SELECH®-6

describe informatiob-75, 5-98, 5-140, 5-248

get4-6, 5-129
destination

backup directonb-5, 5-15

destroy

compiled comman&-208 5-252, 5-268

result set
prevent5-257
destroying5-70
connection handleS-70
directory5-145
backup3-58
close4-7
create5-188
databasé-140, 5-248
open4-7, 5-92
open extende8-87
read4-7, 5-94
result set
local 5-253
transaction logs-252
directory of databaset4
disconnect
cursor3-33, 5-84
cursors5-86
databaset-4, 5-84
database servéx-4
from server4-8, 5-104
disk input5-279
disk output5-279
disk reads
physical5-279
virtual 5-279
disk writes
physical5-279
virtual 5-279
display
date/time data
default2-5
Process Activity
level 5-258
display level
Process Activity5-150
DISTINCT
restriction modeb-273
distributed transaction

commit servei3-22

definition 3-22

with server connect3-22
divide 2-3, 4-8

number5-301
done4-4
DROP3-4
drop

result se4-7, 5-60, 5-96

saved result se8-11

stored comman@8-41, 4-8, 5-103
DROP DATABASES-42, 5-52, 5-114
DROP DBAREAS5-42, 5-52, 5-114
DROP STOGROUP-42, 5-52, 5-114

E
end
LONG VARCHAR operatiorb-105
media recoverp-219
rollforward 5-106
end long operatio-33 4-6
end recovenB-59
end rollforward4-2
enginel-3
entries
message
mshnen5-172
number of
mshten5-172
environment controf-5
error
bulk executesb-2, 5-10
code5-110, 5-117
return5-110
current
get codes-303
get messagé-303
external4-5
full message text
return5-117
generic5-303
map 5-303
to SQLBase5-303
messaget-5
message tex-5, 5-110 5-117
return5-109, 5-111
returneds-2
mnemonic5-11Q 5-117

SQL Application Programming Interface Reference

Index-7

Index

non-SQLBas&-303
null indicator5-146, 5-254
offset5-108
position4-5
reasons-110
reason return codg-111
remedy5-110
return5-111
return code4-5
rollback flag4-5
row 5-2, 5-10
syntax5-108
tokenize4-5
translate
from SQLBase5-303
to SQLBase5-303
user-defined
create3-52
error code3-46
translate4-5
error handling3-46, 3-49, 4-5
error messag8-46, 3-49, 3-50, 4-5
customize3-52
full 4-5
non-SQLBase3-54, 5-286
reason3-46, 3-48, 5-287
reason returr3-53, 5-285
remedy3-46, 3-48, 5-287
return3-53, 5-286
retrieve
message tex3-47
return3-53, 5-285
text 3-46, 3-48, 5-287
tokenize5-285
tokens
SQLPEMT5-14], 5-249
translate3-48
error position3-28
retrieve3-47
return5-108
error.sql3-46, 3-48, 3-50, 5-109 5-111, 5-117,
5-209 5-303
errorfile 3-49, 5-284
errsql.h1-4, 1-5
Esc5-280
example programs list-5
exclusive locks-269
executable code

generates-51
execute4-4

INSERT 3-15, 3-41

LONG VARCHAR 3-33

SELECT3-10, 3-32, 3-37

SQL command-4, 3-11, 5-41, 5-113

UPDATE 3-17, 3-24
execution pla-9, 5-115

anti join 5-115

cost

SQLPCXP5-140

index merges-115

or list 5-115

outjoin 5-115

quick term5-115

SQLPEXP5-142, 5-250
exists

file 5-188
exit

Microsoft Windows3-66

server5-280
exponent2-3
extended

add5-295

convert5-296

date adcb-298

date to picturés-299

divide 5-301

error 5-303

multiply 5-305

number to picturé-306

picture to datés-310

subtract5-312
extended information

flag

SQLXGSI5-171

extension

size5-142 5-250
extent

partitioned database-250
external data typ&-132
external errod-5

E
fail

function 3-3
far pointers3-66
fetch 3-37

Index-8 SQL Application Programming Interface Reference

next row4-6
row 5-119
SELECT3-37
status codé®-275
fetch information
get4-6
fetch LONG VARCHAR3-33
fetch rows3-10
result set3-11
fetched data
length5-275
location5-275

fetchthrough modé&-143 5-251

FETRDND 5-163 5-277
FETRDNN5-163 5-277
FETRDTN5-163 5-277
FETRNOF5-163 5-277
FETRNUL 5-277
FETRSIN5-163 5-277
FETRTRU5-163 5-277
file
close
on servers-184
copy
from client5-122
create
for writing 5-188
delete
from server5-186
exists5-188
get4-7
from server5-120
handles
limit 5-187
open
for reading5-188
for reading/writing5-188
for writing 5-188
in binary mode5-188
in text mode5-188
pointer
position at encb-188
put 4-7
remote
read5-190
seek5-192
write 5-193
server

create5-187
open5-187
truncate5-188
filter flags 5-172
finish
media recovenp-219
flag
extended information
SQLXGSI5-171
rollback 4-5
get5-207
SQLGCFG5-171
SQLGCUR5-171
SQLGDBS5-171
SQLGLCK 5-171
SQLGPRC5-171
SQLGPWD5-171
SQLGSTT5-171
SQLRCLN5-171
SQLRDBN5-171
SQLRPNM5-171
SQLRUSN5-171
flags
filter 5-172
flush data5-8
format
date/time dat®-5
date/time default displag-5
internal data2-2
numeric date2-3
picture 5-306
from SQLBase5-303
frontend
result set$-143 5-251
long data5-144, 5-252
full error messagd-5
fully qualified column namé-6, 5-124
function
date/time dat2-6
declare3-50
fails 3-3
numeric date2-3

G

gdichb5-131
gdichl 5-131
gdicol 5-131
gdiddl 5-132

SQL Application Programming Interface Reference

Index

gdiddt5-131
gdiedl 5-133
gdiedt5-132
gdilbb 5-131
gdilbl 5-131
generate
executable codé-51
generic
error 5-303
get
bind variables
number 0f5-195
column label5-129
information5-180
database parameté+5
database server informatidn5
describe informatiod-6, 5-129
fetched column informatio6-162
file 4-7
from server5-120
null indicator5-129
number of rows-227
in result se6-199
object name3-52
parameter
databasé&-134
return codes-209
rollback flag5-207
row count4-9
rows
number 0f5-169
SELECT list
number of item$-202
server informatiorb-170
stored comman8-216
get fetch informatiors-6
get LONG size4-6
get next logd-2
global cursors-143 5-251
GRANT 3-4
GROUP BY
restriction modes-274
Group commit
count5-143

H

handle to cursoB-28
HAVING

restriction modeb-274
hdrdef
message head&r172
hdrlen
message length-172
header
message
hdrdef5-172
section
mshdef5-172
heap
size5-143
history file 5-270
size5-143 5-251
HP Allbase5-136

I
IBM
DB2 5-136
IBM AS/400
SQL/4005-136
identify
access path-51
implicit commit 5-46, 5-252, 5-268
INCLUDE environment variablé-11
incremental backup3-58
INDEX MERGE 5-115
information
type
mshflag5-172
Informix 5-136
Informix On-Line 5-136
initialize
library 3-66
Microsoft Windows4-9, 5-178
input message buffer
isolation levelss-268
maximum5b-174
size4-5, 5-174
sqlfet5-174
INSERT 3-12, 3-13, 3-14, 3-39, 3-41
binding 3-14
compile3-14, 3-41
execute3-15, 3-41
INSTALL DATABASE 5-42, 5-52, 5-114
install databasd-4, 5-176
integrity
sqltem3-54

Index-10 sSQL Application Programming Interface Reference

internal data forma2-2
internal date
add4-8
convert to picturet-8
internal numberg-8
add4-8, 5-295
convert to picturet-8
divide 4-8
multiply 4-8
subtract4-8
internal numeric storage
example2-4
isolation level5-144, 5-252
browsing5-271
change5-252 5-268
default5-269
input message buffés-268
minimize network traffic5-271
most concurrenb-270
most consisten-269
Read Repeatabilit-269
reading dat&-270
Release Lock&-270
set4-9, 5-268
updating5-270

L
label
column5-131
definition 5-180
get5-129
information5-180
length5-131
where stored-180
information4-9
length
column heading-131
data
LONG VARCHAR 5-165
external
column5-133
retrieve5-98
fetched daté-275
LONG VARCHAR 3-33
message
hdrlen5-172
numeric date2-2
level

display
Process Activity5-258
isolation5-144, 5-252
LIB environment variable-11
library
initialize 3-66
link
SQL/API 1-10
SQLBase++1-2
limit
file handles
per cursors-187
span
transactions-262
LINT_ARGS 3-66
load
version5-144, 5-252
load operatior-4
load operation (sqlldp3-6
LOAD/UNLOAD 5-139
local
database servér-145
result set
directory5-145 5-253
local configuration exampl&-3
local databasé-3
lock 5-269
exclusive5-269
page5-269
shared5-269
timeout5-289
rollback 5-151, 5-259
wait
timeout5-156, 5-263
wait time
default5-289
set5-289
valid values5-289
log
name
Process Activity5-243
transaction
directory 5-252
log backup mod&-4, 5-15
set on3-58
log files
backup4-2, 5-15
backup snapshdi-34

SQL Application Programming Interface Reference Index-11

Index

cannot operb-58
create5-214
delete5-15, 5-73
get next4-2
next5-166
to back up5-254
offset5-144
preallocate5-258
process activity
change4-9
release4-3, 5-214
restore4-3, 5-230
rollforward 4-3
rollover 5-214
size5-144, 5-253
turn off 5-49
LOGBACKUP 3-56
long
internal data type-2
long data
frontend result set§-144
LONG VARCHAR 4-6
alphanumeric bind variabl@-33
bind 3-33, 3-38, 5-13, 5-20
bind by name4-3
bind by numbe#-3
bind functions3-5
column
write to 5-293
compile 3-33
data
binding 3-41
length5-165
end operatior8-33, 4-6
execute3-33
fetch 3-33
get size4-6
handling3-33
length 3-33, 3-38
numeric bind variabl&-33
operation
end5-105
operations5-293
position
set5-183
position in3-33
processb-13
processing3-38

read3-33, 3-34, 3-38, 4-6, 5-222

receive buffer3-5

seek4-6

SELECT3-34

storage2-2

write 3-33, 3-34, 3-38, 4-6
lose

result set5-273 5-283

M

maintenance3-55
map error
from SQLBase>-303
to SQLBase5-303
media recovens-55
end5-219
message
compressiorb-138 5-246
entries
mshnen5-172
error4-5
non-SQLBase-54, 5-286
reason5-287
remedy5-287
text 5-287
header
hdrdef5-172
length
hdrlen5-172
message buffeB-45
message text
error 4-5, 5-11Q, 5-117
return5-109, 5-111
return5-117
message.s@-50
Microsoft Windows
exit 3-66
initialize 4-9
application5-178
Microsoft Windows applications
callback function3-66
compile and link1-11
control 3-66
pointers3-66
running1-12, 1-13
missing transaction log%-59
mnemonics-110
error5-117

Index-12 sQL Application Programming Interface Reference

mshdef

section headeb-172
mshflag

information type5-172
mshnen

message entriés-172
mshten

number of entrie$-172
multiple table updat8-23
multiply 2-3

internal numberg-8

numbers5-305

N
name
backup file5-4
column
fully qualified 4-6
fully-qualified 5-124
heading5-131
cursor5-235
deassigrb-235
set4-9
databaset-4, 5-140
backup5-230

default5-140Q, 5-239 5-242, 5-248

database servér-142
log
Process Activity5-243
next log file5-166
result set5-273 5-283
set client4-9
name result se2-11
names
database$§-83
negative numberg-4
sort2-4
NetWare
loadable moduld-4
NetWare applicationg-14
compile and linkl-14
running 1-16
NetWare SQL5-136
next
log file
to back up5-254
transaction log
to backup5-146

NLM 1-14
no recovery
connect4-4
null indicator
error 5-146, 5-254
get5-129
null pointer3-10, 5-77
null-terminated string@-3
numbers
convert
from string5-296
to string5-306
divide 5-301
internal 4-8
add4-8, 5-295
character to numbet-8
convert to picturet-8
divide 4-8
multiply 4-8
subtract4-8
multiply 5-305
of column5-131
signed
fetched5-277
subtract5-312
numeric
internal data typ@-2
numeric bind variable
LONG VARCHAR 3-33
numeric bind variable8-5
numeric data
add2-3
byte format2-3
convert from characte2-3
convert to picture-3
divide 2-3
functions2-3
internal storage
example2-4
length2-2
multiply 2-3
storage2-2
subtract2-3
numeric overflows-277

O

object name
get3-52

SQL Application Programming Interface Reference Index-13

Index

ODBC Glossary-11
offline backups3-57
restore3-57
offset
error 5-108
online backups-56
open
directory 4-7, 5-92
file
for reading5-188
for reading/writing5-188
for writing 5-188
in binary mode5-188
in text mode5-188
on servers-187
remote server filel-7
result set5-228
Open DataBase Connectivity
see ODBCGlossary-11
optimization3-4
optimization plans-115
optimize first fetch5-147
optimize statemer-51
optimized
bulk execute mod&-147, 5-255
optimizer technique§-149, 5-257
OR LIST5-115
Oracle5-136
row ID 5-148
ORDER BY
restriction modes-274
OUTJOIN5-115
output message buffer
set size3-45
size4-5, 5-147, 5-203
set5-18
overflow
numeric5-277
overwrite indicator
backup5-212 5-220, 5-231

P

packed decimal data
length2-7

packed-decimal type
data lengt2-7
sqlbnd2-8
sqlbnn2-8

sqlssb2-8
page lockings-269
pages
set cachet-5, 5-237
parameter
database
get4-5
set4-5, 5-242
parse
SQL command-4
statemen6-51
partitioned database
accesb-15Q0 5-258
extent5-250
pass
control 5-178
pass control to Window3-66
password3-4, 5-62
default5-141, 5-239 5-242, 5-249
path
identify acces$-51
perform
administrative operations-61
physical disk read5-279
physical disk write$-279
picture
convert from datel-8
convert from internal numbet-8
convert to datel-8
format 5-306
sqlxdp 5-299
picture data
convert from date/tim@-6
convert from numeri@-3
convert to date/tim@-6
plan
execution4-9, 5-115
SQLPEXP5-142, 5-250
execution cost
SQLPCXP5-140
pointer
declare3-66
position
error
return5-108
file pointer
to end5-188
in LONG VARCHAR

Index-14 sQL Application Programming Interface Reference

set5-183
of seek5-192
result se@-7
row
in result se-206
position cursoi3-10
position of error4-5
positive numberg-4
preallocate
transaction log file$-15Q, 5-258
prebuild
result set$b-146 5-254
preservation
cursor contexb-149, 5-207, 5-257
caveatss-208
prevent
connection to databa%e238
destroy
result set5-257
procedure
sqlbnd3-44
sqlbnn3-44
sglbnv 3-44
sqlcbv3-44
sqlcex3-44
sglcom3-44
sqlcty 3-44
sqldes3-44
sqldii 3-44
sqldsc3-44
sqldst3-44
sglepo3-44
sqlexe3-44
sqlfet 3-44
sglget3-45
sqlnbv 3-45
sqlnii 3-45
sqlsto3-45
process
abort databasB-233
LONG VARCHAR 5-13
Process Activity
display level5-150, 5-258
filename5-134
log file name5-243
process activity log file
change4-9
open5-43

Process timing

activate5-135
program data typed-6, 5-23, 5-26, 5-29, 5-32
put

file 4-7

queries3-6, 4-6
query plan5-115
QUICK TERM 5-115

R

read

data

LONG VARCHAR 5-222

directory4-7, 5-94

LONG VARCHAR 3-34, 3-38, 4-6

remote server filel-7, 5-190
Read Repeatabilit$-268 5-269
read-only

databasé-150, 5-151, 5-258

history file 5-270

size5-143 5-251

isolation level5-268

mode5-15], 5-259

transaction mod&-151
Read-Only isolatiorb-34, 5-144, 5-270
reason

error5-110

error return codé&-111
receive buffer

LONG VARCHAR 3-5
receive data

into buffer5-275
recover

database&-55, 3-58, 5-224

rollforward 5-106
recovery

connect with nond-4

crash5-281

end3-59

next log file5-166

parametes-150

turn on5-49
referential integrity

ALTER TABLE 3-53
release

log file 5-214

SQL Application Programming Interface Reference Index-15

Index

version5-155
Release Lock$§-144, 5-268 5-270
release logl-3
remedy
error5-110, 5-111
remote
database servér-145
file
read5-190
seek5-192
write 5-193
remote configuration example-4
remote server directory
delete4-7
remote server file
close4-7
delete4-7
open4-7
read4-7
seek4-7
write 4-7
Repeatable Redbt144
restart
restriction moded-7
result set modd-7
restore
continue rollforward4-2
database-55, 3-57, 3-58, 4-3, 5-230
from directory5-211
functions4-2
offline backup3-57
rollforward 4-3
rollforward end4-2
snapsho#-3
transaction log filegl-3, 5-219, 5-230
restriction mode3-10, 4-7
aggregate functions-273
definition 5-273 5-283
DISTINCT 5-273
GROUP BY5-274
HAVING 5-274
ORDER BY 5-274
parameteb-150
restart4-7
start4-7, 5-273
stop4-7
stored commands-274

turn off 3-11, 5-60, 5-272, 5-273 5-283

turn on3-11, 5-60, 5-228 5-273 5-283
UNION 5-274

result set3-10
backend5-136

close4-7
count rows4-6
destroy
prevent5-257
directory
local 5-253
drop 3-11, 4-7, 5-96
fetch
next row4-6

fetch rows3-10, 3-11
frontend5-143 5-251
long data5-252
local 5-145
directory5-145
lose5-273 5-283
mode3-10, 4-7, 5-151, 5-272
definition 5-273
restart4-7
start4-7, 5-273
turn off 3-11, 5-60, 5-273 5-283
turn on3-11, 5-60, 5-228 5-273 5-283
undo4-7
name3-11
named
drop 5-60
use5-60
naming5-273 5-283
number of rows
get5-199
open5-228
position4-7
position cursoi3-10
prebuild5-146, 5-254
row position
set5-206
ROWIDs 5-228 5-273 5-283
save3-11, 5-60, 5-273 5-283
undo3-11, 5-273 5-283 5-292
use3-11
retrieve
error position3-47
external data lengtB-98
external data type
retrieve5-98

Index-16 SQL Application Programming Interface Reference

return code3-47
stored command-8, 5-216
return
error codes-110
error message te%-109 5-111
error position5-108
error reasorb-111
error remedys-111
full message texb-117
return code3-28, 4-5
get5-209
retrieve3-47
SQLBase3-48
translate5-284
REVOKE 3-4
ROLLBACK 3-21
rollback 3-20, 3-29
abort proces$-233
flag 3-22, 3-28, 3-48, 4-5
get5-207
lock timeout5-259
on lock timeout5-151
status indicatob-3, 5-11
timeout5-289
transactiord-9, 5-208
transaction$-86
rollforward 3-55, 3-58, 4-3, 5-224
continue4-2, 5-58
end4-2, 5-106
recover5-106
stopped5-58
to end
of backup5-225
of logs 5-225
to time 5-225
transaction log8-57
rollover
log 5-214
row
caused errob-2, 5-10
fetch5-119
next
fetch 4-6
row count
get4-9
row ID
Oracle5-148
row position3-27

ROWIDs 3-11, 5-60
change5-283
changes-228
result set5-228
result setb-273 5-283

rows
affected

by DELETE5-227

by UPDATE 5-227
get number 0b-169 5-227
in result se#-6

running
NetWare applicationg-16
Windows applicationd-12, 1-13

S
save
result set3-11, 5-60, 5-273 5-283
drop 3-11
use3-11
SAVEPOINT 3-21
scale2-8
scope of transactio8-20
scroll mode3-10, 5-151
section header
mshdef5-172
security3-3
functions4-8
seek
in remote file5-192
LONG VARCHAR 4-6
position5-192
remote server fil&l-7
SELECT 3-5, 3-6, 3-9, 3-11, 3-32, 3-37
buffers 3-37
chained comman8-217
compile 3-9, 3-32, 3-37
describe informatiorb-75, 5-98, 5-140
execute3-10, 3-32, 3-37
fetch rows3-10
item
describe4-6
items
describe4-6
LONG VARCHAR 3-34
result sets3-10
set buffer4-6
SELECT buffers3-5

SQL Application Programming Interface Reference Index-17

Index

setting3-32
SELECT item

data typeb-275
SELECT items3-28

count4-6

SELECT list5-98, 5-129

data buffers-275
data type$-75
lengths5-75
number of items
get5-202
server
bring down5-280
cache
size5-279
database
multi-user5-145
definition 1-3
directory
delete remoté-7
exit 5-280
file
close5-184
create5-187
delete5-186
delete remoté-7
get5-120
open5-187
remote
close4-7
open4-7
read4-7
seek4-7
seek5-192
information
get5-170

name3-3, 5-62, 5-142

shut down5-240

status5-138

terminate5-280
server file

write remote4-7
set

cache pages-5, 5-237

cache sizé&-237

client name4-9, 5-237

cursor namet-9

database parametés5, 5-242

isolation level4-9, 5-268
lock
wait time 5-289
position
LONG VARCHAR 5-183
row position
in result se-206
SELECT buffers3-5
SET DEFAULT STOGROUP-42, 5-52, 5-114
set SELECT bufferd-6
set SELECT buffer8-37
set up
buffer 5-275
setting SELECT buffer8-32
ShareBas®&-136
shared lock$-269
shut down
databaset-4, 5-238
extended4-4
server3-57, 4-8
sign bit2-3
signed packed decimal (SQLPSPBY
size
cache
server5-279
set5-237
data buffer5-275
database cache 136, 5-244
extensions-142, 5-250
heap5-143
history file 5-143 5-251
log file 5-144, 5-253
LONG VARCHAR 4-6
output message buffé&r147, 5-203
snapshot
backup4-2
restore4-3
span limit
transactiorb-154, 5-262
spxdll.nim1-14
spxdll40.nim1-14
SQL
capabilities1-2
SQL command
command type&-63
compile 3-4, 3-11, 5-51, 5-282
compile and executg-41
execute3-4, 3-11, 5-113

Index-18 sQL Application Programming Interface Reference

execution plarb-115
parse3-4
retrieve5-216
store3-41, 3-45, 5-282
SQL Handle
internal data type-2
SQL statement
get last
SQLPLSS5-145
sgl.h 1-5, 2-5, 2-6, 2-8, 3-3, 3-28, 3-66, 5-117,
5-275
sql.ini 3-3, 5-176
dbname5-56, 5-71, 5-73
defaultdatabasB-50
defaultddatabasg-47
defaultpasswor®-47, 5-50
defaultusers-47, 5-50
errorfile 3-49
password3-4, 5-62
server name-3, 5-62
SQL/4005-136
SQL/API
library link 1-10
sglapinw.nimi1-4, 1-14
sqlapiw.lib1-5, 1-11
SQLBALB 5-136
SQLBAPP5-136
SQLBAS45-136
SQLBase return code48
SQLBase++
describedl-2
sqlbbr4-3, 5-2
sqlbdb3-56, 3-58, 4-2, 5-4
example5-6
SQLBDB25-136
SQLBDBC5-136
sqlbef3-45, 4-3, 5-8, 5-18
example5-8
sqlber3-45, 4-3, 5-10
example5-11
SQLBIGW 5-136
SQLBIOL 5-136
sqglbld 3-33, 4-3, 5-13
example5-14
sqlblf 3-56, 3-58, 4-2, 5-14
example5-16
sqlblk 3-45, 4-3, 5-18
example5-19

sqglbln 3-33, 3-41, 4-3, 5-20
example5-21

sqlbna4-3, 5-22

sglbnd3-5, 3-32, 4-3, 5-25
example5-27
procedure3-44

sqlbnn3-5, 3-14, 3-41, 4-3, 5-28
example5-30
procedure3-44

SQLBNTW 5-136

sglbnu4-3, 5-31

sqlbnv
procedure3-44

SQLBORA5-136

SQLBSHR5-136

SQLBSQB5-136

sqlbss3-56, 3-58, 4-2, 5-34, 5-230
example5-35
Read-Only isolatiorb-34

sqglcbv4-3, 5-37
example5-37
procedure3-44

sqglcch4-4, 5-38
example5-39

sqlcdr4-4, 5-40

sqlcex3-4, 3-12, 3-24, 3-32, 4-4, 5-41, 5-119
example5-42
procedure3-44

sqlclf 4-9, 5-43
example5-44

sglemt3-21, 3-23, 3-24, 4-9, 5-45
example5-46

sqlenc3-3, 3-9, 3-32, 4-4, 5-46
example5-48

sqglcnr4-4, 5-48
example5-50

sglcom3-4, 3-5, 3-9, 3-32, 3-33, 3-41, 4-4, 5-51
example5-52
procedure3-44

sqlcpy 4-9, 5-53
example5-54

sqlcre4-4, 5-56, 5-176
example5-57

sqlcrf 3-57, 4-2, 5-58
example5-59

sqglcrs3-11, 4-7, 5-60, 5-96, 5-228 5-273 5-283
example5-61

sqlcsv3-4, 4-8, 5-61, 5-113 5-187, 5-281

SQL Application Programming Interface Reference Index-19

Index

example5-62
sqlcty 3-28, 4-9, 5-63
example5-67
procedure3-44
sqldbn4-4, 5-68, 5-171
example5-69
SQLDBOO2-2
sqgldch4-4, 5-70
SQLDCHR2-2, 5-131
SQLDDAT 2-2, 5-131
SQLDDLD 5-75, 5-76, 5-98, 5-99, 5-129 5-13(,
5-140Q, 5-248
SQLDDTE 2-2, 5-131
sqlded3-58, 4-4, 5-238
example5-72
sqldel4-4, 5-75
example5-74
SQLDELY 5-75, 5-76 5-98, 5-
sqldes3-10, 4-6, 5-75, 5-98, 5-
example5-79
procedure3-44
SQLDHOL 2-2
sqldii 4-9, 5-79
procedure3-44
sqldir 4-4, 5-83
example5-80, 5-84, 5-197
sqldis 3-3, 4-4, 5-84, 5-86
exampleb-70, 5-85
SQLDLON 2-2, 5-131
SQLDNUM 2-2, 5-131
SQLDNVR 5-75, 5-77, 5-98, 5-99, 5-129, 5-130,
5-141, 5-248
sgldon4-4, 5-86
example5-86
testwin.c5-86
sqldox4-7, 5-87
sqldrc4-7, 5-90, 5-92
example5-90
sqgldro4-7, 5-90, 5-92, 5-94
example5-93
sqldrr4-7, 5-90, 5-92, 5-94
example5-95
sqldrs3-11, 4-7, 5-60, 5-96
example5-97
sqldsc4-6, 5-75, 5-97, 5-124, 5-129
example5-102
procedure3-44
sqgldst3-41, 4-8, 5-103

129 5-140, 5-248
124, 5-129

example5-103
procedure3-44
sqldsv3-4, 4-8, 5-104
example5-104
SQLDTIM 2-2, 5-131
SQLEBIN 2-8, 5-132
SQLEBOOZ2-8, 5-132
SQLECHR2-8, 5-132
SQLEDAT 2-8, 5-132
SQLEDECZ2-8, 5-132
SQLEDOU 2-8, 5-132
SQLEFLO2-8, 5-132
SQLEGPH2-8, 5-132
SQLEINT 2-8, 5-132
SQLELBI 2-8, 5-132
SQLELCH 2-8
SQLELGP2-8, 5-132
sqlelo3-33, 3-37, 3-41, 4-6, 5-105 5-222
example5-105
SQLELON 2-8, 5-132
SQLELVR 2-8
SQLEMON 2-8, 5-132
sglenr3-59, 4-2, 5-106 5-166 5-219
example5-107
sglepo3-28, 3-47, 3-50, 4-5, 5-108
example5-109
procedure3-44
sqlerr3-47, 3-54, 4-5, 5-109, 5-110, 5-117, 5-209,
5-287
example5-110
SQLESMA 2-9, 5-132
SQLETIM 2-9, 5-132
SQLETMS2-9, 5-132
sgletx3-48, 3-54, 4-5, 5-111, 5-287
exampless-112
SQLEVAR 2-9, 5-132
SQLEVBI 2-9, 5-132
SQLEVGP2-9, 5-132
sglexe3-4, 3-10, 3-15, 3-17, 3-33, 3-41, 4-4, 5-113
5-119
example5-114
procedure3-44
sqlexp4-9, 5-115
example5-116
sqlfer 3-47, 3-54, 4-5, 5-110Q, 5-117, 5-209, 5-287
example5-118
sglfet 3-10, 3-11, 3-33, 3-37, 4-6, 5-119 5-146
5-165 5-183 5-206, 5-254, 5-275

Index-20 sSQL Application Programming Interface Reference

example5-120
input message buffé&-174
procedure3-44
sqlfgt 4-7, 5-120
example5-121
sqlfpt 4-7, 5-122
example5-123
sqlfgn 4-6, 5-124
example5-125
sqlgbc4-5, 5-126
sqlgbi4-9, 5-127
SQLGCFG5-171
SQLGCUR5-171
SQLGDBS5-171
sqlgdi4-6, 5-128
example5-133
sqglget4-5, 5-134
example5-162
procedure3-45
SQLPCLN5-138
SQLPCTL5-139
SQLPCXP5-140
SQLPDLK 5-141
SQLPEMT 3-52, 5-141
SQLPEXP5-142
SQLPLSS5-145
sqlgfi 4-6, 5-119, 5-162
example5-164
SQLGLCK 5-171
sqlgls 3-33, 4-6, 5-166
example5-166
sqglgnl 3-59, 4-2
example5-167
sqlgnr4-9, 5-169
example5-170
SQLGOSS5-171
SQLGPRC5-171
SQLGPWD5-171
sqlgsi4-5, 5-170
example5-173
SQLGSTT5-171

SQLHost Application Services-136

SQLILCS5-144, 5-252 5-271
SQLILRL 5-144, 5-252 5-271
SQLILRO 5-144, 5-252, 5-271
SQLILRR 5-144, 5-252, 5-271
sqlims4-5, 5-174
example5-175

sqlind 3-58, 4-4, 5-176, 5-238
example5-177
sqlini 3-66, 4-9, 5-86, 5-178
example5-179
MS Windows5-178
0S/25-179
testwin.c5-179
sqgllab4-9, 5-180
example5-181
sqlldp 4-4, 4-6
sqllsk 3-33, 4-6, 5-183
example5-184
sqlwlo 5-293
sglmcl 4-7, 5-184
example5-185
SQLMDBL 5-140
sqlmdl 4-7, 5-186
example5-187
SQLMEOB 5-225
SQLMEOL 5-225
SQLMERR5-112
SQLMETX 5-112
sqlmop4-7, 5-185 5-187
example5-189
sqlmrd4-7, 5-190
example5-191
SQLMRTR 5-140
sqlmsk4-7, 5-192
example5-193
SQLMTIM 5-225
sqlmwr 4-7, 5-193
example5-194
sqginbv3-14, 3-28, 4-3, 5-195
example5-196
procedure3-45
sqlnii 4-9, 5-196
procedure3-45

SQLNPTR3-10, 5-77, 5-99, 5-163 5-277

sqlnrr 4-6, 5-199
example5-200

sqinsi3-9, 3-28, 4-6, 5-99 5-13Q 5-18Q 5-202

example5-202
SQLOAPPEND5-188
SQLOBINARY 5-188
SQLOCREAT5-188
SQLODIRCREAL-188
SQLOEXCL 5-188
sqloms3-45, 4-5, 5-18, 5-203

SQL Application Programming Interface Reference Index-21

Index

example5-204
sglopc5-205
SQLORDONLY 5-188
SQLORDWR5-188
SQLOTEXT 5-188
SQLOTRUNC5-188
SQLOWRONLY 5-188
SQLPAID 5-134, 5-157, 5-243
SQLPAIO 5-157
SQLPALG 5-134, 5-157, 5-243 5-264
SQLPANL 5-134, 5-157, 5-243
SQLPAPT5-135 5-157, 5-243 5-264
SQLPAUT 5-135 5-157, 5-244, 5-264

bulk execute mod&-255
SQLPAWS5-135 5-157, 5-244
SQLPBLK 5-136, 5-147, 5-157, 5-255 5-265
SQLPBRNb5-136 5-157, 5-303
SQLPBRS5-136, 5-157
SQLPBUF2-6, 3-10, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPCAC5-136, 5-157, 5-244, 5-265
SQLPCCB5-137, 5-245
SQLPCCK5-137, 5-157, 5-245
SQLPCGR5-137, 5-157, 5-245
SQLPCHS5-137, 5-157, 5-217
SQLPCIS5-138 5-157, 5-245
SQLPCLG5-138 5-157, 5-246, 5-265
SQLPCLI5-138 5-157, 5-246
SQLPCLN5-157

description5-138 5-246
SQLPCMP5-138 5-157, 5-246, 5-265
SQLPCSV5-138 5-158 5-246 5-265
SQLPCTF5-139 5-158
SQLPCTI5-139, 5-158 5-247, 5-265
SQLPCTL5-158 5-265

description5-139, 5-247
SQLPCTS5-14Q 5-158 5-248 5-265
SQLPCTY5-140, 5-158 5-248
SQLPCXP5-158

description5-140
SQLPDAT 2-6, 5-23 5-26, 5-29, 5-32, 5-275
SQLPDBD5-140 5-248 5-265
SQLPDBM 5-140, 5-158
SQLPDBN5-140, 5-158
SQLPDDB5-140 5-158 5-248 5-265
SQLPDDR5-140, 5-158 5-248
SQLPDIS5-75, 5-98, 5-129 5-140, 5-158 5-248

5-265

SQLPDLK 5-158

description5-141
SQLPDMO5-141, 5-158 5-249 5-265
SQLPDOUZ2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPDPW5-141, 5-249 5-265
SQLPDTE2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPDTL 5-141, 5-158 5-249
SQLPDTR3-23, 5-141, 5-158 5-249, 5-265
SQLPDUS5-141, 5-158 5-249 5-265
SQLPEBC2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPEMT5-158

description5-141, 5-249

example3-54

sqglget3-52

sglset3-52
SQLPERF5-142, 5-158 5-250
SQLPEXE5-142, 5-158
SQLPEXP5-158 5-250, 5-265

description5-142
SQLPEXS5-142, 5-158 5-25Q, 5-265
SQLPFLT 2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPFNM5-142 5-158
SQLPFRS5-143 5-158 5-251, 5-265
SQLPFT5-143 5-158 5-251, 5-265
SQLPGBC5-143 5-159 5-251, 5-265
SQLPGCD5-143 5-159
SQLPGCM5-143 5-159
SQLPHEP5-143 5-159
SQLPHFS5-143 5-159 5-251, 5-265
SQLPIS05-144, 5-159 5-252, 5-265
SQLPLBI 2-6, 5-23, 5-26, 5-29, 5-32, 5-275

SQLPLBM 3-56, 3-58, 5-4, 5-144, 5-159, 5-252,

5-254, 5-266

SQLPLCK 5-144, 5-159, 5-252
SQLPLDR5-144, 5-159, 5-252
SQLPLDV 5-144, 5-159, 5-252, 5-266
SQLPLFF5-144, 5-159 5-252, 5-266
SQLPLFS5-144, 5-159, 5-253 5-266
SQLPLGF5-144, 5-159
SQLPLOCS5-145 5-159, 5-253 5-266
SQLPLON2-6, 5-23, 5-26, 5-29, 5-32, 5-275
SQLPLRD5-145 5-159, 5-253 5-266
SQLPLSS5-159

description5-145
SQLPLVR 2-6, 5-23, 5-26, 5-29, 5-32, 5-276
SQLPMID 5-145 5-159 5-253
SQLPMUL 5-145, 5-159
SQLPNBU 2-6, 5-23, 5-26, 5-29, 5-32, 5-276
SQLPNCK5-145 5-159 5-253

Index-22 sQL Application Programming Interface Reference

SQLPNCT5-145 5-159, 5-253

SQLPNDB5-145 5-159 5-253 5-266

SQLPNID 5-145 5-159 5-254

SQLPNIE5-146 5-159 5-254, 5-266

SQLPNLB 3-57, 5-146, 5-159 5-254, 5-266

SQLPNLG5-146 5-159 5-254

SQLPNPB5-146 5-160, 5-254, 5-266

SQLPNPF5-146 5-160 5-255

SQLPNST2-6, 5-23, 5-26, 5-29, 5-32, 5-276

SQLPNUM 2-7, 5-23, 5-26, 5-29, 5-32, 5-276

SQLPOBL5-147, 5-255

SQLPOFF5-147, 5-160Q, 5-255

SQLPOMB5-147

SQLPOOJ5-148 5-160 5-256

SQLPOPL5-149, 5-16Q 5-257, 5-266

SQLPORID5-148 5-160

SQLPOSR5-149 5-160 5-257

SQLPOVR5-149 5-160

SQLPPARS5-149, 5-160, 5-257, 5-266

SQLPPCX5-149 5-16Q 5-257, 5-266

SQLPPDB5-150Q 5-160, 5-258 5-266

SQLPPLF5-150, 5-160, 5-258 5-266

SQLPPLV5-15Q 5-160, 5-258 5-266

SQLPPTH5-150, 5-160

SQLPREC5-150 5-160

SQLPRES5-150 5-160

SQLPRID5-150, 5-160

SQLPROD5-15Q0 5-16Q 5-258 5-266 5-270

SQLPROM5-151, 5-258 5-266

SQLPROT5-15], 5-16Q 5-259 5-266

sqlprs3-10, 4-7, 5-206, 5-272, 5-273
example5-205 5-206

SQLPRTO5-15], 5-16Q 5-259 5-266

SQLPSCH2-7, 5-24, 5-26, 5-29, 5-32, 5-276

SQLPSCR5-15], 5-160

SQLPSIL5-152, 5-16Q 5-259

SQLPSIN2-7, 5-24, 5-26, 5-29, 5-32, 5-276

SQLPSLO2-7, 5-24, 5-26, 5-29, 5-32, 5-276

SQLPSPD2-7, 5-24, 5-26, 5-29, 5-32, 5-276

SQLPSSH2-7, 5-24, 5-27, 5-29, 5-33, 5-276

SQLPSTA5-152, 5-160, 5-260Q 5-266

SQLPSTC5-16Q 5-261

SQLPSTR2-7, 5-24, 5-27, 5-29, 5-33, 5-276

SQLPSVN5-153 5-161, 5-261

SQLPSWR5-153 5-161

SQLPTCO5-153 5-161, 5-261

SQLPTHM 5-153 5-16], 5-261

SQLPTIM 2-7, 5-24, 5-27, 5-29, 5-33, 5-276

SQLPTMO5-154, 5-161, 5-261
SQLPTMS5-153 5-161, 5-261, 5-266
SQLPTMZ 5-154, 5-161, 5-262
SQLPTPD5-154, 5-161, 5-262
SQLPTRC5-154, 5-161, 5-262 5-266
SQLPTRF5-154, 5-161, 5-266
SQLPTSL5-154, 5-161, 5-262, 5-267
SQLPTSS5-155 5-161, 5-262
SQLPUCH2-7, 5-24, 5-27, 5-30, 5-33, 5-276
SQLPUID 5-155 5-161, 5-263
SQLPUIN 2-7, 5-30, 5-33, 5-276
SQLPULO2-7, 5-30, 5-33, 5-276
SQLPUPD2-7, 5-30, 5-33 5-276
SQLPUSH2-7, 5-30, 5-33 5-276
SQLPUSR5-155 5-161, 5-263
SQLPVERS5-155 5-161
SQLPWFC5-155 5-161
SQLPWKA 5-155 5-263
SQLPWKL 5-156, 5-263
SQLPWTO5-156, 5-161, 5-263 5-267
sqlrbf 3-22, 3-28, 3-48, 4-5, 5-207
example5-208
sqlrbk 3-21, 3-23, 3-24, 4-9, 5-208
example5-209
sqglrcd 3-28, 3-47, 3-50, 4-5, 5-110Q 5-111, 5-117,
5-209
example5-210
SQLRCLN5-171
sqlrdb3-57, 3-58, 3-59, 4-3, 5-210, 5-224
example5-212
SQLRDBN5-171
sqlrel 4-3, 5-214
example5-214
sqlret3-45, 4-8, 5-216, 5-282
exampless-218
sqlrlf 3-57, 3-59, 4-3, 5-34, 5-219
example5-220
sqlrlo 3-5, 3-33, 3-34, 3-37, 4-6, 5-119 5-165
5-183 5-222
example5-223
length
maximumb5-222
sqlrof 3-57, 3-58, 3-59, 4-3, 5-224, 5-230
example5-225
sqlrow 3-28, 4-9, 5-227
example5-228
SQLRPNM5-171
sqlrrs 3-11, 4-7, 5-60, 5-228 5-273 5-283

SQL Application Programming Interface Reference Index-23

Index

example5-229

sqlrsi 4-5, 5-230

sqlrss3-58, 4-3, 5-230
example5-231

SQLRUSN5-171

sqlsab4-8, 5-233
example5-234

SQLSCDA2-5

sqlscl4-9, 5-237
example5-235

sqlscn3-17, 4-9, 5-237
ADJUSTING 5-235
CURRENT OF5-235
description5-234
example5-236

sqlscp4-5, 5-237
example5-237

sqglsdn4-4, 5-238
example5-239

sqlsds4-8, 5-240

sqlsdx4-4, 5-241

sqlset3-57, 4-5, 5-242
example3-54, 5-267
SQLPCLN5-246
SQLPCTL5-247
SQLPEMT 3-52, 5-249
SQLPLBM 5-4, 5-15

sqlsil 4-9, 5-175 5-268
example5-271

SQLSNUM 5-295

sqlspr3-11, 4-7, 5-272, 5-273 5-283
example5-272

sqlsrs3-11, 4-7, 5-199, 5-273
example5-274

sqlsrv.h1-5, 5-172

sqlssb3-5, 3-10, 3-32, 3-33, 3-37, 4-6, 5-119

5-146, 5-254, 5-274, 5-299

example5-278

sqlsta4-5, 5-279
example5-280

sqglstm4-8, 5-280
example5-281

sqlsto3-41, 4-8, 5-281
example5-282
procedure3-45

sqlstr3-11, 4-7, 5-273 5-283
example5-284

SQLTCHN5-217

sqltec3-48, 3-49, 4-5, 5-284
example5-285
sqltem4-5, 5-285
example5-288
SQLXMSG 5-287
SQLXREA 5-287
SQLXREM 5-287
sqltio 4-9, 5-289
example5-290
sqlunl 4-5, 4-6
sqlurs3-11, 4-7, 5-273 5-283 5-292
example5-292
sqluwrtr.al-5
SQLVDFL 5-259
SQLVOFF5-151, 5-259
SQLVON 5-151, 5-259
SQLWKA 5-161
SQLWKL 5-161
sqglwlo 3-33, 3-39, 3-41, 4-6, 5-183 5-293
example5-294
sqllsk 5-293
sqlwntm.lib1-14
sqlxad2-3, 4-8, 5-295
example5-296
sqlxcn 2-3, 4-8, 5-296
example5-297
sgixda2-6, 4-8, 5-298
example5-299
sqixdp2-6, 4-8, 5-299, 5-310
example5-301
picture format5-299
sqixdv 2-3, 4-8, 5-301
example5-302
sqlxer4-5, 5-303
example5-304
SQLXGSI5-171
sqlxml 2-3, 4-8, 5-305
example5-306
SQLXMSG 5-111, 5-287
sqlxnp 2-3, 4-8, 5-306
examples5-308
sqlxpd 2-6, 4-8, 5-310
example5-312
SQLXREA 5-112 5-287
SQLXREM 5-112, 5-287
sqlxsb2-3, 4-8, 5-312
example5-313
SQPTRF5-262

Index-24 sQL Application Programming Interface Reference

start
restriction modes-7, 5-273
result set modd-7, 5-273
transactiorb-208
statistical information, resét-230
statistics4-5
databasé-279
gather5-51
status
rollback 5-3, 5-11
status code
fetch 5-275
stop
restriction modes-7, 5-273
storage
character dat2-2
LONG VARCHAR 2-2
numeric date2-2
store
SQL command-41, 3-45, 5-282
stored comman@-41, 4-8
calling 3-41
drop 3-41, 4-8, 5-103
restriction modeb-216, 5-274
retrieve4-8
stored procedures
calling 3-41
executing from SQL/APB-42
traced5-154
string
convert
from date5-299
from numbers-306
to date5-310
to numbers-296
null-terminated3-3
subtract2-3
internal number<-8
numbers5-312
syntax error5-108

SYSCOLUMNSS5-75, 5-78, 5- 98
SYSCOMMANDS 3-41, 3-45, 5-2
SYSROWIDLISTS3-11, 5-60, 5-

system catalog
SYSROWIDLISTS5-228
system failure
rollback 5-207
system table

28 5-273 5-283

SYSCOMMANDS5-282
SYSROWIDLISTS5-273 5-283

T
table
access3-4
name
verify 5-51
security3-4
Teradateb-136
ShareBas&-136
terminate
server4-8, 5-280
testwin.c
sqldon5-86
time
internal data type-2
timeout4-9
lock 5-289
lock wait 5-156, 5-263
rollback 5-289
timestamp5-261
parameteb-153
tlidll.nlm 1-14
tokenize
error messagé-5, 5-285
tokens
error message
SQLPEMT5-141, 5-249
Tracefile
nameb5-154, 5-262
transaction3-20
commit 4-9, 5-45
log backup
modeb-144
log files
preallocates-258
size5-144, 5-253
rollback 4-9, 5-208
scope3-20
span limit5-154, 5-262
start5-45
starting point5-208
transaction controB8-19, 3-23, 4-9
transaction log file3-55
backup3-56, 4-2, 5-15
backup snapshd-34
cannot operb-58, 5-106

SQL Application Programming Interface Reference Index-25

Index

delete5-15, 5-73
deletion3-57
directory5-252
get next4-2
missing3-59
next5-166
next to backub-146
preallocates-150
recover5-106
release4-3
restore4-3, 5-230
rollforward 3-57, 4-3
turn off 5-49
transactions
during backups-4
rollback 5-86
translate
error code4-5
errors3-48
from SQLBase5-303
to SQLBase5-303
return codeb-284
truncate
file 5-188
turn off
restriction modeb-272, 5-273 5-283
result set mod&-273 5-283
turn on
restiction modes-273
restriction modeb-228 5-273 5-283
result set mod®-228 5-273 5-283
two-phase commit
commit server3-22
type
data
program5-275
SELECT item5-275
information
mshflag5-172
type of commandi-9

U
undo
result set3-11, 5-273 5-283 5-292
mode4-7
UNION
restriction modeb-274
UNLOAD command4-5

unload operation (sqlunj-6
unsigned packed decimal (SQLPUPBY
UPDATE 3-12, 3-15 3-17, 3-24, 3-32, 3-39
binding 3-17, 3-32
chained comman8-217
CHECK EXISTS5-217
compile3-17, 3-24
count rowsb-227
execute3-17, 3-24
update
multiple tables3-23
use saved result s8t1l
username
default5-141, 5-249

\Y
VALUES clause3-14
variable
declare3-3
variables
bind
clear4-3
number4-3
verify
column name$-51
table name®-51
version
load 5-144, 5-252
releaseb-155
virtual disk read$-279
virtual disk writes5-279

w

wait time
lock
default5-289
set5-289
valid values5-289
Windows (see also Microsoft Windows)
pass controB-66
Windows NT applications
compile and link1-12
work space3-27
write
file
remote5-193
LONG VARCHAR 3-33, 3-34, 3-38, 4-6
remote server filel-7

Index-26 SQL Application Programming Interface Reference

	SQLBase SQL Application Programming Interface Reference
	Contents
	Preface
	Who should read this manual
	Summary of chapters
	Notation conventions
	Other helpful resources
	Send comments to...

	Chapter 1: Introduction to the SQL/API
	About the SQL/API
	Why use the SQL/API?
	Other Centura SQLBase interfaces
	How SQL/API applications access SQLBase
	Local configuration
	Remote configuration
	SQL/API components
	Example programs
	Support files
	Compiling, linking, and running applications
	Environment variables to include
	Windows 16-bit programs
	Windows 32-bit programs
	Windows NT character-based application
	C programs for Netware
	Header files for 16-bit and 32-bit programs
	Compiling, linking, and running example programs

	Chapter 2: Data Types
	Internal database data types
	Character data
	Numeric data
	Date and time data
	Program data types
	Packed-decimal data types
	External data types

	Chapter 3: Using the SQL/API
	Connect and close cursor
	Server security
	Compiling and executing SQL commands
	Setting SELECT buffers
	Bind variables
	Binding data
	Queries
	SELECT command without bind variables (ex20.c)
	Result sets
	Result set mode and restriction mode
	Saved result sets
	Fetching
	INSERTs, UPDATEs, and DELETEs
	INSERT with bind variables (ex11.c)
	UPDATE with bind variables (ex19.c)
	Connection handles
	Implicit connection handle
	Setting lock time out
	Why use connection handles
	Setting up a connection handle (ex26.c)
	Transactions
	Committing and rolling back
	Savepoints
	Distributed transactions
	Setting up a transaction (ex06.c)
	Setting up a distributed transaction
	Cursors
	Cursor work space information
	Cursors and connection handles
	Using multiple cursors and connection handles (ex1...
	LONG VARCHAR handling
	Reading LONG VARCHAR columns (ex14.c)
	Writing LONG VARCHAR columns (ex13.c)
	Calling stored commands and procedures
	Executing a stored procedure from SQL/API (ex23.c)...
	Functions used with procedures and commands
	Bulk execute mode
	Error handling
	Finding error.sql
	Checking the return code
	Translating errors
	Error handling (ex20.c)
	Errors
	Tokenized error messages
	Example
	Back up and restore
	Recovery
	Online backups
	Offline backups
	Backing up a database and its log files
	Restoring and recovering a database and its log fi...
	Example
	Load and unloading databases
	Loading
	Unloading
	Microsoft Windows applications

	Chapter 4: SQL/API Functions by Category
	Function categories
	Backup and restore
	Binding
	Bulk execute mode
	Compiling and executing
	Connecting and disconnecting
	Database administration
	Environment control
	Error handling
	Load and Unload operations
	LONG VARCHAR operations
	Queries
	Restriction mode and result set mode
	Server file and directory access
	Server security
	SQLBase internal numbers
	Stored commands and procedures
	Transaction control
	Miscellaneous

	Chapter 5: SQL/API Function Reference
	sqlbbr - Bulk execute Return
	sqlbdb - Backup DataBase
	sqlbef - Bulk Execute Flush
	sqlber - Bulk Execute Return
	sqlbld - Bind Long Data by name
	sqlblf - Backup Log Files
	sqlblk - BuLK execute
	sqlbln - Bind Long data by Number
	sqlbna - Bind data by NAme (with null indicator)
	sqlbnd - BiNd Data by name
	sqlbnn - BiNd data by Number
	sqlbnu - Bind data by NUmber
	sqlbss - Backup SnapShot
	sqlcbv - Clear Bind Variables
	sqlcch - Create Connection Handle
	sqlcdr - Cancel Database Request
	sqlcex - Compile and EXecute
	sqlclf - Change process activity Log File
	sqlcmt - CoMmiT
	sqlcnc - CoNnect Cursor
	sqlcnr - Connect with No Recovery
	sqlcom - COMpile a SQL command/procedure
	sqlcpy - CoPY data from one table to another
	sqlcre - CREate database
	sqlcrf - Continue RollForward
	sqlcrs - Close ReStriction and Result Set modes
	sqlcsv - Connect to SerVer
	sqlcty - Command TYpe
	sqldbn - DataBase Names
	sqldch - Destroy Connection Handle
	sqlded - DEinstall Database
	sqldel - DELete database
	sqldes - DEScribe items in a SELECT list
	sqldii - Describe Into variable
	sqldir - DIRectory of databases
	sqldis - DISconnect from cursor
	sqldon - DONe
	sqldox - Directory Open eXtended
	sqldrc - DiRectory Close
	sqldro - DiRectory Open
	sqldrr - DiRectory Read
	sqldrs - Drop Result Set
	sqldsc - DeSCribe item in a SELECT command
	sqldst - Drop STored command/procedure
	sqldsv - Disconnect from SerVer
	sqlelo - End Long Operation
	sqlenr - ENd Rollforward
	sqlepo - Error POsition
	sqlerr - ERRor message
	sqletx - Error message TeXt
	sqlexe - EXEcute a SQL command/procedure
	sqlexp - EXecution Plan
	sqlfer - Full ERror message
	sqlfet - FETch next row from result set
	sqlfgt - GeT File from server
	sqlfpt - PuT File to server
	sqlfqn - Fully-Qualified column Name
	sqlgbc - Get Backend Cursor
	sqlgbi - Get Backend Information
	sqlgdi - Get Describe Information
	sqlget - GET parameter
	sqlgfi - Get Fetch Information
	sqlgls - Get Long Size
	sqlgnl - Get Next Log
	sqlgnr - Get Number of Rows
	sqlgsi - Get Server Information
	sqlims - Input Message Size
	sqlind - INstall Database
	sqlini - INItialize
	sqllab - LABel information
	sqlldp - LoaD oPeration
	sqllsk - Long SeeK
	sqlmcl - reMote CLose server file
	sqlmdl - reMote DeLete server file
	sqlmop - reMote OPen server file
	sqlmrd - reMote ReaD server file
	sqlmsk - reMote SeeK server file
	sqlmwr - reMote WRite server file
	sqlnbv - Number of Bind Variables
	sqlnii - get the Number of Into variables
	sqlnrr - Number of Rows in Result set
	sqlnsi - Number of Select Items
	sqloms - Output Message Size
	sqlopc - OPen Cursor
	sqlprs - Position in Result Set
	sqlrbf - Roll Back Flag
	sqlrbk - RollBacK
	sqlrcd - Return CoDe
	sqlrdb - Restore DataBase
	sqlrel - RELease current log
	sqlret - RETrieve a stored command/procedure
	sqlrlf - Restore Log Files
	sqlrlo - Read LOng
	sqlrof - ROllForward
	sqlrow - number of ROWs
	sqlrrs - restart Restriction and Result Set modes
	sqlrsi - Reset Statistical Information
	sqlrss - Restore SnapShot
	sqlsab - Server ABort database process
	sqlscl - Set CLient name
	sqlscn - Set Cursor Name
	sqlscp - Set Cache Pages
	sqlsdn - ShutDowN database
	sqlsds - ShutDown Server
	sqlsdx - ShutDown database eXtended
	sqlset - SET parameter
	sqlsil - Set Isolation Level
	sqlspr - StoP Restriction mode
	sqlsrs - Start Restriction Set and Result Set mode...
	sqlssb - Set SELECT Buffer
	sqlsta - STAtistics
	sqlstm - Server TerMinate
	sqlsto - STOre a compiled command/procedure
	sqlstr - STart Restriction mode
	sqltec - Translate Error Code
	sqltem - Tokenize Error Message
	sqltio - TIme Out
	sqlunl - UNLOAD command
	sqlurs - Undo Result Set
	sqlwlo - Write LOng
	sqlxad - eXtended ADd
	sqlxcn - eXtended CoNvert
	sqlxda - eXtended Date Add
	sqlxdp - eXtended Date to Picture
	sqlxdv - eXtended DiVide
	sqlxer - eXtended ERror
	sqlxml - eXtended MuLtiply
	sqlxnp - eXtended Number to Picture
	sqlxpd - eXtended Picture to Date
	sqlxsb - eXtended SuBtract

	Glossary
	Index

