[image: image1.jpg]
Author: Geoff Friesen

Publisher: Que

First Edition January 01, 2000
ISBN: 0-7897-2266-6, 512 pages

Abstract:

Java by Example presumes no previous experience with either Java or programming in general. You will learn Java-specific programming concepts, object-oriented programming, and proper coding techniques. Topics include Java Foundation Classes (JFC), Abstrac >

Copyright Information

Copyright © 2000 by Que® Corporation

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 99-66453

Printed in the United States of America
First Printing: January 2000

02 01 00 4 3 2

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Que cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Dedication

To my parents, Bill and Mary, my sister, Sharon Larsen, her husband, Richard Larsen, and their children, Eric, Ryan, and Rebecca.

To my former university professor Dr. George E. McMaster, who introduced me to computer science and taught me how to write quality software; Dave Voorhis, who answered many of my personal computer questions over the years; Morgan Ross, who introduced me to Java; and Yvonne Baert for all of her encouragement and support in my pursuit of Java.

To my other close friends Chris Goudy, Clark and Hilda Sydor, Helen Stroud, Pastor Joe MacDonald, Lorraine Moore, Robert Lapensee, and the late Father Lucian Kemble, who was an inspiration in my life. Many thanks to all of you, and the many other people whose names could not be included because of space limitations.

Thank you.

Geoff

Who Should Use This Book

You do not need a university degree to learn Java. Java is a very simple, yet sophisticated technology. All you need is curiosity, patience, and a desire to learn.

How This Book Is Organized

Java 2 by Example takes an example-oriented approach to teaching Java version 2 technology. Each chapter is peppered with many small examples, and most chapters conclude with a larger (and more useful) example. Due to space limitations, a lot of example source code is not present in this book. To obtain this source code, please visit the web page located at http://www.mcp.com/infor/0-7897/0-7897-2266-6/.

This book is organized into five parts: "An Introduction to Java," "Exploring the Language," "Exploring the Class Library," "Case Study," and "Appendixes."
"An Introduction to Java" provides an introduction to Java, by way of Chapter 1, "Introducing Java." This chapter exposes you to what Java is and where it came from. You'll also learn about the Java Development Kit (JDK) and how to create a Java application and a Java applet.

"Exploring the Language" gives you an opportunity to learn all of the ins and outs of the Java language. Everything from basic language elements, such as comments and operators, to advanced concepts, such as packages, is presented in Chapters 2 through 9.

"Exploring the Class Library" gives you a chance to learn about string management, data structures, JFC and the AWT, multithreading, files, and streams. These concepts are covered in Chapters 10 through 17.

"Case Study" provides useful information for developing real-world Java programs. You'll learn how to plan, design, and implement Java software by way of the useful Contact Manager program that's presented in Chapter 18, "Contact Manager." Many concepts from previous chapters are used to bring Contact Manager into existence.

If you can master the habits that are presented in "Case Study," you'll save yourself wasted development time and have some fun in the development process.

A set of four appendixes and a glossary round out this book. Appendix A, "Reserved Words," contains a convenient table of the Java language's reserved words. Appendix B, "Operator Precedence," contains a convenient operator precedence table. The Java Development Kit's JAR tool is explored in Appendix C, "JAR File Management." Finally, Appendix D, "Additional Resources," provides some additional resources that you might want to explore on your journey to mastering Java technology. This appendix even provides information on how to become a certified Java developer, a definite career enhancement. The glossary lists terms that are used throughout this book.

Conventions Used in This Book

This book follows certain conventions for indicating the syntax of various language elements (for example, comments, identifiers, expressions, statements, and so on), as well as for writing out method names.

Syntax

When learning a new language, it is important to understand the various ways in which the language's elements are combined into meaningful programs. This syntax needs to be formally written down by following certain conventions that show how elements are specified. The following conventions are observed:

· Syntax consists of literal text and non-literal text. Literal-text is specified by placing this text between quote characters and must be entered by a developer exactly as it appears (without the quote characters). Non-literal text is specified by the use of italics and not placing this text between quote characters.This text is not entered by a developer but serves as a placeholder for literal text that the developer must supply.

· Literal text consisting of two or more characters is placed between a pair of double quote characters (""). The double quote characters are not part of the literal text and are not entered.

Example: "while"

If a double quote character needs to be literally specified, it is preceded by a backslash character (\"). If a backslash character needs to be literally specified, it is doubled (\\).

· Literal text consisting of a single character is placed between a pair of single quote characters (''). The single quote characters are not part of the literal text and are not entered.

Example: ';'

If a single quote character needs to be literally specified, it is preceded by a backslash character (for example, \').

· The vertical bar character (|) indicates a choice between two possibilities. A choice is usually surrounded by a pair of round bracket characters (()).

Example: ("abstract" | "final")

If the vertical bar character or a round bracket character needs to be literally specified, it is placed between a pair of single quote characters.

Example: '|'

· The square bracket characters ([]) identify an option. Literal and non- literal text appearing between these characters is optional. The developer can choose to supply this text or not.

Example: data_type variable_name ['=' expression] ';'

If a square bracket character needs to be literally specified, it is placed between a pair of single quote characters.

Example: '['

· Three period characters (…) indicate optional extraneous source code or the continuation of a comma-delimited list of elements.

Example: "throws" exceptionName1 ',' exceptionName2 ',' ...

Method Naming

When a method name is specified, the name is written out with the data type names of its parameter list, surrounded by round bracket characters.

Example:

getParameter (String, String)

getCodeBase ()

Also, a space is placed between the method name and its parameter list to help improve source code clarity.

What's Next

It's time to turn our attention to the journey that lies ahead. By the time you get to the end of this book, you will have an incredible grasp of the Java language and be able to create some really interesting and useful software.

We begin this journey in Chapter 1 (which should come as no surprise). Let's get started!

Part I: An Introduction to Java

Chapter 1: Introducing Java

Chapter 1. Introducing Java

When you encounter the word Java, what comes to mind? Do you imagine a delicious steaming cup of coffee? Does your mind reflect on a beautiful tropical island in the Indonesian island chain—a place where you might spend your next vacation? Or are you curious about a technology called Java that is causing quite a stir in the computer industry—a technology that has made Microsoft very nervous? If you are curious about this Java technology, you've picked up the right book. In this book, you'll learn how to use Java to create a new and exciting "breed" of computer programs.

Chapter 1 presents the following topics:

· What is Java?

· A brief history of Java

· The Java Development Kit

· Applications

· Applets

What Is Java?

A dictionary might define Java as a software technology that developers use to create portable, object-oriented, and secure computer programs.

Portable Java programs can be written and compiled once, and then run on any computer that supports Java. This concept is known as "write once, run anywhere." Portability helps you save development time because you don't have to write a separate version of your source code to target each computer that will run the compiled code.

Object-oriented Java programs are easier to write than non-object-oriented programs because translating real-world problems into source code is straightforward when using Java's object-oriented language features. As you'll discover, all Java programs take advantage of objects that send messages to each other. This is illustrated in Figure 1.1 where a few objects are shown sending messages back and forth. The objects are represented by circles, the messages are represented by lines, and each line has an arrow that points to the object receiving the message.

Figure 1.1. Objects communicate with other objects by sending messages.

 [image: image2.png]
Secure Java programs bring peace of mind to users. Because Java programs are automatically analyzed for security violations before being allowed to run, these programs are prevented from damaging the user's computer. Damage can take many forms: corrupting a computer's file system, "stealing" sensitive data (for example, a list of passwords), breaking video monitor hardware by changing the monitor's video signal parameters, and so on.

Java software technology is composed of four main entities: a computer language, a compiler, a virtual machine, and a class library.

Java Is a Computer Language

Developers specify the textual representation of a Java program by writing source code that "obeys" the rules of the Java computer language. The source code is then saved in text files with .java file extensions.

The Java computer language is similar to the C and C++ computer languages, from a syntactical point of view. Therefore, C and C++ developers should migrate to Java with ease. In the same breath, though, the Java computer language also has its differences from C and C++. Therefore, C and C++ developers will need to "unlearn" some C and C++ concepts when migrating to Java. For example, Java does not support the C/C++ concept of pointers (variables that contain the addresses of other variables).

Java Is a Compiler

Source code is read from text files and translated into byte code (instructions) by the Java compiler. This byte code is stored in class files (files with .class file extensions). If the compiler detects any rule violations, it will display one or more error messages and stop the compilation process. (A class is a blueprint that describes the structure of state and behavior for all objects that are created from the class.)

Java Is a Virtual Machine

The Java Virtual Machine—JVM for short—simulates a real computer. It is nothing more than an elaborate program that interprets each byte code instruction, selects a set of computer-specific instructions that correspond to each byte code instruction, and runs this set of instructions.

Virtual machine programs often contain code that serves as a virtual machine operating system. This code is known as the runtime. While the virtual machine interprets byte code, it communicates with the runtime to perform a variety of computer-specific tasks (such as allocating memory, accessing files, displaying information on the monitor, and so on).

Although the JVM and Java runtime are often discussed as two separate but connected entities, this book treats them as a single virtual machine entity.

Virtual machines make portability possible by serving as the only computer that a program needs to target. This means that Java programs never need to be "ported" to other computers. Only the virtual machine program (which is written in a computer-specific language such as C++) must be "ported."

Interpreting byte code is much slower than directly running computer code. This problem has led to the creation of Just In Time (JIT) compilers. While a virtual machine interprets byte code, it can tell which byte code runs more frequently than other byte code. The virtual machine can then tell the JIT compiler to compile the more frequently called byte code into computer instructions, which the virtual machine will run without interpretation, greatly speeding up the Java program.

Java Is a Class Library

Java's class library contains many useful classes that developers can take advantage of to speed up their development time. There are many categories of classes in this library, including the networking, database, graphical user interface, multithreading, and data structure classes.

TIP

Always check the class library to see whether it contains what your program needs. If it does, then you save yourself considerable development time and avoid "re-inventing the wheel."

Putting all the entities of Java together, Figure 1.2 shows the process of building and running a Java program via the Java entities: computer language, compiler, virtual machine, and class library.

Figure 1.2. Building and running a Java program.
 [image: image3.png]
The Short History

The road to Java began in January 1991. Scott McNealy (the Chief Executive Officer of Sun Microsystems), Dr. James Gosling, Bill Joy, and several other people met at an Aspen, Colorado retreat to discuss a new era of personal computing.

At that time, computers were general-purpose computing devices. They ran large "monolithic" programs, such as word processors, spreadsheets, databases, desktop publishers, computer games, and communications tools.

Computer networks were starting to come into their own, but they were expensive, difficult to administer, and their real potential was still a few years away, when access to the Internet would become available to the general public and inspire greater interest in networks.

The visionaries at the retreat imagined a networked world of personal computing devices, such as electronic books and "intelligent" refrigerators that could suggest recipes based upon their contents. Because this networked world would be simpler to interact with than programming a typical VCR, the Sun people believed that a new (and profitable) market would form. And with Microsoft making inroads into Sun's workstation market, the chance for a new avenue of revenue was very compelling.

Within this networked world, objects would "flow" back and forth between different computing devices. These objects would contain properties and behavior for manipulating these properties. This code would run on any computing device connected to the network.

However, computing devices contain microprocessors, and each kind of microprocessor contains a different architecture and instruction set. How can an object adapt automatically to these different architectures and instruction sets? This is a difficult problem, but there is a simple solution.

Why not design a hypothetical-computing device and let this computing device run object code? Then, implement this computing device as a software program for each computing device that is attached to the network. The resulting software program is known as a virtual machine.

In June of 1991, Dr. Gosling began working on a language and a virtual machine. At the time, the project was called Oak, a name inspired by an oak tree that grew outside of Dr. Gosling's office window.

Unfortunately, attempts to market Oak failed. However, the mid-1990s brought hope to Sun with the introduction of the World Wide Web.

The Web makes it possible for anyone to publish information, via Web pages, for worldwide consumption. However, early Web pages were static entities. It was not possible to add dynamic content (such as embedding a spreadsheet program) to a Web page.

Oak was a perfect candidate for adding this dynamic content.

A hypothetical user would load a Web page (via a Web browser program) that specifies an "embedded" Oak program, and the Web browser would then download this program from wherever it resides on the Internet. The browser would start the virtual machine and pass the Oak program to this machine where it would run. Figure 1.3 illustrates the process of embedding Oak programs within a Web browser.

Figure 1.3. Oak programs can be "embedded" within a Web browser.

 [image: image4.png]
The virtual machine would be designed to interact with the browser to display the program's results within the Web page and obtain user input.

Therefore, a user with a Macintosh, a PC, or a UNIX machine could "surf" to the same Web page and experience an embedded program. It wouldn't matter that these three computers have different microprocessors and run different operating systems. As long as a virtual machine had been written for the computer and bundled with a Web browser, the Oak program would run unchanged on the virtual machine.

Because the virtual machine would perform elaborate verification and other security measures on programs before running them, a user's computer would not be the victim of malicious code. The virtual machine would detect malicious acts and not run the program.

Oak never had a chance to interact with Web browsers because, for marketing reasons, Sun decided to rename Oak. Oak became known as Java, and an agreement was made with Netscape Communications to embed a Java virtual machine within the popular Netscape Web browsers.

In May 1995, Sun officially introduced Java to the entire development community. Later that same year, Sun released a development kit for creating Java programs.

The Java Development Kit

The Java Development Kit (JDK) is Sun's toolkit for creating Java software. This toolkit is free to developers who would like to create Java programs.

The JDK contains useful tools (such as a compiler), a virtual machine, a class library, documentation, and examples. The various tools are known as command line tools because they are run from a command line within a DOS, UNIX, or some other command window.

JDK Versions

Many versions of the JDK have been released since 1995. These include versions from the original release 1.0.1 to the present 1.2.2.

Version numbers identify the significance of a release. For example, the transition from 0 in 1.0.1 to the right-most 1 in 1.1 represents significant JDK changes. However, the transition between the right-most 1 in 1.2.1 to the right-most 2 in 1.2.2 represents bug fixes only.

As this book is being written, version 1.2.2 is the most recent version of the JDK. Note: The examples in this book have been built and tested with JDK 1.2. However, these examples also should work with JDK 1.2.1 and JDK 1.2.2.

When version 1.2 was released, Sun decided to refer to this version as the Java 2 platform. Therefore, whenever the Java 2 term is mentioned, it refers to JDK versions 1.2, 1.2.1, 1.2.2, and to any future 1.2.x versions.

Obtaining and Installing the JDK

A free copy of JDK 1.2.2 can be downloaded from the Javasoft Web site (http://www.javasoft.com). To begin this process, click Products & APIs from the menu on the left side of the introductory Javasoft Web page. This click will take you to a page that lists JDK versions that are available for download. Select JDK 1.2.2 and follow instructions. One of the succeeding pages will prompt you to accept or reject the terms of Sun's license agreement for this JDK version. If you support this agreement, click the Accept button. You will then be taken to a Web page where you can download JDK 1.2.2.

The JDK is stored in a large installation file. (The JDK 1.2.2 installation file is around 20 megabytes in size.) You can either attempt to download the entire file, or download several smaller files that can be merged into the larger file (as explained by instructions on the download page). (The option of downloading multiple files is preferable if you have a slow Internet connection and your Internet provider is in the habit of dropping your connection after you've being connected to the Internet for one or more hours.)

After you've finished downloading or merging the JDK installation file, you can begin the installation process.

The installation file contains an installation program in addition to the JDK. Simply run this program and follow the onscreen instructions to install the JDK. For example, if you were to download the Windows release of JDK 1.2.2, you would end up with a file called jdk1_2_2-001-win.exe. Double-click this filename (from Windows Explorer) to start the installation program and follow the onscreen instructions.

A Tour of the JDK

The installation program creates several directories and copies files into these directories. One of the directories serves as the parent directory for all JDK directories. This directory is known as the JDK's installation directory.

Figure 1.4 shows the contents of JDK 1.2's installation directory, from a DOS window on a Windows 95 machine. (Note: This book uses the Win32 version of the JDK for its examples and figures.)

Figure 1.4. The JDK 1.2 installation directory contains multiple files and directories.

 [image: image5.png]
The README and README.html files describe the installed JDK. They are good places to start a tour of this toolkit.

The COPYRIGHT and LICENSE files contain important copyright and licensing information.

The Uninst.isu file contains information that is used when removing the JDK. (An older JDK version is usually removed before a more current version is installed.) Do not delete this file.

The src.jar file is a ZIP archive that contains the class library source code (a collection of files with .java file extensions). This source code is helpful for learning how the class library was constructed and to improve your skills as a Java developer.

The bin directory contains many useful tools. Three tools that are used throughout this book include the javac.exe compiler, the java.exe program for running applications, and the appletviewer.exe program for running applets. Another useful tool, discussed in Appendix C, "JAR File Management," is jar.exe. This tool is used to archive Java program files into a single file for easier distribution.

The jre directory contains a backup copy of the Java Runtime Environment (JRE) files. (The JRE is a runtime version of Java, as opposed to the JDK development version. In other words, unlike the JDK, the JRE contains no development tools, documentation, and examples.) These backup files can be used to repair damage to any runtime files in the runtime directory. (Because this book focuses on the JDK, the JRE will not be discussed any further.)

The lib directory contains library files that support the compiler (and other tools) and user-interface development. This directory also contains a file that is used in creating virtual machine applications. (Creating these applications will not be discussed because this topic is beyond the scope of this book.)

The include directory contains C-style header files that are used when working with the Java Native Interface(JNI) (a mechanism that "connects" class files to C/C++ libraries; because the JNI is beyond the scope of this book, it will not be discussed any further).

The docs directory contains documentation. However, because the JDK installation file does not include documentation, this directory is not automatically created, and documentation is not automatically installed by the JDK installation program. Instead, documentation must be downloaded separately, a docs directory must be manually created underneath the JDK installation directory, and the documentation must be manually installed into docs. The reason for this extra work is that the documentation is several megabytes in size. Placing everything into a single installation file would cause difficulties. After all, who wants to download 40+ megabytes in one shot!

Although not shown in Figure 1.4, the installation program can optionally install Java demonstration programs. If these programs are installed, a demos directory is created underneath the installation directory.

Finally, a projects directory has been manually created underneath the installation directory. The projects directory contains the various projects that are developed throughout this book. You might want to create your own projects directory underneath the JDK installation directory and, as you work through this book, organize your projects as separate directories within this directory.

Applications

An application is a standalone Java program consisting of one or more class files. Unlike applets, applications do not run within the context of a Web browser.

Application Structure

Every application contains a class file and a method (a named region of code that implements some kind of behavior) within this class file where execution begins. This class file is known as the main class file, and this method is known as the main method.

? For more information on methods, see "Methods," page 81.

The following source code illustrates the simplest possible application:

[1] // applicationName

[2]

[3] class applicationName

[4] {

[5] public static void main (String [] args)

[6] {

[7] }

[8] }

Line 1 introduces what is known as a comment. Comments are used to describe source code. This comment identifies the name of the source file that contains this source code. The name is applicationName.java. When successfully compiled, a class file called applicationName.class will be created.

? For more information about comments, see "Comments," page 31.

Every application consists of at least one class specification. Classes are specified by the class reserved word followed by a name. Line 3 identifies applicationName as the name of this application's one and only class.

? For more information on classes, see "Declaring Classes," page 76.

Lines 4 and 8 specify brace ({ }) characters to mark the start and end of a class block (a region of source code that blueprints the structure of state [properties] and behavior [functionality via methods] for all objects that are created from the class).

Line 5 identifies a single method that is specified within the class block. This method is christened main and is specified as a public method, a static method, a void method, and a method that takes an array of String object arguments.

Don't worry if some of this does not make sense right now. It will become clear as you examine the Java language.

Building and Running Applications

The JDK java.exe tool is used to run applications. The name of the main class file (without the .class file extension) must be specified after java on the command line.

CAUTION

Including the .class file extension will cause java to display an error message instead of running the application.

An Example

To illustrate applications, let's build a text file viewer program. This program behaves like the DOS TYPE command or the UNIX CAT command. It displays the contents of various text files.

The following code listing specifies the viewer's implementation. This code is stored in a source file called view.java.

[1] // view.java

[2]

[3] import java.io.*;

[4]

[5] public class view

[6] {

[7] public static void main (String [] args)

[8] {

[9] if (args.length != 1)

[10] {

[11] System.out.println ("syntax: view filename");

[12] return;

[13] }

[14]

[15] FileInputStream fis = null;

[16]

[17] try

[18] {

[19] fis = new FileInputStream (new File (args [0]));

[20]

[21] int ch;

[22]
while ((ch = fis.read ()) != -1)

[23] System.out.print ((char) ch);

[24]

[25] System.out.println ("");

[26] }

[27] catch (FileNotFoundException e)

[28] {

[29] System.out.println ("File not found!");

[30] }

[31] catch (IOException e)

[32] {

[33] System.out.println ("Unable to read file!");

[34] }

[35] finally

[36] {

[37] if (fis != null)

[38] try { fis.close (); } catch (IOException e) {}

[39] }

[40] }

[41] }

Now examine the code to see how it works.

Line 1 contains a pair of // (forward-slash) characters that introduce a comment.

Line 3 contains an import directive. Import directives are shortcuts that save you from having to enter package information.

? For more information on import directives, see "The Import Directive," page 200.

? For more information on packages, see "What Are Packages?" page 218.

Classes are identified by using Java's class reserved word and are given names—such as view. Classes can be made visible or invisible to other classes by using Java's public reserved word.The { and } (brace) characters in lines 6 and 41 identify a class block—an integrated group of variables and methods.

Lines 9 through 13 specify an If statement that checks to see if at least one command line argument has been passed to the application. This argument will identify the name of a file to be viewed. If no command line arguments have been passed, the view application displays an error message and exits. (If statements are discussed in Chapter 3, "Operators, Expressions, and Statements.")

Line 11 specifies a System.out.println (String) method call that outputs the contents of its String argument to the standard output stream. By default, the contents of this argument appear on the monitor.

? For more information on standard output streams, see "Streams," page 456.

Line 15 initializes a FileInputStream variable called fis to null. (Variables are discussed in Chapter 3 and null is discussed in Chapter 2, "Data Types, Literals, and Variables.")

Lines 17 through 39 specify an exception handler for dealing with file input/output problems.

? For more information about exception handling, see Chapter 8, "Exception Handling," page 185.

? For more information about files, see "Files," page 446.

A source file must be compiled into one or more class files before the program can be run. Figure 1.5 shows the javac.exe tool compiling the view.java source file.

Figure 1.5. Compiling view.java with the javac.exe compiler.

 [image: image6.png]
CAUTION

The .java file extension must be specified when compiling an application's source file. The compiler will display an error message if .java is not specified.

CAUTION

The compiler displays an error message if the name of the application's .java file does not exactly match the name of the class in the source file. For example, the compiler would display an error message if the name of the class were View but the name of the .java file was view.

Figure 1.6 shows the java.exe tool running the text file viewer application. The contents of view.java are displayed.

Figure 1.6. Using java.exe to run the text file viewer application.

 [image: image7.png]
Applets

Applets (those being Web browser–dependent Java programs consisting of one or more class files) are "embedded" within a Web page. Basically, when a user "surfs" to a Web page that contains the HTML specification for an applet, the Web browser examines this specification to discover the name of the applet's main class file. It then proceeds to download this class file by contacting the computer that contains this class file and requesting that the class file be sent to the Web browser. After the Web browser receives this class file, it will start the JVM, pass the class file to the JVM, and go about its business.

As this class file runs, it might reference other class files that are part of the applet. The JVM will "ask" the Web browser to contact the computer to download the additional class files on an as-needed basis.

Applets interact with Web browsers via the JVM. For example, applets display graphics within a rectangular applet area within the Web page. Actually, they don't directly display graphics. Instead, applet byte code passes graphics information to the JVM, which passes this information to the Web browser. Conversely, when a user clicks the mouse within the applet area, the Web browser passes this information to the JVM, which calls appropriate byte code within the applet to deal with this mouse click.

HTML Specification

The applet's HTML specification consists of three tags: <APPLET>, <PARAM>, and </APPLET>.

The <APPLET> tag starts an applet specification. This tag contains several attributes, including code, width, and height.

The code attribute specifies the name of the applet's starting class file. The width attribute specifies the width (in pixels or percentage) of the applet area. The height attribute specifies the height (in pixels or percentage) of the applet area.

The <PARAM> tag describes an applet parameter (a configurable entity that makes it possible to modify an applet after the applet's source code has been compiled). This tag contains two attributes: name and value.

The name attribute specifies the name of the parameter while the value attribute specifies the parameter's value.

Each parameter should be given its own <PARAM> tag. In other words, param-eters do not share <PARAM> tags.

<PARAM> tags are optional. If an applet does not check for any parameters, <PARAM> tags are not specified. Even if an applet checks for parameters, the absence of one or more <PARAM> tags should not cause problems because the applet should properly handle this situation. (The applet could either work with default values or make decisions based on the absence of one or more parameters.)

An applet's starting class inherits a method from the Applet class called getParameter (String). This method is called with the name of a parameter (as an argument), and it searches through <PARAM> tags until it either finds a tag whose name attribute matches the parameter name argument or no match is found. If a match if found, the value attribute from the <PARAM> tag is read and returned from getParameter (String). Otherwise, a null value is returned to signal that no <PARAM> tag could be found.

<PARAM> tags do not have matching </PARAM> tags and they must be "sandwiched" between the <APPLET> and </APPLET> tags.

The </APPLET> tag ends an <APPLET> specification.

Applet Structure

Every applet contains a class file that interacts with the Web browser. This class file is known as the main class file. However, unlike applications, there is no main method where execution begins. Instead, the Web browser indirectly calls an applet's methods at various times in response to a variety of activities.

The following source code illustrates the simplest possible applet:

[1] public class appletName extends java.applet.Applet

[2] {

[3] }

Line 1 specifies a single public class called appletName that derives capabilities from the java.applet.Applet class. (Applet is the name of the class, and java.applet is the name of a package—a section of the class library—that contains the Applet class file.)

These capabilities include four methods that a browser (indirectly) calls to manage an applet's life cycle: init (), start (), stop (), and destroy ().

The init () method is called when an applet first begins its "life." You would place code within this method to initialize the applet. The init () method is never again called during the "life" of the applet.

The start () method is called immediately after the init () method and every time a Web page containing an applet is revisited. You would normally place code to start threads (separate units of execution) within this method.

The stop () method is called whenever a Web page containing an applet is replaced by another Web page, or just prior to a call to the destroy () method. You would normally place code to stop background threads within the stop () method.

The destroy () method is called when a Web browser is terminating. You would place code within this method to perform global cleanup duties. Obviously, the destroy () method is never called again.

For security reasons, applets are restricted in their activities. For example, applets cannot automatically send information to a user's printer. If they could, a malicious applet might attempt to print out hundreds of pages of paper, wasting paper and ink in the process. Applets are prevented from performing file operations and certain network activities, again for the user's protection.

Applet restrictions can be loosened by changing a browser's security settings. Furthermore, applets that are digitally signed (a complex security process) by their creators are allowed to access files, use the printer, and perform other sensitive tasks, provided that the user grants permission to the applet.

Building and Running Applets

The JDK appletviewer.exe tool is used to run applets. The name of an HTML file, that identifies the applet by using special HTML tags, must be specified after appletviewer on the command line. Applets also can be run from within Web browsers.

An Example

To illustrate applets, you can build a small image viewer applet that displays GIF and JPEG images.

The following code listing contains the image viewer's implementation. This code is stored in a source file called imageViewer.java.

[1] // imageViewer.java

[2]

[3] import java.applet.Applet;

[4] import java.awt.*;

[5]

[6] public class imageViewer extends Applet

[7] {

[8] Image image;

[9]

[10] public void init ()

[11] {

[12]

[13] String imageName = getParameter ("image");

[14] if (imageName != null)

[15] image = getImage (getCodeBase (), imageName);

[16] }

[17]

[18] public void paint (Graphics g)

[19] {

[20] if (image != null)

[21] g.drawImage (image, 0, 0, this);

[22] }

[23] }

Let's examine the code to see how it works.

Line 1 declares a comment while lines 3 through 4 declare import directives.

Lines 6 through 23 declare a class. Again, Chapter 4, "Encapsulation: Classes and Objects," discusses classes in detail.

Line 8 introduces a variable called image. This variable identifies the location of the bits and bytes making up an image.

? For more information about variables, see "Variables," page 38.

? For more information about images, see "Images," page 372.

Lines 10 through 16 specify an init () method. This method initializes the applet.

Line 13 calls the getParameter (String) (inherited from the Applet class) method to obtain the value of an applet parameter.

This method searches through the <PARAM> tags for a name attribute that matches the String argument. If a <PARAM> tag is found, the contents of the value attribute is returned by getParameter (String). Otherwise, a null value is returned.

Line 14 checks to make sure that getParameter (String) did not return a null value.

Line 15 calls the getImage (String, String) method (inherited from the Applet class) to get an image file associated with the value returned by getParameter (String).

The getCodeBase () method (also inherited from the Applet class) returns the name of the directory where the applet's class file and the image file are located.

Lines 18 through 22 specify a paint (Graphics) method. This method is called, indirectly by the Web browser, when it is time to update the applet area. Graphics identifies a graphics context (an object that represents a drawable surface, such as a video display or a printer).

? For more information on graphics and graphics contexts, see Chapter 14, "AWT, Part 1," page 347.

Line 21 specifies the drawImage (Image, int, int, ImageObserver) method to draw an image on a Web page.

A source file must be compiled into one or more class files before the program can be run. Figure 1.7 shows the javac.exe tool compiling the imageViewer.java source file.

Figure 1.7. Compiling imageViewer.java with the javac.exe compiler.

 [image: image8.png]

CAUTION
The .java file extension must be specified when compiling an applet's source file. The compiler will display an error message if .java is not specified.

CAUTION

The compiler displays an error message if the name of the applet's .java file does not exactly match the name of the class in the source file. For example, the compiler would display an error message if the name of the class were ImageViewer while the name of the .java file was imageViewer.

Before the image viewer can be run, an HTML file needs to be constructed so that appletviewer.exe (or the Web browser) can load the applet's starting class file, start the JVM, and get things going.

The following code describes the HTML for the image viewer applet. This HTML is stored in a text file called imageViewer.html (or imageviewer.html—unlike .java and .class files, case does not matter when naming .html files).

[1] <applet code="imageViewer.class" width=215 height=100>

[2] <param name="image" value="welcome.gif">

[3] </applet>

The <APPLET> tag identifies the applet's starting class file and describes the size of the applet area.

The name of the class file, specified by the code attribute, is imageViewer.class. The width of the applet area, specified by the width attribute, is 215 pixels. The height of the applet area, specified by the height attribute, is 100 pixels.

The <PARAM> tag identifies the name of the applet's single parameter and its value.

The name of the parameter, specified by the name attribute, is image. The value of the parameter, specified by the value attribute is welcome.gif.

Figure 1.8 shows the appletviewer.exe tool running the image viewer applet. A separate window displays the image.

Figure 1.8. Using appletviewer.exe to run the image viewer applet.

 [image: image9.png]
Figure 1.9 shows a Netscape Web browser running the image viewer application and displaying the contents of welcome.gif.

Figure 1.9. Using a Netscape Web browser to run the image viewer applet and view welcome.gif.

 [image: image10.png]

What's Next

Now that you've "sipped" some Java by way of this chapter's example programs, you may have acquired a taste for Java programming. You must understand the Java language before you can create Java programs. To that end, Chapter 2 will begin your education in Java language fundamentals.

Part II: Exploring the Language

Chapter 2: Data Types, Literals, and Variables

Chapter 3: Operators, Expressions, and Statements

Chapter 4: Encapsulation: Classes and Objects

Chapter 5: Inheritance: Superclasses and Subclasses

Chapter 6: Polymorphism: Dynamic Method Binding

Chapter 7: Initializers, Finalizers, and Inner Classes

Chapter 8: Exception Handling

Chapter 9: Packages

Chapter 2. Data Types, Literals, and Variables

The previous chapter introduced the Java language while examining application and applet source code. Before a Java program can be written, this language needs to be understood.

Starting with this chapter, the next several chapters explore most of the Java language. The only language topic not covered in these chapters is synchronization because this topic is covered in Chapter 16, "Multithreading."
Chapter 2 presents the following topics:

· What is a computer language?

· From ASCII to Unicode

· Comments

· Identifiers and reserved words

· Data types and literals

· Variables

What Is a Computer Language?

Billions of electrical signals flow through computer hardware as a computer program runs. These signals are the equivalent of precisely written computer instructions that are specified by a computer language.

Java, like other computer languages, specifies the basic entities of its language (such as comments, identifiers, reserved words, data types, literals, variables, and so on) and rules for combining these entities into meaningful source code.

Entities must be properly written out as source code according to the syntax and semantics rules of the Java language. An example of a syntax rule is ensuring that an integer only consist of a digit sequence. An example of a semantics rule is ensuring that an expression evaluates to an integer before using this integer as an index into an array. Violating either kind of rule results in compiler errors. For example, specifying 7X as an integer is a syntax error. Also, attempting to use a floating-point value as an array index is a semantics error.

From ASCII to Unicode

As you type keys on a computer's keyboard, the symbols that are assigned to these keys appear on the computer's monitor. These symbols have meaning to people, but are meaningless to computers.

Computers only manipulate binary digits (1s and 0s) and binary numbers (groups of binary digits arranged as bytes—8-bit quantities—and words—16-bit, 32-bit, 64-bit, or 128-bit quantities). (The term bits is commonly used as a synonym for binary digits. In fact, bits is a contraction of binary digits.)

Computers can manipulate symbols by manipulating the binary numbers that are associated with those symbols.

The combination of a binary number and a symbol's visual data is known as a character. A group of characters that completely define a written language's symbols is called a character set.

Creating a character set is an important task. The characters that constitute this set must completely define all symbols from a given written language (or languages). Because of its importance, the task of creating a character set is delegated to a standards committee.

Many years ago, the American National Standards Institute (ANSI) was given the task of creating a character set that would be used by all computing equipment within the United States and other countries. This character set would include letters A through Z, letters a through z, digits 0 through 9, punctuation, and some special symbols (such as the asterisk [*]).

ANSI ended up creating a standardized 7-bit character set called the American Standard Code for Information Interchange (ASCII). ASCII maps 128 binary numbers to 128 symbols. This character set is still being used.

Unfortunately, ASCII is not a complete character set for writing programs in any written language. Although ASCII works well with the written English language, it is not very accommodating to non-English written languages. For example, the accented characters that are part of the French and German written languages are not defined by ASCII. Also, many complex written languages, such as Chinese and Arabic, contain thousands of symbols. How could a character set that only has room for 128 entries possibly cope with all these symbols?

Several years ago, work began on a universal character set that would accommodate all the symbols from the Earth's major written languages. A lot of progress has since been made and the result is a standardized 16-bit character set called Unicode. Unicode maps up to 65,536 binary numbers to a maximum of 65,536 symbols. At present, slightly more than one-half of these binary numbers have been mapped.

For compatibility with ASCII, the first 128 characters of the Unicode character set are the ASCII characters. In other words, Unicode binary numbers 0 through 127 and ASCII binary numbers 0 through 127 map to the same symbols.

The Java language supports Unicode. The contents of a Java source file are examined by the compiler, and all non-Unicode characters are converted to Unicode before that source file is compiled.

This means that a developer can write source code using the native characters of his or her language. For example, the names of variables (discussed later in this chapter), methods, classes, interfaces, and packages (discussed in later chapters) can be specified using symbols that equate to letters and digits in any written language. This results in source code that is easier for the developer to write and read. However, operating-system support for displaying native characters as well as appropriate text-editor or word-processor software for entering and viewing these characters is still required.

For more information on Unicode, and to keep abreast of this standard, please visit the official Unicode Web site at http://www.unicode.org.

Comments

It is a very good idea to document your source code while you write this code. You should also update your documentation whenever you change this source code. Not only will source code documentation help others understand your code, it will also help you to remember what was going through your mind if and when you revisit your code at some future time.

Documenting Java source code is accomplished by taking advantage of comments. The textual information that you specify as part of a comment is completely ignored by the Java compiler. Therefore, comments do not result in any byte code being generated.

There are three kinds of comments: single-line, multi-line, and document.

Single-line Comments

A single-line comment spans a single line of text. This style of comment is introduced with the // characters. After the compiler detects //, all characters following // until the end of the current line are considered part of the comment.

The following code fragment illustrates a single-line comment:

// This is a single-line comment.

Multi-line Comments

A multi-line commentspans multiple lines. This style of comment begins with the /* characters and ends with the */ characters. All characters between /* and */ (including /* and */) are ignored by the compiler.

The following code fragment illustrates a multi-line comment:

/* This comment spans

 multiple lines. */

TIP

Multi-line comments are useful for commenting out portions of code during testing and debugging.

Documentation Comments

Like a multi-line comment, a documentation comment spans multiple lines. This style of comment begins with the /** characters and ends with the */ characters. All characters between /** and */ (including /** and */) are ignored by the compiler.

Documentation comments are useful for providing program documentation in the HTML format.

The following code fragment illustrates a documentation comment:

/** This is a documentation comment. Although not shown

 documentation comments contain special instructions

 that are used by javadoc.exe when producing HTML. */

A source file containing documentation comments is passed to the JDK's javadoc.exe tool, which takes the contents of these comments and builds several HTML files. (The javadoc.exe tool is extensively documented in the JDK documentation.)

TIP

It is a good idea to include comments in your source code. Not only can they help other people to understand your code, they can help you understand your code six months after it was written.

Identifiers and Reserved Words

The Java language uses identifiers to name variables, methods, classes, interfaces, and packages. However, some of these identifiers are reserved for Java's exclusive use. These reserved identifiers are known as reserved words.

Identifiers

Identifiers consist of uppercase letters (A through Z, or equivalent uppercase letters in other languages), lowercase letters (a through z, or equivalent lowercase letters in other languages), digits (0 through 9, or equivalent digits in other languages), and a handful of special characters such as the dollar sign ($) and underscore (_). Furthermore, the first character must be a letter, a dollar sign (or other currency character), or an underscore (or other connecting punctuation character). Any other character will result in a compiler error.

The length of an identifier (that is to say, the number of characters that constitute an identifier) is limited only by the length of the line in which the identifier appears. (Java's compiler does not impose a limit on the length of a line.)

The following example illustrates valid identifiers:

$amount

_total

salary

counter6

number_of_tickets

The following example illustrates invalid identifiers:

	PRIVATE
6tally
	An identifier cannot start with a digit.

	my*name
	An identifier cannot contain an asterisk.

	first name
	An identifier cannot contain a space.

Because Java is a case-sensitive language, identifiers that differ only in the case of their letters are treated as distinct. For example, count and Count are distinct identifiers because c and C are different characters.

Reserved Words

Reserved words are English words that describe certain language entities. For example, while is a reserved word that describes the notion of a While loop (discussed in the next chapter), whereas double is a reserved word that describes the notion of the double-precision floating-point data type (discussed later in this chapter). Reserved words cannot be used to name variables, methods, classes, interfaces, or packages.

? To see a table of Java's reserved words, see Appendix A, "Reserved Words," page 503.

Data Types and Literals

All computers process data. How is data specified in source code? The answer is to use a computer language's data types and literals.

Data Types

Java supports several data types that describe different kinds of data. These data types fall into two categories: primitive data types and reference data types.

Primitive data types are language-defined data types. Each primitive data type has a name, specifies how much memory is required to store a data item of that data type, and identifies a legal range of values from which a data item of that data type can be obtained. Table 2.1 lists Java's primitive data types.

Table 2.1. : Primitive Data Types

	PRIVATE
Data Type
	Size (Bits)
	Data Item Ranges

	boolean
	1
	true and false (expressed by the true and false reserved words)

	char
	16
	0 through 65,535 (expressed by character literals—discussed later in this chapter)

	byte
	8
	-128 to +127

	short
	16
	-32,768 to +32,767

	int
	32
	-232 to +232-1

	long
	64
	-264 to +264-1

	float
	32
	-3.4E+38 to +3.4E+38 (approximately)

	double
	64
	-1.8E+308 to +1.8E+308 (approximately)

The Java language specifies a reserved word for each primitive data type. Developers use these reserved words to identify the data types of variables and method return values. Each reserved word is the same as the data type name.

Data items of some primitive data types can be directly converted to data items of other primitive data types without requiring the cast operator (discussed in the next chapter) by taking advantage of promotion rules. These rules apply to the byte, char, float, int, long, and short data types.

Basically, a data item of a primitive data type with fewer bits might be converted to a data item of a primitive data type with more bits without the need of a cast operator because no bits are lost. For example, a 32-bit int data item could be converted to a 64-bit long data item without a cast operator. The upper 32 bits of the 64-bit long data item would simply be stuffed with zeroes (positive data items only) or ones (negative data items only).

There are nineteen promotion rules. These rules can be summarized as follows:

· byte to short, int, long, float, or double

· short to int, long, float, or double

· char to int, long, float, or double

· int to long, float, or double

· long to float or double

· float to double

Attempting to convert a data item of a primitive data type with more bits to a data item of a primitive data type with fewer bits can result in loss of information. As a result, demotion rules are used. These rules apply to the byte, char, double, float, int, long, and short data types.

Basically, a data item with more bits (or a different internal representation such as floating-point versus integer) would be converted to a data item with fewer bits by using a cast operator because bits (or precision in the case of floating-point values) would be lost.

There are 23 demotion rules. These rules can be summarized as follows:

· byte to char

· short to byte or char

· char to byte or short

· int to byte, short, or char

· long to byte, short, char, or int

· float to byte, short, char, int, or long

· double to byte, short, char, int, long, or float

Reference data types are user-defined data types. Whenever you create a class, you are creating a reference data type. (Reference data types will be discussed in Chapter 4, "Encapsulation: Classes and Objects.")

The String data type, used to identify String data, is a special reference data type. Although String is not intrinsic to the language, it does have some language support. For example, the Java language provides an operator that concatenates two String data items together. If one of these data items is not a String, the non-String data item will be converted to a String data item before concatenation takes place. (String concatenation is discussed in Chapter 3, "Operators, Expressions, and Statements.")

Literals

Java makes it possible to literally embed data items in source code. Literal data items (literals for short) include Boolean true/false values, characters, integers, floating-point numbers, strings, and the null reserved word.

Boolean Literals

A Boolean literal consists of the true or false reserved word.

The following example illustrates Boolean literals:

true

false

Character Literals

A character literal consists of a single character or an escape sequence (multiple characters that denote a single character) surrounded by single quote characters.

The following example illustrates character literals:

	PRIVATE
'A'
	uppercase letter A

	'0'
	digit 0

	'\t'
	horizontal tab escape sequence

	'\r'
	carriage return escape sequence

	'\n'
	newline escape sequence

	'\u20ac'
	European Euro monetary symbol Unicode escape sequence

A Unicode escape sequence specifies a single Unicode character. This escape sequence consists of characters \u immediately followed by exactly four hexadecimal digits (digits 0–9, letters A–F, and letters a–f).

Floating-Point Literals

A floating- point literal consists of optional digit characters followed by a decimal point character followed by optional digit characters followed by an optional exponent (an E or e character followed by a + or - character followed by digit characters) optionally followed by a lowercase letter f, an uppercase letter F, a lowercase letter d, or an uppercase letter D. If the f or F is specified, the data type is float. If the d or D is specified, the data type is double. If neither letter is specified, the data type defaults to double.

The following example illustrates floating-point literals:

	PRIVATE
6.5E+32
	A floating point literal of data type double

	7.5D
	A floating point literal of data type double

	0.0f
	A floating point literal of data type float

Integer Literals

An integer literal consists of a sequence of digits optionally followed by a lowercase letter l or an uppercase letter L. If the l or L is specified, the data type is long. If the l or L is not specified, the data type defaults to int.

Integers can be specified in one of three formats: decimal, hexadecimal, or octal.

Decimal format is indicated by a non-zero digit followed by digits. Hexadecimal format is indicated by the characters 0x or 0X in front of a sequence of digits, uppercase letters ranging from A through F and lowercase letters ranging from a through f. Octal format is indicated by a zero digit followed by digits that range from 0 through 7.

The following example illustrates integer literals:

	PRIVATE
659L
	A decimal integer literal of data type long.

	0x4a
	A hexadecimal integer literal of data type int.

	057l
	An octal integer literal of data type long.

String Literals

A string literal consists of zero or more characters surrounded by double quote (") characters.

The following example illustrates string literals:

"This is a string literal."

A string literal without characters is an empty string, as follows:

""

The Null Literal

A null reference literal consists of the null reserved word.

The following example illustrates null reference literals:

null

Variables

Data items are stored in memory locations that are symbolically identified by name. These memory locations are known as variables because their contents can vary while a program runs. Variables can be classified as either simple variables or array variables.

Simple Variables

A memory location that holds a single data item at any one time is known as a simple variable.

Declaration

Simple variables must be declared before they are used. The format of a simple variable declaration is

data_type identifier ';'

where

data_type is either

· A primitive data type (specified by using the boolean, byte, char, double, float, int, long, or short reserved words)

· A reference data type

and

identifier is the simple variable's name.

CAUTION
Reserved words cannot be used as simple variable names.

Initialization

If a simple variable is not explicitly initialized, it will either be initialized to a default value (based upon the variable's data type) if the variable is used as a field variable (discussed in Chapter 4) or not initialized to a default value if the variable is used as a local variable (also discussed in Chapter 4). Table 2.2 lists the default values for field variables.

Table 2.2. Default Values for Field Variables

	PRIVATE
Data Type
	Default Value

	boolean
	false

	char
	'\u0000'

	byte
	0

	short
	0

	int
	0

	long
	0l

	float
	0.0f

	double
	0.0d

	String
	null

	reference
	null

Simple variables can be explicitly initialized when they are declared.

The format of a simple variable declaration with explicit initialization is

data_type identifier '=' expression ';'

The assignment operator = is followed by an expression that must evaluate to a value whose data type matches data_type.

CAUTION

Boolean variables can only be assigned expressions that evaluate to the boolean data type.

Figure 2.1 illustrates simple variable declaration and initialization.

Figure 2.1. Declaring and initializing a simple variable.

[image: image11.png]PRIVATE "TYPE=PICT;ALT=graphics/02fig01.gif"
Each simple variable is given a unit of storage. The size of this storage is based upon the size of the variable's data type.

The following code fragment illustrates a variety of simple variable declarations and default/explicit initializations:

int x;

double rate = 4.5;

boolean first;

char grade_letter;

String name = "Dauphin";

Multiple simple variables can be specified within the same declaration by separating variable names with commas. Although each variable has its own name, all these variables share the same data type.

The following code illustrates declaration and initialization of multiple simple variables:

// Declare int variables x and y. The x variable will be

// initialized to the default value 0. The variable y will

// be explicitly initialized to 65.

int x, y = 65;

// Declare String variables country, province, and city.

// The country variable is initialized to Canada. The

// province and city variables are initialized to the

// default null values.

String country = "Canada", province, city;

Array Variables

A memory location that references a contiguous sequence of memory locations (known as array elements), where each array element holds a single data item, is known as an array variable. All array elements share the same data type.

Declaration

Like simple variables, array variables must be declared before they are used.

The format of an array variable declaration is

data_type identifier '[' ']' ';'

or

data_type '[' ']' identifier ';'

where

data_type is either

· A primitive data type (specified by using the boolean, byte, char, double, float, int, long, or short reserved words)

· A reference data type

and

identifier is the array variable's name.

CAUTION
Reserved words cannot be used as array variable names.

identifier is either followed or preceded by square brackets ([]) to distinguish an array variable from a simple variable.

Array variables contain a reference to (that is, the address of) a sequence of storage locations that will hold the array's data items. Initially, this reference is null.

Initialization

Array variables need to be initialized before they can be used.

The format of an array variable declaration with explicit initialization is

data_type identifier '[' ']' '=' '{' expression ',' … ',' expression '}' ';'

or

data_type '[' ']' identifier '=' '{' expression ',' … ',' expression '}' ';'

The assignment operator = is followed by a comma-separated list of expression s (surrounded by brace ({}) characters). Each expression must evaluate to a value whose data type matches data_type.

Figure 2.2 illustrates array variable declaration and initialization.

Figure 2.2. Declaring and initializing an array variable.

[image: image12.png]
The following code fragment illustrates array variable declaration and initialization:

int x [] = { 45, 23, 32 };

Due to the dynamic nature of Java arrays, you cannot specify the number of elements between square brackets. For example, the following code fragment would result in a compiler error:

int x [3] = { 45, 23, 32 };

Indexing

Array elements are indexed (accessed) by using an operator known as the index or subscript operator.

The index operator accesses an array element by specifying its numerical position within the array. (Numerical positions are integers.) The very first array element is located at position 0 and successive array elements are located at positions 1, 2, 3, and so on.

The following code fragment illustrates indexing:

int x [] = { 45, 23, 32 };

int i = x [1];

The length Property

Arrays have a property that returns the size of the array (that is, the number of memory locations occupied by the array). This property is called length.

The format of specifying length is

identifier '.' Length

where

identifier is the name of the array

and

a period (.) character separates the array name from the word length. This format can be interpreted as "fetch the value of the length property of the identifier array."

The following code fragment illustrates the length property:

String [] presidents = { "Washington", "Lincoln" };

int len = presidents.length;

Naming Variables

Variables can be named with any legal Java identifier that is not a reserved word.

Descriptive names should be chosen to identify variables. Some of these names might consist of multiple words.

There are two conventions for naming variables that consist of multiple words: using underscore characters to separate words (for example, grade_letters) and capitalizing the first letter of each word, except for the first word (for example, gradeLetters).

How you go about naming your variables is up to you, but be consistent, especially if somebody else will be reading your source code at a later date.

What's Next?

Now that you understand some simple language concepts (such as data types and variables), you need to learn how to make use of these concepts. For example, how do you combine literals and variables with operators to form expressions that produce new values? And how do you specify repetitive code, decisive code, and so on? The next chapter will clear up these mysteries.

Chapter 3. Operators, Expressions, and Statements

In the previous chapter, you started to explore the basics of the Java computer language. Specifically, you touched on the concepts of character sets, comments, identifiers, reserved words, data types, literals, and variables.

You still haven't gotten to the point where you can write Java programs. However, by the end of this chapter, you will have enough knowledge (with a small "nugget" of help in the form of a main method) to write a useful program that converts between Metric and non-Metric quantities.

Chapter 3 presents the following topics:

· Operators

· Expressions

· Mathematics

· Blocks

· Statements

· METRIX

Operators

Computer languages use operators to transform data items (known as operands) into new data items. For example, multiplying two numeric operands results in a new data item that represents the product of these operands.

Operators evaluate their operands according to a predefined evaluation order. For example, the division operator (/) evaluates its left-most operand before its right-most operand. As a second example, the post-increment operator (++) evaluates its operand before incrementing the operand while the pre-increment operator (++) increments its operand before evaluating the operand.

Unary, Binary, and Ternary Operators

Operators can be classified by the number of operands they require. These classifications include unary, binary, and ternary.

A unary operator transforms only one operand. The post-increment operator (++) is an example of a unary operator.

A binary operator transforms two operands. The addition operator (+) is an example of a binary operator.

A ternary operator transforms three operands. The conditional operator (?:) is an example of a ternary operator. (Incidentally, the conditional operator is the only ternary operator in Java's suite of operators.)

Prefix, Postfix, and Infix Operators

Operators also can be classified by where their operands are positioned, relative to the operator. These classifications include prefix, postfix, and infix.

A prefix operator is positioned before its operand. The negation operator (-) is an example of a prefix operator (such as -6).

A postfix operator is positioned after its operand. The post-increment operator (++) is an example of a postfix operator (such as count++).

An infix operator is positioned between its operands. The addition operator (+) is an example of an infix operator (such as total + 6).

Arithmetic Operators

The arithmetic operators perform various arithmetic operations on their operands. Each operator returns a value that contains the result.

Addition

The addition operator (+), a binary infix operator, adds two operands to produce a new value. Each operand must have a data type that is one of byte, char, double, float, int, long, or short.

The format of this operator is

operand1 '+' operand2
The following code fragment illustrates the addition operator:

int total = 0;

total = total + 79;

// total equals 79

Subtraction

The subtraction operator (-), a binary infix operator, subtracts one operand from another operand to produce a new value. Each operand must have a data type that is one of byte, char, double, float, int, long, or short.

The format of this operator is

operand1 '-' operand2
operand2 is subtracted from operand1.

The following code fragment illustrates the subtraction operator:

int numItems = 63;

numItems = numItems - 1;

// numItems equals 62

Multiplication

The multiplication operator (*), a binary infix operator, multiplies two operands to produce a new value. Each operand must have a data type that is one of byte, char, double, float, int, long, or short.

The format of this operator is

operand1 '*' operand2
The following code fragment illustrates the multiplication operator:

double monthlyInterestRate = 0.005;

double accountBalance = 39568.0;

double interest = accountBalance * monthlyInterestRate;

// interest equals 197.84

Division

The division operator (/), a binary infix operator, divides one operand by another operand to produce a new value. Each operand must have a data type that is one of byte, char, double, float, int, long, or short.

The format of this operator is

operand1 '/' operand2
operand1 is divided by operand2.

The following code fragment illustrates the division operator:

double total = 211.0;

double count = 5;

double average = total / count;

// average equals 42.2

If the denominator has the float or double data type and is equal to 0.0, the division will result in a special value of either positive infinity or negative infinity (depending upon whether the numerator is positive or negative).

CAUTION
If the denominator is zero and both operands are of an integer type (such as byte, short, int, or long), the virtual machine throws an exception of data type ArithmeticException.

? To learn more about ArithmeticException, see Chapter 8, "Exception Handling," page 185.

Modulus

The modulus operator (%), a binary infix operator, divides one integer operand by another integer operand and returns the remainder of the division. Each operand must have a data type that is one of byte, char, int, long, or short.

The format of this operator is

operand1 '%' operand2
The following code fragment illustrates the modulus operator:

int rem = 65 % 2;

// rem equals 1

CAUTION
If the denominator is zero, the virtual machine throws an exception of data type ArithmeticException.

Post-increment and Pre-increment

The post-increment operator (++), a unary postfix operator, adds 1 to its integer operand. Before the increment is performed, the value of the operand is returned. The operand must have a data type that is one of byte, char, double, float, int, long, or short, and must not be a literal.

The format of this operator is

operand '++'

The pre-increment operator (++), a unary prefix operator, adds 1 to its integer operand. The value of the operand is returned after the increment is performed. The operand must have a data type that is one of byte, char, double, float, int, long, or short, and must not be a literal.

The format of this operator is

'++' operand
The following code fragment illustrates the postincrement and preincrement operators:

int count = 10;

int pre = ++count; // pre equals 11

int post = count++; // post equals 11

// count equals 12

Post-decrement and Pre-decrement

The post-decrement operator (--), a unary postfix operator, subtracts 1 from its integer operand. Before the decrement is performed, the value of the operand is returned. The operand must have a data type that is one of byte, char, double, float, int, long, or short, and must not be a literal.

The format of this operator is

operand '--'

The pre-decrement operator (--), a unary prefix operator, subtracts 1 from its integer operand. The value of the operand is returned after the decrement is performed. The operand must have a data type that is one of byte, char, double, float, int, long, or short, and must not be a literal.

The format of this operator is

'-' operand
The following code fragment illustrates the post-decrement and pre- decrement operators:

int count = 10;

int pre = --count; // pre equals 9

int post = count--; // post equals 9

// count equals 8

Unary Minus and Unary Plus

The unary minus operator (-), a unary prefix operator, negates the value of its operand. Negative operands are converted to positive operands and vice versa. The operand must have a data type that is one of byte, char, double, float, int, long, or short.

The format of this operator is

'-' operand
The unary plus operator (+), a unary prefix operator, doesn't do anything. (It is included for completeness.) The operand must have a data type that is one of byte, char, double, float, int, long, or short.

The format of this operator is

'+' operand
The following code fragment illustrates the unary plus and unary minus operators:

int w = 7;

int x = 3 - -w;

int y = w - +x;

// x equals 10

// y equals -3

Array Index Operator

The array index operator ([]), a unary operator, is used to access an array element and return its value.

The format of this operator is

identifier '[' operand ']'

identifier specifies the name of the array.

operand specifies an integer offset within this array. This offset is relative to zero because the first element in an array is always located at offset zero. operand must have a data type that is one of byte, char, int, long, or short.

The following code fragment illustrates the array index operator:

// Create an array variable that is composed of three int

// elements and assign integer literals 45, 23, and 32 to

// these elements.

int x [] = { 45, 23, 32 };

// Access the second element within the array by specifying

// the integer 1 with the [] index operator. The value of

// this element will be assigned to int variable i.

int i = x [1];

// i equals 23

Assignment Operator

The assignment operator (=), a binary infix operator, assigns an operand to a variable.

The format of this operator is

identifier '=' operand;
identifier specifies the name of the variable.

The following code fragment illustrates the assignment operator:

boolean first;

first = true;

Bit Manipulation Operators

The bit manipulation operators manipulate the binary digits (bits) of their integer operands. Each operator returns a value that consists of the resulting binary digits.

Bitwise AND

The bitwise AND operator (&), a binary infix operator, compares its integer operands by comparing respective bit positions. If both bits are equal to 1 then the result bit is 1; otherwise, the result bit is 0. Each operand must have a data type that is one of byte, char, int, long, or short.

The format of this operator is

operand1 '&' operand2
The following code fragment illustrates the bitwise AND operator:

short x = 13 & 3;

// x equals 1

Bitwise Inclusive OR

The bitwise inclusive OR operator (|), a binary infix operator, compares its integer operands by comparing respective bit positions. If both bits are equal to 0 then the result bit is 0; otherwise, the result bit is 1. Each operand must have a data type that is one of byte, char, int, long, or short.

The format of this operator is

operand1 '|' operand2
The following code fragment illustrates the bitwise inclusive OR operator:

short x = 13 | 3;

// x equals 15

Bitwise Exclusive OR

The bitwise exclusive OR operator (^), a binary infix operator, compares its integer operands by comparing respective bit positions. If one bit is equal to 0 and the other bit is equal to 1 then the result bit is 1; otherwise, the result bit is 0. Each operand must have a data type that is one of byte, char, int, long, or short.

The format of this operator is

operand1 '^' operand2
The following code fragment illustrates the bitwise exclusive OR operator:

short x = 13 ^ 3;

// x equals 14

Bitwise shift left

The bitwise shift left operator (<<), a binary infix operator, shifts the bits in the left-most operand left by the number of bit positions specified in the right-most operand. For each shift left, a 0 bit is shifted into the right-most bit.

The format of this operator is

operand1 '<<' operand2
The following code fragment illustrates the bitwise shift left operator:

int x = -1 << 1;

// x equals -2

Bitwise Shift Right with Sign Extension

The bitwise shift right with sign extension operator (>>), a binary infix operator, shifts the bits in the left-most operand right by the number of bit positions specified in the right-most operand. For each shift right, the left-most bit (the sign bit) is copied right. If this bit is 0, a 0 is copied one bit position to the right. If this bit is 1, a 1 is copied one bit position to the right.

The format of this operator is

operand1 '>>' operand2
The following code fragment illustrates the bitwise shift right with sign extension operator:

int x = -1 >> 1;

// x equals -1

Bitwise Shift Right with Zero Extension

The bitwise shift right with zero extension operator (>>>), a binary infix operator, shifts the left-most operand right by the number of bit positions specified in the right-most operand. For each shift right, a 0 bit is shifted into the left-most bit.

The format of this operator is

operand1 '>>>' operand2
The following code fragment illustrates the bitwise shift right with zero extension operator:

int x = -1 >>> 1;

// x equals 2147483647

Bitwise Complement

The bitwise complement operator (~), a unary prefix operator, toggles its operand's bit values (that is, 1s are converted to 0s, and 0s are converted to 1s).

The format of this operator is

'~' operand
The following code fragment illustrates the bitwise complement operator:

int x = -1;

x = ~x;

// x equals 0

Boolean Operators

The Boolean operators perform logical (that is to say true or false) operations on their Boolean operands. Each operator returns either a true or false value.

Boolean AND

The Boolean AND operator (&), a binary infix operator, performs a Boolean AND operation on its Boolean operands. Both operands are examined to see if they are true. If this is the case, the Boolean AND operator returns the Boolean true value. Otherwise, this operator returns the Boolean false value.

The format of this operator is

operand1 '&' operand2
The following code fragment illustrates the Boolean AND operator:

boolean x = true;

boolean y = false;

boolean result = x & y;

// result equals false

Boolean Inclusive OR

The Boolean inclusive OR operator (|), a binary infix operator, performs a Boolean inclusive OR operation on its Boolean operands. Both operands are examined to see if they are false. If this is the case, the Boolean OR operator returns the Boolean false value. Otherwise, this operator returns the Boolean true value.

The format of this operator is

operand1 '|' operand2
The following code fragment illustrates the Boolean inclusive OR operator:

boolean x = true;

boolean y = false;

boolean result = x | y;

// result equals true

Boolean Exclusive OR

The Boolean exclusive OR operator (^), a binary infix operator, performs a Boolean exclusive OR operation on its Boolean operands. Both operands are examined to see if one of them is true while the other is false. If this is the case, the Boolean exclusive OR operator returns the Boolean true value. Otherwise, this operator returns the Boolean false value.

The format of this operator is

operand1 '^' operand2
The following code fragment illustrates the Boolean exclusive OR operator:

boolean x = true;

boolean y = false;

boolean result = x ^ y;

// result equals true;

Boolean NOT

The Boolean NOT operator (!), a unary prefix operator, performs a Boolean NOT operation on its Boolean operand. If the operand has the Boolean value true, this operator returns the Boolean value false. Otherwise, if this operand has the Boolean value false, this operator returns the Boolean value true.

The format of this operator is

'!' operand
The following code fragment illustrates the Boolean NOT operator:

boolean x = true;

boolean result = !x

// result equals false

Cast Operator

The cast operator ('(' data_type ')'), a unary prefix operator, converts the data type of its operand to another data type. Casting is used to demote one data type to another data type (that is to say, to convert a higher- precision value to a lower-precision value).

The format of this operator is

'(' data_type ')' operand
The following code fragment illustrates the cast operator:

int i = 3;

short x = (short) i;

// The 32-bit int value I is converted to the 16-bit short

// value x by chopping off the upper 16 bits of i. Since

// those bits contain 0s, x also equals 3 after the

// conversion.

Conditional Operator

The conditional operator (?:), a ternary operator, evaluates a Boolean operand and, if this operand is true, returns the value of the operand after the ? character. Otherwise, it returns the value of the operand after the ‘:’ character.

The format of this operator is

'(' operand1 ')' '?' operand2 ':' operand3
If operand1 evaluates to the Boolean value true, evaluate operand2 and return its value. If operand1 evaluates to the Boolean value false, evaluate operand3, and return its value.

CAUTION
The operands following the ? and : characters must have the same data types; otherwise, a compiler error occurs.

The following code fragment illustrates the conditional operator:

Boolean first = true;

String name = (first) ? "first" : "second";

// name equals "first"

Logical Operators

The logical operators perform logical operations on their Boolean operands. Although logical AND is similar to Boolean AND and logical OR is similar to Boolean inclusive OR, there is one difference.

The Boolean AND and Boolean inclusive OR operators evaluate both operands before returning a result, while the logical AND and logical OR operators might not evaluate the right-most operand.

Short Circuiting and Side Effects

Sometimes, it isn't necessary to evaluate both operands. For example, if the left-most operand is false and a Boolean AND operator is being used, why evaluate the right-most operand because the entire expression will evaluate to false? As a second example, if the left-most operand is true and a Boolean inclusive OR operator is being used, why evaluate the right-most operand because the entire expression will evaluate to true?

The logical AND operator does not evaluate the right-most operand if the left-most operand is false.

The logical OR operator does not evaluate the right-most operand if the left-most operand is true.

The technique of not always evaluating the right-most operand is known as short-circuiting and can improve performance by not executing code that doesn't need to be executed.

However, there is a problem with short-circuiting and that problem is known as the side effect problem, which is extraneous code that is executed during the evaluation of an operand.

The following code fragment illustrates a side effect (incrementing age) with the Boolean inclusive OR operator:

int age = 64;

boolean obtainPension = true | ++age > 64;

// age equals 65

The following code fragment illustrates a side effect (incrementing age) with the logical OR operator:

int age = 64;

boolean obtainPension = true || ++age > 64

// age equals 64

In the first example, the age variable is incremented to 65, but in the second example, the age variable is not incremented. Depending upon the original program design guidelines, this could be a bug.

CAUTION
Avoid using the logical AND and the logical OR operators in expressions that have side effects because this can be the source of subtle and hard-to-find bugs.

Logical AND

The logical AND operator (&&), a binary infix operator, evaluates the left-most operand to see if it is false. If false, evaluation ceases and the result is false. If the left-most operand is true, this operator evaluates the right-most operand. If that operand is false, the result is false. If that operand is true, the result is true. In other words, the result is true if both operands are true; otherwise, the result is false.

The format of this operator is

operand1 '&&' operand2
The following code fragment illustrates the logical AND operator:

boolean x = true;

boolean y = false;

boolean result = x && y;

// result equals false

Logical OR

The logical OR operator (||), a binary infix operator, evaluates the left-most operand to see if it is true. If true, evaluation ceases and the result is true. If the left-most operand is false, this operator evaluates the right-most operand. If that operand is true, the result is true. If that operand is false, the result is false. In other words, the result is false if both operands are false; otherwise, the result is true.

The format of this operator is

operand1 '||' operand2
The following code fragment illustrates the logical OR operator:

boolean x = true;

boolean y = false;

boolean result = x || y;

// result equals true

Reference Data Type Checking Operator

The reference data type checking operator (instanceof), a binary infix operator, determines if an object is an instance of a class. A true value is returned if the object is an instance. Otherwise, a false value is returned.

The format of this operator is

object_identifier 'instanceof' class_identifier
whereobject_identifier is the name of an object and class_identifier is the name of a class.

The following code fragment illustrates the reference data type checking operator:

String s = "abc";

boolean result = s instanceof String;

// result equals true

Relational Operators

The relational operators determine the relative positions of their operands (on a numeric basis). These operators return Boolean true or false values.

Less Than

The less than operator (<), a binary infix operator, determines if its left-most operand is numerically less than its right-most operand. A Boolean true value is returned if this is the case.

The format of this operator is

operand1 '<' operand2
The following code fragment illustrates the less than operator:

int i = 6;

boolean result = i < 10;

// result equals true

Less Than or Equal To

The less than or equal to operator (<=), a binary infix operator, determines if its left-most operand is numerically less than or equal to its right-most operand. A Boolean true value is returned if this is the case.

The format of this operator is

operand1 '<=' operand2
The following code fragment illustrates the less than or equal to operator:

int i = 6;

boolean result = i <= 10;

// result equals true

Greater Than

The greater than operator (), a binary infix operator, determines if its left-most operand is numerically greater than its right-most operand. A Boolean true value is returned if this is the case.

The format of this operator is

operand1 '>' operand2
The following code fragment illustrates the greater than operator:

int i = 6;

boolean result = i > 10;

// result equals false

Greater Than or Equal To

The greater than or equal to operator (=), a binary infix operator, determines if its left-most operand is numerically greater than or equal to its right-most operand. A Boolean true value is returned if this is the case.

The format of this operator is

operand1 '>=' operand2
The following code fragment illustrates the greater than or equal to operator:

int i = 6;

boolean result = i >= 10;

// result equals false

Equal To

The equal to operator (==), a binary infix operator, determines if both operands are numerically equal. A Boolean true value is returned if this is the case.

The format of this operator is

operand1 '==' operand2
The following code fragment illustrates the equal to operator:

int i = 6;

boolean result = i == 10;

// result equals false

Not Equal To

The not equal to operator (!=), a binary infix operator, determines if both operands are numerically unequal. A Boolean true value is returned if this is the case.

The format of this operator is

operand1 '!=' operand2
The following code fragment illustrates the not equal to operator:

int i = 6;

boolean result = i != 10;

// result equals true

String Concatenation Operator

The string concatenation operator (+), a binary infix operator, concatenates its right-most String operand to its left-most String operand. If the right-most String operand is not a String, it is converted to a String before concatenation occurs.

The format of this operator is

operand1 '+' operand2
The following code fragment illustrates the string concatenation operator:

String one = "abc";

one = one + "def";

// one equals "abcdef"

Expressions

Developers create expressions out of one or more operators and their required numbers of operands. The JVM evaluates an expression and returns its value, which has a specific data type.

An expression is evaluated in such a manner that certain operators get to evaluate their operands before other operators. This is known as precedence. For example, the multiplication operator has a higher precedence than the addition operator because it is natural to perform multiplication before addition.

The following code fragment illustrates the precedence of an expression's operators:

int i = 8 + 3 * 2;

// i equals 14;

The multiplication operator gets first crack. It multiplies the 3 and 2 to produce 6 as a product. The addition operator is then allowed to add this 6 to the 8, producing a final value of 14.

Sometimes, it is not desirable to have a higher precedence operator evaluate before a lower precedence operator. In these cases, the parentheses characters (()) are used to modify precedence. Placing part of an expression between parentheses causes that part to be evaluated before the rest of the expression. Furthermore, multiple parentheses can be nested inside of each other to further control evaluation order.

The following code fragment illustrates overriding the precedence of an expression's operators:

int i = (8 + 3) * 2;

// i equals 22;

The tables are turned! Because of the placement of the parenthesis operator, the addition operator is evaluated first.

? For a listing of Java's 47 operators, their precedence, and evaluation orders, see Appendix B, "Operator Precedence," page 505.

Mathematics

As you've just seen, Java supplies a variety of operators for performing various arithmetic operations. Of these operators, the division operator can generate some surprising results when used to divide floating-point values. These results are known as the IEEE 754 special values.

IEEE 754 Special Values

Back in the mid 1980s, the Institute for Electrical Engineering and Electronics (IEEE) released a standard that precisely describes the internal format of floating-point numbers. This standard also describes the ways in which floating-point operations are carried out.

What happens when an attempt is made to divide a positive floating-point number by zero, a negative number by zero, or even zero by zero? With the IEEE 754 standard, there is no guessing. Believe it or not, these floating-point operations are allowed to continue. However, the resulting values are treated as special floating-point values.

If you attempt to divide a positive floating-point number by zero, a special value is returned that is recognized as +Infinity. Conversely, if you attempt to divide a negative floating-point number by zero, -Infinity is returned. Finally, any attempt to divide zero by zero results in the return of a value recognized as NaN (Not a Number).

The +Infinity, -Infinity, and NaN character sequences are displayed if you try to call a System.out.println method to display the result of one of the aforementioned floating-point operations. For example, the following code fragment does just this:

System.out.println (1.0 / 0.0); // Outputs +Infinity

System.out.println (-1.0 / 0.0); // Outputs -Infinity

System.out.println (0.0 / 0.0); // Outputs NaN

On the other hand, if both of the division operator's operands are integers, an ArithmeticException object is thrown.

Precision

Some floating-point values (such as 1/3) require an infinite number of bits to be stored exactly. This is not possible on a computer with finite storage. Because all values must be stored using a finite number of bits, some loss of precision is bound to occur. This loss increases as calculations are performed. Sooner or later, you'll notice this loss as you use Java (or any other programming language) to perform floating-point calculations. With the exception of numerically intensive scientific software, you will probably never have to deal with this issue. (Dealing with loss of precision is the subject of university-level numerical analysis courses.)

The Math Class

I'm going to "jump the gun" on Chapter 4, "Encapsulation: Classes and Objects," by briefly introducing you to Java's Math class. This class provides what are known as class methods that you can call to perform a variety of mathematical operations.

You will find methods for performing trigonometry, calculating the square root of a number, determining the absolute value of a number, generating random numbers, and so on. Some of these methods will be used in later chapters.

In addition to these methods, Math provides a pair of read-only variables that represent the mathematical values of PI and the natural logarithm E. (The concept of a read-only variable is discussed in the next chapter.)

Because Math is a class and classes have not yet been discussed, no more will be said about Math in this chapter.

Blocks

When you write Java code, you'll often find yourself placing this code between a pair of brace characters ({}). These characters delimit what is known as a block (that is to say, a block of code).

There are different kinds of blocks. For example, a class block consists of field variable and method declarations, whereas a method block consists of statements. (You'll learn more about class blocks and method blocks in the next chapter.) However, there is a third kind of block known as a statement block. This block is used when describing statements.

A statement block identifies a region of source code that serves as the body of decision statements or loop statements. A statement block can consist of a single statement that is not surrounded by braces, or it can consist of zero or more statements surrounded by braces (although it is common to place two or more statements between braces).

You can nest statement blocks within statement blocks and create really complex statements.

The following code fragment illustrates a simple block:

// The following block computes the area of a circle.

{

 double PI = 3.14159;

 double radius = 25.5;

 double area = PI * radius * radius;

}

You can declare variables within statement blocks. As a rule, variables declared within an outer statement block are visible to code within inner statement blocks. But if an inner statement block declares a variable with the same name as a variable declared within an outer statement block, the variable within the inner statement block is said to hide the variable within the outer statement block. The visibility of variables declared within statement blocks is known as scope.

More will be said about statement blocks when statements are discussed.

Statements

Developers use statements to specify standalone units of executable code. Statements make it possible to declare variables, assign an evaluated expression's result to a variable of the same data type as the expression, iterate over a group of statements, make decisions, return from a method, and so on.

Decision statements and loop statements typically consist of a header followed by a statement block. The header, in the case of a decision statement, determines whether or not a statement block is executed. In the case of a loop statement, the header keeps track of the next loop iteration.

Assignment

The Assignment statement assigns a value to a variable.

The format of the Assignment statement is

identifier '=' expression ';'

where

identifier is the name of the variable.

expression is evaluated to obtain the variable's value. This value must be of a data type that matches identifier 's data type. (However, if expression 's data type occupies more bits than identifier 's data type, the cast operator, as discussed in Chapter 2, "Data Types, Literals, and Variables," is required.)

The following code fragment illustrates the Assignment statement:

short s;

// The value 300000 is interpreted as an int. This value occupies four bytes.

// However, a short can only accommodate two bytes. Therefore, some information

// will be lost when assigning 30000 to the short variable. This means that a

// (short) cast operator is required.

s = (short) 300000;

Break

The Break statement exits from a Do-while loop statement block, a For loop statement block, a Switch statement block, or a While loop statement block.

The format of the Break statement is

"break" [label] ';'

label specifies where execution should proceed when dealing with nested loops (such as loops within loops) or Switch statements.

The following code fragment illustrates the Break statement being used to exit from a For loop statement block:

// Print the values of I from 0 through 5.

for (int i = 0; i < 10; i++)

{

 if (i >= 5)

 break;

 else

 System.out.println (i);

}

The following code fragment illustrates the Break label statement:

// Print the values of I from 0 through 0. For each value

// of I, print the values of J from 0 through 1.

outer_for: // A colon character must follow a label.

for (int i = 0; i < 4; i++)

 for (int j = 0; j < 4; j++)

 if (j == 2)

 break outer_for;

 else

 System.out.println ("i = " + i + ",j = " + j);

Continue

The Continue statement terminates the current iteration of a loop and continues with the next iteration of either the current loop or a labeled loop.

The format of the Continue statement is

"continue" [label] ';'

Where

label specifies where execution should proceed when dealing with nested loops.

The following code fragment illustrates the Continue statement:

// Print the values of I from 0 through 5.

for (int i = 0; i < 10; i++)

 if (i > 5)

 continue;

 else

 System.out.println (i);

The following code fragment illustrates the Continue label statement:

// Print the values of I from 0 through 3. For each value

// of I, print the values of J from 0 through 1.

outer_for: // A colon character must follow a label.

for (int i = 0; i < 4; i++)

 for (int j = 0; j < 4; j++)

 if (j == 2)

 continue outer_for;

 else

 System.out.println ("i = " + i + ",j = " + j);

Do-while Loop

The Do-while loop statement iterates over a statement block, while a Boolean expression evaluates to true.

The format of the Do-while loop statement is

"do"

 statement_block

"while" '(' test_expr ')' ';'

This loop always iterates at least once because test_expr is evaluated at the bottom of the loop, after the block of statements have executed.

The following code fragment illustrates the Do-while loop statement:

int i = 0;

// Print the values of i from 0 through 9.

do

{

 System.out.println (i);

 i = i + 1;

}

while (i < 10);

For Loop

The For loop statement iterates over a statement block a specific number of times.

The format of the For loop statement is

"for" '(' init_expr_list ';' test_expr ';' advance_expr_list ')'

 statement_block
Where

init_expr_list is a comma-delimited list of initialization expressions. Simple variables that are restricted to the context of the For loop statement can be declared within init_expr_list.

test_expr is an expression that is evaluated each time through the loop. If it evaluates to false, the loop exits.

advance_expr_list is a comma-delimited list of expressions that are used to advance variable values as the loop progresses.

The following code fragment illustrates the For loop statement:

// Print the values of i from 0 through 9.

for (int i = 0; i < 10; i++)

 System.out.println (i);

If

The If decision statement makes simple decisions.

The format of the If decision statement is

"if" '(' expression ')'

 statement_block
expression evaluates to either true or false. If true, statement_block is executed.

The following code fragment illustrates the If decision statement:

int bonus = 30;

int count = 550;

if (count > 500)

 count += bonus;

// count equals 580

If-else

The If-else decision statement makes two-way decisions.

The format of the If-else decision statement is

"if" '(' expression ')'

 statement_block1

"else"

 statement_block2
Where

expression evaluates to either true or false. If true, statement_block1 is executed. If false, statement_block2 is executed.

The following code fragment illustrates the If-else decision statement:

char grade_letter = 'A';

if (grade_letter == 'A')

 System.out.println ("Congratulations");

else

 System.out.println ("Better luck next time.");

// Congratulations is output.

Nested If

The Nested If decision statement makes multi-way decisions.

The format of the Nested If decision statement is

"if" '(' expression1 ')'

 statement_block1

"else" "if" '(' expression2 ')'

 statement_block2

…

"else" "if" '(' expressionN ')'

 statement_blockN

"else"

 default_statement_block
Where

expression1 is evaluated. If true, statement_block1 is executed. If false, expression2 is evaluated. If true, statement_block2 is executed. If false, expressionN is evaluated. If true, statement_blockN is executed. If false, default_statement_block is executed.

The following code fragment illustrates the Nested If decision statement:

int toolCode = 3;

if (toolCode == 0)

{

 System.out.println ("Screwdriver");

 int quantity = 65;

 // Do something with quanity.

}

else if (toolCode == 1)

 System.out.println ("Hammer");

else

 Ssystem.out.println ("Unknown tool");

Return

The Return statement returns control from a called method to the calling method.

The format of the Return statement is

"return" [expression] ';'

Methods and the Return statement are discussed in Chapter 4.

Switch

The Switch decision statement makes multi-way decisions by comparing a specific integer value (not a true or false value) to multiple cases. As soon as there is a match, the block of code associated with a case is executed.

The format of the Switch decision statement is

"switch" '(' expression ')'

'{'

 "case" value1 ':'

 statement_block1

 "break" ';'

 "case" value2 ':'

 statement_block2

 "break" ';’

 "case" valueN ':'

 statement_blockN

 "break" ';'

 ["default" ':'

 default_statement_block ']'

'}'

Where

expression is evaluated. (This expression must have a byte, char, int, long, or short data type.) If the integer value matches value1, statement_block1 is executed. If the integer value matches value2, statement_block2 is executed. If the integer value matches valueN, statement_blockN is executed. If neither value matches and the Switch decision statement provides a default, default_statement_block is executed.

The following code fragment illustrates the Switch decision statement:

char grade_letter = 'A';

switch (grade_letter)

{

 case 'A': System.out.println ("You're a genius!");

 break;

 case 'B': System.out.println ("Congratulations!");

 break;

 case 'C': System.out.println ("Not too bad!");

}

// You're a genius! is output.

The break reserved word identifies a Break statement. This statement is used to break out of the Switch statement block. Without this statement, execution would fall through to the next case and execute that code.

Throw

The Throw statement throws an object that describes an exception to the JVM. (The Throw statement is discussed in Chapter 8, "Exception Handling.")

Variable Declaration

The Variable declaration statement declares a variable and optionally assigns a value to the variable. Variable declaration statements were used in Chapter 2 to initialize simple variables and array variables.

While Loop

The While loop statement iterates over a statement block while an expression is true. This statement differs from the Do-while loop statement in that the While loop statement tests the expression at the top of the loop whereas the Do-while loop statement tests the expression at the bottom of the loop.

The format of the While loop statement is

"while" '(' test_expr ')'

statement_block
The following code fragment illustrates the While loop statement:

int i = 0;

// Print the values of i from 0 through 9.

while (i < 10)

{

 System.out.println (i);

 i = i + 1;

}

METRIX

Have you ever needed to convert between a Metric and non-Metric quantity but couldn't remember the exact conversion formula? If you've been in this situation, you probably have wished for a computer program that could remember these conversion formulae and do the work for you.

METRIX is a Java application that converts between Metric and non-Metric temperatures and distances. Specifically, METRIX converts between degrees Celsius and degrees Fahrenheit. It also converts between miles and kilometers.

METRIX is deliberately limited to converting between the aforementioned quantities. For example, if you want to convert between pounds and kilograms, you'll need to add code to METRIX to make this happen. After all, I'm not going to deprive you of the joy of enhancing this program to suit your exact needs.

Setting Up METRIX

To set up METRIX, begin by double-clicking your MS-DOS icon (if you are using Windows), and go to a command prompt.

If you created a projects directory in Chapter 1, "Introducing Java," make projects your current directory. (If you do not have a projects directory, now is as good a time as any to create one.)

Assuming that projects is located within c:\jdk1.2\, enter the command cd \jdk1.2\projects to change to this directory.

From within your projects directory, create a directory called metrix (for example, md metrix). (If you prefer, you can create this directory entirely in uppercase. For example, you could issue the command md METRIX to create this directory. Case does not matter when it comes to directories.)

Download the file metrix.java from the Macmillan Web site, and place this file in your metrix directory.

Compiling METRIX

Compilation is a simple process. It involves running the javac.exe program and specifying the name of the source file as an argument to this program.

At the command prompt, enter the following line:

c:\jdk1.2\projects\metrix>javac metrix.java

CAUTION

The .java file extension must be specified when compiling an application's source file. The compiler will display an error message if .java is not specified.

If the compiler displays an error message, you might have typed Metrix.java or METRIX.java instead of metrix.java.

CAUTION
You must specify metrix.java and not Metrix.java, METRIX.java, or any other combination of lowercase/uppercase letters. The compiler is very sensitive to case and will display an error message if the class name (metrix) does not match the filename (metrix).

After compilation is finished, you should end up with a class file called metrix.class.

Figure 3.1 shows the compilation process.

Figure 3.1. Compiling metrix.java with the javac.exe compiler.

PRIVATE "TYPE=PICT;ALT=graphics/03fig01.gif"[image: image13.png]
Running METRIX

Congratulations! You successfully compiled metrix.java and are now ready to run metrix.class. All you need to do is fire up the java.exe program, and specify metrix.class as an argument to this program.

CAUTION
The .class file extension must not be specified; otherwise, the java.exe program will display an error message.

Figure 3.2 shows the process of running metrix.class with java.exe to display usage information.

Figure 3.2. Running metrix.class with java.exe to display usage information.

PRIVATE "TYPE=PICT;ALT=graphics/03fig02.gif"[image: image14.png]
Once you learn how to specify the correct number of command-line arguments (which you can ascertain from the usage information), you are ready to perform some actual conversions. Figure 3.3 shows the process of running metrix.class with java.exe to perform these conversions.

Figure 3.3. Running metrix.class with java.exe to perform conversions.

PRIVATE "TYPE=PICT;ALT=graphics/03fig03.gif"[image: image15.png]
Potential Problems

METRIX requires the user to supply two numeric command-line arguments following java metrix. If either command-line argument is not numeric, METRIX throws a NumberFormatException object to the JVM which displays the error information contained within this object. If this happens, don't be disconcerted. Simply run METRIX a second time. (Exceptions are covered in Chapter 8.)

For example, the following command line shows the user attempting to pass abc instead of a number as the second command-line argument, which causes METRIX to throw a NumberFormatException object:

c:\jdk1.2\projects\metrix>java metrix 2 abc

Basically, you are telling METRIX that you want it to convert abc miles to kilometers. This is not logical and results in a NumberFormatException object.

Enhancing METRIX

The simplest enhancement task that you can perform on METRIX is to increase the number of conversions. For example, you could add the ability for METRIX to convert between pounds and kilograms.

A more involved enhancement task (and something you might want to look at after you've learned more about Java) is to give METRIX a graphical user interface. This would make it easier for the user to specify numeric quantities and perform conversions, without having to remember the arcane details of command-line arguments.

What's Next?

Now that you understand language fundamentals ranging from Chapter 2's comments to this chapter's statements, you can start to write some interesting programs (like METRIX).

However, until you learn about Java's object-oriented concepts, you won't be able to write very sophisticated programs. The next chapter introduces some of these object-oriented concepts.

Chapter 4. Encapsulation: Classes and Objects

Every Java program is built from classes and objects. These classes are blueprints that specify the properties and behaviors encapsulated (that is, integrated) into all resulting objects.

It is vital that you become familiar with classes, objects, and encapsulation because you'll be using these concepts in every Java program that you write.

Chapter 4 presents the following topics:

· Exploring OOP: encapsulation

· Declaring classes

· Providing fields and methods

· Objects

· Composition

· DEALERSHIP1

Exploring OOP: Encapsulation

The Java language is an object-oriented language. As such, it provides capabilities for creating and manipulating objects—the software equivalents of real-world entities such as trucks, employees, bank accounts, and so on.

Objects are dynamically created at runtime from classes that specify their composition. These classes encapsulate the properties and behaviors of all resulting objects. Figure 4.1 illustrates encapsulation via a real-world entity known as a pickup truck.

Figure 4.1. Encapsulating a pickup truck.

[image: image16.png]PRIVATE "TYPE=PICT;ALT=graphics/04fig01.gif"
A pickup truck has properties consisting of color, make, model, number of doors, and so on. This entity also has behavior consisting of accelerating, braking, shifting gears, turning, and so on. When we discuss pickup trucks, we don't say to ourselves, "Let's go view some numbers of doors, colors, makes, models, accelerations, brakings, gear shiftings, and so on." No! We say, "Let's go view some pickup trucks." In other words, we talk about the encapsulation of a pickup truck's properties and behaviors by referring to the name of this encapsulated entity—pickup truck. (From a terminology perspective, note that I differentiate between the terms object and entity by referring to an object as the software equivalent of a real-world entity. Other than this, both terms mean roughly the same thing.)

Declaring Classes

An object-oriented program manipulates objects. Where do these objects come from? They are not manufactured out of "thin air." Objects are created from classes.

Every Java program, whether it is an application or an applet, must declare at least one class. It is not possible to write a Java program without classes. The format of a class declaration is

 ["public"] ["abstract" | "final"] "class" class_name
'{'

 // properties declarations

 // behavior declarations

'}'

Every class declaration requires a header consisting of at least the class reserved word followed by an identifier, class_name, which names the class. This identifier can't be a reserved word.

Class names are the nouns of a Java program (for example, employee, vehicle, account). They describe categories of objects.

A class block follows the class header. This class block begins with an open brace ({) character and ends with a close brace (}) character. Properties and behavior are specified within this block via variables (known as fields) and methods, respectively.

The class reserved word can be preceded by the public reserved word or either the abstract reserved word or the final reserved word.

By default, class_name is not visible to classes outside of its current package (that is, a class library). Specifying public causes class_name to become visible to all classes in all packages.

? For more information on packages, see Chapter 9, "Packages," page 217.

By default, class_name identifies a concrete class (that is, a class in which all method headers are followed by method blocks). Objects can be created from concrete classes. Specifying abstract turns class_name into an abstract class (that is, a class in which one or more method headers are not followed by method blocks). Objects cannot be created from abstract classes.

? For more information on abstract classes, see Chapter 6, "Polymorphism: Dynamic Method Binding," page 135.

By default, class_name can be used as the parent class of one or more child classes. Specifying final prevents class_name from being used as a parent class.

? For more on parent and child classes, see Chapter 5, "Inheritance: Superclasses and Subclasses," page 105.

The abstract and final reserved words cannot be specified together. If this were possible, a developer could declare an abstract class (of which no objects could be created) that could not be used as the parent class of concrete child classes. Such a class would be useless.

Java imposes no restrictions on the ordering of public, abstract, and final. You can specify public abstract or final public or abstract public or public final. Either specification is fine.

The following code fragment declares an employee class:

class employee

{

 // employee properties (represented by fields)

 // employee behavior (represented by methods)

}

Providing Fields and Methods

A class without properties or behavior is not very useful. You need to learn how to specify properties and behavior. In Java-speak, you need fields (properties) and methods (behavior).

Fields

A field variable identifies a single property and holds its value. Fields are declared within the class block that follows the class header. The format of a field declaration is

["public" | "private" | "protected"] ["final"] ["static"] ["transient"] ["volatile"]

data_type field_name ['=' field_initializer]';'

A field is declared by providing a data type (data_type) and a field name (field_name.)The data type is either a primitive data type or a reference data type. The field name is an identifier that must not be a reserved word.

Field names, like class names, are the nouns of a Java program (for example, color, model, and age).

The following code fragment declares an employee class with two fields (salary and name):

class employee

{

 // employee properties (represented by fields)

 double salary; // a primitive data type field

 String name; // a reference data type field

}

A field can be initialized when it is declared. Initialization is indicated by specifying the assignment operator followed by a field initializer (an expression whose value is assigned to the field and has the same data type as the field's data type).

The following code fragment assigns a default value of 30000.0 to the salary field. (Perhaps the minimum salary for all employees at the company being modeled by an OOP program is 30,000 dollars. Because most employees earn this minimum, it makes sense to presume a salary level of 30,000 dollars for each new employee.)

class employee

{

 // employee properties (represented by fields)

 double salary = 30000.0;

 String name;

}

Every field has a certain level of visibility outside of its class. This level is controlled by the public, private, and protected reserved words.

A public field is visible outside of the class in which it is declared. A private field is not visible outside of its declaring class. A protected field is visible to every class declared within the same package as its declaring class and any child classes declared within any package. Finally, if public, private, or protected is not used, the field is visible only to classes declared within the same package as its declaring class.

Employees don't normally publish their salaries for anyone to read. The private reserved word hides this field from the outside world. However, the name field is not private because it doesn't matter who knows the employee's name. The following code fragment hides the salary field:

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

}

A field can be turned into a read-only field by using the final reserved word. After the field has been initialized, it cannot be modified.

NOTE
Failing to initialize a final field at the time it is declared results in a compiler error.

The following code fragment introduces two read-only fields by using the final reserved word: UPPITY_MANAGER and LOWLY_WORKER. (With names like these, it kind of makes you wonder who would want to work for this particular company.) The names of these fields are specified using uppercase letters to distinguish them from non-read-only fields:

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 final int UPPITY_MANAGER = 0;

 final int LOWLY_WORKER = 1;

}

The static reserved word differentiates between an instance field and a class field. An instance field, not declared with static, is unique to each class instance (that is, object) whereas a class field, declared with static, is shared by all class instances.

Each object is given its own copy of an instance field and can store its own unique value in this field. An instance field is created when its object is created and destroyed when its object is destroyed.

Only one copy of a class field exists. If one object modifies the value of this field, this value can be read by other objects. A class field is created when its class file is loaded and destroyed when its class file is unloaded.

The following code fragment introduces two read-only class fields using the static and final reserved words. Every employee object shares these fields. (The reasoning behind creating these fields as class fields is that UPPITY_MANAGER and LOWLY_WORKER are not specific to any employee. Instead, they are applicable to every employee. Why waste memory by assigning a separate copy of these fields to each employee object?)

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 static final int UPPITY_MANAGER = 0;

 static final int LOWLY_WORKER = 1;

}

Java supports a mechanism known as object serialization. Briefly, this mechanism is used to save the property values of a program's objects (perhaps to a file) and restore these objects at a later time. In other words, a program can be paused and the computer turned off. Later, the computer can be turned on and the program re-started at the point where it was paused. The program will run as if nothing happened.

PRIVATE "TYPE=PICT;ALT=graphics/tick.gif"

For more information on object serialization, see Chapter 17, "Files and Streams," page 445.

The transient reserved word identifies a field that is not part of an object's persistent state. The value of this field is not saved when an object is serialized. For example, a counter field should not have its value saved and then restored when the serialized object is later re-created because the current value of the counter field is dynamically generated (perhaps by a thread) and not considered part of an object.

? For more information on threads, see Chapter 16, "Multithreading," page 415.

The following code fragment uses the transient reserved word to mark the counter field so that its value is not saved during serialization:

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static int counter;

}

The volatile reserved word identifies shared fields that must be accessed in the same order in which they are declared in source code and that must be accessed the same number of times between thread executions. For example, in the following code fragment, static volatile int x = 1, y = 1; static void update () { x++; y++; }, each of the fields x and y are both guaranteed to be incremented before a thread execution switch can occur and in exactly the order as specified in source code. This is cheaper (from a performance perspective) than synchronizing the code that accesses the variables. For example, static int x = 1, y = 1; static synchronized void update { x++; y++; }.

Methods

A method consists of a named group of statements that represent a behavior. Methods are declared within a class block. The format of a method declaration is

 ["public" | "private" | "protected"] (["abstract"] | ["final"] ["static"] ["native"])

 return_data_type method_name ‘('parameter_list')'

 '{'

 '}'

A method is declared by providing a method name (method_name), a param-eter list (parameter_list), and a return data type (return_data_type). The method_name is an identifier that names a method. This identifier cannot be a reserved word. Method names are the verbs of a Java program (for example, accelerate, eat, draw).

The parameter_list provides a comma-delimited list of parameter variable declarations that are surrounded by parentheses characters. Each declaration consists of a data type and a variable name. The parameter list corresponds to a method's argument list (a comma-delimited list of argument values) that is passed to the method when that method is called.

Parameter variables exist for as long as byte code within their declaring method continues to execute. After the method returns, these variables disappear.

CAUTION
Declaring parameter variables by specifying a data type name followed by a comma-delimited list of variable names (such as float x, y) instead of providing a comma-delimited list of data type names/variable names (such as float x, float y) results in a compiler error.

The return_data_type is the method's data type. This data type identifies the type of values that the method returns. If the method does not return a value, the return data type is marked with the void reserved word.

CAUTION

Forgetting to return a value from a method that has a non-void return data type or returning a value from a method that has a void return data type results in a compiler error.

The data type of each parameter variable and the return data type can be either a primitive data type or a reference data type.

The Return statement (briefly discussed in Chapter 3,"Operators, Expressions, and Statements") returns control from a called method to the calling method. This statement can either return a value or not; this depends on the method's return data type. If this data type is void, the Return statement cannot return a value.

The code fragment that follows declares two employee methods: getSalary () and setSalary (double). The getSalary () method uses the Return statement to return a value of data type double.

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static final int UPPITY_MANAGER = 0;

 transient static final int LOWLY_WORKER = 1;

 // employee behavior (represented by methods)

 double getSalary () { return salary; }

 void setSalary (double s) { salary = s; }

}

The return data type of getSalary () is double and the return data type of setSalary (double) is void. (Methods beginning with get and set are often referred to as accessor methods because they retrieve values from and set the values of private fields.)

Every method has a certain level of callability outside of its class. This level is controlled by the public, private, and protected reserved words.

A public method is callable from anywhere outside of the class in which it is declared. A private method is not callable from outside of its declaring class. A protected method is callable from every class declared within the same package as its declaring class and any derived classes declared within any package. Finally, if public, private, or protected is not used, the method is callable only from classes declared within the same package as its declaring class.

The following code fragment introduces a hidden calcBonus () method. This method is hidden because it is only called in the context of the getSalary () method. It will never be called from outside of this class. (Hidden methods are often known as helper methods because they help visible methods complete their tasks.)

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static final int UPPITY_MANAGER = 0;

 transient static final int LOWLY_WORKER = 1;

 // employee behavior (represented by methods)

 double getSalary () { return salary + calcBonus (); }

 void setSalary (double s) { salary = s; }

 private double calcBonus ()

 {

 double bonus = 0.0;

 // bonus calculation statements

 return bonus;

 }

}

The abstract reserved word identifies an abstract (as opposed to a concrete) method. Abstract methods have no code bodies. They are declared within abstract classes.

Each child class of an abstract parent class must provide a block of code for each abstract method that it inherits.

The following code fragment introduces an abstract method called getVacationPay. ()This method is declared abstract because managers and workers receive vacation pay based on different formulae. Notice that employee also is declared abstract. The Java compiler requires any class containing an abstract method to be declared abstract.

abstract class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static final int UPPITY_MANAGER = 0;

 transient static final int LOWLY_WORKER = 1;

 // employee behavior (represented by methods)

 double getSalary () { return salary + calcBonus (); }

 void setSalary (double s) { salary = s; }

 private double calcBonus ()

 {

 double bonus = 0.0;

 // bonus calculation statements

 return bonus;

 }

 abstract double getVacationPay ();

}

The final reserved word identifies a method that cannot be overridden in a child class. If a method should never be changed (by providing a different body of code) within a child class, this method should be declared final.

The following code fragment converts setSalary (double) into a final method. Any class derived from employee will not be able to override (that is, re-declare) the setSalary (double) method.

? For more information on method overriding, see Chapter 5, "Inheritance: Superclasses and Subclasses," page 105.

abstract class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static final int UPPITY_MANAGER = 0;

 transient static final int LOWLY_WORKER = 1;

 // employee behavior (represented by methods)

 double getSalary () { return salary + calcBonus (); }

 final void setSalary (double s) { salary = s; }

 private double calcBonus ()

 {

 double bonus = 0.0;

 // bonus calculation statements

 return bonus;

 }

 abstract double getVacationPay ();

}

The static reserved word differentiates between an instance method and a class method. An instance method can access an object's instance fields as well as class fields, whereas a class method can only access class fields. Class methods are declared using the static reserved word. This is the only syntactic difference between instance and class methods.

The following code fragment introduces a private class field called numEmployees, which is initialized to zero. Two class methods, getNumEmployees () and incNumEmployees (), also are introduced to obtain the current value of this field and increment this field by a count of one.

abstract class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static final int UPPITY_MANAGER = 0;

 transient static final int LOWLY_WORKER = 1;

 // employee behavior (represented by methods)

 double getSalary () { return salary + calcBonus (); }

 final void setSalary (double s) { salary = s; }

 private double calcBonus ()

 {

 double bonus = 0.0;

 // bonus calculation statements

 return bonus;

 }

 abstract double getVacationPay ();

 private static int numEmployees = 0;

 static int getNumEmployees () { return numEmployees; }

 static void incNumEmployees () { numEmployees++; }

}

The numEmployees field is a class field because it does not contain employee-specific data. Instead, it contains data about all employee objects. In this case, that data describes how many employee objects are being manipulated by the program.

The native reserved word identifies a method whose code body is specified outside of Java, in a library written in C++ or some other computer language. Native methods are used to call legacy code (code previously written in older computer languages and widely used in a company, but not yet phased out) and provide this code with a modern user interface. (Native methods are beyond the scope of this book and will not be covered in any detail.)

The abstract reserved word cannot be used with final, static, or native. However, the final, static, and native reserved words can be specified in any order (for example, native static final).

Local Variables

Up to this point, we have seen that variables declared within a class are known as fields. We distinguished between instance fields and class fields. We learned that instance fields exist for the life of an object, whereas class fields exist for as long as their class files are loaded. We also learned that variables declared within a method's parameter list are known as parameter variables, and that parameter variables exist for the life of a method. There is a third category of variables that we have yet to see—local variables.

A local variable is declared within a method block or statement block. It can also be declared in a For loop header. This variable is local to the given block of code—it cannot be accessed from outside the block. Local variables exist for as long as their block continues to execute. As soon as the block ends, its local variables disappear.

The format of a local variable declaration is

data_type local_variable_name ['=' local_variable_initializer] ';'

A local variable is declared by providing a data type (data_type) and a local variable name (local_variable_name). The data type is either a basic data type or a reference data type. The local variable name is an identifier that must not be a reserved word.

The code fragment that follows presents a print_strings () method that declares two local variables: a String array called strings (local to the method) and an int called i (local to the for loop). The method then proceeds to print out the contents of the String array.

void print_strings ()

{

 String [] strings = { "one", "two", "three" };

 for (int i = 0; i < strings.length; i++)

 System.out.println (strings [i]);

}

A local variable can be initialized when it is declared. Initialization is indicated by specifying the assignment operator (=) followed by a local variable initializer (an expression whose value is assigned to the local variable and whose value has the same data type as the local variable's data type).

Local variables must be initialized before their contents can be accessed. Failure to do this results in a compiler error.

CAUTION

Always initialize a local variable before attempting to access its contents. Failure to do this results in a compiler error.

Overloading Methods

Two or more methods might be declared in the same class with the same name but with different parameter lists. These methods are known as overloaded methods.
The following code fragment declares an abstract class called text. The first method is designed to draw the contents of the msg String object in some default drawing color. The second method does the same thing as the first method except that a drawing color can be specified.

abstract class text

{

 abstract void drawText (String msg);

 abstract void drawText (String msg, Color c);

}

It does not matter if the same or different return data types are specified (for example, void). The crucial thing to keep in mind when overloading methods is to specify different parameter lists (that is, number of and/or data types of parameters).

CAUTION
A method cannot be overloaded by declaring a second method with the same name, same parameter list, but a different return data type. Attempting to do this results in a compiler error.

Objects

Java programs create and destroy objects. The developer has complete control over object creation but has very limited control over an object's destruction.

Objects are manipulated by accessing their fields and methods. However, instance fields and methods are accessed differently than class fields and methods.

Creating Objects

An object is created from a class by using an object variable declaration statement. The newly created object is often referred to as a class instance.
The format of an object variable declaration statement is

reference_data_type object_name '=' "new" reference_data_type '('argument_list ')' ';'

Every object has a reference data type (reference_data_type). This data type is the name of the class from which the object is being created.

Every object has a name (object_name). This name is an identifier that cannot be a reserved word. The JVM allocates a small region of memory (typically four bytes in size) to hold the address of (also known as a reference to) the object. For this reason, an object variable is often referred to as an object reference variable.
The assignment operator assigns the address of the newly created object memory to object_name.
The new reserved word allocates the object's memory. This memory holds the values of an object's instance fields. (The values of these instance fields differentiate one object from another object.)

When a class file is loaded (and before any object is created), a second region of memory is automatically allocated to hold class field values. This second region is kept separate from the memory that holds the instance field values because this second memory region is shared among all objects of a particular class. If one object modifies a class field, the new value is immediately available to other objects of that same class.

Finally, a third region of memory is allocated when a class file is loaded. This memory holds the byte code for the various methods declared within the class. Only one copy of this byte code exists in memory, and this byte code is shared among all objects of that class.

A constructor method follows new and initializes the object. This method consists of a class name (reference_data_type) followed by an argument_list placed between parentheses characters. (Constructor methods will be discussed in more detail at a later point in this chapter.)

The following code fragment creates an employee object and assigns its reference to the object reference variable e. (Assume that the abstract getVacationPay () method is not part of this class. If getVacationPay () is included, we cannot create an object from employee—remember, objects cannot be created from abstract classes, and employee would be abstract if it contained the abstract getVacationPay () method.)

employee e = new employee ();

Figure 4.2 illustrates the newly created employee object as it exists in memory.

Figure 4.2. The employee object as it exists in memory.

[image: image17.png]PRIVATE "TYPE=PICT;ALT=graphics/04fig02.gif"
The object reference variable e contains the address of three internal address variables that refer to the object's memory areas: instance fields, methods, and class fields. (You can think of the combination of instance fields, methods, and class fields as being an object.)

Each object gets its own set of instance fields. The values of these instance fields are what make one object different from another object.

Every object shares a block of code that implements the various methods. If every object was given its own block of code, a lot of memory would be wasted. (In Figure 4.2, the private calcBonus () method is shown in gray, while the three employee constructors are shown in a combination of white and gray.)

Every object shares a set of class fields. If one object changes the value of a class field, this new value is immediately available to all other objects created from the same class.

Accessing Fields

How is a field accessed? The access format differs based on whether the field is an instance field or a class field.

If the field is an instance field, the access format is

object_identifier '.'field_name
The object_identifer prefixes the field name to identify the object associated with the instance field. A period character (.) separates object_identifier from field_name.
The following code fragment creates an employee object, assigns its address to the object reference variable e, and displays the name field value via a call to System.out.println (String).

employee e = new employee ();

System.out.println (e.name);

If the field is a class field, the access format is

class_identifer '.' field_name
The class_identifier prefixes the field name to identify the class associated with the class field. A period character (.) separates class_identifier from field_name.
With class fields, you do not need to create an object prior to accessing these fields. The following code fragment displays the UPPITY_MANAGER field value via a call to System.out.println (String):

System.out.println (employee.UPPITY_MANAGER);

If a field is being accessed from within a method that is declared within the same class as the field, the format is

field_name
The following code fragment, taken directly from the employee class, shows the getSalary () method accessing the salary instance field:

double getSalary () { return salary + calcBonus (); }

Accessing Methods

How is a method accessed? The access format differs based on whether the method is an instance method or a class method.

If the method is an instance method, the access format is

object_identifier '.' method_name '(' argument_list ')' ';'

The object_identifer prefixes the method call to identify the object associated with the instance method. This is done so that the method identified by method_name will be able to access the object-specific instance fields. A period character (.) separates object_identifier from method_name.
The following code fragment creates an employee object, assigns its address to the object reference variable e, and calls the setSalary (double) method to initialize the salary field:

employee e = new employee ();

e.setSalary (50000.0);

If the method is a class method, the access format is

class_identifier '.' method_name '(' argument_list ')' ';'

The class_identifier prefixes the method call to identify the class associated with the class method. A period (.) character separates class_identifier from method_name.
With class methods, you do not need to create an object prior to calling these methods. The following code fragment calls the incNumEmployees () method to initialize the numEmployees field:

employee.incNumEmployees ();

If a method is calling a local method (that is, a called method within the same class as the calling method), the format is

method_name '(' argument_list ')' ';'

The following code fragment, taken directly from the employee class, shows the getSalary () method calling the calcBonus () local method:

double getSalary () { return salary + calcBonus (); }

Calling Methods

When a method is called, there are two ways in which arguments represented by variables can be passed: by value and by reference.

When a variable is passed to a method by value, only a copy of the variable is passed. The address of the variable is not passed. What does this mean? Basically, the method can manipulate the value via its corresponding parameter variable but can never modify the contents of the original variable. Variables whose data types are primitive data types (for example, short, double, boolean) are always passed by value.

When a variable is passed to a method by reference, the address of the variable is passed. Although the method "thinks" it is manipulating a parameter variable, it is really manipulating the original variable. Variables whose data types are reference data types are always passed by reference.

The following callDemo application illustrates the difference between call by value and call by reference:

class callDemo

{

 public static void main (String [] args)

 {

 int x1 = 3;

 method1 (x1);

 System.out.println (x1);

 int [] x2 = { 3, 2, 4 };

 method2 (x2);

 for (int i = 0; i < x2.length; i++)

 {

 System.out.print (x2 [i]);

 // The following If statement checks to see if

 // the last array element is being output. If

 // it is not, a comma followed by a space is

 // output. This is done to separate elements

 // on the same line.

 if (i != x2.length - 1)

 System.out.print (", ");

 }

 }

 static void method1 (int x)

 {

 x = 0;

 }

 static void method2 (int x [])

 {

 x [0] = 0;

 }

}

3

0,2,4

The value of x1 is not modified within method1 (int). The reason is that x1 is passed by value, not by reference. The x parameter variable only holds the value of this variable.

The first element within the x2 array has been changed from 3 to 0 within method2 (int []). The reason is that x2 is passed by reference. The x [] parameter variable holds the address of the x2 array. Modifying any array element via the parameter variable affects that element in the original array.

Method Call Stack

Methods can call other methods. For example, the main method of an application can create an employee object and call its methods.

When a method is called, the JVM "remembers" the location of the byte code following the method call. This "remembering" allows the JVM to return execution to the instruction that follows the method call instruction.

The JVM "remembers" method calls by using what is known as a method call stack (a sequence of method call return addresses where the most recent method call return address appears at the top and the least recent method call return address appears at the bottom). The JVM returns from the most recent method call by removing the return address from the top of the stack, setting the new top of the stack to the next return address on that stack, and continuing to execute byte code beginning at the newly removed return address.

The method call stack also is used by the JVM's exception handling mechanim.

? For more information on exception handling, see Chapter 8, "Exception Handling," page 185.

The Constructor Method

A constructor method is only used to initialize an object. The name of this method follows the new reserved word and consists of the class name followed by an argument list.

Constructor methods are declared like other methods except that they never return a value. Therefore, they are not declared with a return data type (not even void is specified).

CAUTION

Specifying a return data type in a constructor method declaration results in a compiler error.

The following code fragment adds two constructor methods to employee: employee (String) and employee (String, double):

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static final int UPPITY_MANAGER = 0;

 transient static final int LOWLY_WORKER = 1;

 // employee behavior (represented by methods)

 double getSalary () { return salary + calcBonus (); }

 final void setSalary (double s) { salary = s; }

 private double calcBonus ()

 {

 double bonus = 0.0;

 // bonus calculation statements

 return bonus;

 }

 private static int numEmployees = 0;

 static int getNumEmployees () { return numEmployees; }

 static void incNumEmployees () { numEmployees++; }

 employee (String empName)

 {

 name = empName;

 }

 employee (String empName, double sal)

 {

 name = empName;

 salary = sal;

 }

}

If a class does not declare any constructors, Java provides a default constructor that takes no arguments and does nothing. This constructor simply serves as a placeholder so objects can be created from the class.

Constructors can be declared with a public, private, protected, or default visibility. If a class declares private constructors, it is not possible to create objects from that class.

By default, a constructor has the same visibility as its class. For example, if a class is declared with the public reserved word, its constructors are publicly visible. If the class is not public, then its visibility is restricted to its package. The same holds true for its constructors.

Constructors are the only methods that can call other constructors. When calling another constructor, the name of the class cannot be used. Instead, a constructor must use a special reserved word called this.

The following code fragment adds a third constructor method to employee: employee (). This constructor calls the employee (String) constructor, via this, to initialize the employee's name to "John Doe":

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static final int UPPITY_MANAGER = 0;

 transient static final int LOWLY_WORKER = 1;

 // employee behavior (represented by methods)

 double getSalary () { return salary + calcBonus (); }

 final void setSalary (double s) { salary = s; }

 private double calcBonus ()

 {

 double bonus = 0.0;

 // bonus calculation statements

 return bonus;

 }

 private static int numEmployees = 0;

 static int getNumEmployees () { return numEmployees; }

 static void incNumEmployees () { numEmployees++; }

 employee (String empName)

 {

 name = empName;

 }

 employee (String empName, double sal)

 {

 name = empName;

 salary = sal;

 }

 employee () { this ("John Doe"); }

}

CAUTION
A constructor must use this to call another constructor. Specifying the class name instead of this results in a compiler error. For example, calling employee ("John Doe") instead of this ("John Doe") from within the employee () constructor results in a compiler error.

CAUTION
Only constructors can call other constructors. Calling a constructor from a non- constructor method results in a compiler error.

Java's this reserved word also is used to refer to fields from within a constructor (or any other method). This capability is useful when attempting to assign a parameter variable's value to a field when both the parameter variable name and field name are identical.

The following code fragment modifies the employee (String) and employee (String, double) constructors so that they use this to refer to the name and/or salary fields, allowing the values of same-named parameter variables to be assigned to these fields:

class employee

{

 // employee properties (represented by fields)

 private double salary = 30000.0;

 String name;

 transient static final int UPPITY_MANAGER = 0;

 transient static final int LOWLY_WORKER = 1;

 // employee behavior (represented by methods)

 double getSalary () { return salary + calcBonus (); }

 final void setSalary (double s) { salary = s; }

 private static int numemployees=0;

 {

 double bonus = 0.0;

 // bonus calculation statements

 return bonus;

 }

 private static int numEmployees = 0;

 static int getNumEmployees () { return numEmployees; }

 static void incNumEmployees () { numEmployees++; }

 employee (String name)

 {

 this.name = name;

 }

 employee (String name, double salary)

 {

 this.name = name;

 this.salary = salary;

 }

 employee () { this ("John Doe");

}

CAUTION

You cannot use this to assign parameter variable values to field references from within a class method because this refers to the current class instance, and class methods have no concept of a class instance.

Destroying Objects

Objects cannot be destroyed by a developer. The JVM is given this task to reduce the likelihood of memory leaks.

Programming languages like C and C++ give developers complete control over object creation and destruction. However, there are times when a developer does not provide code to properly destroy the program's objects. The memory allocated to these objects is never reclaimed, and this results in a memory leak. Over time, this leak gets worse, and the program eventually runs out of memory. When this happens, the program grinds to a halt. Obviously, this situation is not ideal for mission-critical software.

The JVM contains a garbage collector that runs at various times to destroy objects and reclaim memory.

Although the developer cannot destroy an object, he or she can indicate to the JVM that an object is no longer being used. This is accomplished by assigning the null literal to an object reference variable.

Assigning null to an object reference variable causes the JVM to decrement an internal reference count to that object. This reference count keeps track of all object variables that reference a particular object. (Each time an object reference variable references this object, the object's reference count is incremented.) After this reference count reaches zero, the object is marked for garbage collection. The next time the garbage collector runs, the object will be destroyed.

The following code fragment creates an employee object and assigns its reference to the object reference variable e. Later, it assigns null to this variable to inform the JVM that it no longer needs this object. The next time the garbage collector runs, it will destroy this object and reclaim memory.

employee e = new employee ();

// Additional statements

e = null;
Composition

You're making some vegetable soup. There are pieces of potatoes, carrots, and other vegetables floating in the broth. (Occasionally, one of the potato pieces winks at you with one of its eyes!)

You could model vegetable soup in software by creating a vegetable soup class, a potato class, a carrot class, and so on. The vegetable soup class could contain potato and carrot fields (among other fields). After you have created a vegetable soup object, this object's constructor could create potato and carrot objects, and assign their references to the potato and carrot fields. In other words, your vegetable soup object would be composed of potato and carrot objects.

As another example, an employee class could declare a String field called name. When an employee object is created, a String object is also created and its reference assigned to name. You could say that the employee object is composed of a name object (among other things).

Composition manifests itself through what are known as "has a" relationships. One object has another object that helps to define the first object. For example, the employee object has a name object (of data type String) that helps to define the employee (that is, an employee is an entity with a name, among other things).

Figure 4.3 illustrates composition by showing an employee object (referenced by object reference variable e) composed of a name object (in addition to the salary field).

Figure 4.3. The composite employee object.

PRIVATE "TYPE=PICT;ALT=graphics/04fig03.gif"
[image: image18.png]
DEALERSHIP1

Imagine writing a program that simulates a vehicle dealership. Suppose that this program creates an inventory of vehicles, monitors sales of different types of vehicles, and so on.

You could write this program without using object-oriented techniques. However, you would probably find yourself spending more time writing the code than having fun playing with this code. Therefore, you might consider building your dealership program using the object-oriented techniques that have been presented in this chapter.

This chapter concludes with a dealership simulation called DEALERSHIP1. This application demonstrates classes, objects, private fields, accessor methods, constructors, and this. (Chapters 5, "Inheritance: Superclasses and Subclasses," and 6, "Polymorphism: Dynamic Method Binding," expand on DEALERSHIP1 by taking advantage of Java's inheritance and polymorphism capabilities.)

Setting Up DEALERSHIP1

To set up DEALERSHIP1, begin by double-clicking your MS-DOS icon (if you are using Windows), and go to a command prompt.

If you created a projects directory in Chapter 1, "Introducing Java," make projects your current directory. (If you do not have a projects directory, now is as good a time as any to create one.)

Assuming that projects is located within c:\jdk1.2\, enter the command cd \jdk1.2\projects to change to this directory.

From within your projects directory, create a directory called dealership1 (for example, md dealership1). (If you prefer, you can create this directory entirely in uppercase. For example, you could issue the command md DEALERSHIP1 to create this directory. Case does not matter when it comes to directories.)

Download the file dealership1.java from the Macmillan Web site, and place this file in your dealership1 directory.

Compiling DEALERSHIP1

Compilation is a simple process. It involves running the javac.exe program and specifying the name of the source file as an argument to this program.

At the command prompt, enter the following line:

c:\jdk1.2\projects\dealership1>javac dealership1.java

CAUTION
The .java file extension must be specified when compiling an application's source file. The compiler will display an error message if .java is not specified.

If the compiler displays an error message, you might have typed Dealership1.java or DEALERSHIP1.java instead of dealership1.java.

CAUTION

You must specify dealership1.java, not Dealership1.java, DEALERSHIP1.java, or any other combination of lowercase/uppercase letters. The compiler is very sensitive to case and will display an error message if the class name (dealership1) does not match the filename (dealerhip1).

After compilation is finished, you should end up with a class file called dealership1.class.

Figure 4.4 shows the compilation process.

Figure 4.4. Compiling dealership1.java with the javac.exe compiler.

[image: image19.png]PRIVATE "TYPE=PICT;ALT=graphics/04fig04.gif"
Running DEALERSHIP1

Congratulations! You successfully compiled dealership1.java and are now ready to run dealership1.class. All you need to do is fire up the java.exe program and specify dealership1.class as an argument to this program.

CAUTION

The .class file extension must not be specified; otherwise, the java.exe program will display an error message.

Figure 4.5 shows the process of running dealership1.class with java.exe.

Figure 4.5. Running dealership1.class with java.exe.
PRIVATE "TYPE=PICT;ALT=graphics/04fig05.gif"[image: image20.png]
The properties of two pickup truck objects are displayed.

Potential Problems

As it stands, DEALERSHIP1 is pretty robust. However, if you decide to modify the code, you could run into some problems. Here are two possibilities:

· Forgetting to use this when referring to same-named fields will result in the object not being initialized.

· Attempting to call a constructor from within another constructor without using this will lead to a compiler error.

If you should encounter an error, don't panic. Instead, try to reason out the cause of this error, and then take appropriate action.

Enhancing DEALERSHIP1

You can enhance DEALERSHIP1 by creating an array of pickup truck objects. Use a For loop statement to iterate through this array, and call the various get accessor methods to obtain properties and display these properties during each iteration.

You can also enhance DEALERSHIP1 by thinking up some additional properties (for example, automatic/manual transmission—a Boolean?) and add them to truck. Don't forget to supply get accessor methods for these properties.

Remember, the sky is the limit as to what you can do with this program. (DEALERSHIP1 has been purposely kept simple to give you a chance to "get creative.")

What's Next?

Now that you've explored the first principle of object-oriented programming, encapsulation, it's time to turn your attention to the second principle, inheritance. You'll learn to either love inheritance (if your rich aunt passes on and leaves you lots of money) or hate inheritance (because it has a lot to do with onions and, well, you'll see).

Chapter 5. Inheritance: Superclasses and Subclasses

In the previous chapter, you learned that encapsulation is a very important principle of object-oriented programming. In this chapter, you will learn that the inheritance principle is equally important. With inheritance, you can organize your Java classes into hierarchical superclass/subclass relationships. The ability to inherit capabilities rather than "re-invent" the wheel is important from a code reuse and code maintenance standpoint.

Chapter 5 presents the following topics:

· Exploring OOP: inheritance

· Relating classes

· The root of all classes

· Multiple inheritance and interfaces

· Inheritance versus composition

· DEALERSHIP2

Exploring OOP: Inheritance

After the funeral, the family gets together to read the late Aunt Agatha's last will and testament. The solicitor puts on his glasses and starts to read the document. First comes the preamble, and then comes the good stuff. "Mr. Jones," says the solicitor, "you and your family have just inherited five million cheeseburgers!" Okay, that's inheritance. You can now turn to Chapter 6. Just kidding!

Inheritance, from an object-oriented perspective, is a little more involved than finding out how many dollars (or cheeseburgers) were bequeathed to you from your late Aunt. Inheritance gives you the ability to create a generalized class with generalized properties and methods, and a more specialized class that is derived from this class. The specialized class inherits everything from the generalized class. However, it can choose to override (replace) inherited capabilities and even add its own unique capabilities.

For example, everyone who works for a company is an employee of that company. Some employees might be sales persons, other employees might be accountants, and still other employees might be managers. Sales persons, accountants, and managers are related by the fact that they are all employees.

Figure 5.1 shows the relationship between sales person, accountant, and manager. Arrows point from sales person, accountant, and manager to employee, to show that they inherit state (such as employee number) and behavior (such as clocking in) from employee.

Figure 5.1. Relating employee, sales person, accountant, and manager.

PRIVATE "TYPE=PICT;ALT=graphics/05fig01.gif"[image: image21.png]
People are the employees of a company. More specifically, people are the sales persons, accountants, and managers of a company. For example, Joe is an employee of some company. However, he is a specialized employee—a sales person. This is illustrated in Figure 5.2. The arrow points from Joe to sales person to show that Joe is a sales person.

Figure 5.2. Joe is a sales person employee.

[image: image22.png]PRIVATE "TYPE=PICT;ALT=graphics/05fig02.gif"
Some people can work multiple jobs. For example, Sally is an employee at the same company as Joe. However, she is both an accountant and a manager. This is illustrated in Figure 5.3.

Figure 5.3. Sally is both an accountant employee and a manager employee.

[image: image23.png]PRIVATE "TYPE=PICT;ALT=graphics/05fig03.gif"
The capability to inherit state and behavior from two or more entities is known as multiple inheritance. In our example, Joe inherits from only one entity, sales person, whereas Sally inherits from multiple entities, accountant and manager.

From an OOP perspective, employee, sales person, accountant, and manager are classes whereas Joe and Sally are objects of these classes. Thanks to inheritance, Joe is both a sales person (specifically) and an employee (generically).

Relating Classes

Chapter 4, "Encapsulation: Classes and Objects," mentioned that objects are not manufactured out of "thin air." Instead, they are created from classes.

Objects are related to other objects through inheritance by modifying the class blueprints from which these objects are created. These modifications suggest that one class extends the capabilities—the properties and behavior—of another class.

The following format is used to specify one class extending another class:

"class" class_identifier1 "extends" class_identifier2
'{'

'}'

The class that is extending another class (class_identifier1) is known as a subclass (or child class) whereas the class being extended (class_identifier2) is known as a superclass (or parent class). The extends reserved word appearing between both identifiers specifies this extension relationship.

The capability to extend a class conjures up the image of an onion. As you peel back each layer, another layer meets your eyes. In a similar fashion, if you peel back class_identifier1, you discover a layer called class_identifier2.
An object created from class_identifier1 inherits the integrated properties and behavior of class_identifier2 and integrates these properties/behavior with the integrated properties and behavior of class_identifier1.
The following code fragment declares a superclass called point3D and a subclass called sphere, which extends point3D:

class point3D

{

 private double x, y, z

}

class sphere extends point3D

{

 private double radius;

}

The x, y, and z fields could have been re-declared within sphere. (A three-dimensional point is located in three-dimensional space by its x, y, and z coordinates. A sphere is a three-dimensional point with a radius.) However, code would have been duplicated and the fact that a sphere is a three-dimensional point with radius would have been lost. (Remember: We are trying to model the real world using object-oriented programs. In the real world, a sphere with no radius is nothing more than a three-dimensional point.)

Suppose that we decide to create an object from the sphere class by issuing the following statement:

sphere s = new sphere ();

We end up with an object containing four private fields: x, y, z, and radius. This is illustrated in Figure 5.4.

Figure 5.4. The sphere object.

[image: image24.png]PRIVATE "TYPE=PICT;ALT=graphics/05fig04.gif"
The sphere object consists of two layers. The internal layer represents the integrated point3D state and behavior. The outer layer represents sphere's specialized state and behavior (that is, that state and behavior unique to spheres).

Because sphere's radius field is a private field, we cannot directly access this field. Instead, we need a pair of accessor methods to get and set this field's value. We also cannot directly access the x, y, and z fields, or even indirectly via accessor methods declared within sphere, because these fields are hidden within the point3D layer (by virtue of their being declared private).

CAUTION

Attempting to access the private fields of the superclass layer from a subclass results in a compiler error.

The capability to hide information within layers is known as information hiding. This capability can seem to be bothersome, but information hiding is applicable to our world.

Our world is based on layers. For example, the human body is a layer that surrounds organs. Organs are layers that surround tissues, blood vessels, and other entities. Tissue layers, blood vessel layers, and so on, surround cells. Carry this far enough and you end up with a layer of subatomic particles.

Suppose that you could expose everything making up a human body. All of the internal organs would appear on the outside and all their constituent layers would be turned inside out. (I really wouldn't want to see this.) The result would be chaos. (Obviously, this person wouldn't live very long.)

This idea holds when applied to object-oriented programs. Exposing all of each object layer's state and behavior and making it possible to manipulate all this state/behavior would only result in chaos. It is much better for a layer to hide that state and behavior not essential to other layers. (Knowing what to hide and what to expose is a very important task for each developer to cultivate.)

Calling Superclass Constructors

How do we initialize objects composed of multiple layers if we cannot access hidden fields within sub-layers? This is a good question and Java provides a good answer: call a superclass constructor via the super reserved word. The superclass constructor can then initialize its own hidden (and not-so-hidden) fields.

The following code fragment declares a superclass called employee and a subclass called salesPerson. It shows how super is used to call the employee (int, String) superclass constructor from the salesPerson (int, String, String) subclass constructor:

class employee

{

 private int employeeID;

 private String employeeName;

 employee (int employeeID, String employeeName)

 {

 this.employeeID = employeeID;

 this.employeeName = employeeName;

 }

public int getEmployeeID () { return employeeID; }

 public String getEmployeeName () { return employeeName; }

}

class salesPerson extends employee

{

 private String territoryName;

 salesPerson (int employeeID,

 String employeeName, String territoryName)

 {

 super (employeeID, employeeName);

 this.territoryName = territoryName;

 }

}

The following statement creates a new salesPerson object and assigns its reference to object reference variable s:

salesPerson s = new salesPerson (1000, "Joe", "West");

There is a lot of activity going on when we create a salesPerson object. Let's walk through this activity to find out what is happening.

The salesPerson class file is loaded into memory when the previous object creation statement is encountered (and if this class file is not already in memory).

Memory is allocated for the s object reference variable.

Memory is allocated for all salesPerson class fields (if there are any). This memory is then initialized to the values of these fields.

Memory is allocated for all employee layer class fields (if there are any). This memory is then initialized to the values of these fields.

Memory is allocated for all the instance fields within salesPerson and within the employee layer. All of these fields are initialized to default values.

The salesPerson (int, String, String) constructor is called. The first thing that this constructor does is to call its employee (int, String) superclass constructor by specifying super and passing the values of its employeeID and employeeName parameter variables (that is, 1000 and "Joe") as arguments to super. (The JVM knows which constructor to call based on the number and types of arguments being passed.)

The employee (int, String) superclass constructor initializes its private employeeID and employeeName fields. It makes use of this to refer to these fields so it doesn't end up assigning the values of the employeeID and employeeName parameters to the employeeID and employeeName parameters.

After the employee (int, String) superclass constructor completes, the salesPerson (int, String, String) subclass constructor continues. It assigns the territoryName parameter value (that is, "west") to its territoryName field (by using this to differentiate between the current object's territoryName field and the territoryName parameter).

At this point, the object is ready for use.

What happens if super has not been specified in the salesPerson (int, String, String) constructor? In this situation, the compiler generates code to call the employee () constructor. This code is placed before any other code.

During compilation, the compiler examines the employee class to see if there are any constructors. If there are none, it automatically creates a default no-argument employee () constructor.

When compiling salesPerson (int, String, String) and super is not specified, the compiler searches employee for an employee () constructor. If this constructor is not found, the compiler reports an error.

CAUTION

Not specifying super in a subclass constructor and not providing either a no-argument constructor or a default no-argument constructor in the superclass results in a compiler error.

If specified, super must appear before any other code within a subclass constructor, super must only be called from within a subclass constructor, and this and super cannot be used to call other constructors from within the same subclass constructor. Compiler errors will result if any of these rules are violated.

CAUTION

A superclass constructor call, via super, must be the first call within a subclass constructor. The superclass constructor call can only be made from within a subclass constructor. The use of this and super to call other constructors from within the same subclass constructor is prohibited. Violating any of these rules results in compiler errors.

Method Overriding

A method declared in a superclass can be re-declared in a subclass by providing the same name, same parameter list, and same return data type, but different method code. The subclass method is said to override the superclass method.

CAUTION

Overriding a superclass method by providing the same name and parameter list but providing a different return data type results in a compiler error.

When a subclass object is created and the overridden method is called, it is the subclass version of the overridden method that will be called—not the superclass version.

The following code fragment declares two classes, rectangle and square, and declares a draw () method within each class:

class rectangle

{

 void draw ()

 {

 System.out.println ("I am a rectangle.");

 }

}

class square extends rectangle

{

 void draw ()

 {

 System.out.println ("I am a square.");

 }

}

In this example, both rectangle and square declare a draw () method. If a rectangle object is created and then the draw () method called, "I am a rectangle." will be displayed. However, if a square object is created and then the draw () method called, "I am a square." will be displayed.

Overridden methods are important when it comes to the third OOP principle: polymorphism. More will be said about overriding in the next chapter.

Casting Classes

The inheritance relationship states that a subclass object is a kind of superclass object. Therefore, a subclass object reference can be assigned to a superclass object reference variable without casting. However, it is not possible to call any new subclass methods or access any additional subclass fields from the superclass reference variable, without casting back to the subclass reference.

The following code fragment declares an animal superclass and a dog subclass:

class animal

{

 void eats () { System.out.println ("Eating"); }

}

class dog extends animal

{

 void barks () { System.out.println ("Woof Woof"); }

}

We can create an animal superclass variable and assign a dog subclass object reference to this variable:

animal a = new dog ();

If we try to call a.eats (), there are no problems because animal declares an eats () method, which is inherited by dog:

a.eats (); // No problems.

However, if we try to call a.barks (), the compiler reports an error because animal does not have a barks () method:

a.barks (); // Error

We must cast the superclass reference back to a subclass reference before we can access subclass capabilities:

((dog) a).barks (); // No problems.

CAUTION
Attempting to call a subclass method or access a subclass field from a superclass reference variable without a cast back to the subclass results in a compiler error.

Casting from a superclass reference back to a subclass reference, if not done properly, can lead to a specific runtime failure known as a ClassCastException. This failure can cause your program to terminate or behave erratically.

For example, suppose that an attempt was made to create an animal object and assign its reference to a dog reference variable. (The (dog) cast is necessary so the compiler will compile this statement.)

dog d = (dog) new animal ();

If you tried to run this code, a ClassCastException failure would occur. Why?

We know that a dog is a kind of animal, but is an animal a kind of dog? The answer is no. There are many kinds of animals: tigers, zebras, horses, bears, and so on.

Suppose that the ClassCastException failure did not occur in the previous statement. Now suppose we tried to execute the following code:

d.bark ();

The program would crash because there is no bark () method declared within the animal class and we are trying to call this non-existent method via the animal object reference stored within the dog variable d. From the perspective of our world, we are trying to make every animal bark, not just a dog.

CAUTION
Assigning a superclass reference to an inappropriate subclass reference variable and attempting to call a subclass method or access a subclass field (which does not exist in the superclass) via this variable will result in a ClassCastException.

The Root of All Classes

A lot of thought was put into the design of Java. One area where this can be seen is in its extensive class library. This library contains many classes, but all these classes share something in common—they all inherit behavior from a root class called Object.

All classes implicitly extend the Object class. You do not need to supply extends Object. Not only does this reduce some typing, but it also solves a problem that we will examine when we explore interfaces.

The Object class provides eleven methods that any object created from any class can call. Classes can choose to ignore these methods or override them with class-specific behavior.

Class Information

Object declares a getClass () method that returns an object of the Class data type. This Class object describes the class from which the object that called getClass () was created. For example, the Class object contains methods that return arrays of constructor method names and their parameter lists, non-constructor method names and their return data types/parameter lists, field names and their data types, and so on.

The following application calls the getClass () method on a String object to obtain an object that describes this class. After the class object has been returned, the getName () method is called on the class object to return the name of the class:

// getClass.java

class getClass

{

 public static void main (String [] args)

 {

 String s = "abc";

 System.out.println (s.getClass ().getName ());

 }

}

java.lang.String

Notice that calls to getClass () and getName () are chained together by using multiple period characters. Java evaluates this "method call chaining" expression in a left-to-right order. For example, Java first calls getClass () on the String object reference variable s. This call returns the class object that describes the String class. Java then calls getName () on this class object to return the object's class name.

Cloning

Object declares a clone () method that clones (duplicates) an object's field values.

There are two kinds of cloning, shallow and deep. Shallow cloning duplicates an object's primitive and reference field values but not the objects referenced by these reference fields. Deep cloning duplicates primitive and reference field values, and the objects that are referenced by these reference fields.

Every object that "wants" to be cloned must be created from a class that implements the Cloneable interface. This interface contains no method declarations; it is only used to identify a class that supports cloning.

Object's clone () method ensures that each object "wanting" to be cloned was created from a class that implements Cloneable. If this is not the case, Object's clone () method will throw a CloneNotSupportedException object.

If the object "wanting" to be cloned was created from a class that supports Cloneable, Object's clone () method will perform a shallow clone of the object's fields by creating a new object of the same data type as the object being cloned, copying the field values from the object being cloned to the new object, and returning a reference to the new object.

The following application demonstrates both forms of cloning: shallow and deep:

// cloneDemo.java

class engine implements Cloneable

{

 private int numCylinders;

 engine (int numCylinders)

 {

 this.numCylinders = numCylinders;

 }

 int getNumCylinders () { return numCylinders; }

 public Object clone () throws CloneNotSupportedException

 {

 return super.clone ();

 }

}

class vehicle implements Cloneable

{

 private String name;

 private engine e;

 vehicle (String name, engine e)

 {

 this.name = name;

 this.e = e;

 }

 String getName () { return name; }

 engine getEngine () { return e; }

 public Object clone () throws CloneNotSupportedException

 {

 vehicle newObject = (vehicle) super.clone ();

 if (this.e != null)

 newObject.e = (engine) this.e.clone ();

 if (this.name != null)

 newObject.name = new String (this.name);

 return newObject;

 }

}

class cloneDemo

{

 public static void main (String [] args)

 {

 vehicle v1 = new vehicle ("Halfton Pickup", new engine (6));

 vehicle v2 = null;

 try

 {

 v2 = (vehicle) v1.clone ();

 }

 catch (CloneNotSupportedException e)

 {

 System.out.println (e);

 }

 if (v1 == v2)

 System.out.println ("v2 is the same as v1");

 else

 System.out.println ("v2 is a duplicate of v1");

 String name1 = v1.getName ();

 String name2 = v2.getName ();

 if (name1 == name2)

 System.out.println ("name2 is the same as name1");

 else

 System.out.println ("name2 is a duplicate of name1");

 engine e1 = v1.getEngine ();

 engine e2 = v2.getEngine ();

 if (e1 == e2)

 System.out.println ("e2 is the same as e1");

 else

 System.out.println ("e2 is a duplicate of e1");

 if (e1.getNumCylinders () == e2.getNumCylinders ())

 System.out.println ("Number of cylinders match");

 else

 System.out.println ("Number of cylinders differ");

 }

}

v2 is a duplicate of v1

name2 is a duplicate of name1

e2 is a duplicate of e1

Number of cylinders match

This example declares three classes: engine, vehicle, and cloneDemo. The engine class describes a vehicle's engine as consisting of a certain number of cylinders. The vehicle class describes a vehicle as consisting of a name and an engine. The cloneDemo class drives this application.

When the main method is called, a vehicle object is created and its reference assigned to v1. A second vehicle object is created and its reference assigned to v2. However, this second vehicle object is an exact duplicate of the object referenced by v1 (that is, it is not the same object as the object referenced by v1).

The following statement clones v1:

v2 = (vehicle) v1.clone ();

Because the clone () method returns an Object superclass reference, this reference must be cast back to the class of the object that called clone ()—vehicle.

The vehicle class declares a publicly visible clone () method. This method first calls its superclass clone () method which, in this example, is Object's clone () method.

Object's clone () method performs a shallow clone of all primitive fields within the vehicle class. Because there are no primitive fields, the address of a new vehicle object with no duplicate primitive fields is returned.

The address of this object is cast to vehicle and assigned to the newObject reference variable. At this point, shallow cloning is finished.

The vehicle class declares two reference fields: engine reference field e and String reference field name. The objects referenced by these fields contain their own primitive fields whose values need to be duplicated. This duplication occurs by creating new engine and String objects, and copying the values of the old engine and String objects to the new objects. However, there is no point in duplicating these objects if they don't exist (that is, the e and/or name field variables contain null values).

If e is actually referencing an engine object, the clone () method declared within the engine class is called. This method only calls its Object superclass method to clone its primitive field values. Because there are no reference fields declared in engine, there is no point in doing a deep clone. Therefore, engine's clone () method exits with the address of the duplicate engine object containing a duplicate number of cylinders value.

The address of the duplicate engine object is assigned to the e field of newObject—the new vehicle object.

If name is actually referencing a String object, a new String object is created and its address assigned to the name field of newObject. So why isn't clone () being called for String?

String does not override the clone () method. Because String inherits Object's clone () method, and because Object's clone () method is declared with protected visibility, there is no way that vehicle can call this method—protected methods are only accessible within the class in which they are declared as well as subclasses—even if these subclasses are declared in other packages.

Most of the time, you must call clone (). The reason for this has to do with child classes. If you do not call clone (), child classes will not be properly cloned. However, the String class is different. This class is declared as a final class. When any class is declared final, child classes cannot be derived (that is, extended) from parent classes. Therefore, when dealing with String, it is okay to create a new String object.

After initialization of newObject is finished, the address of this duplicate object is returned and assigned to v2 in the main method. A duplicate is born!

Equality

Java contains two mechanisms for determining equality: the equal to (==) relational operator and the equals (Object) method.

The equal to operator (==) is used to determine if either the contents of two primitive variables are equal or the references of two reference variables are equal (that is, both reference variables point to the same object). A Boolean true value is returned if they are equal; otherwise, a Boolean false value is returned.

The equals (Object) method is used to determine if the object contents of two reference variables are equal. A Boolean true value is returned if they are equal; otherwise, a Boolean false value is returned.

The following application uses the equal to operator (==) to prove that this operator distinguishes between primitive equality and reference equality:

// equality1.java

class equality1

{

 public static void main (String [] args)

 {

 int i1 = 10;

 int i2 = 10;

 System.out.println ("i1 = " + i1);

 System.out.println ("i2 = " + i2);

 if (i1 == i2)

 System.out.println ("i1 == i2\n");

 String s1 = "abc";

 String s2 = new String ("abc");

 System.out.println ("s1 = " + s1);

 System.out.println ("s2 = " + s2);

 if (s1 != s2)

 System.out.println ("s1 != s2");

 }

}

i1 = 10

i2 = 10

i1 == i2

s1 = abc

s2 = abc

s1 != s2

This example shows two techniques for creating a String object. The first technique appears to directly assign the "abc" string literal to String variable s1. However, behind the scenes, Java is actually creating a new String object and assigning its reference to s1, exactly like it is doing with s2. The references assigned to s1 and s2 differ, even though the contents of both objects are the same. Therefore, because the references are different and the == operator compares references, s1 is not equal to s2.

If the compiler finds multiple string literals with identical contents that are directly being assigned to String variables, it only creates one String object and gives each variable the same reference. Therefore, in the following code fragment, s1 and s2 refer to the same object so they are equal (as far as the == operator is concerned):

String s1 = "abc";

String s2 = "abc";

How can we compare object contents for equality? The answer is to make use of the equals (Object) method.

The following application uses the equals (Object) method to determine if two String objects with different references are the same:

// equality2.java

class equality2

{

 public static void main (String [] args)

 {

 String s1 = "abc";

 String s2 = new String ("abc");

 System.out.println ("s1 = " + s1);

 System.out.println ("s2 = " + s2);

 if (s1 == s2)

 System.out.println ("s1 == s2");

 if (s1.equals (s2))

 System.out.println ("s1.equals (s2)");

 }

}

s1 = abc

s2 = abc

s1.equals (s2)

Finalizing

Just before an object is destroyed, the JVM calls the object's finalize () method to give the object a chance to perform last-minute cleanup. This cleanup usually involves assigning null to all reference fields declared within the object's class. (Assigning null to a reference field causes the JVM to decrement a reference count on that field. After this reference count reaches zero, the object is automatically marked for garbage collection.)

The following application uses the finalize () method to set an employee object's name reference field to null. This marks that String object for garbage collection:

// finalize.java

class employee

{

 private String name;

 private int id;

 employee (String name, int id)

 {

 this.name = name;

 this.id = id;

 }

 public void finalize ()

 {

 System.out.println ("Finalizing: " + id);

 name = null;

 }

}

class finalize

{

 public static void main (String [] args)

 {

 System.runFinalizersOnExit (true);

 employee e;

 for (int i = 0; i < 10; i++)

 e = new employee ("John Doe" + i, i);

 e = null;

 }

}

Finalizing: 9

Finalizing: 8

Finalizing: 7

Finalizing: 6

Finalizing: 5

Finalizing: 4

Finalizing: 3

Finalizing: 2

Finalizing: 1

Finalizing: 0

There are a couple of things to point out about this program. First, the runFinalizersOnExit (boolean) method (declared as part of the System class) is called to "tell" the JVM to guarantee that all finalize () methods will be called prior to exit. (Normally, not all these methods are called.) Second, the order in which the finalize () methods are called varies from one JVM to another. In this example, the most recently created employee object is finalized before the very first created employee object.

? For more information on finalization, see Chapter 7, "Initializers, Finalizers, and Inner Classes," page 157.

Hash Codes

Hash codes are integer numbers that uniquely identify objects. These codes are used in partnership with Java's HashTable class.

To support hash code generation, a class overrides Object's hashCode () method. (Usually, this method is overridden in conjunction with the equals (Object) method.)

? For more information on HashTable and hashing, see Chapter 12, "Data Structures, Part 2," page 289.

Notification and Waiting

Object declares five methods that are used by multithreaded programs: notify (), notifyAll (), wait (), wait (long), and wait (long, int).

These notification and wait methods are used to synchronize access to critical data. They will be examined in a later chapter when multithreading is discussed.

String Representation

Every object is given the ability to create a string representation of its contents by inheriting Object's toString () method. This method returns a String object that describes these contents.

The following application attempts to print out the contents of the toString1 object that is referenced by variable ts1:

// toString1.java

class toString1

{

 int i = 6;

 String name = "John Doe";

 public static void main (String [] args)

 {

 toString1 ts1 = new toString1 ();

 System.out.println (ts1);

 }

}

toString1@f7bd4ae6

System.out.println (String) causes the previous characters to be displayed. However, they look a little strange.

The Java language provides the following feature. Whenever an object (regardless of class) is passed as an argument to a method that requires a String object argument, Java implicitly calls the toString () method associated with the object argument. The toString () method returns a String representation of the object.

If toString () has not been overridden, this method returns a String object consisting of the object argument's class name, followed by an @ character, followed by a hash code that uniquely identifies the object.

However, it is possible to display more meaningful information, such as the names and values of the various fields. This can be done by overriding toString ().

The following application attempts to print out the contents of the toString2 object that is referenced by variable ts2. Instead of displaying the class name, an @ character, and a hash code, the contents of the ts2 object is displayed:

// toString2.java

class toString2

{

 int i = 6;

 String name = "John Doe";

 public static void main (String [] args)

 {

 toString2 ts2 = new toString2 ();

 System.out.println (ts2);

 }

 public String toString ()

 {

 return "i = " + i + ", name = " + name;

 }

}

i = 6, name = John Doe

Take a look at the contents of the toString () method. Note the Return statement. This statement is returning the result of an expression that evaluates to the String data type. However, this expression might look a little strange. After all, it is attempting to concatenate an integer value to a string literal. What's going on?

When the Java compiler evaluates an expression containing the + operator, it evaluates the data type of its operands. If both data types are numeric data types, the compiler "knows" that the + operator is the addition operator. However, if one or both data types are reference data types, the compiler "knows" that this operator is the string concatenation operator.

If one of the operands has a numeric data type, the compiler generates byte code to convert this operand to a String object. However, if one of the operands has a non-String reference data type, the compiler calls this object's toString () method to return a String object. After this is done, both operands are String objects and string concatenation now takes place.

Multiple Inheritance and Interfaces

Earlier, the concept of multiple inheritance was defined as a means for an entity to inherit properities and behavior from multiple parents. For example, Sally inherits the capability to be both an accountant and a manager.

Unlike C++, Java does not support multiple inheritance. For example, it's not possible to say something such as this:

class a extends b, c

There is a good reason why Java does not support this concept—multiple inheritance is prone to problems.

Let's pretend that Java allowed a class to extend multiple classes. The following code fragment illustrates this situation:

class b

{

 int x;

 double y (int z) { return z + 3.5; }

 …

}

class c

{

 boolean x;

 char y (int z) { return (char) z; }

 …

}

class a extends b, c

{

 …

}

When the compiler is compiling class a, it is forced to make choices. "Do I include int x from class b or boolean x from class c? Do I include the double y (int) method from class b or the char y (int) method from class c?" The presence of two fields with the same name but different data types and two methods with the same name but two different return data types and different code bodies causes confusion for the compiler. Will the compiler create code that allocates four bytes for an integer or one bit for a Boolean? Will the compiler include the byte code for the y method from class b or the byte code for the y method from class c? Java solves these problems by forbidding multiple inheritance.

However, Java does provide a mechanism that you can use to take advantage of multiple inheritance while avoiding these problems—interfaces.

An interface is similar to an abstract class. However, unlike an abstract class, all methods declared within an interface must be abstract. Furthermore, it is only possible to declare read-only fields in an interface.

Although you can only extend one class, you can implement multiple interfaces to achieve multiple inheritance, as you will see. The format of an interface declaration is

 ["abstract"] ["public"] "interface" interface_name ["extends" interface_name2]

'{'

 // read-only field declarations

 // abstract method declarations

'}'

Every interface declaration requires a header consisting of at least the interface reserved word followed by an identifier that names the class. (The identifier can't be a reserved word.) In the preceding format, interface_name represents this identifier.

A block follows the interface header. This block begins with an open brace ({) character and ends with a close brace (}) character. Read-only fields and abstract methods are declared within this block.

The interface reserved word can be preceded by the abstract reserved word and/or the public reserved word.

All methods declared within an interface are abstract methods. This fact can be emphasized by prefixing the interface header with the abstract reserved word and/or prefixing each method declaration with the abstract reserved word. However, this is optional.

All read-only fields and methods declared within an interface are publicly visible. This fact can be emphasized by prefixing the interface header with the public reserved word and/or prefixing each field/method declaration with the public reserved word. However, this is optional.

The following code fragment declares a shape interface. This interface declares a publicly visible abstract draw () method for drawing the shape. (Note that neither public nor abstract are specified to prefix shape or draw ().)

interface shape

{

 void draw ();

}

An interface can inherit read-only variables and abstract method declarations from another interface by specifying the extends reserved word followed by another interface. This is useful for deriving more specialized interfaces from a generic interface.

The following code fragment declares a shape3D interface that extends shape. This interface declares a publicly visible abstract volume () method for computing the volume of a three-dimensional shape. However, shape3D also has an inherited draw () method:

interface shape3D extends shape

{

 double volume ();

}

Classes implement interfaces by specifying the implements reserved word followed by a comma-delimited list of interface names.

CAUTION

Forgetting to implement an interface method in a class that implements the interface results in a compiler error.

The following code fragment declares a point3D class and a sphere class. The sphere class extends point3D and also implements the shape3D interface:

class point3D

{

 private double x, y, z;

 point3D (double x, double y, double z)

 {

 this.x = x; this.y = y; this.z = z;

 }

}

class sphere extends point3D implements shape3D

{

 private double radius;

 sphere (double x, double y, double z, double radius)

 {

 super (x, y, z);

 this.radius = radius;

 }

 public void draw () { System.out.println ("Sphere"); }

 public double volume ()

 {

 return 4.0 / 3.0 * 3.14159 * radius * radius * radius;

 }

}

In this example, we are only implementing the single shape3D interface.

Inheritance Versus Composition

Inheritance deals with "is a" relationships. We say that one object is a kind of other object. For example, a sphere is a three-dimensional point with radius.

Inheritance works through layering classes within classes. When an object is created, the internal class structures are merged into a single structure.

Composition deals with "has a" relationships. We say that one object has a second object as part of itself. For example, an employee object has a String object that identifies the employee's name.

Composition works through composing classes out of other classes. When an object is created, the internal class structures are distinct building blocks that are separate from other class structures.

DEALERSHIP2

DEALERSHIP2 is an application that serves as a continuation of DEALERSHIP1 (from the previous chapter). DEALERSHIP2 demonstrates superclasses, subclasses, super, and toString ().

Setting Up DEALERSHIP2

To set up DEALERSHIP2, begin by double-clicking your MS-DOS icon (if you are using Windows) and go to a command prompt.

If you created a projects directory in Chapter 1, "Introducing Java," make projects your current directory. (If you do not have a projects directory, now is as good a time as any to create one.)

Assuming that projects is located within c:\jdk1.2\, enter the command cd \jdk1.2\projects to change to this directory.

From within your projects directory, create a directory called dealership2 (for example, md dealership2). (If you prefer, you can create this directory entirely in uppercase. For example, you could issue the command md DEALERSHIP2 to create this directory. Case does not matter when it comes to directories.)

Download the file dealership2.java from the Macmillan Web site and place this file in your dealership2 directory.

Compiling DEALERSHIP2

Compilation is a simple process. It involves running the javac.exe program and specifying the name of the source file as an argument to this program.

At the command prompt, enter the following line:

c:\jdk1.2\projects\dealership2>javac dealership2.java

CAUTION
The .java file extension must be specified when compiling an application's source file. The compiler will display an error message if .java is not specified.

If the compiler displays an error message, you might have typed Dealership2.java or DEALERSHIP2.java instead of dealership2.java.

CAUTION
You must specify dealership2.java and not Dealership2.java, DEALERSHIP2.java, or any other combination of lowercase/uppercase letters. The compiler is very sensitive to case and will display an error message if the class name (dealership2) does not match the filename (dealerhip2).

After compilation is finished, you should end up with a class file called dealership2.class.

Figure 5.5 shows the compilation process.

Figure 5.5. Compiling dealership2.java with the javac.exe compiler.

PRIVATE "TYPE=PICT;ALT=graphics/05fig05.gif"[image: image25.png]
Running DEALERSHIP2

Congratulations! You successfully compiled dealership2.java and are now ready to run dealership2.class. All you need to do is fire up the java.exe program and specify dealership2.class as an argument to this program.

CAUTION
The .class file extension must not be specified, otherwise the java.exe program will display an error message.

Figure 5.6 shows the process of running dealership2.class with java.exe.

Figure 5.6. Running dealership2.class with java.exe.
PRIVATE "TYPE=PICT;ALT=graphics/05fig06.gif"[image: image26.png]
Various properties of a pickup truck object and a road hog motorcycle object are displayed. An inventory assessment of the various trucks and motorcycles in stock also is displayed.

Potential Problems

As it stands, DEALERSHIP2 is pretty robust. However, if you decide to modify the code, you could run into some problems. Here are two possibilities:

· Creating another vehicle-specific class and declaring getQuantity () or getUnitCost () in this class without using public will result in a compiler error. The error occurs because these methods are declared within the inventory interface with a default public visibility, and it is not possible to implement interface methods with less visibility.

· Creating vehicle objects is not an error. However, it makes more sense to create trucks and motorcycles because these concepts are more tangible than the "abstract" vehicle concept. (Abstraction will play an important role in the next chapter.)

If you should encounter an error, don't panic. Instead, try to reason out the cause of this error and then take appropriate action.

Enhancing DEALERSHIP2

You can enhance DEALERSHIP2 by adding "set" accessor method declarations to inventory to set the quantity and unit cost of trucks and motorcycles. (These methods will need to be implemented within truck and motorcycle. Add private fields to these classes to hold quantity and unit cost values.)

You could also create a car class that inherits from vehicle and implements inventory methods. Create a variety of car objects and display the contents of these objects along with quantity, unit cost, and total cost.

For each object, calculate quantities and unit costs by calling the "set" accessor methods, and then use the "get" accessor methods to retrieve these values. Compute the total cost for each inventory item.

What's Next?

Now that you've explored the second principle of object-oriented programming, inheritance, it's time to turn your attention to the third principle, polymorphism. Of the three principles, polymorphism is often seen as the most difficult principle to grasp. However, polymorphism isn't that hard to grasp when discussed in a simplified manner.

Chapter 6. Polymorphism: Dynamic Method Binding

The previous chapter investigated the second principle of object-oriented programming: inheritance. This chapter examines the third and final OOP principle: polymorphism.

Of the three OOP principles, polymorphism can be the most challenging principle to learn because it is not as intuitive as either encapsulation or inheritance. However, as you'll discover, polymorphism really isn't that difficult to understand.

Chapter 6 presents the following topics:

· Exploring OOP: polymorphism

· Abstract classes

· Runtime type information

· Polymorphic interfaces

· Polymorphism versus data type/switch logic

· DEALERSHIP3

Exploring OOP: Polymorphism

Our world contains many kinds of animals, including monkeys, cows, and chickens. These animals share common behavioral concepts, such as eating. (Having grown up on a farm, it seems to me that eating is the only thing that animals like to do!) However, the actual eating behavior differs among the various species. For example, a monkey eats by holding a banana in its hand and chewing on the banana, whereas a cow eats by chewing grass with its mouth and a chicken eats by pecking grains off the ground with its beak.

From an OOP perspective, we can create an animal class that abstracts this common eating behavior, by providing an appropriate eat () method. We can create monkey, cow, and chicken subclasses that override animal's eat () method in each subclass to specialize the manner by which each kind of animal eats.

At runtime, we can create an animal object reference variable a and a chicken object. We can assign the chicken object reference to a and call a.eat (). Instead of calling animal's eat () method, the JVM calls chicken's eat () method. The JVM finds the correct eat () method to call (that is, the animal, monkey, cow, or chicken eat () method) by examining the object reference assigned to a. It then calls the eat () method that is associated with this reference. Figure 6.1 illustrates a call to chicken's eat () method.

Figure 6.1. Calling chicken's eat () method through animal object reference variable a.

PRIVATE "TYPE=PICT;ALT=graphics/06fig01.gif"[image: image27.png]
The mechanism that the JVM uses to locate and call the correct subclass method is known as dynamic method binding. (An object reference is dynamically assigned to a superclass object reference variable. This reference is examined to identify the object to which the subclass method is bound.)

What you've just been exposed to is polymorphism—the capability to use a superclass object reference variable to invoke subclass versions of overridden superclass methods.

Abstract Classes

Polymorphism deals with abstractions. For example, we might think in terms of animals eating, rather than chickens eating plus cows eating plus monkeys eating plus tigers eating, and so on. Thinking from an abstract point of view saves time. Coding from an abstract point of view reduces code size.

The following application illustrates polymorphism by allowing different animals to eat according to their own behaviors:

// animals1.java

class animal

{

 void eat () { System.out.println ("???"); }

}

class monkey extends animal

{

 void eat () { System.out.println ("Holding and eating banana!"); }

}

class cow extends animal

{

 void eat () { System.out.println ("Chewing grass with mouth!"); }

}

class chicken extends animal

{

 void eat () { System.out.println ("Pecking grains off ground!"); }

}

class animals1

{

 public static void main (String [] args)

 {

 animal [] animals =

 {

 new monkey (),

 new cow (),

 new chicken (),

 new animal ()

 };

 for (int i = 0; i < animals.length; i++)

 animals [i].eat ();

 }

}

Holding and eating banana!

Chewing grass with mouth!

Pecking grains off ground!

???

We have a group of "happy" animals because they're all eating. But wait! There is something strange in the output. What are those three question marks?

Look carefully at the source code. Notice that a generic animal object is being created in the animals array. What is an animal object? Is it a monkey? No! Is it a cow? No! Is it a chicken? No! Is it a specific kind of animal? No! An animal object is an abstraction that identifies those properties and behaviors that are shared by all kinds of animals—such as eating.

We really shouldn't be able to create an animal object because it does not represent a specific kind of animal, such as cow, monkey, and chicken.

In Chapter 4, "Encapsulation: Classes and Objects," the concepts of an abstract class and abstract methods were introduced. These concepts identify classes that are generic (for example, animal) as opposed to classes that are specific (for example, monkey) and methods that are generic (for example, animal's eat () method) as opposed to methods that are specific (for example, monkey's eat () method).

CAUTION

Attempting to create an object from an abstract class results in a compiler error.

A class becomes an abstract class by prefixing the class reserved word with the abstract reserved word. A method becomes an abstract method by prefixing its return data type with the abstract reserved word. If a method is declared abstract, its declaring class must all be declared abstract.

CAUTION

Attempting to declare an abstract method without declaring the class as abstract (for example, abstract class …) results in a compiler error.

The following application illustrates polymorphism by allowing different animals to eat according to their own behaviors. This time, it is not possible to create animal objects because animal is now an abstract class, by virtue of its abstract eat () method:

// animals2.java

abstract class animal

{

 abstract void eat ();

}

class monkey extends animal

{

 void eat () { System.out.println ("Holding and eating banana!"); }

}

class cow extends animal

{

 void eat () { System.out.println ("Chewing grass with mouth!"); }

}

class chicken extends animal

{

 void eat () { System.out.println ("Pecking grains off ground!"); }

}

class animals2

{

 public static void main (String [] args)

 {

 animal [] animals =

 {

 new monkey (),

 new cow (),

 new chicken ()

 };

 for (int i = 0; i < animals.length; i++)

 animals [i].eat ();

 }

Holding and eating banana!

Chewing grass with mouth!

Pecking grains off ground!

Abstract classes can contain a mixture of abstract methods and concrete methods. For example, every kind of animal is either extinct or not extinct. A method to test if an animal object represents an extinct kind of animal (such as the Dodo bird) could be placed in every animal subclass. However, this would be redundant and bloat the size of the program. It would be better to place this method in animal as a concrete method. Then, when an animal subclass object is created, its constructor could identify that kind of animal as being extinct or not.

The following application illustrates mixing concrete and abstract methods in an abstract animal class:

// animals3.java

abstract class animal

{

 private boolean extinct;

 animal (boolean extinct)

 {

 this.extinct = extinct;

 }

 abstract void eat ();

 boolean isExtinct () { return extinct; }

}

class monkey extends animal

{

 monkey (boolean extinct)

 {

 super (extinct);

 }

 void eat () { System.out.println ("Holding and eating banana!"); }

}

class cow extends animal

{

 cow (boolean extinct)

 {

 super (extinct);

 }

 void eat () { System.out.println ("Chewing grass with mouth!"); }

}

class chicken extends animal

{

 chicken (boolean extinct)

 {

 super (extinct);

 }

 void eat () { System.out.println ("Pecking grains off ground!"); }

}

class dodo extends animal

{

 dodo (boolean extinct)

 {

 super (extinct);

 }

 void eat () { System.out.println ("Pecking berries off trees!"); }

}

class animals3

{

 public static void main (String [] args)

 {

 animal [] animals =

 {

 new monkey (false),

 new cow (false),

 new chicken (false),

 new dodo (true)

 };

 for (int i = 0; i < animals.length; i++)

 if (animals [i].isExtinct ())

 System.out.println ("Animal is extinct.");

 else

 animals [i].eat ();

 }

}

Holding and eating banana!

Chewing grass with mouth!

Pecking grains off ground!

Animal is extinct.

Runtime Type Information

Java provides an operator for determining the data type of an object (that is, the class from which the object was created)—instanceof.

The format of this operator is

object_identifier "instanceof" class_identifier
object_identifier is the name of an object.

class_identifier is the name of a class.

This operator returns a Boolean true value if object_identifier is an instance of class_identifier; otherwise, false is returned.

? For more information on instanceof, see Chapter 3, "Operators, Expressions, and Statements," page 45.

The following code fragment illustrates the instanceof operator:

String s = "abc";

boolean result = s instanceof String;

When this code fragment completes, the value of result is true because s references an object that is an instance of the String class.

The instanceof operator is required when casting an object reference variable from a superclass data type back to a subclass data type. If this is not done properly, a ClassCastException failure occurs.

The following application illustrates instanceof:

// shapes.java

abstract class shape

{

 abstract double area ();

}

class point extends shape

{

 private double x, y;

 point (double x, double y)

 {

 this.x = x; this.y = y;

 }

 double getX () { return x; }

 double getY () { return y; }

 double area () { return 0.0; }

}

class circle extends point

{

 private double radius;

 circle (double x, double y, double radius)

 {

 super (x, y);

 this.radius = radius;

 }

 double getRadius () { return radius; }

 double area () { return Math.PI * radius * radius; }

}

class rectangle extends shape

{

 private double length, width;

 rectangle (double length, double width)

 {

 this.length = length;

 this.width = width;

 }

 double getLength () { return length; }

 double getWidth () { return width; }

 double area () { return length * width; }

 }

class shapes

{

 public static void main (String [] args)

 {

 shape shapeArray [] =

 {

 new circle (52.5, 32.6, 4.7),

 new rectangle (89.6, 78.3),

 new point (62.4, 45.7)

 };

 for (int i = 0; i < shapeArray.length; i++)

 if (shapeArray [i] instanceof point)

 {

 System.out.println ("Point");

 System.out.println ("-----");

 }

 else if (shapeArray [i] instanceof circle)

 {

 System.out.println ("Circle");

 System.out.println ("------");

 System.out.println ("x = " +

 ((circle) shapeArray [i]).getX ());

 System.out.println ("y = " +

 ((circle) shapeArray [i]).getY ());

 System.out.println ("radius = " +

 ((circle) shapeArray [i]).getRadius ());

 }

 else if (shapeArray [i] instanceof rectangle)

 {

 System.out.println ("Rectangle");

 System.out.println ("---------");

 System.out.println ("length = " +

 ((rectangle) shapeArray [i]).getLength ());

 System.out.println ("width = " +

 ((rectangle) shapeArray [i]).getWidth ());

 }

 System.out.println ("Area = " + shapeArray [i].area ());

 // Leave a blank line separator.

 System.out.println ("");

 }

 }

}

This application needs to use instanceof to determine an object's data type before it can cast the object back to its data type. The data type is required before any object-specific methods can be called (for example, the getLength () method in the rectangle class).

Point

Area = 69.39778171779854

Rectangle

length = 89.6

width = 78.3

Area = 7015.679999999999

Point

Area = 0.0

Notice anything strange about the output? The first line contains the word Point. If you study the code, should this word not be Circle? After all, the first shapeArray element reference points to a circle object.

Within the For loop statement, the first If of the Nested If decision statement checks to see if each shapeArray element is a point. Because the circle class is derived from point, a circle object is also a point object. (After all, a circle is a point with radius—the "is a" relationship.) Therefore, instanceof returns true because a circle object is also a point object.

This leads to an interesting situation. The second If clause within the Nested If decision statement that checks to see if the object is a circle is never executed, and neither are the method calls for circle objects. The moral of this situation is that care must be used in placing instanceof tests within Nested If statements. The instanceof that checks to see if an object is a superclass object should occur after the instanceof that checks if the object is a subclass object. For example, test to see if the object is a circle before testing to see if it is a point.

Polymorphic Interfaces

In Chapter 5, "Inheritance: Superclasses and Subclasses," you learned that interfaces are used to support the concept of multiple inheritance. However, they also are used to factor out the commonality found in different kinds of classes.

Suppose you own a very strange store that sells hammers and Camaro sportscars. Hammers and Camaros have nothing in common, at least nothing that comes to mind. However, there is commonality: Both items are inventory items.

Suppose you need to take inventory. What would your OOP program look like?

To start with, you might create abstract tool and sportscar classes to factor out the commonality of tools and sportscars. Then, you could derive a hammer class from tool and a camaro class from sportscar to identify a specific kind of tool and a specific kind of sportscar.

However, you also want to extend hammer and camaro from an inventory class so that inventory can be taken. You cannot do this because you are already extending from the tool and sportscar classes. (Java does not support multiple inheritance.)

You decide to create an inventory interface and force the hammer and camaro classes to implement that interface.

You decide to create an array of tool objects. (In addition to hammer objects, you might have saw objects and drill objects.) You then iterate through this array and call the inventory interface methods to take the inventory of all your tools.

You decide to create an array of sportscar objects. (In addition to camaro objects, you might have corvette objects and firebird objects.) You then iterate through this array and call the inventory interface methods to take the inventory of all your sportscars.

But isn't this a lot of work? Wouldn't it be better to create a single combined array of tool and sportscar objects? You'd save some code by combining these arrays.

Interfaces provide a solution to this problem. You can create an array of interface objects and iterate through this array.

The following application illustrates polymorphic interfaces:

// takeInventory.java

interface inventory

{

 String getItemName ();

 int getNumUnits ();

}

abstract class tool

{

}

class hammer extends tool implements inventory

{

 private String manufacturer;

 int numUnits;

 hammer (String manufacturer, int numUnits)

 {

 this.manufacturer = manufacturer;

 this.numUnits = numUnits;

 }

 public String getItemName () { return "Hammer"; }

 public int getNumUnits () { return numUnits; }

}

abstract class sportscar

{

}

class camaro extends sportscar implements inventory

{

 private String model;

 private String color;

 private int quantity;

 camaro (String model, String color, int quantity)

 {

 this.model = model;

 this.color = color;

 this.quantity = quantity;

 }

 public String getItemName () { return "Camaro"; }

 public int getNumUnits () { return quantity; }

}

class takeInventory

{

 public static void main (String [] args)

 {

 inventory [] inv =

 {

 new hammer ("Sears", 59),

 new camaro ("Z28", "red", 3)

 };

 for (int i = 0; i < inv.length; i++)

 {

 System.out.println ("Item name = " +

 inv [i].getItemName ());

 System.out.println ("Number of units = " +

 inv [i].getNumUnits ());

 }

 }

}

Item name = Hammer

Number of units = 59

Item name = Camaro

Number of units = 3

Classes identify reference data types. Objects are created from classes. But what are interfaces?

An interface is not a data type but it sure acts like a data type. It is not a data type because you cannot create objects from interfaces. (After all, an interface consists of abstract methods and/or read-only field variables.) However, you can create an interface variable and assign the address of an object whose class implements that interface to this variable. (The interface variable, like an object reference variable, is only large enough to hold the address of an object.)

When an object reference has been assigned to an interface variable, only interface methods that have been implemented by the object can be called from that interface variable. In the previous example, the getItemName () and getNumUnits () methods are called from the inv interface array.

When interfaces are used in this fashion, they are known as polymorphic interfaces. In this situation, the only thing that matters is that an object created from a class that implements an interface can have its reference assigned to that interface's variables. As a result, tools and sportscars, animals, employees, and anything else that you can think of can share commonality. In fact, everything on this planet shares commonality: Not only do we all exist on this planet, we are all composed from atoms.

Polymorphism Versus Data Type/Switch Logic

Polymorphism is a natural part of our world. It's a good thing that this capability has found its way into OOP; otherwise, modeling this world would be a little more difficult.

How would we model the world if we did not have polymorphism at our disposal? If this were the case, we would need to fall back to an earlier technique that many developers have used in non-OOP languages to achieve polymorphic results: data type/switch logic.

Two sample applications are presented to illustrate the difference between polymorphism and data type/switch logic. The first example (animals4) uses polymorphism, while the second example (animals5) uses data type/switch logic.

The following animals4 application demonstrates polymorphism by way of several animal classes:

// animals4.java

abstract class animal

{

 abstract void makeNoise ();

}

class bear extends animal

{

 void makeNoise () { System.out.println ("Growls"); }

}

class chipmunk extends animal

{

 void makeNoise () { System.out.println ("Whistles"; }

}

class dog extends animal

{

 void makeNoise () { System.out.println ("Barks"); }

}

class animals4

{

 public static void main (String [] args)

 {

 dog joey = new dog ();

 animal [] menagerie = { new bear (), new chipmunk (), joey };

 for (int i = 0; i < menagerie.length; i++)

 menagerie [i].makeNoise ();

 }

}

Growls

Whistles

Barks

Polymorphism works best when iterating through a collection of objects and calling a method that is common to these objects.

In the animals4 application, an animal array called menagerie is created. This array is initialized to three objects: a bear, a chipmunk, and a dog called joey.

A For loop statement iterates through this array and calls the makeNoise () method, which must be declared in the various animal classes.

At runtime, the JVM extracts an object reference from an array element and examines the object's data type. After it "knows" this data type, the JVM can call the appropriate makeNoise () method. Discovering the data type and calling the appropriate makeNoise () method happens behind the scenes.

Let's take a look at this same application without polymorphism.

The following animals5 application demonstrates polymorphism without using Java's dynamic method binding mechanism. Data type detection and switch logic are used instead:

// animals5.java

abstract class animal

{

 final static int BEAR = 0;

 final static int CHIPMUNK = 1;

 final static int DOG = 2;

 int animalType;

 animal (int animalType)

 {

 this.animalType = animalType;

 }

}

class bear extends animal

{

 bear ()

 {

 super (BEAR);

 }

 void growl () { System.out.println ("Growls"); }

}

class chipmunk extends animal

{

 chipmunk ()

 {

 super (CHIPMUNK);

 }

 void whistle () { System.out.println ("Whistles"); }

}

class dog extends animal

{

 dog ()

 {

 super (DOG);

 }

 void bark () { System.out.println ("Barks"); }

}

class animals5

{

 public static void main (String [] args)

 {

 dog joey = new dog ();

 animal [] menagerie = { new bear (), new chipmunk (), joey };

 for (int i = 0; i < menagerie.length; i++)

 switch (menagerie [i].animalType)

 {

 case animal.BEAR:

 ((bear) menagerie [i]).growl ();

 break;

 case animal.CHIPMUNK:

 ((chipmunk) menagerie [i]).whistle ();

 break;

 case animal.DOG:

 ((dog) menagerie [i]).bark ();

 }

 }

}

Growls

Whistles

Barks

Data type/switch logic offers the equivalent of polymorphism. However, the developer is responsible for providing several mechanisms.

Each participating class must be uniquely identified. The simplest identification mechanism is to associate an integer number with a class. However, specifying literal values makes the code harder to follow (and more prone to error). Therefore, it is better to provide final field variables that describe the various classes. In the example, the animal class declares BEAR, CHIPMUNK, and DOG.

If integer values are being used to differentiate among classes, each class will require an integer field to hold its own value. In the example, this field is called animalType and is declared in the animal class. It is then inherited by each subclass.

The constructor of each class (or some other mechanism) is responsible for initializing each object to an appropriate identifier. In the example, each object's animalType field is initialized to BEAR, CHIPMUNK, or DOG.

An array of animal objects is still created because subclass references can be assigned to superclass variables. (This is not a polymorphic concept.) In the example, a menagerie array of the animal data type is created.

A For loop statement iterates through the array's elements. A Switch statement examines the identifier (for example, animalType) to determine the object's class. An appropriate case is selected and execution proceeds. The array element is cast back to its appropriate subclass (for example, bear, chipmunk, or dog) and the class-specific method is called (for example, growl (), whistle (), or bark ()).

What's wrong with this code? It works, but there is a subtle problem. Suppose that we must add an additional animal subclass (such as a tiger subclass) to this application. We cannot just add a tiger subclass, create some tiger objects, and add them to the menagerie array. We also must create a TIGER final field variable with a unique value and an appropriate case to the Switch statement. This is not so bad with our simple example, but what happens if we have a much larger program consisting of hundreds of classes and many opportunities for adding or removing subclasses? The possibility of error increases. Because polymorphism's dynamic method binding capability does this for us, it is more appropriate to make use of this capability and forget about traditional data type/switch logic.

DEALERSHIP3

DEALERSHIP3 is an application that serves as a continuation of DEALERSHIP2 (from the previous chapter). DEALERSHIP3 demonstrates dynamic method binding, interfaces, abstract superclasses, and instanceof.

Setting Up DEALERSHIP3

To set up DEALERSHIP3, begin by double-clicking your MS-DOS icon (if you are using Windows) and go to a command prompt.

If you created a projects directory in Chapter 1, "Introducing Java," make projects your current directory. (If you do not have a projects directory, now is as good a time as any to create one.)

Assuming that projects is located within c:\jdk1.2\, enter the command cd \jdk1.2\projects to change to this directory.

From within your projects directory, create a directory called dealership3 (for example, md dealership3). (If you prefer, you can create this directory entirely in uppercase. For example, you could issue the command md DEALERSHIP3 to create this directory. Case does not matter when it comes to directories.)

Download the file dealership3.java from the Macmillan Web site and place this file in your dealership3 directory.

Compiling DEALERSHIP3

Compilation is a simple process. It involves running the javac.exe program and specifying the name of the source file as an argument to this program.

At the command prompt, enter the following line:

c:\jdk1.2\projects\dealership3>javac dealership3.java

CAUTION
The .java file extension must be specified when compiling an application's source file. The compiler will display an error message if .java is not specified.

If the compiler displays an error message, you might have typed Dealership3.java or DEALERSHIP3.java instead of dealership3.java.

CAUTION
You must specify dealership3.java and not Dealership3.java, DEALERSHIP3.java, or any other combination of lowercase/uppercase letters. The compiler is very sensitive to case and will display an error message if the class name (dealership3) does not match the filename (dealership3).

After compilation is finished, you should end up with a class file called dealership3.class.

Figure 6.2 shows the compilation process.

Figure 6.2. Compilingdealership3.java with the javac.exe compiler.

[image: image28.png]PRIVATE "TYPE=PICT;ALT=graphics/06fig02.gif"
Running DEALERSHIP3

Congratulations! You successfully compiled dealership3.java and are now ready to run dealership3.class. All you need to do is fire up the java.exe program and specify dealership3.class as an argument to this program.

CAUTION

The .class file extension must not be specified; otherwise, the java.exe program will display an error message.

Figure 6.3 shows the process of running dealership3.class with java.exe.

Figure 6.3. Running dealership3.class with java.exe.

PRIVATE "TYPE=PICT;ALT=graphics/06fig03.gif"[image: image29.png]
Potential Problems

As it stands, DEALERSHIP3 is pretty robust. However, if you decide to modify the code, you could run into some problems. Here is one possibility. (This possibility is repeated from the previous chapter.)

· Creating another vehicle-specific class and declaring getQuantity () or getUnitCost () in this class without using public will result in a compiler error. The error occurs because these methods are declared within the inventory interface with a default public visibility and it is not possible to implement interface methods with less visibility.

If you should encounter an error, don't panic. Instead, try to reason out the cause of this error and then take appropriate action.

Enhancing DEALERSHIP3

You can enhance DEALERSHIP3 by turning it into a database application with a graphical user interface for data entry and display of information. However, before attempting to do this, you'll need to continue reading through this book to learn more about these concepts.

What's Next?

Now that you've explored the third principle of object-oriented programming, polymorphism, you need to learn how to properly initialize class fields and instance fields. You should also learn how to clean up objects before they are destroyed. These concepts are discussed in the next chapter, along with an interesting discussion on nesting classes within classes—a very useful technique that is used by Java's abstract windowing toolkit.

Chapter 7. Initializers, Finalizers, and Inner Classes

Initializing objects is an important task. If this task is not properly carried out, objects will "begin life" in a "crippled" state. Java uses special language features known as initializers to handle this task.

Finalization complements the initialization task. When it's time for an object to "die," it should make every effort to "get its house in order." This task involves releasing any resources that the object is holding before it "dies." Java uses the finalizer language feature to give objects a chance to release resources before they are destroyed.

The Java language provides programs with the capability to nest classes (that is, declare classes within other classes). These nested classes are known as inner classes. (They are quite useful, as you will see.)

Chapter 7 presents the following topics:

· Initializers

· Finalizers

· Inner classes

Initializers

Initializers are special methods that initialize class fields and instance fields. They ensure that classes and objects are correctly initialized before a Java program "gets down to business" with whatever it has to do.

Because class fields and instance fields are different kinds of entities, they need to be initialized in different ways. It is for this reason that Java provides two different kinds of initializers—class field initializers and instance field initializers.

? For more information on fields, see Chapter 4, "Encapsulation: Classes and Objects," page 75.

Fields and Default Values

Fields are variables declared within a class block. Basically, there are two kinds of fields, class fields and instance fields.

A class field is shared by all objects created from the class that declares this field. If one of these objects changes the class field's value, the other objects are able to access the new value. In fact, a class's class fields exist long before any objects are created from that class.

An instance field is unique to an object. It is this uniqueness that sets objects apart. For example, a red car differs from a blue car based on its color property. Instance fields are created only when an object is created.

Unlike the C++ object-oriented language, Java guarantees that all its class and instance fields are initialized to default values before program code can access these fields. These default values are shown in Table 7.1.

Table 7.1. : Default Values Data Type Default Value

boolean false

char '\u0000'

byte 0

short 0

int 0

long 0l

float 0.0f

double 0.0d

reference null

Although the formats of these default values differ, they all share the following in common: The physical representation of default values consists of memory bits that are all set to zero.

Class Field Initializers

Class fields are created and initialized to default values just after the class file in which they are declared has been loaded into memory, and before any object from that class has been created. Let's take a look at an example.

class class0

{

 static int count;

 public static void main (String [] args)

 {

 System.out.println (count);

 }

}

0

Before the main method begins to run, the JVM loads the class0 class file into memory. A region of memory is allocated for the main method's byte code, and a four-byte region is allocated for the count class field. The value of count is set to its default 0 value. This is illustrated in Figure 7.1

Figure 7.1. The class0 class as it exists in memory.

[image: image30.png]
The region inside the dashed lines is all that exists, as far as class0 is concerned.

Suppose that this class was slightly modified so that count was initialized to a value of 1, as in the following example. (This class has been renamed to class1 to make it easier to differentiate it from class0.)

class class1

{

 static int count = 1;

 public static void main (String [] args)

 {

 System.out.println (count);

 }

}

After count has been initialized to its default 0 value, it is initialized a second time to a value of 1. This is illustrated in Figure 7.2.

Figure 7.2. The class1 class as it exists in memory, after count is initialized to 1.

[image: image31.png]
What is responsible for initializing count to 1? It turns out that the compiler creates a special method called <clinit>, the class field initializer, that is responsible for initializing count.

For each class that declares at least one class field, the compiler creates a <clinit> method for that class and stores the byte code for this method in the resulting class file. If a class does not declare any class fields, the compiler will not create a <clinit> method for that class.

Essentially, the <clinit> method is a JVM method that takes no arguments and has the void return data type. This method is not declared in source code. In fact, it could never be declared in source code because the angle brackets cannot be used as part of a language identifier.

After a class file has been loaded into memory and its class fields initialized to their default values, the JVM calls <clinit> to initialize class fields to developer-supplied initial values—such as assigning 1 to count.

It is possible to initialize a class field using the value of a previously initialized class field, as shown in the following example:

// class2.java

class class2

{

 static int count = 1;

 static int total = 2 + count;

 public static void main (String [] args)

 {

 System.out.println (total);

 }

}

After <clinit> has explicitly initialized the count field to 1, it initializes the total field to 2 plus the contents of the count field—1. As shown, the result is 3.

However, it is not possible for a class field to refer to a class field that follows it in source code. If this is attempted, the compiler reports an error, as shown in the following example:

// class3.java

class class3

{

 static int total = 2 + count;

 static int count = 1;

 public static void main (String [] args)

 {

 System.out.println (total);

 }

}

class3.java:5 Can't make forward reference to count in class class3.

 static int total = 2 + count;

As you can see, the compiler is complaining about a forward reference (an attempt to access a name before it has been declared).

Why is this a problem? This is a problem because the JVM has given count its default value of 0 and then, if allowed to proceed, would initialize total to 2, not 3 as the developer probably intended. After total was initialized to 2, count would then be initialized to 1.

Suppose that you need to take advantage of a complex initialization. For example, suppose you need to initialize total to the sum of integers ranging from 1 to 20 (inclusive). Java lets you do this by enabling you to use a class field initialization block (that is to say, blocks of code that initialize one or more class fields to non-default values).

A class field initialization block is declared within a class and prefixed with the static reserved word. This is illustrated in the following example:

// class4.java

class class4

{

 static int count = 1;

 static int total;

 static

 {

 for (int i = 1; i <= 20; i++)

 total += i;

 }

 public static void main (String [] args)

 {

System.out.println (total);

}

}

210

This class field initialization block contains a For loop statement that iterates through the values from 1 to 20 and adds each value to total.

The int variable i that is declared within this block is a local variable. As soon as the <clinit> method finishes executing, this variable disappears. Local variable i and any other local variables that are declared within a class field initialization block cannot be accessed from outside that block.

When this class file is loaded, count and total are initialized to 0. After this is done, the JVM calls <clinit>. This method initializes count to 1, and then executes byte code to add the integers from 1 to 20 to total.

Any number of class field initialization statements (such as assigning 1 to count) and class field initialization blocks can be interspersed throughout a class. The compiler compiles this code and places it in <clinit>. Order matters! Class field initialization byte code is placed in <clinit>> in the order in which the compiler processes it, from top to bottom. This is illustrated in the following example:

// class5.java

class class5

{

 static int count = 1;

 static int total;

 static

 {

 for (int i = 1; i <= 20; i++)

 total += i;

 }

 static int factorial5 = 1;

 static

 {

 for (int i = 1; i <= 5; i++)

 factorial5 *= i;

 }

 public static void main (String [] args)

 {

 System.out.println ("total = "+ total);

 System.out.println ("factorial5 = " + factorial5);

 System.out.println ("e = " + e);

}

 static double e = 2.71828;

 static

 {

 System.out.println ("HI");

 }

HI

total = 210

factorial5 = 120

e = 2.71828

The JVM loads the class5 class file just before running the main method. The values of the count, total, and factorial fields are initialized to 0. The value of the e field is initialized to 0.0.

The JVM then calls the <clinit> method. The first thing that this method does is initialize count to 1. It then adds the values from 1 to 20 to the total field. After this is done, factorial5 is initialized to 1. The contents of the second class field initialization block are executed. This block computes 5! (five factorial). After factorial5 has been initialized to 120, the value of e (a special mathematical number) is initialized to 2.71828. Finally, <clinit> executes code in the last class field initialization block. This code causes the literal string "HI" to be displayed.

Class field initialization blocks can execute other kinds of Java code in addition to initializing class fields. They can even create objects and access their class and instance fields.

To prove that class field initializations and class field initialization blocks are executed before the main method, take a look at the output from the previous example. Notice that HI appears before any other output.

Instance Field Initializers

Instance fields, like class fields, are initialized to default values before they are accessed. However, whereas class fields are initialized just after the class file in which they are declared has been loaded into memory, and before any object from that class has been created, instance fields are initialized to these default values only after an object has been created. Let's take a look at an example:

// instance0.java

class instance0

{

 double rate;

 public static void main (String [] args)

 {

 instance0 i0 = new instance0 ();

 System.out.println (i0.rate);

 }

}

0.0

Before the main method begins to run, the virtual machine loads the instance0 class file into memory. A region of memory is allocated to the main method's byte code.

Memory is allocated to reference variable i0. This memory is large enough (probably four bytes in size) to hold the address of several regions of memory.

The first region points to the object's instance fields. The second region points to shared class fields. The third region points to method byte code.

After memory has been allocated, the instance fields are initialized to their default values. Then, the instance0 () constructor method is called to complete initialization.

If you look at the source code, you won't find an instance0 () constructor. So where does this constructor come from? It turns out that if a class file does not declare any constructors, the compiler will create a default constructor that takes no arguments. This is illustrated in Figure 7.3.

Figure 7.3. The instance0 class and i 0 reference variable as they exist in memory.

[image: image32.png]
In reality, i0 refers to a list of addresses that point to various memory blocks. One of these addresses points to the instance field values that differentiate one object from another object. A second address points to the byte code associated with the methods that are declared in the object's class. A third address points to shared class fields. Because instance0 declares no class fields, there is no block of memory for these fields (and no arrow pointing to this block in Figure 7.3).

Suppose that this class was slightly modified so that rate was initialized to a value of 6.5, as in the following example. (This class has been renamed to instance1 to make it easier to differentiate it from instance0.)

// instance1.java

class instance1

{

 double rate = 6.5;

 public static void main (String [] args)

 {

 instance1 i1 = new instance1 ();

 System.out.println (i1.rate);

 }

}

6.5

After rate has been initialized to its default 0.0 value, it is initialized a second time to a value of 6.5, as illustrated in Figure 7.4.

Figure 7.4. The instance1 class and i1 reference variable as they exist in memory, after rate is initialized to 6.5.

[image: image33.png]
What is responsible for initializing rate to 6.5? The compiler creates a special method that initializes instance fields to developer-specified values. This method is called <init>, the instance field initializer.

Like <clinit>, <init> is a JVM method. However, there is a difference. Every constructor (such as instance1 () in the previous example) is compiled into an <init> method. This means that a class declaration with three constructor methods would be compiled into a class file with three <init> methods.

Constructor methods are not given return data types, not even void. However, all <init> methods have a void return data type. Why? From a logical point of view, constructors do not return values. This is not their purpose. However, the JVM does not "think" in terms of constructors, just methods. Because <init> methods are the JVM equivalent of constructors, and because every JVM method has a return data type, void is used as the return data type for <init> methods.

To initialize an object, the JVM first initializes its instance fields to default values, and then calls the <init> method that matches the source code constructor call (based on number and data types of arguments). One of the first things that this method does is to initialize instance fields to developer-specified values (for example, assign 6.5 to rate). After this has been accomplished, the rest of the method's byte code is executed.

Class methods do not differentiate between objects. However, instance methods, including <init> methods, do differentiate. Because each object has its own unique set of instance fields, how does an instance method such as <init> differentiate between these field sets?

The answer lies with a special argument that is always passed as the first argument to an <init> (or any instance) method. This argument is an object reference (that is, the address of an object). Each reference points to a unique set of instance fields.

You've learned about using the reserved word this to call constructor methods and assign values to fields. This reserved word is a source code mechanism for referring to a specific object instance. In a sense, you could say that this is passed as the first argument to each <init> (and other instance) method. In other words, this serves as a bridge between different sets of instance fields and byte code methods that are shared amongst these fields.

It is possible to initialize an instance field using the value of a previously initialized instance field, as shown in the following example:

// instance2.java

class instance2

{

 double rate = 6.5;

 double balance = 50000.0;

 double monthlyInterest = balance * rate / 12.0;

 public static void main (String [] args)

 {

 instance2 i2 = new instance2 ();

 System.out.println ("balance = " + i2.balance);

 System.out.println ("monthly interest = " + i2.monthlyInterest);

 }

}

balance = 50000.0

monthly interest = 27083.333333333332

The <init> method that corresponds to the instance2 () constructor is called. This method first initializes rate to 6.5. It then initializes balance to 50000.0 and monthlyInterest to 27083.33, the result of a calculation.

As with class fields, forward references are not allowed.

If you need to perform more complex instance field initialization, you can take advantage of instance field initialization blocks, (that is to say, blocks of code that initialize one or more instance fields to non-default

An instance field initialization block is declared within a class in a manner that is similar to a class field initialization block. However, the static reserved word does not prefix an instance field initialization block. This is illustrated in the following example:

// instance3.java

class instance3

{

 double interestRate = 3.5;

 double balance = 23000.0;

 double monthlyInterest [] =

 {

 0.0, 0.0, 0.0,

 0.0, 0.0, 0.0,

 0.0, 0.0, 0.0,

 0.0, 0.0, 0.0

 };

 {

 int i = 0;

 for (double rate = 1.0; rate <= 6.5; rate += 0.5)

 monthlyInterest [i++] = balance * rate / 12.0;

 }

 public static void main (String [] args)

 {

 instance3 i3 = new instance3 ();

 System.out.println ("balance = " + i3.balance);

 for (int i = 0; i < i3.monthlyInterest.length; i++)

 System.out.println ("Monthly interest for rate " +

 (1.0 + 0.5 * i) + " equals " +

 i3.monthlyInterest [i]);

 }

}

The instance field initialization block is used to pre-calculate the monthly interest values for a variety of interest rates.

balance = 23000.0

Monthly interest for rate 1.0 equals 1916.6666666666667

Monthly interest for rate 1.5 equals 2875.0

Monthly interest for rate 2.0 equals 3833.3333333333335

Monthly interest for rate 2.5 equals 4791.666666666667

Monthly interest for rate 3.0 equals 5750.0

Monthly interest for rate 3.5 equals 6708.333333333333

Monthly interest for rate 4.0 equals 7666.666666666667

Monthly interest for rate 4.5 equals 8625.0

Monthly interest for rate 5.0 equals 9583.333333333334

Monthly interest for rate 5.5 equals 10541.666666666666

Monthly interest for rate 6.0 equals 11500.0

Monthly interest for rate 6.5 equals 12458.333333333334

A call to the instance3 () constructor is a call to the <init> method. This method first initializes interestRate, balance, and monthlyInterest to 3.5, 23000.0, and an array of twelve 0.0 values, respectively. It then executes byte code to initialize the monthlyInterest array to values based on balance and a variety of interest rates.

The int variable i that is declared within the instance field initialization block is a local variable. As soon as the <init> method finishes executing, this variable disappears. Local variable i, and any other local variables that are declared within an instance field initialization block, cannot be accessed from outside that block.

Any number of instance field initialization statements (such as assigning 23000.0 to balance) and instance field initialization blocks can be interspersed throughout a class. The compiler compiles this code and places it in an <init> method. Order matters! Instance field initialization byte code is placed in <init> in the order in which the compiler processes it, from top to bottom.

However, there is a problem. Suppose that your class has two constructors. Which constructor gets compiled into the <init> method that initializes the instance fields? Let's see if we can answer this question with an example:

// instance4.java

class instance4

{

 int x;

 int y = 2;

 instance4 (int x)

 {

 this.x = x;

 }

 instance4 ()

 {

 }

 public static void main (String [] args)

 {

 instance4 i4 = new instance4 ();

 System.out.println (i4.y);

 }

2

So which constructor initializes y to 2? The answer is either constructor. It doesn't matter which constructor is called. Either constructor is compiled into an <init> method that initializes y to 2.

Mixing Class Field and Instance Field Initializers

Classes contain a mixture of class field and instance field declarations. What is the order of initialization when both kinds of fields are mixed? Actually, the order is easy to determine.

First, a class file is loaded into memory. As soon as this class file is loaded, memory is allocated for each method's byte code, and memory is allocated for all the class fields. The values of these fields are initialized to 0 (even though we interpret these default values as 0, 0.0, null, and so on).

Second, the <clinit> method is called (if present). This method contains byte code to evaluate developer-supplied expressions and assign resulting values to the class fields. The source code can contain a mixture of class field initialization statements and class field initialization blocks. This is all compiled into the single <clinit> method.

Initialization of the class is now complete. Initialization of objects is another matter.

The developer must supply a statement to create an object. This statement causes memory to be allocated for a variable that holds the object's address. The use of the new reserved word causes memory to be allocated for the object's instance fields. Finally, a constructor call is made to initialize the object.

As we've seen, a constructor is just "source code fluff." The compiler converts each constructor into an <init> method. Each <init> method contains byte code to initialize all instance fields. (This byte code is not supplied by the developer. It is implicitly generated by the compiler.) After this byte code executes, the rest of the byte code, corresponding to the source code that the developer supplied in the constructor, executes and object initialization completes.

The following example illustrates mixing class field and instance field initialization:

// mixed.java

class mixed

{

 int i1;

 static int i2;

 int i3 = 2;

 static int i4 = 4;

 {

 i1 = 6;

 System.out.println ("i1 assigned 6");

 }

 static

 {

 i2 = 8;

 System.out.println ("i2 assigned 8");

 }

 public static void main (String [] args)

 {

 System.out.println ("main entered");

 mixed m = new mixed ();

 System.out.println ("m.i1 = " + m.i1);

 System.out.println ("i2 = " + i2);

 System.out.println ("m.i3 = " + m.i3);

 System.out.println ("i4 = " + i4);

 System.out.println ("main exited");

 }

 {

 i1 += 6;

 System.out.println ("6 added to i1");

 }

 static

 {

 i2 -= 3;

 System.out.println ("3 subtracted from i2");

 }

}

i2 assigned 8

3 subtracted from i2

main entered

i1 assigned 6

6 added to i1

m.i1 = 12

i2 = 5

m.i3 = 2

i4 = 4

main exited

Initialization and Inheritance

We have looked at initialization as it applies to a class that is not derived from any other class. However, there are some issues that we need to examine when inheritance is involved. To get things started, let's look at an example:

// inherit0.java

class parent

{

 int a = 5;

 int b;

 static double c = 2.0;

 static long d;

 {

 System.out.println ("a = " + a);

 System.out.println ("b = " + b);

 }

 static

 {

 System.out.println ("c = " + c);

 System.out.println ("d = " + d);

 }

}

class child extends parent

{

 int w;

 static int x = 2;

 double y = 3.5;

 static boolean z = true;

 {

 System.out.println ("w = " + w);

 System.out.println ("y = " + y);

 }

 static

 {

 System.out.println ("x = " + x);

 System.out.println ("z = " + z);

 }

}

class inherit0

{

 public static void main (String [] args)

 {

 child c = new child ();

 System.out.println ("c.a = " + c.a);

 System.out.println ("c.b = " + c.b);

 System.out.println ("parent.c = " + parent.c);

 System.out.println ("parent.d = " + parent.d);

 System.out.println ("c.w = " + c.w);

 System.out.println ("child.x = " + c.x);

 System.out.println ("c.y = " + c.y);

 System.out.println ("child.z = " + c.z);

 }

}

This example consists of three classes: parent, child, and inherit0. The inherit0 class creates a child object and displays the contents of the various fields.

c = 2.0

d = 0

x = 2

z = true

a = 5

b = 0

w = 0

y = 3.5

c.a = 5

c.b = 0

parent.c = 2.0

parent.d = 0

c.w = 0

child.x = 2

c.y = 3.5

child.z = true

Take a good look at the output. Notice that the parent class fields are initialized followed by the child class fields. Then, the parent instance fields are initialized followed by the child instance fields. Now look at this initialization in detail.

The JVM loads the inherit0 class file and starts executing the main method byte code. The first thing that the main method byte code does is construct a child object called c. This construction requires several steps.

As soon as the child class is referenced, the JVM loads the child.class and parent.class files. (The parent.class file is loaded by virtue of being child's superclass.) After these class files have been loaded, the JVM allocates enough memory for all class fields declared in parent and in child.

The parent class <clinit> method is called to initialize the parent class fields. After this method returns, the <clinit> method in the child class is called to initialize its class fields. At this point, all class fields have been initialized.

Memory is allocated for the child variable c and memory is allocated for all instance fields in both parent and child layers. All fields are initialized to zero by the virtual machine.

The <init>; method that corresponds to the child () constructor is called. The first thing that this method does is to call the <init> method in the parent () class. The first thing that parent's <init> method does is to call the <init> method in the Object root class.

When Object's <init> method returns, parent's <init> method initializes all its instance fields to the developer-supplied values, and executes the contents of instance field initialization blocks. Any developer-supplied byte code is then executed (that is, byte code compiled from developer-supplied constructor source code). After this method returns, child's <init> method initializes its instance fields and executes its instance field initialization blocks. Any developer supplied byte code is then executed.

An <init> method begins with one of two calls: a call to another <init> method within the same class (analogous to calling another constructor within the same class via this) or a call to another <init> method within the superclass (analogous to calling another constructor within the superclass via super). For this reason, the super or this constructor call must be the first source code that appears within a constructor, if either call is specified.

? For more information on super, see Chapter 5, "Inheritance: Superclasses and Subclasses," page 105.

If a child class does not specify a super call, this call will still be generated by the compiler, and the byte code will be placed at the front of the corresponding <init> method. However, in this case, code will be generated to call a no-argument constructor in the superclass. If this constructor does not exist, the compiler will report an error.

Initialization order is important when inheritance is being used. The child class <init> method is always called first. However, the first code in this method either calls another <init> method in the child class (that is, one constructor calls another constructor in the same class) or an <init> method in the superclass.

The superclass <init> method either calls an <init> method in the same class or an <init> method in its superclass. This continues until Object's <init> method is called. (There will always be an <init> method in each subclass that calls the superclass <init> method.) Therefore, <init> method calls "bubble up" to Object. After Object completes its <init> method call (which currently does nothing because there are no class or instance fields within Object—at least not in the Win32 version of the JDK), the <init> method in its immediate child class continues executing by initializing its instance fields. The rest of its byte code is then executed. This process continues until control is finally returned to the child class <init> method that originated this process. This <init> method initializes its instance fields, and then executes the rest of its byte code.

So why is this order used? The idea is to ensure that all superclass layers have completed initialization before subclass layers are initialized. It is then possible for a subclass constructor to refer to superclass fields, and know that these fields have been initialized.

Fields, like methods, can be overridden. When this happens, the super reserved word can be used to refer to a field in a parent class and make it accessible to the child class. This capability is illustrated in the following example:

// inherit1.java

class parent

{

 int a = 2;

 static int b = 5;

}

class child extends parent

{

 int a = 3;

 static int b = 6;

 int getA () { return super.a; }

}

class inherit1

{

 public static void main (String [] args)

 {

 child c = new child ();

 System.out.println ("c.a = " + c.a);

 System.out.println ("c.a (in superclass) = " + c.getA ());

 System.out.println ("parent.b = " + parent.b);

 System.out.println ("child.b = " + child.b);

 }

}

c.a = 3

c.a (in superclass) = 2

Parent.b = 5

Child.b = 6

It is possible to access subclass fields from a superclass constructor. If this happens, the subclass fields will not be initialized. This could seriously affect an object's "sanity." Therefore, you should not do this. However, just to be nasty, I'm going to show you how. I'm doing this so you can see why it should be avoided. Check out the following example:

// inherit2.java

class parent

{

 parent ()

 {

 System.out.println ("parent: x = " + ((child) this).getX ());

 System.out.println ("parent: y = " + ((child) this).y);

 }

}

class child extends parent

{

 private int x = 5;

 int getX () { return x; }

 int y = -2;

}

class inherit2

{

 public static void main (String [] args)

 {

 child c = new child ();

 System.out.println ("x = " + c.getX ());

 System.out.println ("y = " + c.y);

 }

}

parent: x = 0

parent: y = 0

x = 5

y = -2

Accessing subclass fields from superclass constructors results in retrieving the default values. You should never do this because subclass fields are not initialized until after the superclass constructor finishes, and the subclass constructor "does its thing." If you do this, you are just begging for trouble.

Finalizers

Finalizers are methods that objects can use to release resources before they are destroyed. The garbage collection part of the virtual machine is responsible for calling finalizers. The actual finalizer method is called finalize (). This method is inherited from the Object class. As you will see, this method is not always called, and should only be used for certain tasks.

Garbage Collection

You can create objects via the new reserved word. However, you cannot destroy these objects. Java does not give developers the chance to destroy objects because, all too often, a developer forgets to properly destroy these objects. Besides, not having to worry about destroying objects is one less hassle for developers, and is one more way in which to ensure a program's robustness.

The JVM maintains a table of reference counts for each created object. Each time the object's address is assigned to some variable (for example, String s = "abc" ;), the reference count is incremented. Each time this address is replaced by the null value (for example, s = null;), the reference count is decremented.

The JVM runs a low priority thread of execution known as the garbage collector. (Threads will be discussed in a later chapter.) The garbage collector examines this table of reference counts and notes those objects whose counts are set to zero. For each object with a zero reference count, the garbage collector calls the object's finalize () method. After the finalize () method returns, the garbage collector re-checks the reference count for this object. If this count is still zero, the garbage collector destroys the object by freeing its memory.

Because the garbage collector re-checks an object's reference count after finalize () returns, it is possible to prevent an object from "dying." However, the object should be allowed to "die." Another object can always be created. Besides, the code for preventing an object from "dying" can complicate an understanding of the program's flow.

The finalize () Method

Every object inherits the finalize () method from the Object class. By default, this method does nothing. However, it can be overridden to respond to an object's impending destruction.

The finalize () method does not return a value. What's the point? The object is "dying." Therefore, the return data type of finalize () is void.

Let's look at an example to see how finalize () is used:

// finalize0.java

class finalize0

{

 int id;

 public static void main (String [] args)

 {

 finalize0 f0 = null;

 for (int i = 0; i < 10; i++)

 f0 = new finalize0 (i);

 }

 public void finalize () throws Throwable

 {

 System.out.println ("Finalizing " + id);

 super.finalize ();

 }

 finalize0 (int i)

 {

 id = i;

 }

}

The last line of a finalize () method should call the superclass finalize () method to give that layer a chance to clean up. This is accomplished by calling super.finalize ().

There is no output. This program does not call the finalize () method. Why?

The garbage collector thread runs at various times. There is no guarantee that this thread will even run during the life of a short program. Because the garbage collector is the only entity that can call finalize (), this method will not be called if the garbage collector has not run.

If you would like to see finalize () being called, change the terminating value of the For loop statement from 10 to some large number like 50000. Because so many objects will be created, the garbage collector is bound to run at some point. (The act of overwriting the address value in f0 causes the reference count assigned to the previously created object to drop to zero.)

Is there a way to ensure that finalize () will be called for each object that is destroyed? Yes, there is a way. You need to call a special method that is part of the System class. This method is called runFinalizersOnExit (boolean). This method takes a boolean argument that indicates if these finalizers should be executed. If this argument is true, the finalizers will be run, as shown in the following example:

// finalize1.java

class finalize1

{

 int id;

 public static void main (String [] args)

 {

 System.runFinalizersOnExit (true);

 finalize1 f1 = null;

 for (int i = 0; i < 10; i++)

 f1 = new finalize1 (i);

 }

 public void finalize () throws Throwable

 {

 System.out.println ("Finalizing " + id);

 super.finalize ();

 }

 finalize1 (int i)

 {

 id = i;

 }

}

Finalizing 9

Finalizing 8

Finalizing 7

Finalizing 6

Finalizing 5

Finalizing 4

Finalizing 3

Finalizing 2

Finalizing 1

Finalizing 0

This time, the finalizers are called. As you can see, they are called in reverse order. The most recent object to be created is the first object to be destroyed.

Unfortunately, there are multithreading problems with the runFinalizersOnExit (boolean) method. Therefore, this method has been marked for deprecation. This means that you should not use it in your programs.

The runFinalization () method is part of the System class and suggests that the virtual machine make every effort to run finalizers. However, this does not mean that any finalizers will be executed.

If the finalize () method might not always be called, what is it good for? It turns out that the finalize () method can serve as a "fall back" if the object did not explicitly release a resource that it allocated. For example, if an object's constructor opens a file, this file is owned by the object until it closes that file. If the object does not attempt to close this file before it "dies," other objects might not be able to access this file. Therefore, placing a file-closing method call in the object's finalize () method can serve as a safeguard. If the program runs long enough, the garbage collector will run at some point and call the finalize () method. The file will be closed.

If an exception occurs in a finalize () method, this method will not complete executing any cleanup code after the exception occurred. (Exceptions are discussed in the next chapter.)

Inner Classes

Classes can be declared in other classes. These classes are known as inner classes, and are used to enforce a relationship between a pair of classes. The inner class is a "helper" class that assists the outer class in doing its work.

Inner classes have complete access to the field and method members of the outer class, even if those members are declared private. However, the outer class can only access those inner class fields and methods that are not declared private. Furthermore, it is possible to declare the inner class private so that only the outer class can communicate with the inner class. (It also is possible to declare the inner class public or protected—they may also be declared abstract or final.)

Inner classes minimize naming conflicts at the class name/ interface name level. When a class is declared inside another class, the compiler takes the outer class name, appends a dollar-sign character to that name, and appends the inner class name to the dollar sign.

For example, if a source file already has a class name called x and another class name called y, and an inner class called x is declared in y, the compiler will generate class files x.class, y.class, and y$x.class.

There are two kinds of inner classes: static inner classes (analogous to class fields and class methods) and instance inner (analogous to instance fields and instance methods).

Static Inner Classes

A static inner class is associated with the outer class—not an object created from the outer class. It is declared with the static reserved word. Because a static inner class is only associated with the outer class (and not an instance of the outer class), it cannot access any outer class instance fields or instance methods.

Static inner classes can declare class and instance fields, as shown in the following example:

// inner0.java

class outerClass

{

 static int a = 1;

 static class innerClass

 {

 static int b = a + 1;

 int c = 3;

 }

}

class inner0

{

 public static void main (String [] args)

 {

 System.out.println ("a = " + outerClass.a);

 System.out.println ("b = " + outerClass.innerClass.b);

 outerClass.innerClass ocic = new outerClass.innerClass ();

 System.out.println ("c = " + ocic.c);

 {

{

Before an instance field, declared within a static inner class, can be accessed, a static inner class object needs to be created. This object is created by prefixing the static inner class name with the outer class name and a period character. (This is required because all outer class objects share a single static inner class object.)

a = 1

b = 2

c = 3

Instance Inner Classes

An instance inner class is associated with an object created from the outer class. It is not declared with the static reserved word. Because an instance inner class is only associated with an outer class instance, it can access outer class instance fields and instance methods (as well as outer class static fields and static methods).

Instance inner classes can only declare instance fields, as shown in the following example:

// inner1.java

class outerClass

{

 static int a = 1;

 class innerClass

 {

 int b = a + 1;

 }

}

class inner1

{

 public static void main (String [] args)

 {

 System.out.println ("a = " + outerClass.a);

 outerClass oc = new outerClass ();

 outerClass.innerClass ocic = oc.new innerClass ();

 System.out.println ("b = " + ocic.b);

 }

}

Before an instance field, declared within an instance inner class, can be accessed, an instance inner class object needs to be created. This object is created by prefixing the instance inner class name with an outer class object variable name and a period character. (This is required because each outer class object has its own unique inner class object.)

a = 1

b = 2

Anonymous Inner Classes

Situations will arise where you will need to create a child class that extends a parent class and override one or more parent class methods. However, you will only need to create a single object from this class. As you can probably guess, this is overkill. Is there a better way to deal with this situation? You bet!

It is possible to anonymously extend a parent class, override appropriate parent methods, and create an object in one single step—take advantage of anonymous inner classes (that is to say, inner classes without class names).

Anonymous inner classes, although a little disconcerting when first encountered, are very convenient and not that difficult to work with. And, because you don't have to supply a class name for an anonymous inner class, you reduce the likelihood of introducing a class name that conflicts with another inner class name.

The following example illustrates anonymous inner classes:

// inner2.java

abstract class animal

{

 abstract void talk ();

}

class dog extends animal

{

 void talk () { System.out.println ("Bark!"); }

}

class inner2

{

 public static void main (String [] args)

 {

 new dog ().talk ();

 new animal ()

 { void talk () { System.out.println ("Meow!"); }}.talk ();

 }

}

This example illustrates two things. First, we went to a lot of trouble to create a dog class that inherits from animal. We created a dog object so that its talk () method could be called. Second, we decided that we needed a cat object. Rather than explicitly create a cat class, we implicitly created this class, implemented the abstract talk () method from animal, and called this method. (Although it looks like we created an object from the abstract animal class, we did not. Objects cannot be created from abstract classes.)

Bark!

Meow!

Unlike static inner classes and instance inner classes, the compiler generates a number (starting at 1) for use as the inner class name. In this example, the compiler generates three class files: animal.class, inner2.class, and inner2$1.class.

Anonymous inner classes are often used with the Abstract Windowing Toolkit (AWT) adapter classes. We'll look at this use of anonymous inner classes when we discuss the AWT in a later chapter.

What's Next?

Programs normally execute flawlessly. However, situations can arise when something goes wrong. For example, a program tries to open a file on a floppy disk, but there is no disk in the floppy disk drive.

Programs must be carefully written to handle these exceptional situations (that is to say, exceptions to the normal flow of the program's execution); otherwise, the program will fail—and the user will probably feel like throwing a brick through the developer's living room window!

The next chapter discusses Java's exception handling mechanism. In it you will learn about exceptions and how to write code that correctly responds to and recovers from exceptions.

Chapter 8. Exception Handling

As a rule, programs perform flawlessly. However, there are times when programs fail. As a developer, part of your job is to produce programs that properly handle failure. After all, why should users pay for software that terminates at the first sign of failure, causing unsaved data to be lost? Vehicle manufacturers issue recalls when major defects are discovered in their products. However, defective programs are never recalled. Maybe it's time for a change.

You can guard against failure by taking advantage of Java's exception - handling mechanism. This mechanism, if it's used properly, can help you write robust code.

Chapter 8 presents the following topics:

· Dealing with failure

· Throwing exceptions

· Catching exceptions

· Cleaning up

· Exceptional issues

· CALC

Dealing with Failure

Why do programs fail? How were failures handled in the past? What are exceptions and errors? What is exception handling? Why exception handling? These are all good questions. Let's find some answers.

Why Do Programs Fail?

Programs fail when they are either unable to acquire needed resources or when their code is flawed. A failure resulting from an inability to acquire a resource is known as an external failure, whereas a failure resulting from flawed code is known as an internal failure.

External failures occur when a program tries to obtain some resource that is missing, is in short supply, or is being used by another program. An example of the first scenario is an attempt to open a file, but the file does not exist. An example of the second scenario is an attempt to allocate a certain amount of memory, but the amount of available memory is insufficient to satisfy this request. An example of the third scenario is an attempt to open a file that has already been opened by another program, and this program is not prepared to share the file. When an external failure occurs, the program experiencing the failure is not at fault, but it bears the responsibility for properly handling this failure.

Internal failures occur when a computer tries to run program instructions that are fundamentally flawed. An example of internal failure is a calculation that results in a division by zero failure when certain values are passed to this calculation. Another example of internal failure is an attempt to access an object's fields or call its methods via a null reference. When an internal failure occurs, the program experiencing this failure is at fault. An internal failure should never occur because the developer should have invested some time in planning a program's code to prevent internal failures, before writing the source code.

How Were Failures Handled in the Past?

Before object-oriented programming came into being, methods were known as functions. Functions were written to return values to indicate whether they succeeded and, if they failed, to identify the failure.

A function would typically return a zero integer value to identify success and a negative integer value to identify a specific kind of failure. This return value was commonly known as an error code. The responsibility for interpreting this error code and properly responding to this failure was entrusted to the function that called the failed function.

There are three problems with using error codes: ignoring the error codes, obscuring code flow, and increasing the size of the program.

Developers can write source code that ignores error codes. Because error codes are not examined, there is no way to tell that a failure has occurred. Ignoring one failure can lead to other failures. For example, suppose that a function attempts to open a file, fails, and returns an error code. Now suppose the function that called the open function does not check the error code to see if something went wrong. Instead, it runs merrily on its way and tries to read something from the file. Obviously, the read attempt will not work (there is no open file). Suppose that this read instruction is located in a loop that keeps repeating the read instruction until a certain value is read. Because this value will never be read, this loop keeps iterating without stopping, resulting in a locked-up program. The program must be terminated from the operating system, resulting in the loss of any unsaved data.

Error-handling code can obscure code flow. Tracing through the program's source code is harder with all of the decision and other statements that detect and handle errors.

Error-handling code can increase the size of a program. For example, a program that copies one file to another file might contain file open, file read, file write, and file close functionality. Error-handling code would be required to deal with those situations when a file could not be opened (for reading), a file could not be created (for writing), a file could not be read from, a file could not be written to, and a file could not be closed. The amount of error-handling code for responding to these possible failures could easily surpass the amount of file-copying code.

The problems with the traditional failure-handling model led to the creation of the exception-handling model. This model is based on a paper called "Exception Handling for C++ (revised)," written by Andrew Koenig and Bjarne Stroustrup (the father of C++). (This paper was first presented in April 1990 at the USENIX C++ Conference in San Francisco.)

What Are Exceptions and Errors?

When a failure happens while a Java program is running, the program typically creates an object that describes the failure. This object is known as an exception, which reports the exceptional state of the program. This exception is passed to the JVM, which locates program code that can handle the exception (that is to say, it can recover from the failure). (For certain kinds of failure, the JVM—not the program—creates the exception, and then attempts to locate program code to handle this exception.)

It is possible (although unlikely) that the JVM could fail. For example, the JVM could "discover" that there is insufficient available memory to allocate to a large array. In this situation, the JVM creates a very special kind of exception that describes this failure. This exception is known as an error.

If the JVM cannot locate program code to deal with this error, it will immediately terminate the program (JVM).

A Family of Classes

All exception and error classes are descendents of the Throwable class. As a result, they inherit the fields and methods that are part of Throwable.

Throwable contains a private String field that holds a description of the program's failed state. This field is initialized by indirectly calling an appropriate Throwable constructor at the time the exception is created (remember the super () constructor call). (If this field is not initialized, it will contain the null reference value.)

Throwable contains a public getMessage () method that returns the contents of this field. This method is often called from an exception handler to obtain a description of the failed state.

Throwable contains a public printStackTrace () method that builds an error message consisting of the exception object's class name, program state information, and the contents of the method call stack. This information is sent to the standard error stream. The destination of this stream is either a command- line console (applications) or a Web browser's Java console (applets).

? For more information on standard error streams, see Chapter 17, "Files and Streams," page 445.

Two classes are derived from Throwable: Exception and Error.

The Exception Class

The Exception class is the root class for Java's family of exception classes.

Listing 8.1 provides a complete hierarchy of those exception classes defined in JDK 1.2. Subclasses are shown below and to the right of superclasses.

Example 8.1. Java's Exception class hierarchy.

Exception

 AclNotFoundException

 ActivationException

 UnknownGroupException

 UnknownObjectException

 AlreadyBoundException

 ApplicationException

 AWTException

 BadLocationException

 ClassNotFoundException

 CloneNotSupportedException

 ServerCloneException

 DataFormatException

 ExpandVetoException

 GeneralSecurityException

 CertificateException

 CertificateEncodingException

 CertificateExpiredException

 CertificateNotYetValidException

 CertificateParsingException

 CRLException

 DigestException

 InvalidAlgorithmParameterException

 InvalidKeySpecException

 InvalidParameterSpecException

 KeyException

 InvalidKeyException

 KeyManagementException

 KeyStoreException

 NoSuchAlgorithmException

 NoSuchProviderException

 SignatureException

 UnrecoverableKeyException

 IllegalAccessException

 InstantiationException

 InterruptedException

 IntrospectionException

 InvocationTargetException

 IOException

 ChangedCharSetException

 CharConversionException

 EOFException

 FileNotFoundException

 InterruptedIOException

 MalformedURLException

 ObjectStreamException

 InvalidClassException

 InvalidObjectException

 NotActiveException

 NotSerializableException

 OptionalDataException

 StreamCorruptedException

 WriteAbortedException

 ProtocolException

 RemoteException

 AccessException

 ActivateFailedException

 ConnectException

 ConnectIOException

 ExportException

 SocketSecurityException

 MarshalException

 NoSuchObjectException

 ServerError

 ServerException

 ServerRuntimeException

 SkeletonMismatchException

 SkeletonNotFoundException

 StubNotFoundException

 UnexpectedException

 UnknownHostException

 UnmarshalException

 SocketException

 BindException

 ConnectException

 NoRouteToHostException

 SyncFailedException

 UnknownHostException

 UnknownServiceException

 UnsupportedEncodingException

 UTFDataFormatException

 ZipException

 JarException

 LastOwnerException

 NoninvertibleTransformException

 NoSuchFieldException

 NoSuchMethodException

 NotBoundException

 NotOwnerException

 ParseException

 PrinterException

 PrinterAbortException

 PrinterIOException

 PrivilegedActionException

 PropertyVetoException

 RemarshalException

 RuntimeException

 ArithmeticException

 ArrayStoreException

 CannotRedoException

 CannotUndoException

 ClassCastException

 CMMException

 ConcurrentModificationException

 EmptyStackException

 IllegalArgumentException

 IllegalThreadStateException

 InvalidParameterException

 NumberFormatException

 IllegalMonitorStateException

 IllegalPathStateException

 IllegalStateException

 IllegalComponentStateException

 InvalidDnDOperationException

 ImagingOpException

 IndexOutOfBoundsException

 ArrayIndexOutOfBoundsException

 StringIndexOutOfBoundsException

 MissingResourceException

 NegativeArraySizeException

 NoSuchElementException

 NullPointerException

 ProfileDataException

 ProviderException

 RasterFormatException

 SecurityException

 AccessControlException

 RMISecurityException

 SystemException

 BAD_CONTEXT

 BAD_INV_ORDER

 BAD_OPERATION

 BAD_PARAM

 BAD_TYPECODE

 COMM_FAILURE

 DATA_CONVERSION

 FREE_MEM

 IMP_LIMIT

 INITIALIZE

 INTERNAL

 INTF_REPOS

 INV_FLAG

 INV_IDENT

 INV_OBJREF

 INV_POLICY

 INVALID_TRANSACTION

 MARSHAL

 NO_IMPLEMENT

 NO_MEMORY

 NO_PERMISSION

 NO_RESOURCES

 NO_RESPONSE

 OBJ_ADAPTER

 OBJECT_NOT_EXIST

 PERSIST_STORE

 TRANSACTION_REQUIRED

 TRANSACTION_ROLLEDBACK

 TRANSIENT

 UNKNOWN

 UnsupportedOperationException

 ServerNotActiveException

 SQLException

 BatchUpdateException

 SQLWarning

 TooManyListenersException

 UnsupportedFlavorException

 UnsupportedLookAndFeelException

 UserException

 AlreadyBound

 BadKind

 Bounds

 Bounds (different from the previous)

 CannotProceed

 InconsistentTypeCode

 Invalid

 InvalidName

 InvalidName (different from the previous)

 InvalidSeq

 InvalidValue

 NotEmpty

 NotFound

 PolicyError

 TypeMismatch

 UnknownUserException

 WrongTransaction

Most, but not all, exception class names end with the word Exception.

The Error Class

The Error class is the root class for Java's family of error classes.

Listing 8.2 provides a complete hierarchy of those error classes defined in JDK 1.2. Subclasses are shown below and to the right of superclasses.

Example 8.2. Java's Error class hierarchy.

Error

 AWTError

 LinkageError

 ClassCircularityError

 ClassFormatError

 UnsupportedClassVersionError

 ExceptionInInitializerError

 IncompatibleClassChangeError

 AbstractMethodError

 IllegalAccessError

 InstantiationError

 NoSuchFieldError

 NoSuchMethodError

 NoClassDefFoundError

 UnsatisfiedLinkError

 VerifyError

 ThreadDeath

 VirtualMachineError

 InternalError

 OutOfMemoryError

 StackOverflowError

 UnknownError

Most, but not all, error class names end with the word Error. (ThreadDeath is the exception—yes, I know, this is a bad pun!)

What Is Exception Handling?

When a failure is detected (such as file not found), program codes create an object from an appropriate exception class and then pass this object to the JVM—a task known as throwing an exception. The JVM must search for appropriate code (within the same program) that can handle that exception.

The search begins in the failing method. If that method specifies an exception handler (that is to say, exception-handling code) designed to process exceptions of the same data type as the exception that needs to be handled, the search ends, and the exception is handled.

However, if an exception handler is not present, the JVM searches backwards through the method call stack until a method is located that can handle the exception. After the exception handler has been found, the exception is passed to the handler, and the handler handles the exception.

The tasks of finding an exception handler and passing the exception to this handler are known as catching an exception.

What happens if an exception handler cannot be found? This is a serious problem. Non-GUI (Graphical User Interface) applications and the JVM are terminated, whereas GUI applications and applets can continue running, but they run with the possibility of internal corruption and are not considered reliable.

Why Exception Handling?

One of the problems with the old failure-handling model was not using that model. However, the exception-handling model was designed to be used. External failures must either be handled or documented within source code if they are not handled. On the other hand, a program is not required to handle an internal failure because a properly written program does not generate internal failures.

Obscurity was another problem with the old failure-handling model. Error-handling code was interspersed with source code, resulting in source code that was hard to read. The exception-handling model separates a program's code from exception handlers, making it easier to trace through the source code.

The size of error-handling code was a third problem because the amount of this code could really increase the size of a program. However, the extra amount of code that exception handling adds to a program is considerably less.

Throwing Exceptions

Code that throws an exception based on an external failure needs to be placed within a Try statement whereas code that throws an exception based on an internal failure does not need to be placed within a Try statement.

Exceptions come in two flavors: checked and unchecked. Java's Throw statement makes it possible to throw checked or unchecked exceptions. Checked exceptions must be specified via a method's Throws clause.

The Try Statement

A Try statement surrounds a block of statements (possibly including other Try statements) that have the potential for throwing exceptions based on external failures. The statements within this block are "tried" to see if an external failure occurs.

The format of a Try statement is

"try"

'{'

 // One or more Java statements

'}'

A Try statement is prefixed with the try reserved word and is followed by a block of statements that have the potential to throw exceptions. Any variables created within this block have a scope that is restricted to the block. As a result, attempts to access these variables from outside of the block result in compiler errors.

The following code fragment attempts to open a file called abc.dat and connect it to an input stream. (Don't worry about what input streams are—they will be discussed in a later chapter. For now, an input stream is only being used to illustrate an exception based on an external failure.)

try

{

 FileInputStream fis = new FileInputStream ("abc.dat");

}

The FileInputStream (String) constructor contains code that attempts to open the file called abc.dat and associate this file with an input stream object. If this file is not found (or cannot be opened for some reason), this external failure forces the FileInputStream (String) constructor to create a FileNotFoundException object and throw this exception to the JVM.

If an exception is not thrown from within a Try statement, execution flows out of this statement and continues with the first instruction that follows Try.

If an exception is thrown, and an exception handler is located, after the exception handler finishes running, the Try statement will not resume running. For all intent and purpose, the Try statement is finished after an exception is thrown. There is no way to resume its unexecuted code.

Checked and Unchecked Exceptions

An exception that is based on an external failure is known as a checked exception. The compiler checks to see if this exception is being handled or explicitly specified as not being handled. For example, any exception that is created from FileNotFoundException is a checked exception.

An exception based on an internal failure is known as an unchecked exception. The compiler does not check to see if this exception is being handled because programs can be written to avoid internal failures. For example, a division-by-zero internal failure results in an unchecked exception of data type ArithmeticException. As a second example, an attempt to access an array element using a negative index or an index that is greater than or equal to the length of the array is an internal failure that results in an unchecked exception of data type ArrayIndexOutOfBounds.

ArithmeticException and ArrayIndexOutOfBounds are classes derived from RuntimeException. Any exception that is created from RuntimeException (or a derived class) is an unchecked exception.

The Throw Statement

A Throw statement creates and throws checked or unchecked exceptions. However, this statement should only be used to throw checked exceptions.

The format of a Throw statement is

"throw" exception ';'

A Throw statement is prefixed with the throw reserved word and followed by a newly created object that describes the failed state of the program.

The following code fragment throws a FileNotFoundException object (the object is initialized with a description of the program state when this failure occurred):

throw new FileNotFoundException ("Could not find abc.dat");

The Throws Clause

A Throws clause describes all the checked exceptions that can be thrown from within a method, by way of a comma-delimited list of exception class names tacked on to the end of the method header.

The format of a Throws clause is

"throws" exceptionClassName1',' exceptionClassName2',' …

The following code fragment specifies a Throws clause that lists FileNotFoundException as the exception data type of exceptions that can be explicitly thrown from within the main method:

public static void main (String [] args) throws FileNotFoundException

{

 FileInputStream fis = new FileInputStream ("abc.dat");

}

Because of the Throws clause, the FileInputStream (String) constructor call does not need to be placed within a Try statement. In other words, the main method is passing the buck to the JVM. ("This isn't my problem, let somebody else worry about it!")

Also, the FileNotFoundException object is thrown indirectly. There is no Throws statement defined within the main method, but there is a Throws statement either directly within the FileInputStream (String) constructor or within a method that is called from within this constructor.

CAUTION
Throwing a checked exception from a method that does not specify a Throws clause, or a Throws clause with that exception listed, will lead to compiler errors.

Catching Exceptions

Once an exception has been thrown, either directly by program code or indirectly by the JVM, this exception must be handled. Handling an exception is accomplished by providing an appropriate Catch clause.

It is possible to specify multiple Catch clauses immediately after a Try statement. This makes it possible to catch several kinds of exceptions in a single location and reduce exception-handling code clutter.

Situations might arise where you want to re-throw the same exception or throw a different kind of exception from within a Catch clause, as you'll shortly discover.

The Catch Clause

A Catch clause serves as an exception handler for either its preceding Try statement or some other Try statement that is reached through method calls in the preceding Try statement. The format of this clause is

"catch" '(' ExceptionClassName objectName ')'

'{'

 // One or more Java exception statements

'}'

A Catch clause is prefixed with the catch reserved word and is followed by a block of exception-handling statements.

The parameter list specifies a single parameter. This parameter consists of a data type (ExceptionClassName) and a name (objectName). The data type identifies the name of the exception class. The name identifies the exception object variable that is passed to the Catch clause exception handler.

CAUTION

ExceptionClassName must be either the Throwable class name or the name of a class that inherits from Throwable. Specifying any other class name results in a compiler error. Furthermore, specifying more than one parameter in the Catch clause parameter list also results in a compiler error.

The following code fragment specifies a Try statement surrounding code that attempts to open a file called abc.dat and connect an input stream to this file. However, if abc.dat does not exist, the FileInputStream (String) constructor throws an exception of data type FileNotFoundException:

try

{

 FileInputStream fis = new FileInputStream ("abc.dat");

}

catch (FileNotFoundException e)

{

 System.out.println (e.getMessage ());

}

The Catch clause that immediately follows the Try statement contains a parameter, FileNotFoundException, that matches the data type of the exception thrown by the constructor. Because the Catch clause immediately follows Try, it gets first crack at handling the exception.

CAUTION
Placing statements between a Try statement and a Catch clause results in a compiler error.

The Catch clause calls the getMessage () method that's inherited from Throwable. This method returns program state information including the name of the file that could not be opened: abc.dat.

Multiple Catch Clauses

It is possible to specify multiple Catch clauses after a single Try statement. This results in the ability to catch different kinds of exceptions in one location.

The following code fragment is taken from the view example application that was presented in Chapter 1, "Introducing Java." This code fragment consists of a Try statement that attempts to open a file, attach this file to an input stream, read each character from this input stream, output that character to the standard output device (that is, the video monitor or a file), and close the file associated with the input stream. It also contains a pair of exception-handling Catch clauses.

FileInputStream fis = null;

try

{

 fis = new FileInputStream (new File (args [0]));

 int ch;

 while ((ch = fis.read ()) != -1)

 System.out.print ((char) ch);

 fis.close ();

 System.out.println ("");

}

catch (FileNotFoundException e)

{

 System.out.println ("File not found!");

 try

 {

 fis.close ();

 }

 catch (IOException ioe) {}

}

catch (IOException e)

{

 System.out.println ("Unable to read file!");

 try

 {

 fis.close ();

 }

 catch (IOException ioe) {}

}

Note the two primary Catch clauses. The first Catch clause handles FileNotFoundException objects that might be thrown by the FileInputStream (String) constructor. The second Catch clause handles any IOException object that might be thrown from the read () method.

CAUTION

Specifying two or more Catch clauses with the same parameter data type after a Try statement leads to compiler errors.

There is one problem with this example: redundant code. Not only is the file associated with the fis input stream closed from within the Try statement, it is also closed from within each Catch clause.

If the Try statement succeeds, the file is closed from within the Try statement. If a FileNotFoundException or IOException object is thrown, it is not possible to come back to the Try statement and close the file after executing the appropriate Catch clause. Therefore, the file closing code must be duplicated within each Catch clause. This is most distressing because the code is bloating. How can this problem be solved? The Finally clause solves this problem in an elegant fashion, as you will discover when the Finally clause is discussed.

Can the order of multiple Catch clauses be switched? For example, could the Catch clause that catches IOException objects be specified before the Catch clause that catches FileNotFoundException objects? In this case, the answer is no.

IOException is a superclass of FileNotFoundException. If IOException is specified before FileNotFoundException, a FileNotFoundException object would be caught by the IOException Catch clause. The reason this happens has to do with polymorphism. Because a FileNotFoundException is a kind of IOException, the JVM would pass the FileNotFoundException object to the IOException Catch clause handler.

The compiler does not like dead code. Because the Catch clause that handles FileNotFoundException objects would never be executed, the compiler would generate an error.

CAUTION

Placing a Catch clause with a superclass exception data type before a Catch clause with a subclass exception data type leads to compiler errors.

Throwing Exceptions from Catch Clauses

It's possible to throw an exception from within a Catch clause. Why would you want to do this?

Suppose that you are in charge of building a class library, to be used by a variety of applications. You are given a specification for the library's contract (that is, the part of the library that is callable from outside of the library). The contract consists of public class names (including exception class names), public field names and data types, public method names along with their return data types and parameter lists (that is, number of parameters and data types for these parameters), and the formats of exception objects. You are told that you can implement the library in any way you see fit as long as you do not violate the contract.

An application creates an object from one of your classes and calls one of the object's methods. However, the application passes one or more invalid arguments to the method.

Your method calls an internal method (from within a Try statement) and passes these arguments to that method. This internal method doesn't "like" the arguments and throws an exception. This exception is based on a private exception class that is solely used by the library.

The Catch clause that follows the Try statement handles the exception. However, your method cannot proceed. It needs to inform the application that something went wrong. You cannot re-throw this exception to the application because it is based on a private exception class, and the contract clearly defines other exception classes. Therefore, you create an exception from an exception class that is defined by the contract, populate this object with appropriate data, and throw this exception from within the Catch clause. The application will deal with the problem.

Cleaning Up

While learning about multiple Catch clauses, you saw an example of code that creates a FileInputStream object and initializes this object (via a call to the FileInputStream (String) constructor). This code was placed inside a Try statement. You also saw a call to the object's close () method specified in three places: the Try statement and the two Catch clauses. (After all, the file associated with the stream must be closed before it can be re-opened.) This redundant cleanup code can be avoided by taking advantage of the Try statement's Finally clause.

The Finally Clause

A Finally clause serves as a cleanup handler for a preceding Try statement. The format of this clause is

"finally"

'{'

 // One or more Java statements

'}'

A Finally clause is prefixed with the finally reserved word and is followed by a block of cleanup handling statements.

After the last statement in either the Try statement or a Catch clause (if specified) has been executed, the code within a Finally clause (if specified) is executed.

The following code fragment is similar to the view example application that was presented in Chapter 1. This code fragment consists of a Try statement that attempts to open a file, attach this file to an input stream, read each character from this input stream, and output that character to the standard output device (that is, the video monitor or a file) and close the file associated with the input stream. It also contains a pair of exception handling Catch clauses and a cleanup Finally clause.

FileInputStream fis = null;

try

{

 fis = new FileInputStream (new File (args [0]));

 int ch;

 while ((ch = fis.read ()) != -1)

 System.out.print ((char) ch);

 System.out.println ("");

 return;

}

catch (FileNotFoundException e)

{

 System.out.println ("File not found!");

}

catch (IOException e)

{

 System.out.println ("Unable to read file!");

}

finally

{

 try

 {

 fis.close ();

 }

 catch (IOException ioe) {}

}

It doesn't matter how the Try statement exits (the Return statement or a thrown exception); the Finally clause will still close the file associated with the fis input stream before the method terminates.

If an exception is thrown within a Try statement and a matching Catch clause is not found within the same method, the code within a Finally clause (if present) runs before the JVM searches for an exception handler. In other words, the JVM cannot leave the method until the Finally clause has been run.

Throwing Exceptions from Finally Clauses

Like Catch clauses, a Finally clause might throw an exception. However, this could be dangerous. For example, code within a Try statement throws an exception. There is no Catch clause following the Try statement to handle the exception. The JVM will have to search the method call stack for a method containing an appropriate exception handler. However, because the Try statement is immediately followed by a Finally clause, the Finally clause will execute before the exception handler is located. The Finally clause executes some code that results in an exception, and decides to throw this exception. This thrown exception replaces the exception that was thrown from within the Try statement. Therefore, an exception is lost, and the original failure is not handled.

CAUTION
If a Try statement throws an exception and there is no local Catch clause to handle the exception, the Finally clause could throw another exception, causing the original exception to disappear.

Exceptional Issues

What happens when something fails inside a constructor? How do exceptions work in an inheritance situation with superclasses and subclasses? How is a brand new exception class created and used? Should checked exceptions be handled where they occur, or should they be passed to a calling method? Finally, why is it a bad idea to derive exception classes from RuntimeException?

Constructors and Exception Handling

What happens when a problem is detected within a constructor? The constructor cannot return a value to indicate this problem. The object is created but left in an improperly initialized state. Initializing a publicly visible field to a certain value and having the caller check this field for the value after the object has been created would solve this problem, but this solution is poor programming practice. A better solution utilizes exceptions.

A thrown exception will allow the caller to detect a failure within the constructor and identify the state of the constructor when that failure occurred. Objects created from within the constructor will automatically be marked for garbage collection.

The following code fragment consists of a contrived application that demonstrates throwing an exception from a constructor.

This code fragment creates a class called fred (for want of a better name). The constructor iterates through one hundred iterations via a For loop statement. Each value of the For loop statement's loop counter is displayed. After ten values have been displayed, execution pauses for the user to press a key (via System.in.read ()—discussed in a later chapter). After the user presses a key, execution continues.

System.in.read () can throw an IOException object. (This is due to System.in.read () having the ability to read from either the keyboard or a file.) Rather than handle this exception from within the constructor, the decision is made to throw the exception and terminate the creation of the object.

The fred () constructor requires a Throws clause that lists IOException. The main method also has a Throws clause that lists this exception because it passes the buck.

import java.io.*;

class fred

{

 fred () throws IOException

 {

 for (int i = 0; i < 100; i ++)

 {

 System.out.println (i);

 if (i % 10 == 0)

 System.in.read ();

 }

 }

 public static void main (String [] args) throws IOException

 {

 fred f = new fred ();

 }

}

Exceptions and Inheritance

A superclass method can declare a Throws clause with a list of checked exceptions. A subclass method that overrides this superclass method also can declare a Throws clause. However, the subclass method's Throws clause cannot list exceptions that are not listed within the superclass method's Throws clause.

CAUTION
Listing exceptions in a subclass method's Throws clause that are not listed in a superclass method's Throws clause is a compiler error.

Rolling Your Own Checked Exceptions

There might come a time when you need to define a new kind of checked exception. When this happens, you would derive a new class from the Exception class. (You also could derive this class from a class derived from Exception—except for RuntimeException or any of its derived classes—if the new class describes an exception related to an existing family of exceptions.)

For example, suppose that your computer is connected to sensors that monitor the core temperature of a nuclear reactor. (I know, this is far fetched!) If the core temperature rises past a certain temperature, you need to use controls to raise the control rods out of the reactor core. If the core temperature drops below a certain temperature, the reactor is shutting down. Regardless of what happens, you need to take appropriate action.

Does the core temperature rising past a certain temperature qualify as a checked exception? You bet. This is a failure that is external to a program.

Let's create a new exception class for our nuclear reactor example and call this class TemperatureException.

TIP

Any exception classes that you create should end in the word Exception. This is a convention that helps people who are reviewing your source code to identify exception classes.

Listing 8.3 contains a code fragment that specifies a TemperatureException class.

Example 8.3. The TemperatureException class.

[1] class TemperatureException extends Exception

[2] {

[3] private double temperature;

[4]

[5] TemperatureException ()

[6] {

[7] super ("Control is broken!");

[8] }

[9]

[10] TemperatureException (String s)

[11] {

[12] super (s);

[13] }

[14]

[15] public void setTemperature (double temperature)

[16] {

[17] this.temperature = temperature;

[18] }

[19]

[20] public double getTemperature ()

[21] {

[22] return temperature;

[23] }

[24] }

[25]

Line 1 introduces this class and shows that it is derived from Exception.

Lines 5 through 8 introduce a no-argument constructor. This constructor simply calls the Exception superclass constructor and passes a (hopefully) generic description of the program state when the exception occurs. In this case, this constructor passes a Control is broken! description. (The Exception () constructor will forward this description to the Throwable class where the description is stored in Throwable's private String field, as previously mentioned.)

Lines 10 through 13 introduce a second constructor that takes a single argument: a description of the program state. This constructor forwards the description to Exception, which forwards the description to Throwable.

These two constructors are complementary. There are times when you want to create a generic exception that contains a standard message so you do not need to invent new messages. Therefore, you would want to use the no-argument constructor. However, at different times you would want to override this standard message and supply a customized message. This requires a constructor that lets you specify this customized message.

The Throwable class only provides a single String field for describing an exception. However, you might want the ability to create additional fields to further define state. Obviously, you cannot add these fields to Throwable. However, you can certainly add these fields to your exception class. Line 3 introduces an additional field called temperature. This field will hold the actual core temperature of our reactor when it goes critical.

Good object-programming practices call for keeping most fields private and providing accessor methods that get or set the values of these fields. Lines 15 through 18 specify a set accessor method that sets the value of the private field, whereas lines 20 through 23 specify a get accessor method that gets the field's value.

Let's create and deal with TemperatureException objects in an application. This application will monitor core temperature and generate TemperatureException objects when the temperature becomes critical.

Listing 8.4 contains a code fragment that specifies the application's NuclearReactorMonitor class. The line numbers in this code fragment are a continuation of the line numbers in Listing 8.3.

Example 8.4. The NuclearReactorMonitor class.

[26] class NuclearReactorMonitor

[27] {

[28] static double coreTemperature = 10000.0;

[29]

[30] public static void main (String [] args)

[31] {

[32] try

[33] {

[34] monitorReactorCore ();

[35] return;

[36] }

[37] catch (TemperatureException e)

[38] {

[39] System.out.println (e.getMessage ());

[40] System.out.println ("Core temperature has reached: "

[41] + e.getTemperature ());

[42] }

[43] finally

[44] {

[45] System.out.println ("Shutting down reactor!");

[46] }

[47] }

[48]

[49] static int applyControl ()

[50] {

[51] return (int) (Math.random () * 3);

[52] }

[53]

[54] static double fluctuation ()

[55] {

[56] double amount;

[57]

[58] amount = Math.random () * 100;

[59]

[60] if (Math.random () < 0.5)

[61] amount = -amount;

[62]

[63] return amount;

[64] }

[65]

[66] static void monitorReactorCore () throws TemperatureException

[67] {

[68] while (true)

[69] {

[70] coreTemperature += fluctuation ();

[71]

[72] if (coreTemperature > 15000.0)

[73] {

[74] switch (applyControl ())

[75] {

[76] case 0: coreTemperature = 10000.0;

[77] break;

[78]

[79] case 1: TemperatureException te =

[80] new TemperatureException ("Control is ?jammed!");

[81] te.setTemperature (coreTemperature);

[82] throw te;

[83]

[84] case 2: TemperatureException te2 =

[85] new TemperatureException ();

[86] te2.setTemperature (coreTemperature);

[87] throw te2;

[88] }

[89] }

[90]

[91] // If core temperature drops below 9000 degrees ...

[92] // ... reactor is cooling down and will stop nuclear ...

[93] // ... reaction.

[94]

[95] if (coreTemperature < 9000.0)

[96] break;

[97] }

[98] }

[99] }

Line 28 specifies a static field called coreTemperature. The value of this field represents the current core temperature. It is initialized to a (ridiculous) value of 10000 that represents a safe temperature.

Lines 30 through 48 specify the main method. This method contains a loop that continuously monitors the reactor core temperature by calling the monitorReactorCore () method.

Suppose that an exception is thrown from monitorReactorCore (). In this case, the JVM needs to search for an appropriate exception handler. An appropriate handler is located immediately following the Try statement. This Catch clause handler is located in 37 through 42.

The Catch clause handler receives the TemperatureException object that was thrown in monitorReactorCore () and proceeds to display program state information. It calls the inherited getMessage () method to obtain a description of the exception and the getTemperature () method to obtain the core temperature when the exception occurred. After this information has been displayed, it's time to clean up (that is, get rid of some radioactive fallout).

The Finally clause in lines 43 through 46 is responsible for cleanup. In this case, it informs us that the reactor is shutting down.

The Finally clause is executed whether or not an exception occurs. Common cleanup code can be placed in one location, reducing code size and the possibility of error.

Lines 49 through 52 specify a method called applyControl (). This method is called when the core temperature rises above a critical value. The idea behind this method is to control this problem and restore the core temperature to an acceptable temperature.

The applyControl () method returns one of three random values. A zero value indicates that the control restored the core temperature. A one value indicates that the control jammed and could not do its work. A two value indicates that the control is broken. ("I really should have chosen metal instead of plastic but Congress only gave me enough money for plastic!")

Lines 54 through 64 specify a method called fluctuation (). This method is called to generate a random core temperature fluctuation. This fluctuation ranges from -99 to 99 degrees.

Lines 66 through 98 specify the monitorReactorCore () method. This workhorse method does the actual monitoring.

The method header in line 66 specifies a Throws clause that lists TemperatureException as a checked exception class.

The monitorReactorCore () method is capable of throwing a checked exception of data type TemperatureException. Therefore, the call to monitorReactorCore () must either be placed within a Try statement (and it is) or the TemperatureException class must be listed in the main method's Throws clause. (There isn't a Throws clause attached to the main method header because the program will handle the exception within the main.)

The monitorReactorCore () method attempts to solve a core temperature problem by applying a control. However, if this control does not work, there is nothing that monitorReactorCore () can do. It must seek assistance from some other location within the program. Therefore, it throws a TemperatureException object. Because this object is created from a checked exception class, the exception must be listed within the method's Throws clause.

Lines 68 through 97 specify what appears to be an infinite loop. However, this loop can be exited in one of two ways, as will be seen.

Line 70 calls the fluctuation () method to return a random temperature. This temperature is added to coreTemperature.

Line 72 checks to see if this core temperature has exceeded the critical value of 15000 degrees. If it has, corrective action must be taken.

Lines 74 through 88 attempt this corrective action via the Switch decision statement.

Line 74 calls the applyControl () method. If this method returns zero, coreTemperature is reset to 10000 degrees and the Switch statement exits. (You can now breathe a sigh of relief!)

If this method returns a value of one or two, we are in serious trouble.

If a value of one is returned, the control is jammed. A TemperatureException object is created and indicates a jammed control. The current value of coreTemperature is stored within this object so an exception handler can display this value.

If a value of two is returned, the control is broken. Again, a TemperatureException object is created. However, the TemperatureException () constructor is called and it creates an appropriate description of the program state. This state is augmented with the current value of coreTemperature via a call to setTemperature (double).

In either case, a Throw statement is used to throw this exception. The JVM picks up this object and searches for an exception handler. It will find such a handler in the main method where appropriate action will be taken.

If the core temperature falls below 9000 degrees, a Break statement in line 96 will exit the loop and the method. The reactor is shutting down, so the main method's Try statement—followed by its Finally clause—is completed.

To Catch or Pass the Buck

When should your code catch an exception and deal with it and when should it pass the buck to whatever code called the method?

If your code has done something completely on its own that results in a thrown exception, it should catch the exception.

For example, your code attempts to open a file and an exception occurs. The act of opening a file is internal to your code. No other code has "asked" your code to open this file. In this case, your code should take care of the exception.

However, if your code was given something to do by some other code and an exception is thrown, the caller should deal with the exception.

For example, your code consists of a method that is called with bad argument data. Within this method, it tries to do something with this data. However, an exception occurs. It is not the responsibility of your code to deal with this failure because your code did not precipitate this failure. Therefore, it should pass the buck to the caller and let the caller worry about how to deal with this failure.

Deriving from RuntimeException

It really isn't necessary to derive a class from RuntimeException, unless you can think of a new kind of internal failure that isn't specified in Java's extensive list of RuntimeException classes.

Some developers get lazy and decide to derive all their exception classes from RuntimeException. This is dangerous because their code can call methods that fail based on external failures and treat these failures as if they were internal failures. Because Java does not require internal failures to be handled, these external failures can be ignored. (Your nuclear reactor or rocket explodes and everyone is happy!)

In some sense, we are back to square one. We are ignoring failure and users are paying the price. It would have been better if Java's designers had immediately terminated the JVM when an exception based on RuntimeException or one of its subclasses was thrown. The developer would then be forced to fix the internal failure, re-compile the source code, and re-test the program. Relying on RuntimeException simply invites the temptation to create bad code. Hopefully, this weakness will be fixed in future versions of Java.

CALC

CALC is a simple four-function calculator application that enables you to multiply, divide, add, and subtract numbers with or without decimal points. You can even work with negative numbers.

Setting Up CALC

To set up CALC, begin by double-clicking your MS-DOS icon (if you are using Windows) and go to a command prompt.

If you created a projects directory in Chapter 1, make projects your current directory. (If you do not have a projects directory, now is as good a time as any to create one.)

Assuming that projects is located within c:\jdk1.2\, enter the command cd \jdk1.2\projects to change to this directory.

From within your projects directory, create a directory called calc (for example, md calc). (If you prefer, you can create this directory entirely in uppercase. For example, you could issue the command md CALC to create this directory. Case does not matter when it comes to directories.)

Download the file calc.java from the Macmillan Web site and place this file in your calc directory.

Compiling CALC

Compilation is a simple process. It involves running the javac.exe program and specifying the name of the source file as an argument to this program.

At the command prompt, enter the following line:

c:\jdk1.2\projects\calc>javac calc.java

CAUTION

The .java file extension must be specified when compiling an application's source file. The compiler will display an error message if .java is not specified.

If the compiler displays an error message, you might have typed Calc.java or CALC.java instead of calc.java.

CAUTION
You must specify calc.java and not Calc.java, CALC.java, or any other combination of lowercase/uppercase letters. The compiler is very sensitive to case and will display an error message if the class name (calc) does not match the filename (calc).

After compilation is finished, you should end up with a class file called calc.class.

Figure 8.1 shows the compilation process.

Figure 8.1. Compiling calc.java with the javac.exe compiler.

[image: image34.png]PRIVATE "TYPE=PICT;ALT=graphics/08fig01.gif"
Running CALC

Congratulations! You successfully compiled calc.java and are now ready to run calc.class. All you need to do is fire up the java.exe program and specify calc.class as an argument to this program.

CAUTION

The .class file extension must not be specified; otherwise, the java.exe program will display an error message.

Figure 8.2 shows the process of running calc.class with java.exe to display usage information.

Figure 8.2. Running calc.class with java.exe to display usage information.

[image: image35.png]PRIVATE "TYPE=PICT;ALT=graphics/08fig02.gif"
Note that the application displays usage information, specifying what arguments need to follow calc on the command line.

The usage information states that three arguments are passed to calc.class when it begins running: a number (with or without a minus sign and with or without a decimal point), an operator (x, /, +, or -), and a second number. Make sure to leave a space between each number and the operator.

Figure 8.3 shows the process of running calc.class with java.exe and passing arguments to calc.class. As you can see, these arguments are specified after calc on the command line.

Figure 8.3. Running calc.class with java.exe.

[image: image36.png]PRIVATE "TYPE=PICT;ALT=graphics/08fig03.gif"
When you try to divide the number one by the number zero, the application displays Infinity. And when you try to divide negative one by zero, the application displays -Infinity.

? For more information on Infinity and -Infinity, see Chapter 3, " Operators, Expressions, and Statements," page 45.

You also might notice that Java's floating-point arithmetic generates slightly inaccurate values. For example, adding 82.9 and 3.26 results in a value of 86.16000000000001 being displayed instead of 86.16. However, this small lack of precision is no different from the lack of precision you would find in other computer languages, such as C and C++.

Potential Problems

What can go wrong with CALC? Hmmm! Try running CALC with the following command line:

c:\jdk1.2\projects\calc>java calc a + b

You'll notice that the lowercase letter a is displayed. What does this mean? If you examine CALC's source code, you'll see that it calls the parseDouble (String) class method (defined in the Double class). This method throws an exception of data type NumberFormatException when an invalid number is parsed. (The lowercase letter a is not a number.) When the exception is caught, the exception's getMessage () method is called to return a String object that describes the state of the program when the exception occurred. In this case, the state consists of the letter that caused parseDouble (String) to throw an exception (a), which is then displayed.

If you should encounter an error, don't panic. Instead, try to reason out the cause of this error and then take appropriate action.

Enhancing CALC

You can enhance CALC in a number of ways:

· Extend the number of operators that CALC supports. For example, try to provide support for the modulus (%) operator. Remember that this operator requires two integer operands (not a mixture of integer and floating-point operands). (Hint: How about casting?)

· Here's a bigger challenge. Try to enhance CALC so that it can take either three arguments or five arguments. CALC is already handling three arguments. With five arguments, you would specify a number followed by an operator followed by a number followed by a second operator followed by a number. For example, you would now be able to specify expressions such as 6 + 3.5 x 2.

· Here's a puzzler. How would you handle precedence? For example, if you entered the expression 6 + 3.5 x 2, CALC would probably perform the addition operation before multiplication. However, doesn't multiplication have a higher precedence than addition? In a future chapter, we will look at a solution to this problem. This solution presents an application that interprets expressions and uses precedence so that multiplication occurs before addition.

What's Next?

If you are careful about how you write your source code, you can probably reuse it at a later date. Java supports code reuse through its use of packages. The next chapter discusses packages, how to create them, and how to use them. Once you start using packages, you'll find them to be a convenient and very useful tool that can help simplify your development tasks.

Chapter 9. Packages

After you start creating Java programs, you'll probably find that your programs contain classes that can be reused in other programs. Rather than duplicate effort, you can take these classes and organize them into packages (that is, your own class libraries).

Creating packages has many benefits. For example, after you have written, compiled, and tested a class, you can save it in a library. The next time you need this class, simply access it from this library. Don't write it again. You'll save yourself development and testing time. You'll also reduce the amount of source code that you need to manage.

Chapter 9 presents the following topics:

· What are packages?

· The package directive

· The import directive

· CLASSPATH

· Package naming conventions

· GRAPHICS

What Are Packages?

Packages are libraries of classes and interfaces. Each library is given its own name space to avoid conflicts between identical class names and interface names.

Consider an example where packages are not used. You are working on a couple of projects at the same time. One of these projects is a Java application for an electronics company and the other project is a financial applet. You find yourself creating transistor, resistor, and other classes for the electronics application. You also find yourself creating account, mutualFund, and other classes for the financial applet. For various reasons, you decide to build both projects in the same directory on your hard drive. You compile the source files, and the resulting class files are placed in the same directory as these source files.

You really shouldn't mix your electronics classes with your financial classes because there is a possibility of naming conflicts. Suppose that your electronics application and financial applet contain their own component class. You compile the electronics application before the financial applet. The electronics component class file is created and then replaced by the financial component class file. Although the financial applet runs, the same cannot be said for the electronics application.

This failure occurs because two source files in the same directory use the same name for a class declaration. The compiler compiles each source file and places its resulting class file in the same directory as the source file. Obviously, one of these class files will be replaced by the other class file because a directory can only contain one file with a given name.

If the electronics classes and the financial classes were placed in separate packages, this problem would not occur.

The Package Directive

The package directive is a compiler directive that is placed at the top of a source file and identifies the package where all classes and interfaces that are declared within the source file should be stored.

The format of the package directive is

"package" package_name;'

The package reserved word starts the package directive and is followed by package_name, an identifier that names the package. This identifier must not be a reserved word.

The following code fragment consists of a package directive that identifies a financial package:

package financial;

All class and interface declarations that are contained in the same source file as the package financial; directive will be stored in the financial package.

The package directive must be specified before any other source code (apart from comments) and only one package directive can be specified in a source file.

CAUTION
Attempting to either declare multiple package directives in the same source file or place source code (apart from comments) before a package directive results in a compiler error.

Packages can contain sub-packages that help to further organize classes and interfaces. These subpackages are analogous to subdirectories (that is, directories contained within other directories).

The format of the package directive when sub-package names are included is

"package package_name '.' sub_package_name...'.'

The sub-package name (sub_package_name) is separated from the package name (package_name) by a single period character. The three trailing period characters indicate that additional sub-package names can be specified, as long as each sub-package name is separated from the previous package/sub-package name by a period character. (The three periods are not literally specified in the package directive.)

The following code fragment consists of a package directive that specifies an account sub-package within the financial package:

package financial.account;

All classes and interfaces located in the same source file as the previous package directive are stored in the account sub-package within the financial package.

Package names are associated with directory names. In the previous example, the class files generated by the compiler would be placed in either the financial\account directory (Windows) or the financial/account directory (UNIX).

The package naming convention was designed from a portability point of view. This is why period characters (as opposed to forward slash (/) and back slash (\) characters) are used to distinguish between package names. In the future, package names might not be associated with directory names. They might be associated with something completely different.

Every class or interface is part of some package. If a source file does not contain a package directive, the classes and interfaces declared within that source file are considered part of the unnamed package.

The Import Directive

The import directive "tells" the compiler to import one or more class or interface names from a package. Importing names saves the developer from having to specify a complete package specification for each imported name.

The format of the import directive is

"import" package_name'.' class_interface_name';'

The class_interface_name refers to a specific class or interface name in the package identified by package_name.

The following code fragment uses an import directive to import the rates class name from the account sub-package that is located within the financial package:

import financial.account.rates;

This import directive allows the developer to specify the following code fragment at some point within a method:

rates r = new rates ();

Without the import directive, the developer would have to specify package information for each occurrence of the rates class name, as in the following code fragment:

financial.account.rates = new financial.account.rates ();

This extra information makes the code somewhat harder to read.

It would be rather tedious to have to provide a separate import directive for every single class or interface name that is part of a given package. Therefore, Java offers a shortcut import directive.

The shortcut import directive enables the developer to refer to all class and interface names within a package.

The format of the shortcut import directive is

"Import" package_name'.' '*' ';'

The * refers to all class and interface names in the package identified by package_name.

The following code fragment uses an import directive to import all class and interface names from the account sub-package that is located within the financial package:

import financial.account.*;

This import directive allows the developer to specify the rates class name and any other class and interface names that are declared within the account sub-package, without the package information.

Whenever a class or interface name appears in source code, the compiler needs to "know" where the class file related to that name is located. It gets this information in one of two ways. Either the developer prefixes every class or interface name with its complete package name (that is, the package name and any sub-package names) or import directives are specified to supply complete package names in one place.

In either case, the compiler places package information for each referenced class or interface name into the generated class files so that the JVM can locate the class files associated with these referenced names.

Import directives, apart from the package directive and comments, must be specified before any other source code.

CAUTION
Attempting to specify any code (apart from a package directive and comments) before an import directive results in a compiler error.

Suppose that a program contains two import directives that import identical names from two packages. For example, suppose that the electronics package contains a component class name and the financial package also contains a component class name, as follows:

import electronics.*;

import financial.*;

The following statement would be ambiguous:

component c = new component ();

Which component class is being dealt with? Is it the electronics package version or the financial package version? Because the compiler does not "know," it reports an error. The developer must explicitly supply the correct package information to identify the appropriate class:

financial.component c = new financial.component ();

or

electronics.component c = new electronics.component ();

Although this ambiguity is not a common problem, it is something to keep in mind in those situations where you are scratching your head and wondering why the compiler is "complaining."

Java's language classes (such as String) are placed in a package called java.lang (that is, the lang package within the java package). The compiler automatically imports java.lang so it is not necessary to specify an import java.lang.*; directive at the beginning of a source file that uses String or other language classes.

CLASSPATH

The JVM runs a Java program by dynamically loading class files as they are needed. In order to do this, the JVM must be able to locate class files.

Each class file contains the package name(s) for each class or interface that is referenced from within the class file. If the class or interface is part of the unnamed package, the class file contains no package information for that class/interface. Every class file belonging to the unnamed package must exist in the directory from which the JVM was launched.

The JVM associates package names with directory names. Therefore, when it comes across a class or interface reference, the JVM obtains the package name(s) associated with that reference (from the loaded class file of the class being executed) and searches for the corresponding class file of the referenced class or interface by locating a directory corresponding to the first package name followed by subdirectory names corresponding to sub-package names (if specified). After the class file is found, the JVM loads it into memory and execution continues.

The JVM searches for the first package directory by starting in the directory from which the JVM was launched. What happens if this package directory is not found in the current directory? In this case, the JVM obtains the value of the CLASSPATH environment variable and searches each entry in this path to locate the package directory. After the package directory is found, the directories within the package directory are searched until the class file is found.

If the package directory cannot be found in the current directory and there is no CLASSPATH environment variable to continue the search, if subdirectories corresponding to sub-package names cannot be found in the package directory (or subdirectories), or if the class file does not exist within the package directory (or a subdirectory), the JVM will throw a NoClassDefFoundError object.

Package Naming Conventions

Package names must be unique. If they are not unique, the JVM might not be able to locate the correct package directory. It will stop searching with the first matching package directory, even if there is another package directory with the same name that contains the class file being sought.

A convention has been established to ensure that package names are unique. This convention makes use of a company's Internet domain name. This name is reversed and then prefixed to a package name. For example, a company called Generic might have an Internet domain name called generic.com. Reversing this name results in com.generic. If Generic has a package called financial, the resulting package name is com.generic.financial (that is, a financial package exists in a generic package that exists in a com package).

GRAPHICS

It's time for an example that brings all these concepts together. To that end, a primitive graphics package has been created.

This graphics package consists of an interface called shape and four classes called point, circle, square, and rectangle.

Listing 9.1 presents the source code to the shape interface.

Example 9.1. The shape interface.

// shape.java

package graphics;

interface shape

{

 void draw ();

}

The shape.java source file contains a package directive that places the shape interface in a package called graphics.

The shape interface declares an abstract method called draw (). This method will be implemented by the four shape classes. Because Java's graphical capabilities have not yet been discussed, the four implementations of the draw () method will only display a message to the console that identifies a shape.

The draw () method is a publicly visible method, even though the public reserved word has not been specified. By design, any method declared within an interface is publicly visible, whether or not public prefixes that method. When overridden, the public reserved word will be required to prefix the draw () method declaration in the overriding subclass.

Listing 9.2 presents the source code to the point class.

point.java

package graphics;

class point

{

 private double x, y;

 point (double x, double y)

 {

 this.x = x;

 this.y = y;

 }

 public double getX () { return x; }

 public double getY () { return y; }

}

The point.java source file places point in the same graphics package as shape.

The point class serves as the super-class for the circle subclass. After all, a circle is a point with radius.

Notice that point has not been declared as a public class. This means that point objects cannot be created from outside the graphics package. Even if point had been declared public, it would still not be possible to create point objects because the point (double, double) constructor has package visibility. (The absence of the public, private, or protected reserved words implies package visibility.) Because of this package visibility, point (double, double) can only be called from methods whose classes are declared in the same graphics package as point.

Listing 9.3 presents the source code to the circle class.

Example 9.3. The circle class.

// circle.java

package graphics;

public class circle extends point implements shape

{

 private double radius;

 public circle (double x, double y, double radius)

 {

 super (x, y);

 this.radius = radius;

 }

 public double getRadius () { return radius; }

 public void draw () { System.out.println ("Circle");

 }

The circle.java source file contains a package directive that places circle in the same package as point and shape.

Unlike point, circle objects can be constructed because the circle class is a public class and the circle (double, double, double) constructor is a public constructor.

Listing 9.4 presents the source code to the square class.

Example 9.4. The square class.

// square.java

package graphics;

public class square implements shape

{

 private double length;

 public square (double length)

 {

 this.length = length;

 }

 public double getLength () { return length; }

 public void draw () { System.out.println ("Square"); }

}

The square.java source file contains a package directive that places square in the graphics package.

Like circle, square objects can be constructed because square is a public class and its constructor is a public constructor.

Listing 9.5 presents the source code to the rectangle class.

Example 9.5. The rectangle class.

// rectangle.java

package graphics;

public class rectangle extends square implements shape

{

 private double width;

 public rectangle (double length, double width)

 {

 super (length);

 this.width = width;

 public double getWidth () { return width; }

 public void draw () { System.out.println ("Rectangle"); }

 protected double area () { return width * getLength (); }

}

The rectangle.java source file contains a package directive that places rectangle in the graphics package.

Like circle and square, rectangle objects can be constructed because rectangle is a public class and its constructor is a public constructor.

The rectangle class introduces a protected area () method that calculates the area of a rectangle. Normally, this method would be a public method but it has been declared protected to make life difficult and introduce a concept, as will shortly be seen.

The area () method can be called from any method that's class is part of the graphics package. This method also can be called from any method that's class is a subclass of rectangle, regardless of the package in which this subclass is declared.

It's time to build this package.
Building the Package

Under your projects directory, create a graphics directory. Enter the source code from Listings 9.1 through 9.5 into the appropriate source files and save them to the graphics directory. (The graphics directory will correspond to the graphics package.) Figure 9.1 shows the graphics directory with the resulting files.

Figure 9.1. The graphics directory.

[image: image37.png]
Compile the rectangle source file from the projects directory, not the graphics directory. You cannot compile this file from inside the graphics directory because the rectangle class references the square class by extending this class and the compiler looks for a graphics directory containing square.java. If the graphics directory is the current directory, the compiler will look for a graphics directory containing square.java within the graphics directory. It will not find this directory and report an error. If projects is the current directory, the compiler will look for a graphics directory within projects. It will find this directory (unless you did not create it) and everything will be fine.

Figure 9.2 shows the results of compiling rectangle.java.

Figure 9.2. The graphics directory after compiling rectangle.java.

[image: image38.png]
Notice that class files have been created for shape and square. This happens because the compiler recursively compiles other source files when it detects references to their declared classes and interfaces from within the source file being compiled.

Compile the circle source file from the projects directory. Figure 9.3 shows the results. In addition to the circle class file, a point class file also is created.

Figure 9.3. The graphics directory after compiling circle.java.

[image: image39.png]
At this point, you have a graphics directory underneath your projects directory. The graphics directory contains the five source and five class files that constitute this package.

You have just built a library of (hopefully) useful graphics tools. Of course, for our purposes, this is just a demonstration. You'll need to add more capabilities to turn this into a useful library.

Chapter 9: Packages

Now that you have a library, you need an application to make use of this library.

Listing 9.6 presents the source code to the use Graphics application.

Example 9.6. The use Graphics application.

// useGraphics.java

import graphics.*;

class useGraphics

{

 public static void main (String [] args)

 {

 circle c = new circle (10.5, 20.2, 3.5);

 c.draw ();

 rectangle r = new rectangle (3.2, 32.5);

// System.out.println (r.area ());

 areaRectangle ar = new areaRectangle (3.5, 2.6);

 System.out.println ("Area = " + ar.getArea ());

 }

}

class areaRectangle extends rectangle

{

 areaRectangle (double length, double width)

 {

 super (length, width);

 }

 double getArea ()

 {

 return area ();

 }

}

Notice the line that attempts to call r.area (). This line is commented out because it will not compile. If you recall from looking at Listing 9.5, the rectangle class declares a protected area () method. This method can be called only from other methods whose classes are declared in the same package as the rectangle class, or from subclasses of rectangle, regardless of package.

Because it would be useful to calculate the area of a rectangle and because some perverse developer (whose name shall not be identified) chose to declare area () as a protected method, useGraphics requires the presence of a rectangle subclass, such as areaRectangle.

The areaRectangle class declares a getArea () method that can legally call area (). This is how useGraphics obtains a rectangle's area—not from the rectangle class but from its areaRectangle subclass.

Copy the code from Listing 9.6 into a source file called useGraphics.java. Save this source file into your projects directory just above your graphics directory.

Compile this source code. You should end up with the class files shown in Figure 9.4.

Figure 9.4. The useGraphics application class files.

[image: image40.png]
It's time to use this package.

Using the Package

After you have successfully compiled this application, you are ready to run it. Figure 9.5 shows the results of a sample run.

Figure 9.5. The useGraphics application results.

[image: image41.png]
Now, suppose that you need to move graphics from inside projects to the root directory of the hard drive. Figure 9.6 shows what happens when an attempt is made to run useGraphics.

Figure 9.6. Attempting to run useGraphics, but there is no graphics package where it is expected.

[image: image42.png]
The JVM cannot find the circle class within the graphics package because it cannot find the graphics package. What do you do?

Remember CLASSPATH! The JVM will search all the directories specified by this environment variable. Modify CLASSPATH so that it points to the root directory. Try running useGraphics a second time. The results are shown in Figure 9.7.

Figure 9.7. Running useGraphics after modifying CLASSPATH.

[image: image43.png]
It is usually not a good idea to modify CLASSPATH because it is easy to forget about this environment variable. This forgetfulness can lead to problems.

For example, the compiler or JVM might search the CLASSPATH environment variable and locate the wrong package. This happens because you are using the same package name for two different versions of a program. The older version's package directory name appears in CLASSPATH and its class files are referenced. If you had remembered to change CLASSPATH, by replacing this directory name with the new version's directory name, this problem would not have happened.

The java.exe program allows you to choose a class path that exists for as long as java.exe runs. This class path is specified by using the -classpath option. Figure 9.8 runs useGraphics by using this option.

Figure 9.8. Running useGraphics after specifying -classpath.

[image: image44.png]
In Figure 9.8, there is no CLASSPATH environment variable. The only way that the JVM can locate the graphics package is via the -classpath option.

In Figures 9.7 and 9.8, notice that the class path is set to .;c:\. The . represents the current directory and must be specified so that the JVM can locate areaRectangle.class.

And that is all there is to packages. After you get used to organizing your libraries as packages, you'll find them to be really helpful.

What's Next?

Now that you've examined the concept of packages, you've reached the end of one journey (exploring the Java language) and are about to begin a new journey (exploring the class library).

To begin your exploration, I'm going to "string you along" (groan!) in the next chapter where Java's various character and string management classes are covered. You'll learn about character processing along with read-only and read/write string manipulation. Finally, you'll learn about string tokenizing.

Part III: Exploring the Class Library

Chapter 10: Characters and Strings

Chapter 11: Data Structures, Part I

Chapter 12: Data Structures, Part 2

Chapter 13: JFC

Chapter 14: AWT, Part 1

Chapter 15: AWT, Part 2

Chapter 16: Multihreading

Chapter 17: Files and Streams

Chapter 10. Characters and Strings

Computer programs often process text. These text-processing programs are written in a computer language that supports characters and strings. In this chapter, you will learn about Java's support for characters and strings, and how to use characters and strings in your own Java programs.

Chapter 10 presents the following topics:

· Characters

· Strings

Characters

Chapter 2, "Data Types, Literals, and Variables," introduced you to the concept of characters. You learned that a character is nothing more than a combination of a Unicode binary number and visual symbol data. Furthermore, you saw that Java's char data type is used to create char variables—each variable holding the Unicode value of a character—and learned how to literally specify characters in source code.

The following character0 application illustrates assigning a character literal to a char variable and printing out the contents of this variable, as a visual symbol and as a decimal number:

// character0.java

class character0

{

 public static void main (String [] args)

 {

 char c = 'A';

 System.out.println (c);

 System.out.println ((int) c);

 }

}

A

65

Look closely at the two overloaded println method calls. The first println method call takes a char argument and prints out that argument's visual symbol (for example, A). The second println method call takes an int argument and prints out an integer value. It is actually passed a char argument that is cast to an int, via the (int) cast operator, before the method is called. The cast operator causes the Unicode number (for example, 65) associated with the argument's visual symbol to be passed to the method, which is then printed.

These two println method calls illustrate an important point about characters: A character is both a visual symbol and a Unicode number.

The Character Class

Java's class library contains a class called Character. You can use this class to create objects that represent characters. Because Character is located in the java.lang package, you don't need to specify an import java.lang.Character; directive (or even an import java.lang.*; directive) at the top of your source file. (The compiler automatically imports all classes from java.lang.)

Including a Character class in the class library might seem to be redundant. After all, you can represent characters by using char variables. So why does this class exist? There are two good reasons.

The first reason has to do with the Vector data structure class. Vector is used to create Vector objects that contain other objects. For example, you can create a Character object that represents a single character and store this object in the Vector object. However, you cannot store a char variable in a Vector object.

? For more information on Vector, see Chapter 11, "Data Structures, Part 1," page 261.

The second reason has to do with Character's class methods. These methods allow you to classify their char argument values. For example, Character declares methods that will tell you if their char argument values represent a lowercase letter, a digit, or part of a Java identifier. As you know, methods must be declared in classes, and Character is an appropriate place in which to declare these class methods.

A Character object is created by first declaring an object reference variable and then assigning it a new instance of the Character class, as follows:

Character c1 = new Character ('7');

The Character (char) constructor initializes the Character object by storing the value of the char argument within the object. In this case, the char literal '7' is passed to the constructor as its argument.

After a Character object has been created, its internal char value can be retrieved by calling Character's charValue () instance method, as follows:

char ch = c1.charValue ();

Comparing Characters

Character objects can be compared by calling the compareTo (Character) instance method. This is illustrated in the following code fragment:

Character c2 = new Character ('A');

System.out.println (c2.compareTo (c1));

This method works by comparing the Unicode numbers of the char values contained in the object that invokes compareTo (character) (the invoking object) and the object passed as an argument to this method (the argument object). If the invoking object's char value has a Unicode number greater than the Unicode number of the argument object's char value, a positive number is returned. If the invoking object's char value has a Unicode number less than the Unicode number of the argument object's char value, a negative number is returned. If both Unicode numbers are the same, zero is returned.

The following character1 application illustrates a pair of Character objects, a pair of char variables, charValue () method calls that extract the char values from Character objects, and the compareTo (Character) method that compares the char values in both Character objects:

// character1.java

class character1

{

 public static void main (String [] args)

 {

 Character c1 = new Character ('6');

 Character c2 = new Character ('7');

 char c3 = c1.charValue ();

 char c4 = c2.charValue ();

 if (c3 < c4)

 System.out.println (c3 + " is less than " + c4);

 if (c1.compareTo (c2) < 0)

 System.out.println (c1 + " is less than " + c4);

 }

}

6 is less than 7

6 is less than 7

Classifying Characters

The Character class declares class methods that classify char arguments. Each method determines if the Unicode value of an argument represents a digit, a letter, or some other entity. A Boolean true value is returned if the argument belongs to the classification. Otherwise, a Boolean false value is returned.

For example, the isDigit (char) method returns true if its char argument represents a digit. On the other hand, the isLetter (char) method returns true if its char argument represents a letter. You can determine if a character represents either a letter or a digit by calling the isLetterOrDigit (char) method. This method returns true if its char argument represents either a letter or a digit.

The isLowerCase (char) and isUpperCase (char) class methods determine if their respective char arguments represent a lowercase letter or an uppercase letter. The isLowerCase (char) method returns true if its char argument represents a lowercase letter, whereas the isUpperCase (char) method returns true if its char argument represents an uppercase letter.

Want to know if a character represents the start (or just part) of a Java identifier? If you do, check out the isJavaIdentifierStart (char) and isJavaIdentifierPart (char) class methods. The isJavaIdentifierStart (char) method returns true if its char argument represents a valid start character for a Java identifier, whereas the isJavaIdentifierPart (char) method returns true if its char argument represents a valid character that serves as part of the identifier's name (after the start character).

The following character2 application illustrates calls to some of the character classification methods:

// character2.java

class character2

{

 public static void main (String [] args)

 {

 System.out.println ("Is the Latin symbol 6 a digit? "

 + Character.isDigit ('6'));

 System.out.println ("Is the Tamil symbol corresponding to " +

 "Unicode value '\\u0beb' a digit? " +

 Character.isDigit ('\u0beb'));

 System.out.println ("Is the Greek symbol Omega a digit? " +

 Character.isDigit ('\u03a9'));

 System.out.println ("Is the Latin symbol A a digit? " +

 Character.isDigit ('A'));

 System.out.println ("Is the Greek symbol Omega a letter? " +

 Character.isLetter ('\u03a9'));

 System.out.println ("Is the Latin symbol z a letter? " +

 Character.isLetter ('z'));

 System.out.println ("Is the Latin symbol z a lowercase letter? " +

 Character.isLowerCase ('z'));

 System.out.println ("Is the Latin symbol a an uppercase letter? " +

 Character.isUpperCase ('a'));

 }

}

Is the Latin symbol 6 a digit? true

Is the Tamil symbol corresponding to Unicode value '\u0beb' a digit? true

Is the Greek symbol Omega a digit? false

Is the Latin symbol A a digit? false

Is the Greek symbol Omega a letter? true

Is the Latin symbol z a letter? true

Is the Latin symbol z a lowercase letter? True

Is the Latin symbol a an uppercase letter? False

Figure 10.1 shows the Tamil symbol corresponding to the Unicode value 'u0beb' and the Greek Omega symbol corresponding to the Unicode value '\u03a9'.
Figure 10.1. Tamil and Greek symbols.

[image: image45.png]
The Tamil symbol represents the Tamil digit 5 and the Greek symbol represents the Greek uppercase letter Omega.

Converting Characters

The Character class declares a pair of class methods that convert characters representing uppercase letters to lowercase letters and vice versa: toUpperCase (char) and toLowerCase (char).
The toUpperCase (char) method examines the Unicode number of its char argument. If this number corresponds to a lowercase letter, this method returns the uppercase equivalent of that letter. Otherwise, it returns the argument. This is shown in the following code fragment where letter a is converted to letter A:
char c = Character.toUpperCase ('a');

As with toUpperCase (char), the toLowerCase (char) class method also examines the Unicode number of its char argument. However, if this number corresponds to an uppercase letter, this method returns the lowercase equivalent of that letter. Otherwise, it returns the argument. For example, the following code fragment converts letter A to letter a:
char c = Character.toLowerCase ('A');

Strings

Chapter 2 introduced you to the String reference data type and discussed string literals. The String reference data type, implemented by the String class (located in the java.lang package), is given special treatment by the Java language. For example, Java provides a simplified syntax for creating String objects as well as a simplified syntax for concatenating String objects.

The following string0 application illustrates both syntaxes:

// string0.java

class string0

{

 public static void main (String [] args)

 {

 String s1 = "abc";

 String s2 = "def";

 System.out.println (s1 + s2);

 }

}

abcdef

Behind the scenes, the JVM allocates memory for two String objects. It then initializes the first object to the characters abc and the second object to the characters def.
Suppose that s2 also was assigned abc. In this case the JVM would create only a single String object and assign its reference to both s1 and s2—to conserve memory.

What if you want to change the contents of the s1 object without affecting the contents of the s2 object? You can't do this if both s1 and s2 refer to the same object. However, this is not a problem because the JVM treats String objects as immutable objects. In other words, after a String object has been created, you can NEVER change its contents. If you try to change a String object's contents, the JVM creates a copy of the original object with the new contents.

The following string1 application demonstrates Java's immutable approach to String objects:

// string1.java

class string1

{

 public static void main (String [] args)

 {

 String s1 = "abc";

 String s2 = "abc";

 String s3 = "def";

 if (s1 == s2)

 System.out.println ("s1 == s2");

 if (s1 != s3)

 System.out.println ("s1 != s3");

 if (s2 != s3)

 System.out.println ("s2 != s3");

 String s4 = s1.toUpperCase ();

 if (s4 != s1)

 System.out.println ("s4 != s1");

 System.out.println ("s1 = " + s1);

 System.out.println ("s4 = " + s4);

 }

}

s1 == s2

s1 != s3

s2 != s3

s4 != s1

s1 = abc

s4 = ABC

The first line of output shows that s1 and s2 are referencing the same object. (Remember, the relational operator (==) compares objects by their references, not their contents.) Furthermore, the second and third lines of output show that the object being referenced by s1 and s2 is different from the object being referenced by s3.
The contents of the s1 object are not converted to uppercase by the call to s1's toUpperCase () instance method. Instead, a copy of the s1 object (with lowercase letters converted to uppercase) is created and returned from this method. Assigning this reference to s4 serves as proof. If the contents of s1 were changed, s4 also would reference the same object as s1. (The fourth line of output would show s4 referencing the same object.) However, it clearly shows that s4 references a different object. If this isn't enough proof, look at the fifth and sixth lines of output. These lines show that the contents of s1 and s4 are different.

The String Class

In the previous section, you saw how to implicitly create String objects. However, it also is possible to create these objects by specifying new and calling various String constructors, such as String () and String (String).
The String () constructor creates a String object with no contents, as shown in the following code fragment. (This is analogous to assigning the empty string literal "" to a String object reference variable.)

String s = new String ();

The String (String) constructor creates a String object and copies the characters from another String object into the newly created String object. The following code fragment illustrates this situation:

String s1 = "abc";

String s2 = new String (s1);

The object referenced by s2 contains the same contents as the object referenced by s1. However, s1 and s2 reference two different String objects.

Obtaining a Hash Code

The String class's overridden hashcode () instance method produces a unique 32-bit integer for each String object that is created by a running program.

The following string2 application illustrates hashCode () method calls:

// string2.java

class string2

{

 public static void main (String [] args)

 {

 String s1 = "abc";

 String s2 = "abc";

 String s3 = "def";

 System.out.println ("s1 hash code = " + s1.hashCode ());

 System.out.println ("s2 hash code = " + s2.hashCode ());

 System.out.println ("s3 hash code = " + s3.hashCode ());

 }

}

s1 hash code = 96354

s2 hash code = 96354

s3 hash code = 99333

If you need any more convincing that s1 and s2 refer to the same object, take a look at the hash codes. The hash codes for s1 and s2 are identical.

?For more information on hash codes, see Chapter 12, "Data Structures, Part 2," page 289.

Obtaining Characters

The String class declares a charAt (int) instance method that returns a character, from a String object, located at the index specified by the int argument.

For example,

char c = "abc".charAt (1);

assigns character b to char variable c.
The "abc" literal is first converted to a String object and then the charAt (int) method of this object is called. The number 1 is passed as the index argument to extract character b. (String indexes, like array indexes, always begin at 0.)

Passing a negative number or a number that is greater than or equal to the length of the String object's contents results in a StringIndexOutOfBoundsException object being thrown.

Obtaining the Current Length

The String class declares a length () instance method that returns the length of a String object (that is, the number of characters stored within the object). This is shown in the following code fragment where 3 is output because the String object referenced by s contains three characters: a, b, and c:
String s = "abc";

System.out.println (s.length ());

CAUTION
Do not confuse String's length () instance method with an array object's length instance field. The length () method returns the number of characters in a String object, whereas the length field returns the number of elements in an array. Confusing length () with length leads to a compiler error.

Determining Equality

The String class's overridden equals (Object) instance method compares the contents of two String objects for equality, using a case-sensitive comparison. A Boolean true value is returned if both objects have the same contents. If both objects have different contents, a Boolean false value is returned. The following code fragment illustrates a call to this method. The word false is output because the contents of s1 and s2 are not the same:

String s1 = "abc";

String s2 = "def";

System.out.println (s1.equals (s2));

The String class also declares an equalsIgnoreCase (String) instance method that compares the contents of two String objects, using a case-insensitive comparison. A Boolean true value is returned if both objects have the same contents (based on the case-insensitive comparison); otherwise, a Boolean false value is returned. This is illustrated in the following bit of code which outputs the word true because the contents of s1 and s2 are the same, from a case-insensitive point of view:

String s1 = "A";

String s2 = "a";

System.out.println (s1.equalsIgnoreCase (s2));

Determining Region Equality

The String class declares a regionMatches (int, String, int, int) instance method that compares specific character regions within two String objects, using a case-sensitive comparison. A Boolean true value is returned if both regions have the same contents; otherwise, a Boolean false value is returned.

The first argument specifies the invoking String object's starting index. This index identifies the start of the character region within the invoking String object that will be compared to a character region within the String object that is specified by the second argument. The third argument specifies the starting index of the String object argument's character region. The fourth argument specifies the number of characters that will be compared.

The following code fragment compares the first character at position 0 in s1 with the first character at position 0 in s2. Because both characters are the same, a Boolean true value is returned and true is output:

String s1 = "abcde";

String s2 = "aBCDE";

System.out.println (s1.regionMatches (0, s2, 0, 1));

If any of the int arguments are invalid, this method does not throw an exception. Instead, it returns a Boolean false value.

The String class also declares an overloaded regionMatches (boolean, int, String, int, int) instance method that takes five arguments. (This overloaded method is called by regionMatches (int, String, int, int)).)

The first argument is a boolean argument that controls whether the comparison is case sensitive or case insensitive. If a true value is passed, the comparision is case insensitive. If a false value is passed, the comparison is case sensitive. The other arguments remain the same.

The following code fragment compares the first character at position 0 in s1 with the first character at position 0 in s2. Because true is passed as the first argument, the comparison is case insensitive. Therefore, A is considered identical to a and this method returns a Boolean true value. As a result, true is output:

String s1 = "Abcde";

String s2 = "aBCDE";

System.out.println (s1.regionMatches (true, 0, s2, 0, 1));

If any of the int arguments are invalid, this method does not throw an exception. Instead, it returns a Boolean false value.

First Occurrence Searching

The String class declares an indexOf (String) instance method that searches for the first occurrence of a string in the invoking String object. A zero-based index of this string is returned, if it is found. If not found, -1 is returned.

For example, the following code fragment searches s for string "ox". The search begins with string "Th" at index 0 and continues until string "ox" at index 17 is found. This code fragment also searches s for string "box" but does not find this string because "box" is not present in s. Therefore, -1 is returned. (Both 17 and -1 are output.)

String s = "The quick brown fox jumped over the lazy ox."

System.out.println (s.indexOf ("ox"));

System.out.println (s.indexOf ("box"));

The String class also declares an overloaded indexOf (String, int) instance method that takes two arguments. The second int argument provides the starting index in the invoking object's contents where the search begins. (This overloaded method is called by indexOf (String).)

The following code fragment searches s for string "ox". The search begins with string "x " at index 18 and continues until string ox at index 41 is found. When this happens, 41 is returned by indexOf (String, int) and then output:

String s = "The quick brown fox jumped over the lazy ox.";

System.out.println (s.indexOf ("ox", 18));

The indexOf (String, int) method treats a negative argument value as 0. Too large of an argument value is treated as one less than the string's length. If the string cannot be found, -1 is returned.

Last Occurrence Searching

The String class declares a lastIndexOf (String) instance method that searches for the last occurrence of a string in the invoking String object. If the string is found, a zero-based index is returned. Otherwise, -1 is returned.

The following code fragment searches s for string "ox". The search begins with string "x." at index 42 and continues until string "ox" at index 41 is found. This code fragment also searches s for string "box" but does not find this string because "box" is not present in s. Therefore, -1 is returned. (Both 41 and -1 are output.)

String s = "The quick brown fox jumped over the lazy ox.";

System.out.println (s.lastIndexOf ("ox"));

System.out.println (s.lastIndexOf ("box"));

The String class also declares an overloaded lastIndexOf (String, int) instance method that takes two arguments. As with indexOf (String, int), the second int argument provides the starting index in the invoking object's contents where the search begins. (This overloaded method is called by lastIndexOf (String).)

For example, the following code fragment searches s for string "ox". The search begins with string " o" at index 40 and continues until string ox at index 17 is found. When this happens, 17 is returned by lastIndexOf (String, int) and output.

String s = "The quick brown fox jumped over the lazy ox.";

System.out.println (s.lastIndexOf ("ox"), 40);

As with indexOf (String, int), the lastIndexOf (String, int) method treats a negative argument value as 0. Too large of an argument value is treated as one less than the string's length. If the string cannot be found, -1 is returned.

Converting Strings

The String class declares a toUpperCase () instance method that creates a new String object with the same contents as the invoking String object, except that every lowercase letter is converted to uppercase. The following code fragment illustrates converting lowercase letters to uppercase:

String s = "abc";

System.out.println (s.toUpperCase ());

The String class also declares a toLowerCase () instance method that creates a new String object with the same contents as the invoking String object, except that every uppercase letter is converted to lowercase. The following code fragment shows a call to toLowerCase (), which makes a copy of s and then converts ABC to "abc":
String s = "ABC";

System.out.println (s.toLowerCase ());

Trimming Strings

The String class declares a trim () instance method that creates a new String object with the same contents as the invoking String object, except that whitespace characters (spaces, newlines, and tabs) have been removed from the front and end of the new String object. The contents of the invoking String object are not changed.

For example, the following code fragment calculates the length of the original String object s and the new String object. (The length of the original object is 9, whereas the length of the new object is 3.)

String s = " \nabc \>n";

System.out.println (s.length ());

System.out.println (s.trim ().length ());

The Value of a String

The String class declares several valueOf class methods that convert their non-String arguments to String objects. For example, the valueOf (double) method converts its double argument to a String object, whereas the valueOf (long) method converts its long argument to a String object.

The following string3 application illustrates valueOf method calls:

// string3.java

class string3

{

 public static void main (String [] args)

{

 String s = String.valueOf (false);

 System.out.println (s);

 s = String.valueOf ('A');

 System.out.println (s);

 char [] c = { 'a', 'b', 'c' };

 s = String.valueOf (c);

 System.out.println (s);

 s = String.valueOf (c, 0, 2);

 System.out.println (s);

 s = String.valueOf (3.5d);

 System.out.println (s);

 s = String.valueOf (2.5f);

 System.out.println (s);

 s = String.valueOf (59);

 System.out.println (s);

 s = String.valueOf (8000l);

 System.out.println (s);

 }

}

false

A

abc

ab

3.5

2.5

59

8000

The toString () Method

The String class's overridden toString () instance method returns a String object that consists of the String object's characters. This might seem redundant but there is a good reason for overriding toString ().
The default version of toString () (that is to say, Object's toString () method) returns a String object consisting of a class name and a hash code. For example, if you had a String object s consisting of the characters a, >b, and c, and were to call System.out.println (s);, and String's toString () method had not been overridden, abc would not be printed. Instead, the String class name followed by the @ character followed by a hash code would be printed. Therefore, String must override its own toString () method.

The following code fragment passes a String object to the println (String) method. The String object's toString () method is implicitly called to retrieve its contents and these contents are printed:

String s = "abc";

System.out.println (s);

The StringBuffer Class

The String class creates objects that are read only. These objects never can be modified. Whenever you call a String method that returns a String object, such as toUpperCase (), a new String object is returned. The String object on which the method was invoked is not modified.

If String objects could be modified, it would be impossible to share references to the same object. However, repeatedly generating new String objects in a loop can result in extra memory allocations and a decrease in performance as objects are repeatedly garbage collected. Fewer objects would be generated if String objects could be modified.

Java has a solution to the need for modifiable strings—the StringBuffer class (located in the java.lang package). This class makes it possible to create objects that represent modifiable strings.

A StringBuffer object contains an internal character array. At any point in time, this array has a certain size that is known as its capacity. If this capacity is exceeded, the StringBuffer object can dynamically expand this array to accommodate additional characters.

The StringBuffer () constructor constructs a StringBuffer object and initializes its internal array to hold 16 characters—its initial capacity. The array is empty at this point. The following code fragment does just this:

StringBuffer sb = new StringBuffer ();

The StringBuffer (int) constructor constructs a StringBuffer object and initializes its internal array to hold int argument characters. If a negative value is passed, a NegativeArraySizeException object is thrown. The array is empty at this point. The following code fragment creates an empty StringBuffer object with an initial capacity of 100 characters:

StringBuffer sb = new StringBuffer (100);

The StringBuffer (String) constructor constructs a StringBuffer object and initializes its internal array to hold the characters from the String argument plus room for an additional 16 characters. The following code fragment creates a StringBuffer object that holds the characters from the String object "abc". The initial capacity of this StringBuffer object is 19 characters:

StringBuffer sb = new StringBuffer ("abc");

Ensuring Capacity

The StringBuffer class declares an ensureCapacity (int) instance method to guarantee that a StringBuffer object has a minimum capacity. If the object does not have this minimum capacity, it is expanded to this capacity. The int argument specifies the new capacity. If a value less than 16 is passed, the capacity is not changed.

For example, the following code fragment creates a StringBuffer object with an initial capacity of 16 characters. Its ensureCapacity (int) method is called to guarantee that it can contain at least 30 characters, before dynamically expanding its internal array:

StringBuffer sb = new StringBuffer ();

sb.ensureCapacity (30);

The ensureCapacity (int) method exists for performance reasons. Each time the array needs to expand, a new character array that is larger than the original character array must be created and the contents of the original character array must be copied into this array, which takes time. Expanding the internal character array many times during a program's execution can impact performance.

Obtaining the Current Capacity

The StringBuffer class declares a capacity () instance method that returns the current capacity of the invoking StringBuffer object.

The following stringbuffer0 application illustrates changing a StringBuffer object's capacity and determining the current capacity:

// stringbuffer0.java

class stringbuffer0

{

 public static void main (String [] args)

 {

 StringBuffer sb = new StringBuffer ();

 System.out.println (sb.capacity ());

 sb.ensureCapacity (50);

 System.out.println (sb.capacity ());

 sb.ensureCapacity (15);

 System.out.println (sb.capacity ());

 }

}

16

50

50

Obtaining the Current Length

The StringBuffer class declares a length () instance method that returns the number of characters in a StringBuffer object. The following code fragment creates two StringBuffer objects: sb1 and sb2. It then calls the length () method to return the length of each object. The length of sb1 is zero and the length of sb2 is three:

StringBuffer sb1 = new StringBuffer ();

System.out.println (sb1.length ());

StringBuffer sb2 = new StringBuffer ("abc");

System.out.println (sb2.length ());

Specifying a New Length

The StringBuffer class declares a setLength (int) instance method that changes the length of the StringBuffer object. The int argument specifies the new length. This argument must be a positive value. If a negative value is passed, a StringIndexOutOfBoundsException object is thrown.

If the new length is less than the original length, characters are truncated from the array. If the new length is greater than the original length, additional null characters (characters with Unicode zero values) are appended to the end of the array.

The following stringbuffer1 application illustrates the differences between a StringBuffer object's length and its capacity:

// stringbuffer1.java

class stringbuffer1

{

 public static void main (String [] args)

 {

 StringBuffer sb = new StringBuffer ("abc");

 System.out.println ("sb = " + sb);

 System.out.println ("Length = " + sb.length ());

 System.out.println ("Capacity = " + sb.capacity ());

 sb.setLength (2);

 System.out.println ("sb = " + sb);

 System.out.println ("Length = " + sb.length ());

 System.out.println ("Capacity = " + sb.capacity ());

 sb.setLength (4);

 System.out.println ("sb = " + sb);

 System.out.println ("Length = " + sb.length ());

 System.out.println ("Capacity = " + sb.capacity ());

 }

}

sb = abc

Length = 3

Capacity = 19

sb = ab

Length = 2

Capacity = 19

sb = ab

Length = 4

Capacity = 19

Although the length changes, the capacity does not change by calling setLength (int).
Appending Characters

The StringBuffer class declares several append instance methods that convert different data types to string representations and then append these representations to the invoking StringBuffer objects. For example, the append (boolean) method converts its boolean argument to a string representation and appends this representation to the invoking StringBuffer object's internal array.

The following stringbuffer2 application illustrates calls to most of the append methods:

// stringbuffer2.java

class stringbuffer2

{

 public static void main (String [] args)

 {

 StringBuffer sb = new StringBuffer ();

 sb.append (true);

 sb.append ('A');

 char [] carray = { 'a', 'b', 'c' };

 sb.append (carray);

 sb.append (carray, 0, 1);

 sb.append (3.5d);

 sb.append (2.4f);

 sb.append (45);

 sb.append (90000l);

 sb.append ("That's all!");

 System.out.println (sb);

 }

}

trueAabca3.52.44590000That's all!

The StringBuffer object sb is created with a capacity of 16 characters. After this capacity is reached, the internal array is dynamically expanded so that additional characters can be stored.

Deleting Characters

The StringBuffer class declares a delete (int, int) instance method that deletes a subset of characters from a StringBuffer object's internal array. The first int argument specifies the index of the first character in the subset of characters to be deleted, and the second int argument specifies the index of the last character to be deleted (plus one). If an invalid value is passed for either argument, a StringIndexOutOfBoundsException object is thrown.

The following code fragment creates a StringBuffer object initialized to abcde and then deletes characters b and c from the internal array. As a result, ade is output:

StringBuffer sb = new StringBuffer ("abcde");

sb.delete (1, 3);

System.out.println (sb);

Inserting Characters

The StringBuffer class declares several insert instance methods that convert different data types to string representations and then insert these representations into the invoking StringBuffer objects. For example, the insert (int, boolean) method converts its boolean argument to a string representation and inserts this representation into the invoking StringBuffer object's array at the specified offset. The first int argument of this method (and all other insert methods) specifies an offset into the array where the representation should be stored. If this argument is not valid, a StringIndexOutOfBoundsException object is thrown.

The following stringbuffer3 application illustrates calls to the insert (int, boolean) method:

// stringbuffer3.java

class stringbuffer3

{

 public static void main (String [] args)

 {

 StringBuffer sb1 = new StringBuffer ("xy");

 System.out.println (sb1);

 sb1.insert (0, false);

 System.out.println (sb1);

 StringBuffer sb2 = new StringBuffer ("xy");

 System.out.println (sb2);

 sb2.insert (1, true);

 System.out.println (sb2);

 }

}

xy

falsexy

xy

xtruey

The 0 offset in the first insert (int, boolean) method call specifies that the string representation of the Boolean false value is inserted before x, whereas the 1 offset in the second insert (int, boolean) method call specifies that the string representation of the Boolean true value is inserted after x but before y. These two cases illustrate that the specified offset "tells" an insert method to insert a string representation in front of the character at that offset.

Obtaining Characters

The StringBuffer class declares a charAt (int) instance method that returns a character from the invoking StringBuffer object's array. The int argument specifies the zero-based index of this character. If a negative value or a value greater than or equal to the length of the array is passed as the index, a StringIndexOutOfBoundsException object is thrown.

The following code fragment creates a StringBuffer object whose internal array is initialized to abcdef. The charAt (int) method is called with 1 as its argument. This method returns character b, which is subsequently printed:

StringBuffer sb = new StringBuffer ("abcdef");

System.out.println (sb.charAt (1));

Replacing Characters

In addition to the charAt (int) method for obtaining a character, the StringBuffer class also declares a setCharAt (int, char) instance method that changes a character within the internal array. The int argument specifies this index. If a negative value or a value greater than or equal to the length of the array is passed, a StringIndexOutOfBoundsException object is thrown.

The following code fragment illustrates changing b to x in StringBuffer object sb:
StringBuffer sb = new StringBuffer ("abcdef");

sb.setCharAt (1, 'x');

System.out.println (sb);

The toString () Method

The StringBuffer class's overridden toString () instance method returns a String object that contains all the characters in the StringBuffer object's internal array.

The following code fragment creates a StringBuffer object, calls its toString () method, and assigns the resulting String object reference to s. The println (String) method is called to output the string:

StringBuffer sb = new StringBuffer ("abc");

String s = sb.toString ();

System.out.println (s);

The StringTokenizer Class

Suppose you want to create a Java program that must break up a string into small meaningful pieces. You can use the StringTokenizer class to accomplish this task.

A StringTokenizer object treats a String object as a sequence of tokens (pieces) that are separated from other tokens by delimiter characters. The most commonly used delimiters are the whitespace characters (spaces, tabs, newlines, and carriage returns).

You can create a StringTokenizer object by specifying new and calling one of three constructors to initialize the object: StringTokenizer (String), StringTokenizer (String, String), and StringTokenizer (String, String, boolean).
The StringTokenizer (String) constructor initializes a new StringTokenizer object with the String argument to be tokenized and a default set of delimiters (space character, tab character, newline character, carriage-return character, and form-feed character). The following code fragment creates a StringTokenizer object for the "two tokens" String object:

StringTokenizer st = new StringTokenizer ("two tokens");

The StringTokenizer (String, String) constructor initializes a new StringTokenizer object with the first String argument to be tokenized and the set of delimiters specified by the second String argument. The following code fragment creates a StringTokenizer object for the "23,32,45" String object. The "," String object specifies a single comma-character delimiter:

StringTokenizer st = new StringTokenizer ("23,32,45", ",");

The StringTokenizer (String, String, boolean) constructor initializes a new StringTokenizer object with the first String argument to be tokenized, a set of delimiters specified by the second String argument, and the delimiter-return behavior specified by the third boolean argument. If true is passed, delimiter characters are returned as tokens. (Each delimiter is returned as a String object consisting of the single delimiter character.) If the boolean argument is false, delimiter characters are skipped and not returned. (The previous two constructors never return delimiters as tokens.)

The following code fragment creates a StringTokenizer object for the "a:b:c" String object. The ":" String object specifies a single colon-character delimiter. This character will be returned as a token because true is specified as the third argument:

StringTokenizer st =

new StringTokenizer ("a:b:c">, ":", true);

Each StringTokenizer constructor sets an internal character index to point to the first character in the String object. This character index is advanced during the tokenizing process and helps the StringTokenizer object locate tokens.

The StringTokenizer class is located in the java.util package. You must specify either an import java.util.StringTokenizer; directive or an import java.util.*; directive at the start of your source file before you can use this class.

Tokenizing

After a StringTokenizer object has been created, various instance methods can be called to count the number of tokens, determine if there are any more tokens to extract, and extract the next token.

The countTokens () instance method returns an int that identifies the number of tokens in the String object.

The hasMoreTokens () instance method returns true if there are more tokens to extract; otherwise, false is returned. Each time hasMoreTokens () is called, the first thing that it does is skip over leading delimiters (unless delimiters also are being returned as tokens).

The nextToken () instance method returns a String object that holds the next token. Like hasMoreTokens (), each time nextToken () is called, the first thing that it does is skip over leading delimiters (unless delimiters also are being returned as tokens). However, unlike hasMoreTokens (), it then checks to see if there is another token to return. If not, nextToken () throws a NoSuchElementException object.

The nextToken (String) instance method records its String argument as the new set of delimiters and then calls nextToken ().
The following stringtokenizer0 application illustrates the tokenizing process:

// stringtokenizer0.java

import java.util.*;

class stringtokenizer0

{

 public static void main (String [] args)

 {

 String message = "The quick brown fox jumped over the lazy dog.";

 StringTokenizer st = new StringTokenizer (message);

 System.out.println ("Number of tokens = " + st.countTokens ());

 while (st.hasMoreTokens ())

 System.out.println (st.nextToken ());

 }

}

It is a good idea to call hasMoreTokens () before calling nextToken () to prevent the possibility of a NoSuchElementException object being thrown.

Number of tokens = 9

The

quick

brown

fox

jumped

over

the

lazy

dog.

Notice the last line of output. The period character is included with the word dog. However, the period character and dog are separate tokens. They really shouldn't be included together as one token. The next example shows how to handle this kind of situation.

The following stringtokenizer1 application illustrates the tokenizing process where delimiter characters need to be modified during tokenizing:

// stringtokenizer1.java

import java.util.*;

class stringtokenizer1

{

 public static void main (String [] args)

 {

 String phoneNumber = "(204) 555-1234";

 StringTokenizer st = new StringTokenizer (phoneNumber, "()");

 System.out.println ("Number of tokens = " + st.countTokens ());

 System.out.println (st.nextToken ());

 System.out.println (st.nextToken (") -"));

 System.out.println (st.nextToken ());

 }

}

In this example, the 204 area code, 555, and 1234 are extracted as separate tokens from the phoneNumber object. This task is complicated by the different delimiter characters that are present: (,), -, and space.

A StringTokenizer object is created with () as the delimiter characters. After this object is created, the first call to nextToken () skips over the (delimiter, recognizes the) character as another delimiter, and returns 204. The subsequent nextToken (") -") call resets the delimiters to), a space character, and a hypen (-) character. The) character is required because the very first character that will be examined by nextToken ()—which is called by nextToken (String)—is the) character. If) is not included in the set of delimiters, the) will be treated as a token. The space character is required because a space appears after) in phoneNumber. If space is not included in the set of delimiters, it will be treated as a token. The hyphen character is required because tokenizing must stop after the third 5 character. The final nextToken () call extracts 1234 as a token. The current delimiter characters are the), space, and hyphen characters. Only the hyphen character is required because the hyphen character in phoneNumber is the first character that is examined when nextToken () is called. If this character is not treated as a delimiter, -1234 will be returned—not 1234, as expected.

Number of tokens = 2

204

555

1234

Notice that countTokens () returns the wrong value (2) as far as the number of returned tokens are concerned. However, this method is not really returning a wrong value. At the time countTokens () is called, the only delimiter characters that are recognized are (and). They separate the tokens 204 and 555-1234 (including the leading-space character). This indicates that care must be exercised when calling countTokens (). If you plan to change delimiters during the tokenizing process, don't rely on countToken ()'s return value.

What's Next?

Many text-processing programs need to organize text within data structures before this text can be manipulated. For example, a text-sorting application might require text to be stored as String objects in an array or in a Vector data structure object. The next two chapters focus on these and other kinds of data structures, along with common operations that are applied to stored objects.

Chapter 11. Data Structures, Part 1

Many kinds of data structures have been developed over the years. They can be categorized as either fixed-size data structures or dynamic data structures. Fixed-size data structures cannot grow (that is, no new data items can be added after the limit has been reached). Conversely, dynamic data structures can grow. The only limit to the number of data items that can be added to a dynamic data structure is available memory. This chapter explores fixed-size data structures, from Java's perspective.

Chapter 11 presents the following topics:

· Arrays

· Primitives

· Enumerations

· Vectors

· Bit sets

· SPL

Part V: Appendixes

Appendix A: Reserved Words

Appendix B: Operator Precedence

Appendix C: JAR File Management

Appendix D: Additional Resources

Glossary

Appendix A. Reserved Words

Reserved words are part of the Java language syntax. They cannot be used as names for variables, methods, classes, interfaces, or packages. Table A.1 lists Java's reserved words.

	Table A.1. Reserved Words

	abstract
	boolean
	break
	byte
	case

	catch
	char
	class
	const
	continue

	default
	do
	double
	else
	extends

	false
	final
	finally
	float
	for

	goto
	if
	implements
	import
	instanceof

	int
	interface
	long
	native
	new

	null
	package
	private
	protected
	public

	return
	short
	static
	strictfp
	super

	switch
	synchronized
	this
	throw
	throws

	transient
	true
	try
	void
	volatile

	while
	
	
	
	

Appendix B. Operator Precedence

Table B.1 lists Java's operators in decreasing order of precedence. Operators with the same precedence are grouped together (and separated from other groups by horizontal lines).

	Table B.1. Operator Precedence

	Operator
	Description
	Evaluation Order

	()
	parentheses
	left to right

	[]
	array index
	left to right

	++
	preincrement
	right to left

	++
	postincrement
	right to left

	--
	predecrement
	right to left

	--
	postdecrement
	right to left

	+
	unary plus
	right to left

	-
	unary minus
	right to left

	!
	logical NOT
	right to left

	
	Boolean NOT
	

	~
	bitwise complement
	right to left

	(data type)
	cast
	right to left

	*
	multiplication
	left to right

	/
	division
	left to right

	%
	modulus
	left to right

	+
	addition
	left to right

	-
	subtraction
	left to right

	<<
	bitwise shift left
	left to right

	>>
	bitwise shift right (sign extension)
	left to right

	>>>
	bitwise shift right (zero extension)
	left to right

	<
	relational less than
	left to right

	<=
	relational less than or equal to
	left to right

	>
	relational greater than
	left to right

	>=
	relational greater than or equal to
	left to right

	instanceof
	reference data type checking
	left to right

	==
	relational equal to
	left to right

	!=
	relational not equal to
	left to right

	&
	bitwise AND
	left to right

	
	Boolean AND
	

	^
	bitwise exclusive OR
	left to right

	
	Boolean exclusive OR
	

	|
	bitwise inclusive OR
	left to right

	
	Boolean inclusive OR
	

	&&
	logical AND
	left to right

	||
	logical OR
	left to right

	?:
	conditional
	right to left

	=
	assignment
	right to left

	+=
	addition plus assignment
	right to left

	-=
	subtraction plus assignment
	right to left

	*=
	multiplication plus assignment
	right to left

	/=
	division plus assignment
	right to left

	%=
	modulus plus assignment
	right to left

	&=
	bitwise AND plus assignment
	right to left

	
	Boolean AND plus assignment
	

	^=
	bitwise exclusive OR plus assignment
	right to left

	Operator
	Description
	Evaluation Order

	
	Boolean exclusive OR plus assignment
	

	|=
	bitwise inclusive OR plus assignment
	right to left

	
	Boolean inclusive OR plus assignment
	

	<<=
	bitwise shift left plus assignment
	right to left

	>>=
	bitwise shift right with sign plus assignment
	right to left

	>>>=
	bitwise shift right with zero plus assignment
	right to left

Appendix C. JAR File Management (jar.exe)
The JDK supplies a tool for creating and working with JAR files. This tool is called jar.exe.

jar.exe is a general-purpose archiving tool. This tool, like other JDK tools, is run from a command line.

jar.exe has the following command-line format:

jar [commands] [manifest] [archive] [input]

Any argument between square brackets ([]) is optional.

If no arguments follow jar, a list of commands (along with command usage examples) is displayed.

A group of commands might be specified after jar. Commands tell jar what to do (for example, create a JAR file, extract files from a JAR file, list the contents of a JAR file, and so on). The presence or absence of jar arguments depends upon what commands are specified.

A command is specified by prefixing it with a hyphen (-) character. Commands can be concatenated into a group and the group prefixed with a single hyphen. Table C.1 provides a list of commands.

The name of a manifest file might be specified. A manifest file describes the contents of an archive.

The name of an archive file might be specified. This is the file being created or manipulated.

The names of one or more input files might be specified. These are the files that are stored into or extracted from the archive.

	Table C.1. JAR Commands

	Command
	Description

	-c
	Create a new archive

	-t
	List a table of contents for the archive

	-x
	Extract named (or all) files from the archive

	-u
	Update the existing archive

	-v
	Generate verbose output on standard output

	-f
	Specify the archive filename

	-m
	Include manifest information from specified manifest file

	-0
	Store only; use no zip compression

	-M
	Do not create a manifest file for the entries

	-C
	Change to the specified directory and include the following file

Examples

The following examples show how to use jar.exe to work with JAR files. These examples assume a JDK installation directory called c:\jdk1.2 and the presence of the Java source code JAR file called src.jar within this directory:

1. Display jar.exe usage information:

2. c:\jdk1.2>jar

3. List the contents of src.jar:

4. c:\jdk1.2>jar -tf src.jar

5. Extract all files from src.jar. (An src directory is created underneath the JDK installation directory. Directories are created underneath src and all archived files are extracted into these directories.)

6. c:\jdk1.2>jar -xf src.jar

Appendix D. Additional Resources

Visit Sun's Java Software Web Site

Sun Microsystems has a Web site dedicated to all things Java. This Web site provides access to the JDK and other toolkits that you can freely download. Also, you can join Sun's Java developer connection to learn more about advanced Java features, participate in various activities, learn how to achieve certification, learn about Sun's various books that explore different aspects of Java, and work through an online tutorial to improve your understanding of this technology.

Sun's Java Web site is located at http://www.javasoft.com.

Join Sun's Java Developer Connection

Sun provides an online resource for developers that showcases many articles on different aspects of the Java language. If you are a first-time visitor to this resource, you will be asked to register. Registration is free and only takes a couple of minutes. However, it is a worthwhile endeavour.

The Java developer connection Web site is located at http://developer.java.sun.com/developer/.

Work Through Sun's Online Java Tutorial

Various authors have come together to produce an online tutorial that explores many areas of Java technology. This "hands on" tutorial can help you come up to speed with Java technology in short order.

The Java tutorial Web site is located at http://java.sun.com/docs/books/tutorial/.

Read Quality Java Books from Sun and O'Reilly

Sun Microsystems offers a quality series of Java books called The Java Series that explores Java in a tutorial fashion. This series even includes a book that describes how the virtual machine works—very helpful in learning what goes on "under the hood."

The Java Series Web site is located at http://java.sun.com/docs/books/.

O'Reilly and Associates is a book publishing house that offers a wide selection of quality books on many topics. They have produced a very successful line of incredibly useful books on Java technology. Whether you want to learn more about JDBC, multithreading, 3D graphics, or even cryptography, you've come to the right place when you visit O'Reilly.

The O'Reilly Web site is located at http://www.ora.com.

Read Quality Online and Print Java Magazines

The Internet offers many online magazines that are dedicated to Java technology. One of the most influential (and freely available) magazines is called JavaWorld. This magazine will keep you up to date on what is happening in the Java community, and can help you to improve your Java development skills.

The JavaWorld Web site is located at http://www.javaworld.com.

Interact with Other Developers Through Newsgroups

Sometimes, you have a Java question that needs a quick answer but there is no one around the office who can help. What do you do? How about visiting some of Java's many newsgroups. You'll find thousands of questions and hundreds of answers.

Three of the more useful newsgroups include

comp.lang.java.databases
comp.lang.java.gui
comp.lang.java.programmer
Obtain Certification to Increase Employment Options

Finally, if you want to get a really good job with Java technology, you can improve your chances by obtaining certification. Companies will prefer developers who have this designation to those who do not. (It's analogous to having a degree in Computer Science.)

To learn about the certification process, visit the Java developer connection's Web site and point your browser to http://developer.java.sun.com/developer/technicalArticles/Interviews/Certification/index.html.

Glossary

Abstract Windowing Toolkit AWT

A collection of classes and interfaces that developers use for graphics, image manipulation, and GUI development in Java.

accessor method

A method that gets or sets the value of a private field. (Accessor methods that get values are usually prefixed with the word "get," whereas accessor methods that set values are usually prefixed with the word "set.")

Affine Transformation

A mathematical concept whereby straight lines are transformed into straight lines and parallel lines into parallel lines but the distance between points and the angles between lines might be altered.

American Standard Code for Information Interchange ASCII

A seven-bit character set standard that maps 128 binary numbers (with values that range from 0 through 127) to 128 symbols.

anonymous inner class

An inner class without a name.

applet

A Web browser-dependent Java program consisting of one or more class files.

applet parameter

An HTML name/value pair that is accessible to an applet so that an applet can modify its behavior. (Applet parameters make it possible to modify the applet without requiring source code recompilation.)

application

A standalone Java program consisting of one or more class files.

argument

The result of an expression that is passed to a method when the method is called.

array

A data structure composed of a fixed number of sequential storage locations (known as elements).

array variable

A reference variable that points to an array.

ASCII

assistive technologies

Technologies that assist people in working with computers. For example, a Braille device makes it possible for a blind person to read a computer's screen in Braille.

AWT

See [Abstract Windowing Toolkit]
block

A region of source code surrounded by brace characters.

bucket

An array element that references a linked list for hashing purposes.

byte code

Instructions that are interpreted by the Java virtual machine.

call by reference

The mechanism that passes a variable's reference (address) to a method when that method is called.

call by value

The mechanism that passes the value of a variable to a method when that method is called.

capacity increment

An integer value that specifies by how much a Vector object grows when it is full.

case-sensitive language

A language in which identifiers that differ only in the case of their letters are treated as distinct.

character

The combination of a binary number and a symbol's visual data.

character set

A group of characters that completely define a written language's symbols.

checked exception

An exception that is based upon an external failure.

class

A source code blueprint that describes the state structure and behavior for all objects created from this blueprint.

class field

A field that is shared by all class instances (objects).

class field initialization block

A block, declared within a class and prefixed with the static reserved word, that is used to initialize class fields.

class file

A file with a .class file extension that contains a compiled class.

class instance

See [object]
class library

One or more packages of useful classes (such as networking and database classes) with each class stored in a separate class file.

class method

A method that can access only class fields declared within the same class as the method.

collision

Two or more keys mapping to the same array index in a hash table.

command-line tools

Programs run from a DOS, UNIX, or other operating system command window.

comment

Textual information that describes source code and contributes towards the understanding of that source code.

component

A GUI building block (such as a button or a list box). A component is represented by a Java object and host operating system code.

composition

The capability to include objects as members of other objects.

compound statement

Zero or more statements surrounded by a pair of brace characters. (Usually, braces surround two or more statements.)

constructor

A "special" method that is only used to initialize an object.

container

An AWT data structure that contains one or more components.

coordinate pair

A pair of integer numbers that identify the horizontal and vertical distances (measured in pixels) from the origin (the pixel located in the upper-left corner of the drawable area) to a pixel.

daemon thread

A thread that runs in the background when processor time is available—time that would otherwise go to waste.

data stream

A stream whose source or destination is another stream.

data structure

A container (implemented as an object) that stores data items.

data type

The classification of a data item.

dead state

The state of a thread after it has died.

deep cloning

The duplication of an object's primitive and reference field values (along with the primitive field values of all objects that are referenced by those reference fields).

demotion rule

A rule that governs the conversion of a primitive data type with a larger size to a primitive data type with a smaller size, via the cast operator.

deserialization

The act of reading an object's class name, attributes, and field values; creating a new object from the class name and attributes; and assigning the field values to the new object's fields.

doubly linked list

A linked list of nodes where each node has two link fields.

drawable area

A rectangular area on a Web page where an applet's graphical output is displayed.

dynamic method binding

The mechanism that the virtual machine uses to locate and call either a super-class method or the correct overridden super-class method in a subclass, via a reference data type.

empty string

A string literal without characters.

encapsulation

The integration of state and behavior into a single object.

enumeration

An object created from a class that implements the Enumeration interface.

error

An exception that represents serious problems with the virtual machine (such as no more memory).

escape sequence

Multiple characters that denote a single character.

event

An action that is initiated by a GUI program's user, by interacting with a component.

event handler

Java code that handles an event.

exception

An object that encapsulates the failed state of a program, at the point where a failure occurred.

exception handler

Code that handles an exception.

expression

A combination of multiple operators and operands (or even just a single operand).

external failure

A failure resulting from the inability to acquire a resource.

field

A variable that holds a unit of state. A meaningful portion of a record (such as the first name of an employee in an employee record).

field initializer

An expression whose value is assigned to the field and has the same data type as the field's data type.

file mode

The reading/writing capabilities of an open file.

file pointer

A system variable that identifies the next reading/writing position in a file.

file stream

A stream whose source or destination is a file.

final variable

A read-only simple variable.

finalizer

A "special" object method that the virtual machine calls just before it destroys the object.

graphics context

An object, created from a subclass of AWT's abstract Graphics class, that represents a specific display device (such as an image buffer, monitor, or printer).

graphics environment

A set of all graphics devices and fonts that are managed by the host operating system.

GUI

Graphical User Interface.

hash code

An integer number that uniquely identifies an object.

hash table

The data structure formed by combining array elements and linked lists with appropriate logic.

hashing

A computer science technique for mapping keys to array indexes by scrambling the bits of a key in such a way that not all keys map to the same array index.

helper method

A hidden method that assists non-hidden methods in the performance of their tasks.

identifier

A sequence of consecutive non-white space characters (no embedded spaces or tabs) that are used to name reserved words, variables, methods, classes, interfaces, and packages.

image

A picture created from a table of colored pixels.

import directive

A directive to the compiler to import one or more class or interface names from a package.

indefinite postponement

Preventing a thread from running because a thread with a higher priority has exclusive use of the processor.

inheritance

The capability to relate one object to another object based on the classes from which these objects were created.

initializer

A method that initializes either class fields or instance fields.

inner class

A class declared within another class (or method).

instance field

A field that is unique to each class instance (object).

instance field initialization block

A block, declared within a class, that is used to initialize instance fields.

instance inner class

A class that is declared within another class, without the static reserved word. Code within this class can access the outer class's instance and class fields.

instance method

A method that can access all instance and class fields declared within the same class as the method.

interface

A named collection of abstract methods and read-only fields.

internal failure

A failure resulting from flawed code.

Java

A software technology that enables the development of portable, object-oriented, and secure computer programs.

Java Development Kit JDK

Sun's toolkit for creating Java software. The Java Development Kit contains development tools, documentation, and examples.

Java Foundation Classes JFC

The new AWT and related features (including Java2D, Swing, Drag and Drop, and Accessibility).

Java Native Interface JNI

A mechanism that "connects" class files to C/C++ libraries.

Java Runtime Environment JRE

A runtime version of the Java Development Kit. The Java Runtime Environment contains no development tools, documentation, or examples.

JIT compiler

See [just in time compiler]
JNI

See [Java Native Interface]
just in time compiler JIT

A program that translates byte code into device code while the Java virtual machine is running a program.

key

A unique integer value (used in hashing, indexing, and so on).

key word

See [reserved word]
layout

The pattern by which a container's components are displayed on the screen.

layout manager

An object, associated with a container, that is responsible for laying out the container's components on the screen.

lifetime

The duration of a variable.

link field

A special reference field that is used by a node to link itself to another node.

linked list

A data structure composed of a dynamically expandable/shrinkable number of linked storage locations that are known as nodes.

literal

A data item literally embedded within source code.

load factor

The ratio of the number of occupied buckets—buckets referencing linked lists—to the total number of buckets.

local variable

A non-parameter variable declared within a method.

local variable initializer

An expression that is evaluated to a value (with the same data type as the variable) and then assigned to the local variable.

loop

A repetitive sequence of statements. This sequence is controlled by either a Do-while loop statement, a While loop statement, or a For loop statement.

main class file

The class file within an application or applet whose method byte code "gets first crack" at running.

main method

The method within an application whose code "gets first crack" at running.

message

A bundle of information sent from one object to another object.

method

A named group of statements that specifies a behavior.

method call stack

A sequence of method call return addresses where the most recent method call return address appears at the top and the least recent method call return address appears at the bottom.

monitor

A locking mechanism that prevents access to a block of code when locked and grants access when unlocked.

multithreading

The capability to run multiple threads, either at the same time (if each thread is given its own processor) or almost at the same time (if all threads share a single processor).

node

An object that represents a linked list storage location.

object

A software entity that combines state and behavior.

object serialization

A Java technology, implemented by a pair of classes and an interface, that makes it possible to save the state of a program's objects to some destination (such as a file) and recreate these objects from this saved state at some later time.

operand

A data item that is transformed by an operator into a new data item.

operator

A combination of symbols that identifies an operation.

overloaded method

A method declared within the same class as another method with the same name but with a different parameter list.

package

A library of classes and interfaces.

package directive

A compiler directive that is placed at the top of a source file and identifies the package where all classes and interfaces declared within the source file are stored.

parameter list

A comma-delimited list of variable names and their data types.

parameter variable

A variable declared within a method's parameter list.

peer

Host operating system code that creates, displays, and manages a component's visible window.

pipe stream

A stream whose source or destination is a thread.

polymorphism

The capability to use a super-class object reference variable to invoke subclass versions of overridden super-class methods.

precedence

The natural evaluation order of expressions containing multiple operators and operands.

primitive

A data structure object composed of a single data item that has a primitive Boolean, byte, char, double, float, int, long, or short data type. The class from which a primitive is created also is known as a data structure class or a wrapper class.

primitive data type

A language-defined data type.

promotion rule

A rule that governs the conversion of a primitive data type with a smaller size to a primitive data type with a larger size. The cast operator is not required because no information is lost.

quantum

The amount of time in which a thread can run before the operating system interrupts it and selects another thread to run.

queue

An array or linked list data structure where insertions are made at one end—the tail—and removed from another end—the head.

random access file

A file that is opened for reading and writing at the same time.

ready state

The state of a thread when it is ready to run.

record

A sequence of bytes that is stored in a file and describes an entity.

recursion

An iteration technique by which a method calls itself.

redirection

The use of the command-line characters < and > to switch the standard input device from the keyboard to a file or device and the standard output device from the screen to a file or device.

reference

The address of an object or array.

reference data type

A class or array data type.

reference variable

A variable that holds a reference to a region of memory.

reserved word

An identifier that only can be used to describe a language element.

return data type

The data type of values returned from a method.

runnable

An object that contains a public void run () method and serves as the target of a start () method call.

running state

The state of a thread when it is running.

runtime

Code that serves as a virtual machine operating system.

scalar variable

A non-array variable.

See also [simple variable]
scope

The visibility of a variable.

secure program

A Java program that is analyzed before it is allowed to run on a computing device.

self-referential class

A class that declares one or more reference fields to refer to objects of the same class data type.

sequential access file

A file that is opened either for reading or for writing but not for both.

serialization

The act of writing an object's class name, attributes (public, final, and so on), and field values to a stream.

shallow cloning

The duplication of an object's primitive field values.

short-circuiting

The technique of not always evaluating the rightmost operand of a logical AND or logical OR operator.

side effect

Extraneous code that is executed during the evaluation of an operand.

simple statement

A single statement.

simple variable

A single storage location that holds a data item. Synonymous with scalar variable.

singly linked list

A linked list of nodes where each node has one link field.

source code

The textual representation of a Java program.

stack

An array or linked list data structure where insertions and deletions are made from one end—the top.

standard I/O

A mechanism that provides a program with flexible input and output.

starvation

See [indefinite postponement]
statement

A sequence of tokens that performs an action. This sequence is terminated with a semicolon character.

static inner class

A class that is declared within another class, via the static reserved word. Code within this class can access only the outer class's class field(s).

stopping condition

A Boolean expression that is evaluated and, when true, causes recursion to cease.

stream

A flow of data from a source to a destination.

string

A sequence of characters treated as a single data item.

synchronization

The mechanism by which two threads are prevented from interfering with each other.

system color

A color that is used by the host operating system to draw peers.

thread

A path of execution through byte code.

throwing an exception

The task of passing an exception to the virtual machine.

time slicing

The execution of threads in a round-robin fashion.

token

A meaningful sequence of characters (such as an integer literal or an identifier).

tokenize

The process of extracting tokens from a string or a stream.

unchecked exception

An exception that is based upon an internal failure.

Unicode

A sixteen-bit character set standard that maps up to 65,536 binary numbers (with values that range from 0 through 65535) to a maximum of 65,536 symbols.

unnamed package

The package to which all classes and interfaces are placed if the source file in which they are declared does not have a package directive.

variable

A storage location that holds one or more data items and is manipulated by programs.

vector

A growable array data structure object.

virtual machine

A computer program that simulates a computing device.

